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[1] Using two continuum models of rate-and-state faults, one with a weaker
patch and the other with rheological transition from steady state velocity-weakening to
velocity-strengthening friction, we simulate several scenarios of spontaneous
earthquake nucleation plausible for natural faults, investigate their response to static shear
stress steps, and infer the corresponding aftershock rates. Overall, nucleation
processes at weaker patches behave similarly to theories based on spring-slider models,
with some notable deviations. In particular, nucleation and aftershock rates are
affected by normal stress heterogeneity in the nucleation zone. Nucleation processes at
rheological transitions behave differently, producing complex slip velocity histories,
nonmonotonic responses to static stress changes, and aftershock rates with pronounced
peaks and seismic quiescence. For such processes, positive stress steps sometimes delay
nucleation of seismic events by inducing aseismic transients that relieve stress and
postpone seismic slip. Superposition of the complex aftershock response for spatially
variable stress changes results in Omori’s law for a period of time followed by seismic
quiescence. Such behavior was observed at the base of the seismogenic zone near the
1984 Morgan Hill earthquake. We show that the computed aftershock rates are linked to
unperturbed slip velocity evolution in the nucleation zone and construct simplified
analytical scenarios that explain some features of the response. The qualitative differences
that we find between the two nucleation models indicate that aftershock response
of rate-and-state faults to static stress changes would depend on the conditions under
which nucleation occurs on natural faults and may be different from predictions
based on spring-slider models.
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1. Introduction

[2] Understanding earthquake nucleation is an important
yet difficult task due to lack of direct observations such as in
situ measurements at seismogenic depths. A widely accept-
ed model for earthquake nucleation is a developing fric-
tional instability on a preexisting fault, the phenomenon
inferred from laboratory experiments and theoretical stud-
ies. In this work, we simulate, in the context of earthquake
sequences, several plausible scenarios of earthquake nucle-
ation on faults embedded in an elastic medium and gov-
erned by rate- and state-dependent friction. We then explore
variability in simulated earthquake nucleation due to fault
heterogeneities and different loading conditions and study
implications for aftershock occurrence.

[3] The rate-and-state friction laws we adopt have been
developed on the basis of laboratory rock experiments [e.g.,
Dieterich, 1978, 1979; Ruina, 1983; Tullis, 1988; Blanpied
et al., 1995; Marone, 1998] for slip velocities from 10�8 to
10�3 m/s, the range of particular relevance to earthquake
nucleation. The laws have been successfully used to model
and explain various earthquake phenomena including earth-
quake nucleation, postseismic slip, foreshocks, aftershocks,
and aseismic transients [e.g., Rice and Ruina, 1983; Ruina,
1983;Marone et al., 1991;Dieterich, 1992, 1994; Tullis, 1996;
Ben-Zion and Rice, 1997; Gomberg et al., 1998; Marone,
1998; Lapusta and Rice, 2003; Perfettini et al., 2003; Liu and
Rice, 2005; Miyazaki et al., 2006]. In the standard aging
formulation for situations with time-independent effective
normal stress s, the shear strength t is expressed as

t ¼ sm ¼ s m0 þ a ln
V

V0

� �
þ b ln

V0q
L

� �� �
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where a > 0 and b > 0 are rate-and-state constitutive
parameters, V is slip velocity, m0 is the reference friction
coefficient corresponding to the reference slip velocity V0, q
is a state variable which can be interpreted as the average
age of the population of contacts between two surfaces, and
L is the characteristic slip for state evolution [e.g., Dieterich,
1978, 1979; Rice and Ruina, 1983; Ruina, 1983; Dieterich
and Kilgore, 1994]. Note that other equations for state-
variable evolution and formulations with two and more state
variables have been proposed [Ruina, 1983; Rice and
Ruina, 1983; Gu et al., 1984; Kato and Tullis, 2001].
Recent studies rekindled the discussion of which state
evolution laws are more appropriate to use in earthquake
modeling. Bayart et al. [2006] showed that the so-called
‘‘slip’’ form of the evolution equation provides a better
match to velocity jump experiments. Studies of aftershock
rates based on spring-slider models [Gomberg et al., 2000]
and a recent nucleation study [Ampuero and Rubin, 2008]
found notable differences between models with the aging
law and models with the slip law. We discuss the
applicability of our results to other rate-and-state formula-
tions in section 9.
[4] Stability of sliding and nucleation of seismic slip on

rate-and-state faults governed by laws (1) and (2) have been
considered in a number of theoretical studies [Rice and
Ruina, 1983; Ruina, 1983; Dieterich, 1992; Rice et al.,
2001; Rubin and Ampuero, 2005]. Fault regions with a �
b > 0 have steady state velocity-strengthening friction
properties and tend to slip in a stable manner with the
imposed loading rate. Fault regions with a � b < 0 have
steady state velocity-weakening properties and are capable
of producing earthquakes. However, even on steady state
velocity-weakening fault regions, sufficiently small slipping
zones cannot develop fast slip under slow tectonic loading,
and the slipping zone has to become large enough to produce
a rapid sliding event. The aseismic process of slow and
gradually accelerating slip in a small, slowly varying zone
that eventually leads to unstable slip is often referred to as a
nucleation process. The term ‘‘unstable slip’’ typically refers
to simulated earthquakes that are inertially controlled events
characterized by rapid expansion of the slipping zone with
rupture speeds that are a significant fraction of wave speeds
and slip velocities much larger than the loading rate.
[5] Studies of earthquake nucleation have concentrated

on two theoretically interesting and practically important
topics: the nucleation size, i.e., the size of the slipping zone
right before an earthquake, and implications of nucleation
for aftershock phenomena. Several theoretical estimates
hnucl of the nucleation size have been proposed, all of them
in the form

hnucl ¼ hGL
sF

; ð3Þ

where h is a model-dependent parameter of order one, G is
the shear modulus, and F is a function of rate-and-state
parameters a and b. Rice and Ruina [1983], Ruina [1983],
and Rice et al. [2001] considered linear stability of
perturbations from steady state sliding and determined that
F = b–a. Dieterich [1992] assumed that nucleation
processes accelerate fast enough for Vq/L � 1 to hold
and obtained F = b. The estimate of Dieterich [1992] was

later confirmed in meter-scale rock friction experiments
[Dieterich and Kilgore, 1996]. Rubin and Ampuero [2005]
proposed that there are two regimes controlled by the ratio
a/b. If a/b ] 0.37, the nucleation proceeds in a fixed region
of the size given by (3) with F = b, as in the estimate by
Dieterich [1992]. If a/b ^ 0.5, the nucleation process
resembles an expanding crack and the nucleation size
asymptotically approaches (3) with F = (b–a)2/b. Note that
all three estimates match, within factors of order 1, for a �
b which implies b–a � b. For a approaching b (friction
properties close to velocity neutral), both Rice-Ruina and
Rubin-Ampuero estimates predict increasingly larger nu-
cleation sizes (although Rubin-Ampuero estimate increases
significantly faster). This is consistent with the fact that
velocity-strengthening regions cannot spontaneously pro-
duce unstable sliding and hence the nucleation size for a 	
b can be considered infinite.
[6] The second thrust in studying nucleation processes

has been motivated by aftershock occurrence. The decay of
aftershocks is well described empirically by Omori’s law
(see Utsu et al. [1995] for a recent review). Dieterich [1994]
built an aftershock model that reproduced Omori’s law
using static triggering of rate-and-state nucleation sites. In
that model, a preexisting population of rate-and-state nu-
cleation sites is perturbed by static stress changes due to a
main shock. In the population, each nucleation site is
governed by the same nucleation process but time shifted
in such a way that the population results in a constant
background seismicity rate. After a positive static shear
stress step, the nucleation process at each site accelerates,
producing an increased seismicity rate (or aftershock rate)
that matches Omori’s law for a wide range of parameters.
An important ingredient in this aftershock model is the
nucleation process and its response to static stress changes.
Dieterich [1994] specified the nucleation process in terms of
its slip velocity evolution. To obtain the evolution, two
simplifications in modeling nucleation were used: (1) elastic
interactions were described by a one-degree-of-freedom
spring-slider system and (2) the assumption Vq/L � 1
was used to simplify the rate-and-state friction formulation
based on a study of earthquake nucleation in a continuum
model [Dieterich, 1992]. These simplifications allowed the
derivation of analytical expressions for both slip velocity
evolution during nucleation and the resulting aftershock rate
(Appendix B). The approach of Dieterich [1994] has been
further explored in a number of works [Gomberg et al.,
1998, 2000; Gomberg, 2001; Gomberg et al., 2005] and has
been used to interpret observed aftershock sequences [Gross
and Kisslinger, 1997; Gross and Burgmann, 1998; Toda et
al., 1998, 2005]. In particular, aftershock rates based on
simulations in spring-slider systems with the full aging rate-
and-state formulation were found to follow the results of
Dieterich [1994] quite well, validating simplification (2) for
spring-slider models.
[7] Given the determining role of the nucleation process

in the aftershock model of Dieterich [1994] and subsequent
studies, it is important to understand whether spring-slider
models provide a good approximation of the nucleation
process on natural faults. Spring-slider models approximate
a slip zone of a constant size (inversely proportional to the
spring stiffness assumed) with uniform slip and stress
history throughout the slip zone and simplified elastic
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interaction with the surrounding bulk. Hence spring-slider
models cannot represent spatially inhomogeneous aseismic
slip in a zone of evolving size which is a characteristic
feature of nucleation processes in models that incorporate
both rate-and-state friction laws and elastic continuum
[Rice, 1993; Lapusta and Rice, 2002, 2003; Rubin and
Ampuero, 2005].
[8] In this study, we simulate and compare several

plausible scenarios of earthquake nucleation in continuum
models of rate-and-state faults. Two fault models are used to
create two different environments for earthquake nucleation.
The first model incorporates uniform steady state velocity-
weakening friction properties and a weaker patch of slightly
(10%) lower effective normal stress. By varying the size of
the weaker patch, we can either achieve completely homo-
geneous fault properties within the nucleation zone or
induce normal stress heterogeneity there. This is a realistic
nucleation scenario, as faults can contain such weaker
patches for a number of reasons that include local fault
nonplanarity or spatial variations in pore pressure. At the
same time, observations suggest that earthquakes tend to
cluster at inferred transitions from locked to creeping
regions [e.g., Schaff et al., 2002; Waldhauser et al.,
2004]. We explore that scenario in the second model that
contains a rheological transition from steady state velocity-
strengthening to steady state velocity-weakening friction.
Such transitions create stress concentrations that promote
earthquake nucleation.
[9] Nucleation processes in this work are simulated as a

part of spontaneously occurring earthquake sequences on a
fault that is subjected to slow, tectonic-like loading [Lapusta
et al., 2000]. This approach allows us to study nucleation
processes that naturally develop in our models, with con-
ditions before the nucleation originating from the previous
stages of earthquake occurrence and not from arbitrarily
selected initial conditions that one would need to impose to
study only one instance of earthquake nucleation. Our
simulations resolve all stages of each earthquake episode:
the aseismic nucleation process in gradually varying zones
of accelerating slip, the subsequent inertially controlled
event (unstable slip) with realistic slip velocities and rupture
speeds, the postseismic slip, and the interseismic quasi-
static deformation between events.
[10] We consider five representative cases of earthquake

nucleation, compare them in terms of their slip velocity
evolution, and discuss the effects of heterogeneity in normal
stress, heterogeneity in friction properties, and variations in
loading (sections 3 and 4). We find significant differences
among the simulated nucleation processes. Since their
spatial extent varies with time and their slip and slip
velocity vary with space, it is not obvious how to make
the direct comparison of the nucleation processes obtained
in this work with the ones in spring-slider models. To
facilitate such comparison, we study the response of the
simulated nucleation processes to static stress changes and
the resulting aftershock rates, compare them with the results
of Dieterich [1994], and explain the observed similarities
and differences (sections 5–8). Overall, the model with a
weaker patch behaves similarly to the spring-slider model of
Dieterich [1994], while the model with rheological transi-
tion exhibits qualitatively different behavior. We summarize
our results and discuss their implications in section 9.

[11] In computing the aftershock rates, we assume, fol-
lowing previous approaches [Dieterich, 1994; Gomberg et
al., 2000; Gomberg, 2001], that the aftershock-producing
nucleation sites are all governed by the same nucleation
process, albeit time shifted for each nucleation site. On
natural faults, different nucleation sites may have different
friction properties, stress conditions, stressing rates, etc, and
one would need to consider, in general, a combination of
nucleation models of the kind studied in this work to make
meaningful comparisons with aftershock observations. Our
results on aftershock rates may be useful for explaining
observations in special cases, as we show in section 6 for a
cluster of aftershocks located at rheological transition.
However, the main purpose of the study is to determine
whether the response of rate-and-state faults to static stress
perturbations changes if one uses models of faults in elastic
continuum rather than spring-slider models.
[12] A number of other mechanisms have been proposed

to explain aftershock occurrence. These include increased
loading rate due to aseismic processes such as postseismic
slip [e.g., Benioff, 1951; Perfettini and Avouac, 2004] or
relaxation of the viscoelastic lower crust [e.g., Freed and
Lin 2001], pore fluid motion and induced variations in fault
strength [e.g., Nur and Booker, 1972; Bosl and Nur, 2002],
triggering due to dynamic stress changes [e.g., Hill et al.,
1993; Gomberg et al., 2003; Felzer and Brodsky, 2006], and
evolution of viscoelastic damage rheology due to sudden
increase in strain [e.g., Ben-Zion and Lyakhovsky 2006].
The full explanation for aftershocks may involve a combi-
nation of several mechanisms, with different mechanisms
potentially dominating in different situations or during
different stages of aftershock sequences. However, it
becomes increasingly clear that rate-and-state friction is a
good description of the fault constitutive response during
slow slip, and hence accelerated rate-and-state nucleation
due to static stress changes has the potential to significantly
contribute to all aftershock sequences. Our study of this
aftershock-producing mechanism with continuum models of
earthquake nucleation is a useful first step toward under-
standing the combined effects of several mechanisms as
discussed in section 9.

2. Two-Dimensional Continuum Models of
Earthquake Nucleation

[13] We consider earthquake nucleation on a planar fault
embedded into an elastic medium of homogeneous elastic
properties with the shear wave speed cs = 3.0 km/s, shear
modulus G = 30 GPa, and Poisson’s ratio v = 0.25. On the
fault, a potentially seismogenic patch borders regions
steadily moving with a prescribed slip rate VL = 1 mm/a,
as illustrated in Figure 1a. That steady motion provides
loading in our models. The loading slip rate VL = 1 mm/a is
on the low end of typical plate rates but it could be
representative of steady slip achieved locally on faults,
especially in the case of secondary faults or multiple fault
strands. The fault resistance to sliding is given by rate-and-
state friction regularized at zero slip velocity [Rice and Ben-
Zion, 1996; Lapusta et al., 2000]. The value of character-
istic slip L in simulations presented in this work is 80 mm
(unless noted otherwise), as laboratory-like values of L (of
order 1–100 mm) are required to account for the presence of
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small (M 
 0) earthquakes on natural faults [e.g., Lapusta
and Rice, 2003].
[14] Two simplified fault models that we use to create two

conceptually different scenarios of earthquake nucleation are
described in sections 2.1–2.2 and illustrated in Figure 1b.
More details are given in Appendix A. The friction and stress
parameters of the models are summarized in Table 1 and
Figure 2. To simulate spontaneous slip accumulation in
terms of earthquake sequences, we use the boundary integral
method developed by Lapusta et al. [2000] and Lapusta
[2001].

2.1. Model With a Weaker Patch

[15] The first model incorporates a weaker patch of 10%
lower effective normal stress. The model is based on the
crustal plane model [Lapusta, 2001]; it restricts the fault to
motions parallel to the along-strike direction x, eliminates
the fault depth by considering depth-averaged quantities,
and retains variations only in the along-strike direction x.
These modifications turn the 2-D planar fault into a 1-D
along-strike analog (Figure 1b), with the fault behavior
described by strike-parallel slip d(x, t), slip velocity (or slip
rate) V(x, t) = @d(x, t)/@t, and the relevant component of
shear stress t(x, t). Compressive effective normal stress s (x)
does not depend on time in the cases considered in this
work. At the ends of the fault, there are zones of zero initial
shear stress to stop dynamic events (Figure 2). Hence the
extent of the fault capable of sustaining dynamic events is
1000 m. A more physical approach would be to replace the
zero-stress regions with regions of velocity-strengthening
properties, but that would create alternative places for
earthquakes to nucleate, and in this model we would like
to avoid such complexities. By making earthquakes nucleate
in the designated place, i.e., at the weaker patch in the
middle of the fault, we can control how heterogeneous the
imposed conditions are in the nucleation region.
[16] We have done a number of simulations of earthquake

sequences in this model, varying the values of parameters a
(0.0015–0.015), b (0.0055–0.019), L (10–120 mm), and
the size of the weaker patch (2–200 m). We present results
for three representative cases, all with L = 80 mm.

[17] In case 1, the size of the weaker patch, 100 m, is much
larger than the nucleation size, which is less than 30 m in this
case. Hence there is no imposed heterogeneity within the
nucleation zone. Values a = 0.015 and b = 0.019 are used
(Figure 2), which are typical of laboratory experiments.
Nucleation proceeds under stress conditions that are rela-
tively homogeneous compared to other cases. However, in
this and all other cases, shear stress concentrations do
develop, as expected, at the edges of the slowly varying
zone of faster slip.
[18] In case 2, the size of the weaker patch, 10 m, is a

significant fraction of the nucleation zone that develops.
Nucleation proceeds under imposed conditions of heteroge-
neous normal stress within the nucleation zone. The other
parameters are the same as in case 1.
[19] In case 3, the value of a = 0.0015 is 10 times smaller

than that of cases 1 and 2. This value is representative of the
ones inferred from aftershock observations based on the
model of Dieterich [1994], assuming overburden normal
stress minus hydrostatic pore pressure [Gross and Kisslinger,
1997; Gross and Burgmann, 1998; Toda et al., 1998, 2005].
The parameter b = 0.0055 is chosen to keep (b� a) the same
as in cases 1 and 2, ensuring the same steady state velocity-
weakening properties. The size of the weaker region, 10 m,
is a significant fraction of the nucleation zone, as in case 2.
Note that the ratio a/b is 0.27 in this case, while a/b = 0.79
for cases 1 and 2. According to the study of Rubin and

Figure 1. (a) Three-dimensional schematics of a planar fault in an elastic medium. This study employs
simplified 2-D models and focuses on a small region indicated by the square. The fault region governed
by rate-and-state friction (shown in gray) is loaded by relative motion above and below the region
with a prescribed slip rate VL. (b) Schematics of fault properties in the simplified 2-D continuum models.
(top) In the model with a weaker patch, the fault has steady state velocity-weakening properties
everywhere and contains a patch of lower effective normal stress indicated by a square. (bottom) In the
model with rheological transition, a steady state velocity-weakening region is surrounded by steady state
velocity-strengthening regions.

Table 1. Friction-Related Parameters of Both Models

Parameter Symbol Value

Reference slip velocity V0 10�6 m/s
Reference friction coefficient m0 0.6
Characteristic slip distance L 80.0 mm
Effective normal stress s 50.0 MPaa

Rate-and-state parameter a a 0.015 or 0.0015b

Rate-and-state parameter b b 0.019 or 0.0055b

aIn the model with a weaker patch, s = 50 MPa in the patch and s =
55.6 MPa outside the patch.

bThe indicated values of a and b are valid for the entire fault in the model
with a weaker patch and for the part of the steady state velocity-weakening
region of the model with rheological transition where a and b are constant.
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Ampuero [2005], this represents a qualitative difference, as
explained in section 1.

2.2. Model With Rheological Transition

[20] The second model contains variations in steady state
friction properties that create rheological transitions. It is
analogous to the depth-variable model of Lapusta et al.
[2000]. The fault motion is still in the along-strike direction
x, but only variations with depth z are considered, so that the
fault behavior is described by strike-parallel slip d(z, t), slip
velocity (or slip rate) V(z, t) = @d(z, t)/@t, and the relevant
component of shear stress t(z, t). Unlike the model studied
by Lapusta et al. [2000], the model in this work does not
include the free surface. The effective normal stress s is
constant along the entire fault (Figure 2).
[21] We have done a number of simulations in this model,

varying the values of a and b in the velocity-weakening
region (0.0015–0.015 and 0.0055–0.023, respectively) and
L (20–160 mm). We present results for two representative
cases, both with L = 80 mm.
[22] In case 4, a = 0.015 and b = 0.019 in the steady state

velocity-weakening region, as in cases 1 and 2 of the model
with a weaker patch. Full distributions of a and b are shown
in Figure 2. This variation is qualitatively similar to the one
in Rice [1993] and Lapusta et al. [2000]. The distributions
of a and b are asymmetric with respect to the middle of the

fault, so that simulated earthquakes nucleate at one of the
rheological transitions.
[23] In case 5, a = 0.0015 and b = 0.0055 in the steady

state velocity-weakening region, as in case 3. Throughout
the fault domain, this case has 10 times smaller a than case 4
and such b that the distribution of (a � b) is the same in
both cases. The same distribution of (a � b) ensures that
rheological transitions are at the same locations in both
cases.

3. Simulated Nucleation Processes

3.1. Nucleation Processes due to Weaker Patches and
Importance of Normal Stress Heterogeneity

[24] As an example of fault slip simulated in the model
with a weaker patch, consider the earthquake sequence for
case 1 (Figure 3a). Earthquakes nucleate in the middle of
the fault, due to the weaker patch. The earthquakes then
spread bilaterally along the strike of the fault; the dashed
lines show slip accumulation every 0.01 s during the
dynamic rupture. When the rupture reaches zero-stress
barriers, it arrests. The interseismic period is 28 years. We
take the nucleation process of the third event as the
representative one for this case; the corresponding part in
Figure 3 is surrounded by a small rectangle.

Figure 2. (top) Distributions of effective normal stress s and initial shear stress to in the two models. In
the model with a weaker patch, the region of lower s is introduced in the middle of the fault to encourage
earthquake nucleation there. The size of the weaker region varies in different cases studied. (bottom)
Examples of distributions of rate-and-state parameters a and (a � b) in the two models. Locations with
a � b = 0 correspond to rheological transitions from velocity-weakening to velocity-strengthening steady
state friction. We vary a and b in the presented cases but keep (a � b) the same in all cases.
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[25] To study nucleation sizes and aftershock rates, we
need to define when the nucleation process ends and the
dynamic event begins. Dieterich [1992, 1994] used quasi-
static equations, and their solution ceased to exist (i.e., slip
velocities became infinite) when inertial effects would have
been important in the complete formulation. The time at
which the solution ceased to exist was taken as the time of
instability onset. Since our simulations fully account for
inertial effects and capture the smooth transition between
the quasi-static phase and dynamic rupture, defining the
beginning of an earthquake is not so simple. We use the
criterion based on rupture speed and take, as the onset of
instability, the time at which a tip of the actively slipping
zone moves with the speed that exceeds a fraction (10%) of
the shear wave speed of the surrounding elastic medium.
The tips of the actively slipping zone are found as the
locations of shear stress concentration. The sliding region
changes very slowly in space during the quasi-static defor-
mation, and extends with rupture speeds comparable to the
shear wave speed during the dynamic phase. Hence this
rupture definition allows us to appropriately capture the
transition. An alternative approach would be to define the
beginning of an earthquake as the time when slip velocities
reach a certain value, e.g., 0.1 m/s, either at a particular
location or as a maximum on the fault. Note that the two
criteria are related, as faster slip velocities correspond to
larger rupture speeds.
[26] Representative nucleation processes for cases 1–3

are shown in Figure 4. The dashed lines in Figures 4a–4c
show slip accumulation every 0.01 s starting with 0.05 s
before our definition of the beginning of an earthquake. The
first five dashed lines are almost on top of each other,
signifying still relatively slow slip and slow expansion of

the sliding region. The sixth line shows much faster slip and
expansion, indicating the beginning of a dynamic event.
Figures 4d–4f illustrate the imposed distribution of effec-
tive normal stress and the approximate extent of the
spontaneous nucleation zone.
[27] The comparison of cases 1 and 2 shows an interest-

ing result. The presence of slight normal stress heterogene-
ity within the nucleation zone in case 2 leads to 1.5 times
larger nucleation size for that case, 36 m versus 24 m for
case 1. Average normal stress is larger in case 2, with all
other parameters being the same, and all existing estimates
of earthquake nucleation sizes discussed in section 1 would
predict that the nucleation size should be smaller in case 2
than in case 1, but the opposite is observed. The antiplane
estimate of nucleation size by Rubin and Ampuero [2005]
gives 36 m for the parameters of these cases. Since we use a
depth-averaged model, the direction x is affected by a factor
of Z = 1/(1 � v) = 4/3 (Appendix A) and hence the estimate
becomes 48 m. This is broadly consistent with the nucle-
ation sizes in cases 1 and 2, in the sense that the estimate
gives a close upper bound. Note that the energy balance in
the expanding crack solution of Rubin and Ampuero [2005],
when adopted to the normal-stress heterogeneity of case 2,
would be qualitatively consistent with the larger nucleation
size for case 2 (A. Rubin, personal communication, 2007).
This result demonstrates that stress heterogeneities on faults
can have significant, and sometimes counterintuitive, effect
on nucleation processes.
[28] Case 3, with a smaller value of a/b, behaves differ-

ently from cases 1 and 2. The nucleation size in case 3 is
about 29 m. We simulated a number of cases similar to case
3 but with different sizes of the weaker patch, including the
case in which the weaker patch was much larger than the

Figure 3. Examples of earthquake sequences simulated (a) in the model with a weaker patch and (b) in
the model with rheological transition. Solid lines show slip accumulation every 2 years. Dashed lines are
intended to capture dynamic events and are plotted every 0.01 s during the simulated earthquakes. For
each earthquake, the dashed lines are shown from 0.05 s before our definition of the onset of an
earthquake (rupture speed reaching 10% of the shear wave speed) until the maximum slip velocity on the
fault reduces to 1 mm/s. The nucleation process of a representative earthquake is indicated by a rectangle.
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resulting nucleation size. In all those cases, the nucleation
size changed very little compared to case 3. This means that
the effect of heterogeneity on the nucleation size is dimin-
ished for sufficiently small values of a/b. We also find that
smaller values of a/b lead to shorter periods of interseismic
deformation between two successive earthquakes. In case 3,
the interseismic period is 23.8 years, smaller than the
interseismic period of 29.1 years in case 2, despite the fact
that (b � a) is the same in the two cases.

3.2. Nucleation Processes due to Rheological
Transitions

[29] An earthquake sequence simulated in the model with
rheological transition is shown in Figure 3b, using case 4 as
an example. The solid lines are plotted every 2 years and
show the continuous slow sliding (creep) of the steady state
velocity-strengthening regions. That slow slip creates stress
concentration at its tip and penetrates into the velocity-
weakening region. In due time, an earthquake nucleates

Figure 4. (a–c) Nucleation processes at weaker patches. Cases 1–3 correspond to either different sizes
of the weaker patch or different constitutive parameters a and b. The other parameters are the same for all
three cases. (d–f) Distribution of effective normal stress s in a region that includes the nucleation zone.
Double arrows indicate the extent of the nucleation zone for each case. (g–h) Nucleation processes at
rheological transition. Cases 4 and 5 correspond to different constitutive parameters a and b. Solid and
dashed lines in Figures 4a–4c and 4g–4h have the same meaning as in Figure 3. Shaded areas
correspond to velocity-strengthening regions.
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close to the transition; its progression is shown by dashes
lines. After an earthquake arrests, the velocity-strengthening
region experiences accelerated sliding, or afterslip, due to
the transferred stress. The interseismic period between two
successive events is 32 years. We take the nucleation
process of the forth event as the representative one for this
case; the relevant part of Figure 3 is surrounded by a small
rectangle.
[30] Representative nucleation processes for cases 4 and 5

are shown in Figure 4. Nucleation of the simulated earth-
quakes occurs within the velocity-weakening region, but
close to transition to velocity-strengthening friction
(Figures 4g and 4h; the transition is at z = �32 m in both
cases). Because of interactions with the nearby creeping
region, such nucleation proceeds under temporally and
spatially nonuniform stress field. The different values for
a � b (with the same value of b-a) in cases 4 and 5 lead to
notable differences in nucleation processes. The nucleation
sizes in cases 4 and 5 are different and approximately
consistent with the estimates of Rubin and Ampuero
[2005], which are 2mLb/(ps (b � a)2) = 36 m for case 4
and 2.74mL/(sb) = 24 m for case 5. Note that Rubin and
Ampuero [2005] gave formulae for half of the nucleation
size but we use full nucleation sizes here. In our simula-
tions, the nucleation sizes are 35 to 40 m for case 4 and 18
to 24 m for case 5, as can be estimated from Figure 4.
[31] As in the model with a weaker patch, smaller values

of a/b result in shorter interseismic periods, but the effect is
much stronger in the model with rheological transition. In
case 5, the interseismic period is 18 years, almost twice
shorter than the interseismic period of 32 years in case 4. In
the model with a weaker patch, the interseismic period is
dictated by the loading time necessary to rebuild the stress
relieved during a dynamic event and hence depends on the
static stress drop, which is similar in cases 1 and 3. In the
model with rheological transition, the interseismic period is
controlled by the time it takes for the slow slip penetrating

from the velocity-strengthening region to create a slipping
zone comparable to the nucleation size. Since the nucleation
size is almost twice smaller in case 5 than in case 4, the
interseismic period is also almost twice smaller.

3.3. Different Time Evolution of Nucleation in the
Two Models

[32] The nucleation sizes in both models are comparable
for a given set of rate-and-state parameters (Figure 4). The
question arises whether the time evolution of the nucleation
processes in the two models is also similar. In Figure 5, we
compare slip-velocity evolution for representative points
inside the nucleation zones at weaker patches (cases 1
and 2) and at rheological transitions (case 4). In the model
with a weaker patch, slip velocity gradually increases
through the interseismic period, and this behavior is qual-
itatively consistent with that of spring-slider models
[Dieterich, 1994; Gomberg et al., 2000]. Still, slip velocity
in cases 1 and 2 is slightly different, especially for the period
from 10�3 to 100 years before an earthquake (Figure 5b).
This can only be caused by normal-stress heterogeneity
within the nucleation zone, as this is the only difference
between cases 1 and 2. Nucleation in the model with
rheological transition (case 4) is significantly different: slip
velocity increases first, then stays relatively constant for
about 20 years, with some oscillations, and later increases
further. This complex nonmonotonic behavior is due to
penetration of slip from the nearby slowly slipping region.
The creeping region concentrates stress at its edge, causing
slip there and expanding itself. This process moves the stress
concentration along the fault and results in time-dependent
heterogeneity of shear stress within the nucleation zone. We
find the corresponding fluctuations of slip velocity in all
cases we have studied in the model with rheological transi-
tion. Note that variations in slip velocity are linked to
variations of Vq/L, the quantity important in the aftershock
model of Dieterich [1994].

Figure 5. Slip velocity evolution during one earthquake cycle for representative points inside
nucleation zones on (a) linear and (b) logarithmic timescales. Time to instability T is given by T = t2 � t,
t1 < t < t2, where t1 and t2 are the occurrence times of two consecutive earthquakes in years. For each
case, slip velocity for times t1 + 1 < t < t2 is shown. Slip velocity at x = 0 km is plotted for cases 1 and 2,
and slip velocity at z = 0 is plotted for case 4. Note that slip velocity evolution for nucleation processes at
rheological transition is nonmonotonic.
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[33] Hence we find that earthquake nucleation in the two
models proceeds differently, as demonstrated by slip veloc-
ity evolution of points within the nucleation zone. The
differences are caused by spatial and temporal stress het-
erogeneity within the nucleation zone and result in signif-
icant consequences for aftershock rates (section 5).

4. Dependence of Nucleation Processes and Sizes
on Loading History

[34] As discussed in section 1, several simple analytical
estimates hnucl = hGL/(sF) for the nucleation size have been
proposed. In particular, F = b was advocated by Dieterich
[1992]. Rubin and Ampuero [2005] found that F = b is
valid in a certain parameter regime, a/b ] 0.37, while F = b/
(b � a)2 holds for a/b ^ 0.5. This is because, for a/b ^ 0.5
the condition Vq/L � 1 adopted by Dieterich [1992] breaks
down in the middle of the nucleation zone under quasi-static
tectonic loading. The Dieterich and Rubin-Ampuero esti-
mates are quite different for the values of a close to b. Rubin
and Ampuero [2005] mentioned that ‘‘the loading conditions
play a role, and could potentially place nucleation in the
regime Vq/L� 1 even for large a/b’’, citing a stress step and
the associated instantaneous change in slip velocity as an
example.
[35] We find that nucleation evolution and size are indeed

strongly controlled by loading history. Our simulations of
nucleation under slow tectonic loading result, for both
models, in nucleation sizes consistent with the estimates
of Rubin and Ampuero [2005] (section 3). However, other
reasonable loading histories can make the nucleation size
closer to the estimate of Dieterich [1992] even for the
parameter range a/b ^ 0.5. As an example, consider a
nucleation process in the model with a weaker patch for a
case conceptually similar to case 1 of section 3, but with L =
20 mm, a/b = 0.94, b = 0.016, and the weaker patch size of
200 m. If we use the model-dependent constants h from
antiplane models (h = 2.5 for Dieterich, h = 2/p for Rubin
and Ampuero) multiplied by parameter Z = 4/3 (Appendix A),
the two estimates are 2.5 m and 162 m, respectively, with
the Rubin-Ampuero estimate 65 times larger than that of
Dieterich. We consider two cases: nucleation proceeding
under slow tectonic loading (Figures 6a, 6c, and 6e) and
nucleation that experiences, in addition to slow tectonic
loading, a positive shear stress step 1 year before the
original time to instability (Figures 6b, 6d, and 6f). We find
that the perturbed case has a much smaller nucleation size
than the unperturbed case, 5.5 m versus 53 m. The new time
to instability is 0.014 year.
[36] The difference between the two scenarios can be

explained by the evolution of Vq/L in the nucleation zone,
shown in Figures 6e and 6f. The unperturbed scenario is
consistent with the study of Rubin and Ampuero [2005] and
follows the evolution typical for values of a/b ^ 0.5, with
Vq/L of order 1 in the middle of the nucleation zone for
times close to instability (Figure 6e). In the perturbed case,
Vq/L becomes, after the shear stress step, much larger than 1
throughout the nucleation zone and Vq/L reduces to one in
the nucleation region only after tips of the rupture start to
expand dynamically (inset in Figure 6f). Hence, because of
the stress perturbation, the condition Vq/L � 1 becomes
valid throughout the nucleation zone and stays valid until

the dynamic event, leading to a much smaller nucleation
size more consistent with the estimate of Dieterich [1992].
[37] This example demonstrates how different loading

conditions can change the nucleation process and, in partic-
ular, cause order-of-magnitude differences in nucleation
sizes. In laboratory experiments, slow loading over tectonic
timescales is not feasible, and much faster loading must
be used, rapidly increasing V and potentially leading to
Vq/L � 1 everywhere within the nucleation region even for
a/b ^ 0.5. This may explain why experiments of Dieterich
and Kilgore [1996] were consistent with the results of
Dieterich [1992], even though laboratory values of a/b
often fall into the range a/b ^ 0.5.

5. Comparing Nucleation Processes by Their
Response to Static Stress Changes and Resulting
Aftershock Rates

[38] To understand whether the differences in slip veloc-
ity evolution during nucleation that we find for different
models are practically important, we consider their effect on
aftershock rates.

5.1. Procedure for Determining Aftershock Rates

[39] Following Dieterich [1994], we consider a preexist-
ing population of rate-and-state nucleation sites distributed
in the volume of a prospective aftershock region (Figure 7a).
Just prior to the time of the main shock, each site is at a
different stage in the nucleation process so that the popula-
tion of nucleation sites would result in a constant back-
ground earthquake rate if left unperturbed. The main shock
perturbs the nucleation sites, causing the nucleation to
proceed differently and resulting in a nonconstant rate,
which can be called the aftershock rate. We consider the
situation when the population experiences a static stress
change in the form of a uniform positive shear stress step,
except in section 6 where a case with a nonuniform stress
step is studied.
[40] To compute the aftershock rate, we need to know

how the rate-and-state nucleation at each site reacts to such
change in stress. Let us denote by T the time from the
application of the stress perturbation to the unperturbed
failure time. We call T the original time to instability. Let us
denote by f (T) the new time to instability, i.e., the changed
time to instability due to the stress perturbation. To compute
the aftershock rate, we only need to know f (T) for all T of
interest. For monotonic f (T), the aftershock rate R is given
by [Gomberg et al., 2000] (Appendix C)

R

r
¼ dT

df
: ð4Þ

For nonmonotonic f (T), which arise in one of the models,
the inverse dependence T( f ) is multivalued, and equation (4)
cannot be used. The approach we developed for that
situation is described in Appendix C.
[41] For each nucleation example described in section 3,

we find f (T ) numerically by the following procedure. Each
stage of a given nucleation process can be labeled by its
time to instability T (Figure 7b). We select many values of
T and, for each of them, we conduct a simulation in which
we perturb the nucleation process by imposing a static stress
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step in the fault model at time T before the instability. In the
simulation with the perturbation, the instability occurs at a
different time, giving us the new time to instability f (T).
This numerically constructed f (T) is used to compute the
aftershock rate.
[42] One of the important differences between our com-

putation of aftershock rates and the model of Dieterich
[1994] is that the original time to instability T in our model
cannot be longer than the simulated interseismic period,
whereas in the model of Dieterich [1994], the population of
preexisting nucleation sites can include sites with any

original (or unperturbed) times to instability T. However,
for any nonzero stressing rate _t, the assumption that nucle-
ation processes can be arbitrarily long is not physically
plausible. If tfail is an upper bound of failure stress, then
the nucleation site would have to fail within the time of the
order of tfail / _t. That consideration imposes a physical limit
on how large the times to instability T can be in the preexist-
ing population even in the model of Dieterich [1994],
although, mathematically, analytical expression (B5) that
relates the time to instability and slip velocity of each
nucleation site can be used for any T.

Figure 6. Dependence of nucleation processes on loading history. (a, c, and e) An unperturbed
nucleation process in a model with a weaker patch, a = 0.015, a/b = 0.94, L = 20 mm, and the weaker
patch size of 200 m. (b, d, and f) The same nucleation process but perturbed with Dt = 3.0 MPa at 1 year
before the original instability. The dashed lines in Figures 6a and 6b are plotted every 0.01 s staring with
0.05 s before our definition of the onset of instability. The solid lines in Figures 6c–6f correspond to the
times of dashed lines from Figures 6a and 6b. The first five lines cluster, indicating the spatial extent of
the nucleation zone. The insets show the evolution of Vq/L at x = 0 m. The nucleation sizes in these two
cases differ by an order of magnitude.
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[43] Our method of computing aftershock rates can be used
to find aftershock rates due to perturbations of any time-
dependent nucleation process. In addition, this approach can
be readily extended to dynamic perturbations and to more
complex scenarios in terms of the initial nucleation popula-
tion and spatial distribution of stress change. One such
combined scenario, with spatially varying stress changes, is
considered in section 6.

5.2. Aftershock Rates Based on Nucleation Processes at
Weaker Patches: Overall Similarity to Spring-Slider
Models, Effects of Heterogeneous Normal Stress

[44] Nucleation processes in the model with a weaker
patch lead to response functions f (T) and aftershock rates
shown as dotted lines in Figures 8a–8c and Figures 8d–8f,
respectively. Each dot in Figures 8a–8c corresponds to a
separate simulation. Note that a nucleation site with the new
time to instability f will contribute to aftershock rates at the
time f after the main shock, and that links the horizontal
axes of Figures 8a–8c with those of Figures 8d–8f. For
cases 1 and 2, the static stress step Dt = 3.0 MPa is used;
for case 3 of 10 times smaller a, Dt = 0.30 MPa is used, to
have the same value of Dt/(as). The analytical solutions of
Dieterich [1994], computed from equations (B9) and (B5)
of Appendix B, are shown for comparison as dashed lines.
To compute the analytical solutions, we take the value of
effective normal stress s corresponding to the average over
the nucleation zone. The stressing rate _t is computed in our
simulations by taking the time derivative of shear stress
outside the nucleation zone (i.e., in the locked region). We
find that _t is constant before and after the perturbation and
equal to 0.255 MPa/a.

[45] The numerically computed response function f (T)
and the corresponding aftershock rates nearly coincide with
the analytical solution of Dieterich [1994] for case 1
(Figures 8a and 8d) of homogeneous s within the nucle-
ation zone. A small deviation occurs only for times after the
main shock smaller than 10�7 years, as shown in the inset of
Figure 8d. For heterogeneous s within the nucleation zone,
f (T) and aftershock rates clearly deviate from the results of
Dieterich [1994] (case 2, Figures 8b and 8e): The aftershock
rates are higher right after the main shock, and there is a
peak in the aftershock rates (Figure 8e). This is consistent
with the differences in slip velocities for unperturbed
nucleation processes discussed in section 3 (Figure 5).
New times to instability smaller than 10�2 years, for which
the aftershock rates in case 2 are higher than in the model of
Dieterich [1994] and higher than in case 1, correspond to
original times to instability smaller than about 100 years,
which is when unperturbed slip velocities of cases 1 and 2
develop more substantial differences (Figure 5b). Case 3
(Figures 8c and 8f) shows that decreasing the ratio a/b,
while keeping the same value of Dt/(as), the same value of
(b � a), and the same heterogeneity in normal stress, nearly
eliminates the difference between the resulting aftershock
rates and the analytical solution. For all three cases, the
aftershock duration agrees with the prediction ta = as/ _t of
Dieterich [1994], as do the aftershock rates for times close
to ta. These results and their relation to the time evolution of
slip velocity and the validity of the assumption Vq/L � 1
are further analyzed in sections 7 and 8.
[46] Aftershock rates exhibit a nearly constant value right

after the stress step (Figures 8d–8f), which lasts for about
3 days in case 1. This plateau is consistent with the

Figure 7. (a) A cartoon illustrating a population of nucleation sites just before a stress perturbation due
to a main shock. Each nucleation site follows nucleation behavior simulated in a continuum fault model.
At the time of the perturbation (shown by cross), nucleation sites are at different stages of the nucleation
process, with the stages selected in such a way that the population would produce a constant
(background) earthquake rate if left unperturbed. After stress step Dt due to the main shock, the
population produces a nonconstant earthquake rate (aftershock rate). (b) Nucleation process of each site
and its perturbation are illustrated using slip velocity at a representative point. The solid and dashed lines
show the unperturbed and perturbed response, respectively. A static stress step is applied at the time
indicated by cross. T and f(T) denote the original time to instability and the new time to instability,
respectively. This example shows slip velocity at the middle of the nucleation zone for case 1. The model
is perturbed at T = 16.4 years before instability with a stress step Dt = 3.0 MPa; the new time to
instability is f (T) = 3.4 years.
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prediction of spring-slider models. The plateau duration
can be shortened by increasing the value of Dt/(as)
(Appendix B). In case 1, Dt/(as) = 4.0 with Dt =
3.0 MPa, s = 50 MPa, and a = 0.01. Since Dt = 3.0 MPa
is already a high value for a static stress change, one can
shorten the plateau duration only by using either smaller �s,
or smaller a, or both. That is why interpretations of after-
shock observations using the model of Dieterich [1994]
typically result in values of as 1 to 2 orders of magnitude
smaller than the one we use in case 1 [Gross and Kisslinger,
1997; Gross and Burgmann, 1998; Toda et al., 1998, 2005].
Note that introduction of slight normal-stress heterogeneity
in the nucleation region (case 2) results in higher aftershock
rates after the main shock followed by a peak, and that
behavior effectively shortens the duration of the plateau.

5.3. Aftershock Rates Based on Nucleation Processes at
Rheological Transitions: Aftershock Peaks and Seismic
Quiescence

[47] Figure 9 shows aftershock rates computed using
nucleation processes from the model with rheological tran-
sition and compares them with the analytical rates computed
on the basis of Dieterich [1994] (equation (B5)). Cases 4
and 5 are defined in section 2.2. In case 4, we apply shear
stress stepDt such thatDt/(as) = 0.4. In case 5, we use the
same Dt that results in Dt/(as) = 4.0. Case 6 is based on
the nucleation process of case 4 but perturbed with a higher
shear stress step corresponding to Dt/(as) = 4.0. For the
analytical solution of Dieterich [1994], we use s = 50 MPa
and _t = 0.087 MPa/a; the value of the stressing rate is
computed in our simulations by taking the time derivative of

Figure 8. Response to static stress steps and the resulting aftershock rates for cases 1–3 of nucleation at
a weaker patch. (a–c) Simulated response to stress steps (dotted solid lines) compared with the analytical
results of Dieterich [1994] (dashed lines). In the text, the original time to instability is referred to as T and
the new time to instability is referred to as f ( T ). (d–f) Aftershock rates computed on the basis of
Figures 8a–8c (dotted solid lines) and compared with Dieterich’s analytical result (dashed lines). The new
time to instability in Figures 8a–8c corresponds to the time after the main shock in Figures 8d–8f. The
normalized stress step Dt/(as) and the aftershock duration ta = as/ _t for each case are indicated. (g–i)
Evolution of Vq/L before the dynamic event for unperturbed simulations at two locations inside the
nucleation region.
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shear stress within the locked region close to the nucleation
zone (at z = 50 m).
[48] In contrast to the behavior of nucleation processes

due to weaker patches, nucleation processes due to rheolog-
ical transitions give rise to complex nonmonotonic response
f (T ) (Figures 9a–9c). To understand the origin of the
complexity, let us consider the effect of a static stress step
applied to the nucleation process of case 4 at several different
times. Figures 10a–10f give time histories of maximum
slip velocity within a part of the velocity-weakening region,
�32 m � z � 50 m, for both unperturbed and perturbed
simulations. If the stress step is applied to the nucleation
process when its original (unperturbed) time to instability T
is 1 to 10 years, the triggered earthquake occurs in about 0.4
to 0.5 year (i.e., f (T) = 0.4 to 0.5 year), as illustrated in
Figures 10a and 10b. That is why the aftershock rate for
case 4 has a pronounced peak at about 0.4 to 0.5 year after
the main shock (Figure 9d). However, stress perturbation at
T = 11 years results in a very different value of f (T) = 16 years
(Figure 10c), actually postponing the dynamic event. This is
because the immediate consequence of the stress step is to
induce more rapid slip but, for the perturbation at T =

11 years, this more rapid slip fails to accelerate all the way
to instability, relieving the elevated stress in the nucleation
region aseismically and decreasing slip velocities through-
out the nucleation zone (from the maximum of about 10�11

m/s to 10�14 m/s). That aseismic response postpones the
next acceleration to dynamic instability and makes the new
time to instability larger than the original time to instability.
[49] This behavior demonstrates how a positive shear

stress step can delay the time to instability, inducing an
aseismic slip transient instead of nucleating unstable slip
sooner. The change in slip behavior is actually gradual for
different T, with the size of the triggered earthquakes
decreasing as the stress step is applied at values of T from
1 to 10 years, until, for T ^ 10 years, the stress step only
causes transient acceleration of aseismic slip that fails to
directly initiate a dynamic event. This is illustrated in
Figures 10g–10i. For a stress step applied at T = 7.0 years
(Figure 10g), the triggered earthquake is of comparable size
to events in the unperturbed simulation (Figure 3b) but the
triggered event almost arrests halfway through, as evidenced
by dense spacing of dashed lines, due to insufficient level of
shear stress at locations from z = 60 to z = 100 m. For T =

Figure 9. Response to static stress steps and the resulting aftershock rates for cases 4 and 5 of
nucleation at rheological transitions. Lines have the same meaning as in Figure 8. Note that response f (T )
to static stress changes and the resulting aftershock rates are nonmonotonic and qualitatively different
from the analytical results of Dieterich [1994]. The box in Figure 9a indicates the part of f (T ) shown in
Figure C1.
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9.0 years (Figure 10h), the triggered dynamic event is
noticeably smaller than the unperturbed one; this is because
shear stress further along the fault is not yet ready to support
a larger event. Figure 10h also shows a larger event that
occurs 20 years later. For T = 12.0 years (Figure 10i), a stress
step fails to induce dynamic instability and results in
aseismic transient. The next seismic event occurs in 18 years
(Figures 10d and 10i), which means that the stress step
replaced the original time to instability of 12 years with the
longer new time to instability of f (T) = 18 years. For larger T,
the triggered aseismic slip decreases in magnitude and area,
relieving less of the accumulated stress and allowing the next
dynamic event to initiate sooner, until the new time to
instability is shorter than the original time to instability
(Figure 10e). The smaller and smaller immediate impact of
the stress step for larger values of T makes intuitive sense,
since the model is farther from generating unstable slip. For
stress steps at even larger values of T, the nucleation process

exhibits even more complex response, trying to accelerate
twice before finally producing a dynamic event (Figure 10f).
[50] This response to static stress changes is more com-

plex than the one found by Perfettini et al. [2003] in a
similar model with rheological transition. Perfettini et al.
[2003] concluded that the time advance of rate-and-state
nucleation due to a static stress perturbation is similar to the
one predicted by the Coulomb failure model for most of the
earthquake cycle. This is similar to the conclusion we draw
for some cases in the model with a weaker patch (section 8,
scenario 1) but not for the model with the rheological
transition. Simulations of Perfettini et al. [2003] used
quasi-dynamic methodology that does not fully account
for inertial effects as we do here, which may have dimin-
ished the slip response to abrupt stress changes. However,
the main difference seems to be the selection of rate-and-
state parameters and the resulting nucleation size. For the
parameter selections in our models, nucleation sizes are

Figure 10. Response to static stress steps in the model with rheological transition (case 4). (a–f) Solid
lines show the unperturbed evolution of maximum slip velocity within a part of the velocity-weakening
region (�32 m � z � 50 m) that contains the nucleation zone. Times of the stress perturbation are given
on the top of each plot and marked by cross. Red dashed lines indicate the resulting perturbed behavior.
(g–i) The effect of stress perturbations on the pattern of slip accumulation. The comparison between the
plots is discussed in the text. Note that a positive shear stress step can delay the timing of the subsequent
earthquake by inducing an aseismic transient (Figures 8c, 8d, and 8i).
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several times smaller than the seismogenic region and
nucleation occurs close to the rheological transition. Hence
the expanding slow-slip region enters the zone of the
eventual acceleration toward a dynamic event very early in
the earthquake cycle, and the time- and space-dependent
stress concentration at the tip of the slow-slip region con-
stitutes a significant part of the nucleation zone. Perfettini et
al.’s [2003] parameter choices led to much larger nucleation
zone in the middle of the seismogenic zone, which formed
after the slow-slip regions from both sides of the seismo-
genic region merged. That is likely why in the work of
Perfettini et al. [2003], for most of the interseismic period,
stress steps could only create an effect similar to Coulomb
failure models, as described by scenario 1 of section 8.
[51] The aftershock rates computed on the basis of the

complex nonmonotonic functions f (T) do not have power
law decay and do not match the analytical solution of
Dieterich [1994] (Figures 9d–9f), exhibiting a pronounced
delayed peak followed by the period of very low or even
zero aftershock rates (depending on whether one treats the

changes in f (T) discussed above as continuous or discon-
tinuous during interpolations). Note that the smaller value of
a/b in case 5 does not eliminate the significant differences
between the numerically constructed aftershock rates and
the analytical results of Dieterich [1994], as we have
observed in the model with a weaker patch. In the model
with rheological transition, the complex interplay of seismic
and aseismic processes and the resulting complex after-
shock response occur for all values of a/b, as the complexity
is caused by the vicinity of rheological transition.
[52] The periods of zero or near-zero aftershock rates

correspond to seismic quiescence. In case 4, all new times to
instability are either larger than 11 years or smaller than
0.5 year. This means that there are no stages of the
nucleation process that, when perturbed, result in new times
to instability between 0.5 to 11 years. That is why there is
quiescence of aftershocks in that time period (Figure 9d).
Using spring-slider models, Gomberg et al. [2005] showed
that quiescence at the end of the aftershock sequence can be
explained by the absence of nucleation sites that are
sufficiently far from instability. That is consistent with our
results in case 6 (Figure 9f), where all available nucleation
sites produce earthquakes in the first 10�2 years after the
stress perturbation, and there are no nucleation sites left to
contribute to aftershock rates at later times. We emphasize
that there is a different kind of quiescence in this model, one
that originates not from the lack of nucleation sites but
rather from the nonmonotonic response of nucleation pro-
cesses to static stress changes.

5.4. Dependence of Aftershock Rates on Constitutive
Parameters b and L

[53] Aftershock rates in the model of Dieterich [1994] do
not depend on the rate-and-state parameter b and the
characteristic slip L. In the continuum models presented
here, aftershock rates show some dependence on parameters
b and L for cases that exhibit deviations from Dieterich’s
model. For nucleation processes due to weaker patches,
aftershock rates depend on the ratio a/b and on the size of
the weaker patch. Changing b while keeping a fixed would
change the ratio a/b, while changing L would change the
size of the nucleation zone and hence its relation to the size
of the weaker region. For nucleation processes due to
rheological transitions, the value of b affects the height of
the delayed peak in aftershock rates, while decrease in L
results in a shorter average time interval between earthquake
nucleation at the same location, which can lead to more
rapid initiation of seismic quiescence after a period of
aftershocks.

6. Aftershock Rates due to Nonuniform Stress
Changes in the Model With Rheological Transition

[54] How would the delayed peaks in aftershock rates that
we observe for the model with rheological transition super-
impose for nonuniform stress changes due to the distance
from the main shock? To answer this question, let us
consider a population of nucleation sites uniformly distrib-
uted along the rheological transition and perturbed by shear
stress change due to slip at a circular asperity (i.e., an area of
large coseismic slip) located just above the transition
(Figure 11). The population of nucleation sites along the

Figure 11. Model for estimating aftershock rates due to a
population of nucleation sites located along a segment of
rheological transition perturbed by a main shock asperity.
Because of the distance from the asperity, the nucleation
sites along the segment experience a nonuniform stress step.
(top) Fault plane with a circular asperity of radius c and
stress drop Dtd that imposes a variable static stress step on
the nucleation sites located along the transition shown by
the horizontal axis. The variable d measures the distance
along the transition. (bottom) Variation of static stress
change with d for c = 0.70 km, h = 0.15 km, and Dtd =
10 MPa. The segment [�A/2, A/2] over which aftershock
rates are sought is separated into subregions of approxi-
mately constant stress steps as discussed in the text.
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transition experiences nonuniform stress stepDt that can be
approximated by [Dieterich, 1994]

Dt ¼ �Dtdrop 1� c3

cþ hð Þ2þd2
h i3=2

0
B@

1
CA

�1=2

�1

2
64

3
75; ð5Þ

where Dtdrop is the stress drop in the asperity, c is the
asperity radius, h is the distance from the asperity edge to
the transition, and d is the distance along the transition, with
d = 0 corresponding to the point directly below the
hypocenter. In our example, Dtdrop = 10 MPa, c = 0.70 km,
and h = 0.15 km.
[55] We would like to determine aftershock rates due to a

population of nucleation sites uniformly distributed along
the segment [�A/2, A/2] of the transition. Each nucleation
site is governed by the nucleation process of case 4. We
divide the segment into subsegments Ai, i = 1, 2,. . . such
that the change of the stress step within each subsegment is
0.25 MPa. We assume that the stress step within each
subsegment is constant and equal to the stress step at the
center of the subsegment. The aftershock rate Ri/r for each
subsegment Ai is determined using the approach developed
in this work. The overall aftershock rate can then be
obtained as the weighted sum:

R

r
¼

X
i

Ri

r

Ai

A
: ð6Þ

In our example, A/2 = 1.4 km, which corresponds to
selecting nucleation sites located approximately within one

asperity radius from the edge of the main shock. The
computed aftershock rate shows a power law decay with
time for about 1 year, and then quiescence (Figure 12a,
dotted line). Evidence of turnoff of aftershock activity was
found at the base of the seismogenic zone near the M6.2
1984 Morgan Hill earthquake [Tian and Rubin, 2005;
Y. Tian, personal communication, 2005]. In that case,
aftershocks followed Omori’s law for several months and
then disappeared (Figures 12b and 12c). This is qualita-
tively similar to our computed aftershock rate (Figure 12a).
We emphasize that the correspondence is only qualitative;
for example, we use a vastly simplified model of the main
shock. Stress changes due to a realistic main shock may be
quite heterogeneous locally, and direct quantitative compar-
ison between models and observations would require a more
detailed analysis.
[56] If the aftershock rate in our model were interpreted

using the results of Dieterich [1994], the parameter as
would be significantly underestimated. To find the after-
shock rate based on the work byDieterich [1994], we use the
weighted sum (6) with Ri/r given by the analytical formula
(B5), which results in much smaller rates (Figure 12a, dashed
line). To match the numerically computed aftershock rate, we
need to use 10 times smaller as in (B5) (and also 20 times
smaller stressing rate _t, to match the slope). While this does
not fully close the gap between the expected and observed
values of as, it is a step in the right direction. This example
shows that application of spring-slider solutions to earth-
quakes that potentially have more complex nucleation
processes, such as the ones occurring at rheological tran-
sitions, may lead to errors in estimating rate-and-state
parameters.
[57] Similar superposition of aftershock peaks, leading to

Omori’s law in a limited time period, should arise in a

Figure 12. (a) Aftershock rates computed for the nonuniform static stress change and a population of
nucleation sites located along the rheological transition (Figure 11). Dots represent the aftershock rates
based on the model with rheological transition. The aftershock rate based on the work by Dieterich
[1994], for the same friction and stress parameters, is shown by the dashed line. The slope of t�1 is
plotted for reference. This model produces Omori’s law in a limited time period followed by seismic
quiescence. For the period of the power law decay of aftershocks, this model produces much higher
aftershock rates than predicted by the model of Dieterich [1994]. Figures 12b and 12c are from Tian and
Rubin [2005], courtesy of Y. Tian. A cluster of the 1984 Morgan Hill aftershocks occurred at a depth
appropriate for rheological transition. (b) Cross-sectional view of one multiplet of aftershocks.
(c) Observed seismicity rate versus time. The multiplet approximately followed Omori’s law, but
seismicity terminated about 1 year after the Morgan Hill earthquake. This behavior is qualitatively similar
to that of the computed aftershock rates in Figure 12a.
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situation with a constant stress step Dt but applied to a
population of nucleation sites with varying values of as.
For example, cases 4 and 5 have the sameDt but case 5 has
ten times smaller as, and, as a result, the aftershock rate
peak is much larger in case 5 and occurs much earlier. These
results suggest that it might be difficult to observe distinct
peaks in aftershock rates on natural faults, because they
would be obscured by nonuniform stress changes and/or
variable values of as. However, the model with rheological
transition and the associated complex aftershock response
may explain deviations from Omori’s law in appropriately
chosen subsets of aftershocks.

7. Link Between Aftershock Rates and
Slip-Velocity History of Unperturbed
Nucleation Processes

[58] The unperturbed slip velocity evolution in our mod-
els can be used to qualitatively capture the numerically
computed aftershock rates. Let us denote slip velocity in a
given nucleation process by Vg(T ). Each point of the
nucleation zone in a continuum model has its own slip
velocity evolution, so Vg(T) denotes a characteristic mea-
sure. For example, for the model with a weaker patch, we
take slip velocity in the middle of the nucleation zone as
Vg(T ). Let us assume that, after the perturbation, Vgq/L � 1
in the nucleation zone for all subsequent times. Then the
new time to instability can be found from the analysis of
Dieterich [1994]:

f Tð Þ ¼ ta ln
_t

HsVg Tð Þ exp Dt= asð Þð Þ þ 1

� �
for _t 6¼ 0; ð7Þ

where H = �k/s + b/L and k is the effective stiffness of the
nucleation zone. With each original time to instability T, we
can associate slip velocity VD(T ) that the nucleation process

from Dieterich [1994] needs to have in order to nucleate an
instability in time T:

T ¼ ta ln
_t

HsVD

þ 1

� �
for _t 6¼ 0: ð8Þ

Combining (7) and (8), we can eliminate H and get

f Tð Þ ¼ ta ln

exp
T

ta

� �
� 1

Vg Tð Þ
VD Tð Þ exp

Dt
a�s

� �þ 1

0
BB@

1
CCA for _t 6¼ 0: ð9Þ

Similarly, one obtains

f Tð Þ ¼ T

Vg Tð Þ
VD Tð Þ exp

Dt
a�s

� � for _t ¼ 0: ð10Þ

Equations (9)–(10) give an analytical approximation of
f (T ) that can be used to approximately compute aftershock
rates. For Vg(T) = VD(T), we have a nucleation process that
follows the model of Dieterich [1994], and in that case we
recover (B3).
[59] Figure 13 shows comparison, for cases 2, 4, and 5,

between the aftershock rates computed on the basis of
numerous calculations with stress perturbations and the
aftershock rates obtained on the basis of the approximate
formula (9). We use the following unperturbed slip velocity
histories as Vg(T): at the center of the nucleation zone for
case 2, at z = �5 m for case 4, and at z = �20 m for case 5.
Since case 1 has the same friction parameters as cases 2 and
4, case 3 has the same friction parameters as case 5, and the
aftershock rates for cases 1 and 3 generally agree very well
with those based on the work by Dieterich [1994], we use
the unperturbed slip velocity at the center of the nucleation

Figure 13. Comparison of the aftershock rates computed using simulations with stress perturbations
(solid dotted lines), the semianalytical estimate based on equation (9) (lines with crosses), and analytical
results of Dieterich [1994] (dashed lines). (a) Aftershock rates for case 2 and three different values of the
stress step (Dt = 1.0, 3.0, 4.0 MPa). (b) Aftershock rates for cases 4 and 5. In all cases, the semianalytical
estimate qualitatively matches the main features of the computed aftershock rates. The analytical results
of Dieterich [1994] are significantly different.
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zone in cases 1 and 3 as VD(T). Note that cases 1 and 3 have
about three times higher stressing rate (0.255 MPa/a) than
cases 4 and 5 (0.087 MPa/a); hence we rerun the simula-
tions for cases 1 and 3 with the correspondingly smaller
value of the loading rate VL.
[60] The semianalytical aftershock approximation qualita-

tively captures the computed aftershock rates for both mod-
els, for different stress steps and rate-and-state parameters
(Figure 13). The overall agreement for the model with a
weaker patch (Figure 13a) is better than for the model with
rheological transition (Figure 13b). This is not surprising, as
the semianalytical procedure is constructed assuming that the
nucleation behavior after perturbation is well approximated
by spring-slider models, and the model with a weaker patch
comparesmuch better with the results of spring-slider models
than the model with rheological transitions (sections 3 and 5).
Moreover, it is difficult to choose a representative slip
velocity Vg for nucleation processes in the model with
rheological transition: the nucleation zone is connected to
the creeping region and hence its middle or extent is not easy
to define, plus slip velocitywithin the nucleation region varies
with distance in a nonsymmetric way. While slip velocity of
most points gave qualitatively similar results, reproducing a
pronouncedpeakand the followingquiescence, the agreement
in terms of timing and amplitude of those features was not as
good for most points as shown in Figure 13b.
[61] The results suggest that (1) aftershock rates are

linked to the unperturbed evolution of slip velocity and
(2) once the differences in slip velocity history are
accounted for, the spring-slider approximation can qualita-
tively match the aftershock rates, at least for the cases
considered in this work. To use the semianalytical procedure
predictively, i.e., without having the computed aftershock
rates for comparison, one needs to establish an independent
way of determining a representative slip velocity of a
nucleation process. Whether this is possible to do for any
nucleation process remains a question for future study.

8. Relation Between Aftershock Rates and the
Validity of the State Evolution Assumption

[62] The aftershock model of Dieterich [1994] is based on
nucleation processes governed by rate-and-state friction
with the state evolution assumption Vq/L � 1. Let us
consider the validity of the assumption for nucleation
processes in our models and how it relates to similarities
and differences between our numerically computed after-
shock rates and the results of Dieterich [1994].

8.1. Model With a Weaker Patch

[63] Figures 8g–8i show Vq/L as a function of the
original time to instability T for two representative points
within the nucleation zone. In this model, Vq/L varies for
different locations within the nucleation zone but we find
that a large part of the nucleation zone around its middle
behaves similarly. In the following, we take the behavior of
the middle point of the nucleation zone as being represen-
tative of the entire nucleation process. The temporal corre-
spondence between Vq/L in Figures 8g–8i and aftershock
rates in Figures 8d–8f can be established by using the
Figures 8a–8c: the horizontal axis in Figures 8g–8i corre-
sponds to the vertical axis in Figures 8a–8c, and the

horizontal axis in Figures 8a–8c corresponds to the hori-
zontal axis in Figures 8d–8f.
[64] The first important observation is that some of the

nucleation sites considered in our aftershock rate calcula-
tions are characterized by Vq/L < 1 and even Vq/L � 1, not
Vq/L � 1 as assumed by Dieterich [1994]. As an example,
consider case 3. Figure 8i shows that all nucleation sites
with original times to instability larger than 2 years have
Vq/L < 1, and, for most of them, Vq/L � 1. Nonetheless,
Figure 8f shows that these rates match very well the model of
Dieterich [1994], which assumes Vq/L� 1 at all times. This
observation is consistent with the findings of Gomberg et al.
[2000] for spring-slider models. To understand why the
formulae of Dieterich [1994] still work in this situation, let
us consider the aftershock behavior of nucleation zones that
are far from failure. A shear stress step increases slip
velocities by a factor of exp [Dt/(as)]. Two scenarios can
be distinguished in terms of the resulting aftershock rates.
[65] In scenario 1, slip velocities in the nucleation zone

are small enough before the stress step so that the condition
Vq/L � 1 holds both before and after the stress step. In this
situation, the effect of stress step Dt on the nucleation site
is approximately equivalent to the effect of gradual loading
_t over time Dt = Dt/ _t (Appendix D, section D1), with Dt
independent of T. Hence we approximately have T � f (T ) =
Dt/ _t = constant (or ‘‘constant clock advance’’, in the
terminology of Gomberg et al. [1998], who also identified
this scenario) and R/r = dT/df = 1. This explains the origin
of the aftershock rates equal to the background rate for case
3 (time period marked 1 in Figure 8f). Note that cases 1 and
2 (Figures 8d and 8e) do not have time periods during
which the rates are equal to the background rate. For those
cases, the nucleation processes at all times have such slip
velocities that Vq/L � 1 after the stress step.
[66] In scenario 2, slip velocities in the nucleation zone

are such that Vq/L � 1 before the stress step but Vq/L � 1
after the stress step and until the instability. The analysis of
this scenario (Appendix D, section D2) predicts {R}/{r} =
{1}/[1 � exp(�f/ta)]. For f � ta, one has R/r = ta /f, which
shows a power law decay of the aftershock rate with the
time f after the main shock. For f � ta, one gets R/r = 1 and
the aftershock rate is equal to the background rate. The
corresponding parts of the aftershock rates in Figures 8d
and 8f are marked as time periods 2.
[67] For nucleation zones close to failure, which we

define as those zones that have reached Vq/L � 1, subse-
quent deviations of Vq/L from the condition Vq/L � 1
create significant discrepancies in aftershock rates relative
to the results of Dieterich [1994]. This is because such
deviations reflect significant differences in slip velocity
histories, and the importance of differences in slip velocity
has already been shown (section 7). As an example, let us
consider case 2 of heterogeneous effective normal stress
within the nucleation zone. Figure 8e shows differences
between the computed aftershock rates and the prediction
(equation (B5)) of Dieterich [1994] for times shortly after
the main shock. The nucleation zones that contribute to
these differing aftershock rates have new times to instability
f (T ) < 10�2 years (Figure 8e) and original times to
instability T < 1 years (Figure 8b), with the corresponding
values of Vq/L in the middle of the nucleation zone that
change from beingmuch larger than 1 to the value of about 1.5.
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A value of Vq/L close to 1 violates the assumption Vq/L � 1
and causes the corresponding deviation in aftershock rates.
Case 1 has a similar deviation in aftershock rates from the
analytical solution (B5), for times after the main shock smaller
than 10�7 years (the inset in Figure 8d). That deviation is also
related to values of Vq/L being close to 1 in the middle of the
nucleation zone during the very end of the nucleation process,
for original times to instability that are outside of the time
range shown in Figure 8g. In case 3, however, as the end of the
unperturbed nucleation is approached, the condition Vq/L� 1
stays valid. As the result, the corresponding aftershock rates
(Figure 8f) show close agreement with the model of Dieterich
[1994]. Note that the behavior of Vq/L for times close to
instability is consistent with the study of Rubin and Ampuero
[2005].
[68] The discrepancy between the computed aftershock

rates and the ones based on the model of Dieterich [1994]
right after the main shock can be estimated using appropri-
ate assumptions in the spring-slider model (Appendix D,
section D3). For cases 1 and 2 (Figures 8d and 8e), the
simulated aftershock rates are 3.2 and 3.8 times larger than
those predicted by the model of Dieterich [1994], while the
two estimates derived in section D3 give factors of 2.7 and
3.5, matching the discrepancy relatively well.

8.2. Model With Rheological Transition

[69] Figures 9g and 9h illustrate the time evolution of Vq/L
for the unperturbed nucleation processes of cases 4 and 5
(case 6 uses the unperturbed process of case 4, but with a
different stress step). Figures 9g and 9h show that condition
Vq/L� 1 becomes valid and then violated relatively early in
the earthquake cycle relative to the model with a weaker
patch. Consistently, the aftershock rates are significantly
different from the model of Dieterich [1994] (Figures 9d–
9f). The variations in Vq/L are due to penetration of slow slip
from the nearby velocity-strengthening region. Note that the
variations in Vq/L make scenarios 1 and 2 of section 8.1
inapplicable to this model, as condition Vq/L � 1 holds for
some points in the nucleation zone but not others, even for
nucleation zones with large original times to instability; in
particular, Vq/L � 1 at the tip of the propagating slow slip.
[70] Hence, in both models, similar behavior of Vq/L

causes similar effects in terms of aftershock rates. However,
the history and spatial distribution of Vq/L is different in the
two models, resulting in qualitatively different aftershock
behavior.

9. Conclusions

[71] Using two different fault models, we have simulated
several plausible scenarios of spontaneous earthquake
nucleation, investigated their response to static shear stress
steps, and inferred the corresponding aftershock rates. Over-
all, nucleation processes at weaker patches are characterized
by slip velocity evolution and aftershock rates similar to
spring-slider models, although there are notable deviations.
Nucleation processes at rheological transitions and the
corresponding aftershock rates are significantly different.
[72] For both models, unperturbed slip velocity history of

nucleation zones and the resulting aftershock rates are closely
linked. In the model with a weaker patch, slip velocity in
nucleation zones is very low for most of the interseismic

period, increasing approximately exponentially in response to
the approximately constant stressing rate due to tectonic
loading. This is similar to the behavior of spring-slider models
and, in particular, to the analytical solution ofDieterich [1994].
Aftershock rates created by such far-from-failure nucleation
zones closely follow themodel ofDieterich [1994], despite the
fact that the condition Vq/L � 1 is violated for such zones.
Nucleation processes due to rheological transitions behave
very differently in the interseismic period, due to penetration of
slow slip from the nearby velocity-strengthening region and
the associated time- and space-dependent variations in slip
velocity and shear stress. As the result, neither Vq/L� 1 (as in
the work by Dieterich [1994]) nor Vq/L� 1 (as in the model
with a weaker patch) holds throughout the nucleation zone in
the interseismic period. That iswhy themodelwith rheological
transition results in qualitatively different aftershock rates.
Another type of deviation of aftershock rates from the model
ofDieterich [1994], evident in both models, occurs because of
nucleation zones close to instability for the parameter range
a/b ^ 0.5, consistently with the analysis of Rubin and
Ampuero [2005].
[73] Nucleation processes simulated with different load-

ing histories can have nucleation sizes that differ by an
order of magnitude and cannot be predicted by a single
existing theoretical estimate. Nucleation sizes obtained with
slow tectonic-like loading are consistent with the estimates
of Rubin and Ampuero [2005]. For models with a/b ^ 0.5,
loading histories that involve positive shear stress steps can
result in significantly smaller nucleation sizes, closer to the
estimate of Dieterich [1992]. The behavior can be explained
by the evolution of Vq/L in the nucleation zone and implies
that final nucleation stages of aftershocks and other trig-
gered events may be different from those of events nucle-
ating under slow tectonic loading. In particular, nucleation
sizes of aftershocks may be significantly smaller.
[74] In the model with rheological transition, the response

of nucleation processes to static stress changes is complex
and nonmonotonic. For example, it is commonly assumed
that favorable static stress changes should lead to earth-
quakes occurring sooner. We find that positive shear stress
steps can delay the time to instability by inducing aseismic
transients that relieve stress in the nucleation zone and
postpone seismic slip. Recent observations have docu-
mented complex interactions of seismic and aseismic slip
[Schwartz and Rokosky, 2007, and references therein], and
our findings provide one more instance where such inter-
actions may be important. If such behavior is common on
natural faults, at least in certain environments, it may
partially explain the cases of poor correlation between static
stress changes and aftershock occurrence.
[75] Aftershock rates based on nucleation processes at

rheological transitions exhibit pronounced peaks and seis-
mic quiescence. This behavior is qualitatively different from
that of nucleation processes due to weaker patches, from
Omori’s law, and from the results for spring-slider models.
The behavior may explain faster decay of aftershock activity
than that given by Omori’s law with p = 1 and delayed
seismic quiescence reported in several observational studies
[e.g., Daniel et al., 2008, and references therein]. We have
shown that superposition of such responses for spatially
variable stress steps can result in Omori’s law for a certain
period of time followed by seismic quiescence, the behavior

B12312 KANEKO AND LAPUSTA: RATE-AND-STATE NUCLEATION AND AFTERSHOCKS

19 of 25

B12312



supported by observations [Tian and Rubin, 2005]. If this
computed aftershock rate were interpreted using the model
of Dieterich [1994], the inferred values of as would be an
order of magnitude smaller than the ones used in the
simulations. The result suggests that complexity of rate-
and-state nucleation processes may be partially responsible
for the discrepancy between the values of as predicted on
the basis of laboratory studies and inferred from aftershock
observations based on the model of Dieterich [1994].
[76] The differences in nucleation processes and after-

shock rates between the continuum and spring-slider models
arise because of the presence of heterogeneity, either in
normal stress or in friction properties. Hence the effect of
fault heterogeneity on aftershock phenomena needs to be
systematically examined. Note that the heterogeneity dis-
cussed here is the local one that affects nucleation processes
at individual aftershock sites. Aftershock sequences are
undoubtedly affected by another kind of heterogeneity,
where different nucleation sites may have different friction
properties, stress conditions, stressing rates etc, and hence
follow different nucleation processes. Our approach can be
used to study certain aspects of such ‘‘global’’ heterogeneity
by simulating a number of nucleation processes with
different desired friction properties and stress conditions,
determining their responses to stress perturbations, and
combining those responses into one aftershock rate.
[77] This study employs the aging form of the state-variable

evolution equation.Other formulations have been proposed, as
discussed in section 1. On the basis of preliminary results with
the slip law, we predict that the main findings of this work
would be qualitatively similar for other rate-and-state formu-
lations, in the following sense. Nucleation in relatively homo-
geneous situations would still produce aftershock rates largely
consistent with spring-slider models. Nucleation at rheological
transitions would still exhibit peaks in aftershock activity
followed by quiescence, since this response mostly comes
from the slow slip penetrating from the nearby creeping region,
the feature that would not qualitatively change for other rate-
and-state formulations.
[78] Following earlier studies, we have assumed a popu-

lation of nucleation sites that would result in a uniform
background rate if left unperturbed. That assumption
implies a certain distribution of initial conditions over the
population at the time of the stress step and affects the
resulting aftershock rates. But parts of aftershock sequences
may result from nucleation sites created by coseismic
processes such as bulk damage. Such nucleation sites would
not have contributed to the background rate, and it may be
possible to account for them by considering a different
distribution of initial conditions over the population of
nucleation sites in the developed approach.
[79] The qualitative differences we find between the

presented models indicate that more studies are needed to
understand which nucleation scenarios dominate on natural
faults, how they respond to static stress changes, and
whether spring-slider models can provide an adequate
interpretation of that response. Natural faults may contain
rate-and-state nucleation zones developing under a number
of conditions, in which case the response of faults to static
stress changes would combine a number of models of the
kind considered in this work.

[80] Given that rate-and-state friction laws have been
successfully used to explain a number of earthquake phe-
nomena and that main shocks cause static stress changes, it
is reasonable to assume that at least some, and perhaps
most, of aftershocks are caused by static triggering of rate-
and-state nucleation processes. At the same time, a number
of studies have proposed models of aftershocks based
entirely on other mechanisms, as discussed in section 1.
The developed approach enables us to study the combined
effect of two or more mechanisms on aftershock rates. For
example, the response of rate-and-state nucleation to static
stress changes can be combined in our models with the
effect of increased loading rate due to aseismic processes,
through prescribed variations in the loading rate. Such
combined models would help investigate the relative im-
portance of different aftershock-producing mechanisms.

Appendix A: Elastodynamic Equations and
Numerical Parameters

[81] The model with a weaker patch is based on the crustal
plane model described by Lapusta [2001]. The only nonzero
component of the displacement is in the along-strike direc-
tion x and it is averaged over the depth Hseismic of the fault.
The elastodynamic equation for the depth-averaged dis-
placement u(x, y, t) is [Lehner et al., 1981; Lapusta, 2001]

Z2 @
2u

@x2
þ @2u

@y2
þ 1

H2
eff

1

2
sign yð ÞVLt � u

� �
¼ 1

c2s

@2u

@t2
; ðA1Þ

where Heff = (p/4)Hseismic, Z = 1/(1 � v), v is Poisson’s ratio,
and cs is the shear wave speed. We use Hseismic = 150 m.
The third term on the left-hand side of the equation
represents coupling to regions that are steadily moving with
slip velocity VL. The crustal plane model of Lapusta [2001]
incorporated a free surface and loading from a deeper
region. In the model with a weaker patch, the seismogenic
region is loaded by two regions and there is no free surface
(Figure 1a). This leads to a factor of two in front of VL in
equation (A1). The effective shear wave speed in the
direction of the strike is Zcs = 4 km/s for values v = 0.25 and
cs = 3 km/s used in this study. The along-strike slip is given
by d(x, t) = u(x, y = 0+, t) � u (x, y = 0�, t). Using the same
notation as Lapusta et al. [2000] and Lapusta [2001], the
typical numerical parameters are as follows. There are Nele =
8192 spatial elements along the simulated fault domain l =
2000 m. The ratio h*/h = 50.1 of the critical cell size h* to
the cell size h = 0.244 m ensures well-resolved simulations
[Lapusta et al., 2000]. Time t is discretized into variable
time steps, with the minimum value of 0.25 h/cs = 15 ms and
the maximum value of 0.2 year. In the mode-dependent
convolution truncation, Tw(1) = l/cs and qw = 4.
[82] The elastodynamic equations and simulation meth-

odology for the model with rheological transition are the
same as by Lapusta et al. [2000]. The simulated fault
domain l = 1200 m is composed of the 600-m region
where friction is applied, and the 600-m loading region of
the prescribed slip rate. The model of Lapusta et al. [2000]
also included a mirror fault image to simulate the effects of
a free surface, but the model in this work does not contain a
free surface. l is discretized into Nele = 4096 equal spatial
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elements, each with the size h = 0.29 m, so that h*/h = 32.2.
For time discretization and convolution computation, we
use the same parameters as in the model with a weaker
patch.

Appendix B: Model of Aftershocks by Dieterich
[1994]

[83] In the study of Dieterich [1994], each nucleation site
was assumed to proceed through the slip stress history that
would occur in a spring-slider system with the aging form
(equations (1) and (2)) of rate-and-state friction. In that
model, frictional sliding occurs on the block-substrate
interface, which serves as the model of a fault. The spring
of stiffness k provides elastic interactions. The governing
equation for slip d(t) is given by

to þ _tt � kd ¼ s m0 þ a ln
V

V0

� �
þ b ln

V0 q
L

� �� �
; ðB1Þ

where the left-hand side gives shear stress on the interface
with inertial effects ignored, the right-hand side gives the
rate-and-state frictional resistance of the interface, to is shear
stress that would act on the interface if it were constrained
against slip and _t is the stressing rate applied directly to the
interface. The rate-and-state formulation is simplified by
assuming that, during nucleation, slip accelerates fast
enough for the state variable to be significantly larger
than its steady state value, so that Vq/L� 1. The assumption
Vq/L � 1 leads to the following state evolution:

dq
dd

¼ � q
L
and thus q ¼ qref exp � d � dref

L

� �
; ðB2Þ

where dref and qref are reference values.
[84] In this model, the time to instability T can be

obtained analytically [Dieterich, 1994]:

T ¼ as
_t

ln
_t

HsV
þ 1

� �
; for _t 6¼ 0 ðB3Þ

T ¼ a

HV
; for _t ¼ 0; ðB4Þ

where H = �k/s + b/L. A population of nucleation sites
that results in a uniform background rate r is created
by assigning the appropriate distribution of initial slip
velocity V to the population. A positive shear stress step
Dt increases the initial slip velocity by a factor of
exp[Dt/(as)], changing the time to instability for each
nucleation site and resulting in a different earthquake rate
R (aftershock rate) given by

R

r
¼ 1

exp �Dt= a�sð Þð Þ � 1½ � exp �t=tað Þ þ 1
; ðB5Þ

where ta= as= _t and constant stressing rate _t is assumedbefore
and after the stress step. Dieterich [1994] also considered
scenarios with variable stress steps and stressing rates.

[85] From expression (B5), this model has two parame-
ters: Dt/(as) and ta = as= _t. Figure B1 illustrates the
resulting aftershock rates and shows that ta is related to
the aftershock duration, since the earthquake rate becomes
close to the background rate for t 	 ta. From (B5), R/r = 1
for t � ta. For t� ta, exp(�t/ta) � (1 � t/ta) and from (B5),

R ¼ K

cþ tð Þp ; p ¼ 1 ðB6Þ

K ¼ rta

1� exp �Dt= asð Þð Þ ; c ¼ ta

exp Dt= asð Þð Þ � 1
: ðB7Þ

Hence the model of Dieterich [1994] interprets parameters
K and c of Omori’s law, which were originally introduced as
empirical constants. The time interval in which the after-
shock rates in this model follow the power law decay of
aftershocks depends on the values of Dt/(as) and ta. For
times right after the instability, we have exp(�t/ta) � 1 and
R/r = exp[Dt/(as)]. This ‘‘plateau’’ or constant aftershock
rate right after the main shock is shorter for larger values of
Dt/as (Figure B1).
[86] Since static stress changes Dt due to earthquakes are

relatively well constrained, aftershock observations can be
used to constrain the product as. For the model to be
consistent with observations, as has to be of the order of
0.01–0.1 MPa [Toda et al., 1998; Belardinelli et al., 1999].
Larger values of as, of order 1 MPa, are predicted by
laboratory values of a (of order 0.01) and s comparable to
overburden minus hydrostatic pore pressure at typical
seismogenic depths (of order 100 MPa). If aftershock
production is dominated by static stress triggering of pre-
existing nucleation sites, then, at least on parts of faults
where aftershocks nucleate, either the direct effect coeffi-
cient a is much smaller than in the laboratory, or effective
normal stress s is abnormally low.

Figure B1. Aftershock rates for the analytical solution of
Dieterich [1994] given by equation (B5). The aftershock
rate R is normalized by the background rate r and the time t
after the main shock is normalized by the aftershock
duration ta. Each curve is computed for a normalized stress
step, Dt/(as), with the indicated value. Adapted from
Figure 2 of Dieterich [1994].

B12312 KANEKO AND LAPUSTA: RATE-AND-STATE NUCLEATION AND AFTERSHOCKS

21 of 25

B12312



[87] The dependence f (T) for the model of Dieterich
[1994] can be derived using the time-to-instability
expression (B4). With V exp [Dt/(as)] in (B3) instead
of V, we obtain

f ¼ as
_t

ln
_t

HsV exp Dt= asð Þð Þ þ 1

� �
: ðB8Þ

Solving (B3) for _t/(HsV) and substituting this quantity into
(B8), we find

f Tð Þ ¼ ta ln
exp T=tað Þ � 1

exp Dt= asð Þð Þ þ 1

� �
; ðB9Þ

where ta = as= _t. We use (B9) for comparison with our
simulations.

Appendix C: Aftershock Rate Calculations

C1. Monotonic Response f (T )

[88] We compute aftershock rates based on function f (T )
that gives the perturbed (or new) time to instability for a
nucleation site with the unperturbed (or original) time to
instability T (Figure 7b). Without the perturbation, the
population of rate-and-state nucleation sites should produce
earthquakes at a constant background rate r. Hence, if one
considers discrete time intervals [Ti�1, Ti], T0 = 0, Ti 	 Ti�1,
i = 1,2,3,.., with each of the intervals containing ni earth-
quakes (Figure C1), then Ti and ni have to satisfy the
following relations:

r ¼ n1

T1 � T0
¼ n2

T2 � T1
¼ :: ¼ ni

Ti � Ti�1

: ðC1Þ

If f (T ) is monotonic, then ni earthquakes that would have
occurred in the time interval [Ti�1, Ti] before the
perturbation occur in the time interval [f (Ti�1), f (Ti)] after
the perturbation (Figure C1). Hence the new earthquake
rate R in each time interval is given by R [f (Ti�1), f (Ti)] =

ni /( f (Ti) � f (Ti�1)). Using (C1), we obtain the normalized
aftershock rate R/r as

R f Ti�1ð Þ; f Tið Þ½ �
r

¼ Ti � Ti�1

f Tið Þ � f Ti�1ð Þ ; ðC2Þ

or, in the limit of infinitely small lengths (Ti � Ti�1) of the
time bins,

R=r ¼ dT=df : ðC3Þ

This procedure for computing the aftershock rate R/r for
monotonic f (T ) is analogous to the one of Gomberg et al.
[2000]. Using equation (C3) with f (T ) for the model of
Dieterich [1994], given by (B9), provides an alternative
way of deriving the analytical aftershock rates (B5).

C2. Nonmonotonic Response f (T )

[89] Expression (C3) is valid only for monotonic func-
tions f (T ), as it requires the existence of the inverse
function T ( f ). For nucleation processes at rheological
transition, however, functions f (T ) turn out to be non-
monotonic for all cases we have considered. As an illustra-
tion, consider f (T ) given in Figure C2. Aftershocks
occurring in the time interval Df come from nucleation
sites that, without perturbation, would have produced earth-
quakes in three time intervalsDT1,DT2, andDT3. Thus, the
aftershock rate in the time interval Df in Figure C2 is given
by

R

r
¼ DT1

Df

����
����þ DT2

Df

����
����þ DT3

Df

����
����: ðC4Þ

[90] To compute aftershock rates for a nonmonotonic
f (T ), we create time bins Df equally spaced on the

Figure C1. Schematics showing how the time to instabil-
ity for each nucleation site in the population changes due to
a stress step for a monotonic function f (T). The top arrow
represents the (original) time to instability Ti for the
(Si

k¼1nk)th nucleation site in the absence of perturbation,
where ni is the number of earthquakes between Ti�1 and Ti.
The bottom arrow shows the (new) time to instability f (Ti)
after the static stress step at time zero. The time to instability
of each nucleation site changes, resulting in a different
earthquake rate (aftershock rate).

Figure C2. An example of a nonmonotonic f (T ). This is
an actual response observed in the model with rheological
transition for case 4. The data shown here are taken from the
rectangle in Figure 9a. The bold lines on the curve represent
three time intervalsDT1,DT2 andDT3 that contribute to the
aftershock rate in the interval Df.
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logarithmic scale. That is, we choose Dfj = fj � fj�1, where
log( fj) � log( fj�1) = log( fj /fj�1) is the same for all j. For
each fj, we find the corresponding values of Tj by linearly
interpolating discretely specified correspondence T( f ).
Each fj may have more than one corresponding Tj, or
equivalently, each interval Dfj may have several
corresponding intervals DTj(k). The aftershock rates can
be obtained by adding the contribution of each DTj(k) to
the corresponding time bin Dfj:

R

r

����
Dfj

¼
X
k

DTj kð Þ

Dfj

����
����: ðC5Þ

This procedure allows us to compute aftershock rates for
complicated nonmonotonic responses that we observe in the
model with rheological transition.

Appendix D: Aftershock Rates for Simplified
Scenarios

[91] In the model of Dieterich [1994] (Appendix B), it is
assumed that zones nucleating earthquakes always satisfy
the condition Vq/L � 1. In our simulations, nucleation
zones that contribute to aftershock response do not always
satisfy that condition (section 8). To understand the contri-
bution of such zones to aftershock rates, we consider here
several simplified scenarios motivated by our simulations,
using the spring-slider model (B1).

D1. Scenario 1: Nucleation Zones With Vq/L ����� 1
Before and After the Perturbation

[92] Our simulations in the model with a weaker patch
show that, for much of the interseismic period, Vq/L � 1 in
the nucleation zone because of the near-zero slip velocities
V. Let us consider such a nucleation site at a time tref,
approximating it as a spring-slider system with slip dref, slip
velocity Vref, state variable qref, and loading stress tref

o so
that

toref � kdref ¼ s m0 þ a ln Vref=V0ð Þ þ b ln V0qref=Lð Þ½ �: ðD1Þ

Since Vq/L � 1, the evolution of state variable can be
simplified to q(t) = qref + (t�tref), and near-zero slip velocities
V imply that we can approximately write d (t) = dref. The
governing equation (B1) becomes

toref � kdref þ _t t � trefð Þ

¼ s

"
m0 þ a ln

V

V0

� �
þ b ln

V0 qref þ t � trefð Þð Þ
L

� �#
: ðD2Þ

From equations (D1) and (D2), we find the following time
evolution of slip velocity:

V tð Þ ¼ Vref exp
t � tref

ta
� b

a
ln 1þ t � tref

qref

� �� �
: ðD3Þ

In (D3), slip velocity increases approximately exponentially
with time, which is the same functional dependence as in the

model of Dieterich [1994] for times far from instability. The
behavior is similar because, for times far from instability, slip
velocities and hence slip accumulation are very small, the
state variable evolves slowly, and the assumption regarding
Vq/L does not make much difference.
[93] After positive static stress stepDt at time t > tref, slip

velocity V abruptly increases to V exp [Dt/(as)]. In the
nucleation process without perturbation, such larger slip
velocity would be achieved only after time Dt such that
V(t) exp [Dt/(as)] = V(t + Dt). Using equation (D3) (which
is applicable both before and after the perturbation, due to
the assumption that Vq/L� 1 holds for both stages), with the
logarithmic term under the exponential ignored in compar-
ison with the linear term, this leads to Dt = Dt/ _t, consis-
tently with the time advance for Coulomb-like behavior
[Gomberg et al., 2000; Perfettini et al., 2003]. In the same
time period, the state variable would change as well but if we
ignore that (since the change in state variable is linear with
time while the change of slip velocity is exponential), then
the effect of the stress step is to essentially advance
the nucleation process by a constant time D t/ _t. Using R/r
= dT/df with f (T) = T � Dt/ _t, we find R/r = 1. Hence
nucleation sites considered in this scenario, taken by them-
selves, result in the aftershock rate equal to the background
rate. Their time to instability is advanced, but by the same
amount, so there is no pile up of the resulting earthquakes.

D2. Scenario 2: Nucleation Zones With Vq/L ����� 1
Before the Perturbation but Vq/L ����� 1 After the
Perturbation

[94] In this scenario, equations (D1)–(D3) continue to be
valid. Let Tref be the time to instability corresponding to
time tref and T be the time to instability corresponding to
time t > tref. Then t � tref = Tref � T and equation (D3) can
be rewritten as

V Tð Þ ¼ Vref exp
Tref � T

ta
� b

a
ln 1þ Tref � T

qref

� �� �
: ðD4Þ

Because of stress step Dt at time t > tref, slip velocity
abruptly increases to V(T)exp[Dt/(as)] and, in this
scenario, Vq/L becomes much larger than 1. The new time
to instability can be found from equation (B3):

f Tð Þ ¼ ta ln 1þ _t
H�sVref

�

� exp _t T � Trefð Þ �Dt
as

þ b

a
ln 1þ Tref � T

qref

� �� ��
: ðD5Þ

Keeping only the term linear in T under the exponential, one
can solve for T and calculate dT/df to obtain

R

r
¼ 1

1� exp �f =tað Þ : ðD6Þ

For f � ta, one has R/r = ta /f, which shows a power law
decay of the aftershock rate with the normalized time f /ta.
For f � ta, one gets R/r = 1 and the aftershock rate becomes
the background rate.
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D3. Scenario 3: Nucleation Zones Close to Failure
With Vq/L 
 1 Before the Perturbation and Vq/L ����� 1
After the Perturbation

[95] In simulations with a/b ^ 0.5, the value of Vq/L
becomes close to 1 for a large part of the nucleation zone
shortly before the instability (section 5.2), consistently with
the study of Rubin and Ampuero [2005]. This results in
elevated aftershock rates in comparison to Dieterich’s esti-
mate (e.g., case 2 in Figure 8).

D3.1. Approach 1

[96] To approximately estimate the impact of Vq/L 
 1 on
aftershock rates, let us consider a nucleation process in the
spring-slider model with Vq/L = 1 before the stress step. The
governing equation becomes

toref � kd ¼ s m0 þ a� bð Þ ln V

V0

� �� �
: ðD7Þ

Here we ignore the loading term _tt, considering a
nucleation process that is so close to failure that it is
beyond the influence of slow tectonic loading. Taking into
account that tref

o � kdref = s [m0 + (a � b) ln (Vref/V0)] and
solving for V, we obtain

V tð Þ ¼ dd
dt

¼ Vref

Vref k̂ t � trefð Þ þ 1
; ðD8Þ

where k̂ = k/((a – b) �s). As in section D2, we can
rewrite this expression in terms of the original time to
instability T (using t � tref = Tref � T), get slip velocity
after the stress step as V(T) exp [Dt/(as)], and find the
new time to instability corresponding to this slip velocity
using equation (B4):

f Tð Þ ¼
a Vref k̂ Tref � Tð Þ þ 1
� �
HVref exp Dt= a�sð Þð Þ : ðD9Þ

Solving for T and calculating dT/df, we obtain

R

r
¼ b� að Þb�s

aLk
� b� að Þ

a

� �
exp

Dt
a�s

� �
: ðD10Þ

[97] In equation (D10), aftershock rates right after the
main shock are different from the model of Dieterich [1994]
by the factor of [(b � a)bs/(aLk) � (b � a)/a]. To compare
this result with our computed aftershock rates, we need to
estimate the effective stiffness k of the simulated nucleation
process which changes with time. Since we are considering
the final stages of nucleation in this scenario, we set k =
hG/hnucl, where hnucl is the nucleation size right before
instability. Using expression (3) for hnucl with F = (b � a)2/b
and h = 2/p found byRubin and Ampuero [2005] for a/b close
to 1, we get

R

r
¼ b2

2a b� að Þ �
b� að Þ
a

� �
exp

Dt
a�s

� �
: ðD11Þ

For case 2 (Figure 8), the simulated aftershock rates are
larger by a factor of 3.8 relative to the model of Dieterich
[1994], while the estimate (D11) predicts a factor of 2.7.

D3.2. Approach 2

[98] Instead of using the unperturbed slip velocity history
(D8), let us assume that the nucleation process follows the
behavior given by equation (44) of Rubin and Ampuero
[2005] for quasi-static nucleation with a/b close to 1:

T ¼ 2

p
bL

b� að ÞV : ðD12Þ

Continuing with the same steps as in approach 1, we obtain

R

r
¼ 2b2

pa b� að Þ �
4 b� að Þ

pa

� �
exp

Dt
a�s

� �
: ðD13Þ

For case 2 (Figure 8), this estimate gives 3.5 for the factor of
aftershock rate increase relative to the model of Dieterich
[1994], which is very close to the actual factor of 3.8.
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