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1 Algebra and Polynomials

You should have definitely by now seen algebra in class at school. Algebra is all about working with quan-
tities that are yet unknown. For example, if you don’t know a value, but you know that you will need to
square it once you do, just consider x2 where x is your unknown. This has the benefit that without knowing
a quantity, you can still work on something and make whatever expressions are demanded by the problem.
Once you know what x is you can then substitute and obtain the value of the expression.
Algebra is very useful. An algebraic expression can sometimes tell us something about an expression without
even knowning the value of our variables. For example,

x2

is always positive or zero, no matter what x is.
Another technique that can be used is graphing. Turning an algebraic problem into a graphical one. We will
consider these techniques over the next few weeks.

Definition. A polynomial is a sum of non-negative powers of x. In general, a polynomial is written as

P(x) = anxn + an−1xn−1 + · · ·+ a1x + a0.

• n is the degree of the polynomial.

• an, an−1, ..., a1, a0 are the coefficients of the polynomial.

• an is the leading coefficient.

• The polynomial is monic if the leading coefficient is 1.

• A root to the polynomial is a solution to the equation P(x) = 0.

The coefficients can be negative, zero or even irrational if one likes. Examples of polynomials are

P(x) = x2 − 3x− 2, Q(x) = −1
2

x5 − πx4 + 2.34x2 − x, R(x) = 4.

Note that polynomials do not contain terms involving fractional or negative powers of x, such as
√

x or 1
x .

Polynomials of degree 0, 1, 2, 3, 4, 5 are called constant, linear, quadratic, cubic, quartic and quintic, respec-
tively.

1.1 Polynomial Operations

We can add and subtract polynomials by collecting like terms. We can multiply polynomials by multiplying
each term of one with each term of the other. For example:

(x2 + 3x + 5) + (3x2 − 2x− 7) = (4x2 + x− 2)
(x3 + 3x− 2)− (x3 − x2) = (x2 + 3x− 2)

(x + 4)× (x + 5) = x2 + 4x + 5x + 20
= x2 + 9x + 20

(x + 2)× (x2 − 4x + 3) = x3 − 4x2 + 3x + 2x2 − 8x + 6
= x3 − 2x2 − 5x + 6

But can we divide polynomials? It may not be obvious but we can. To divide P(x) by Q(x), we subtract
multiples of Q(x) for P(x) until the remainder is small. We will define small to mean that the degree of
the remainder must be less than the degree of Q(x). Hence, if we’re dividing by a linear polynomial, the
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remainder will be constant, if we’re dividing by a quadratic, the remainder will be at most linear. If the
remainder is zero, then we say that Q(x) divides P(x), of Q(x) is a factor of P(x).
Some examples:

P(x) = 2x2 + 3x + 7 Q(x) = x + 1

We look for a multiple of Q(x) close to P(x). Because we’re going to subtract it, and we want to make the
remainder as simple as possible, we’ll choose a multiple of Q(x) that has the same leading term, 2x2.

(x + 1)× (2x) = 2x2 + 2x

The remainder is P(x)−Q(x)× (2x) = P(x)− (2x2 + 2x) = x + 7. This still has degree at least that of Q(x),
so we haven’t finished. We find a multiple of Q(x) which has the same leading term as that of x + 7, which
will be just (x + 1). Subtracting this from (x + 7) gives 6. Hence, we look at what multiples of Q(x) we
subtracted, which were 2x and 1 times Q(x), and thus:

P(x) = (2x + 1)Q(x) + 6

Another example, in slightly less detail:

P(x) = x4 + 3x3 − 4x2 − 8x + 14 Q(x) = x2 − 3x + 2

Initially, we subtract x2Q(x), leaving 6x3− 6x2− 8x + 14. We then subtract 6xQ(x), leaving 12x2− 20x + 14.
Finally, we subtract 12Q(x), leaving 16x− 10. Thus,

P(x) = (x2 + 6x + 12)Q(x) + (16x− 10)

Through this process, for any two polynomials P(x) and Q(x), we can write P(x) = A(x)Q(x) + R(x),
where deg(R(x)) < deg(Q(x)). If R(x) = 0, then we say that Q(x) divides P(x), or Q(x) is a factor of P(x).

1.2 Remainder Theorem

Let P(x) be a polynomial and a is a constant. If we divide P(x) by (x− a) then the remainder has degree < 1
so is a constant. So we can write

P(x) = (x− a)Q(x) + r.

Substituting x = a gives P(a) = r and yields the remainder theorem.

Remainder Theorem

If P(x) is divided by (x− a) then the remainder is P(a).

Factor Theorem

If P(a) = 0 then (x− a) divides P(x).

1.3 What kind of polynomials?

Let’s look at the definition of a polynomial again.

P(x) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0

We’ve been pretty vague so far as to what the coefficients an, an−1, · · · , a1, a0 actually are. If they all belong
to some set S, we say that P(x) is a polynomial over S. For example, if the coefficients are all integers, then
we say that P(x) is a polynomial over Z, or that P(x) is an integer polynomial. If the coefficients are all real,
then P(x) is a polynomial over R, or that P(x) is a real polynomial. (Other common sets are Q and C, for
rational and complex polynomials. Note also that any integer polynomial is a real polynomial, and likewise
for other sets that are subsets of others).
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We will consider real polynomials, unless specified otherwise. Note that the section on polynomial division
above assumed that we can divide elements of the set by one another, and hence it is not valid for integer
polynomials. (For an example, try dividing x2 by 2x. This won’t work unless we consider them as rational
or real polynomials).

1.4 Roots of Polynomials

A root of a polynomial P(x) is a value a such that P(a) = 0. (By the factor theorem, this is the same as (x− a)
being a factor of P(x).)
A double root of a polynomial P(x) is a value a such that a is a root of P(x), and a is a root of P(x)

(x−a) . This is

equivalent to (x− a)2 being a factor of P(x).
We define the multiplicity of a root a to be the greatest integer m such that (x − a)m is a factor of P(x), and
(x− a)m+1 is not a factor of P(x). We call roots of multiplicity 1, 2, 3 to be single, double or triple roots.
The Fundamental Theorem of Algebra states that every non-constant polynomial over C has a root in C. A
corollary of this is that a polynomial over C of degree n, n > 0 has exactly n roots in C (with each root counted
according to its multiplicity). For example, a polynomial of degree 3 could have three distinct roots, a double
root and a distinct single root, or a triple root. This is equivalent to the statement that any polynomial P(x)
of degree n over C can be written as P(x) = a(x − x1)(x − x2) · · · (x − xn)) for some complex numbers
a, x1, x2, · · · , xn.
Now, consider a real polynomial of degree n, n > 0. If it had more than n roots, then these would still all be
roots when we considered the polynomial as a polynomial over C. As it has exactly n roots when considered
as a polynomial over C, this would be a contradiction, and so a polynomial over R can have at most n roots
in R. (Likewise, polynomials over Q or Z can have at most n roots over these sets).

Another corollary is that if two polynomials are equal, then the corresponding coefficients are equal. ie, if

P(x) = amxm + am−1xm−1 + · · ·+ a2x2 + a1x + a0

Q(x) = bnxn + bn−1xn−1 + · · ·+ b2x2 + b1x + b0

and P(x) = Q(x), then a0 = b0, a1 = b1, · · · , (and so n = m).

1.5 Quadratics

Quadratics are a particularly nice class of polynomials, because we can solve them fairly easily. Consider a
polynomial ax2 + bx + c, with roots α and β. We know that α and β have sum − b

a , and product c
a , so some

quadratics, particularly monic ones, with ’nice’ roots can be solved by inspection. For example, to find the
roots of x2 + 7x + 10, we need to find two numbers that add to -7 (watch the signs!) and multiply to 10.
Checking the factors of 10, we find -2 and -5.
If the question is inconsiderate enough that no nice solutions present themselves, then we will need a method
to solve the equation ax2 + bx + c = 0. One way to solve this is to complete the square. Consider the
following quadratic equation: x2 − 4x + 3 = 0. To solve this by completing the square, we add a constant
to both sides to make the left hand side a perfect square. Here, we need to add 1. Thus, (x− 2)2 = 1. This
means that x− 2 = ±1. Therefore x = 1 or x = 3.
For a general quadratic ax2 + bx + c, the roots are given by x = −b±

√
b2−4ac

2a . This is the quadratic formula,
and is useful enough to justify remembering it. Similar formulae exist for cubics and quartics, but they are
ridiculously complicated and not worth remembering. No such formula exists for polynomials of degree
greater than 4.

1.6 Polynomial Identities

While these actually involve polynomials in two variables, they are common and useful enough to mention
here.
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(x + y)2 = x2 + 2xy + y2

(x− y)2 = x2 − 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x− y)3 = x3 − 3x2y + 3xy2 − y3

x2 − y2 = (x + y)(x− y)

x3 + y3 = (x + y)(x2 − xy + y2)

x3 − y3 = (x− y)(x2 + xy + y2)

There are similar identities to the latter ones for any exponent, as (x− y) is a factor of xn − yn for any n, and
(x + y) is a factor of xn + yn for any odd n.
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Problems

1.7 Easy

1. Which of the following expressions are polynomials?

4x2 + x− 2, x3 + 2x2 − x− 1,
√

x, 1,
1
x

.

2. Graph the following polynomials

(a) x2 + 4x + 4

(b) (x + 1)(x− 1)(x− 3)

3. The polynomial a2x2 + (2a + 1)x + 2 has exactly one real root. Find a.

4. x2+3x+2
2x+5 = k. For which real k does this equation have at least one real solution for x?

5. What is (x2 − 4x + 3)× (x + 2)?

6. Divide x5 + 3x3 + 2x2 + x + 1 by x2 + x + 1.

7. Using the fact that a polynomial of degree n > 0 over C has at most n roots, prove that if two polyno-
mials are equal, then their corresponding coefficients are equal. (Hint: Subtract one polynomial from
the other).

8. Find the roots of the following quadratics by completing the square:

(a) x2 + 6x + 8

(b) 2x2 + 5x + 2

(c) 5x2 − 10 + 5

9. Find all roots of the quartic x4 − 5x2 + 4

10. Use polynomial division to decide which of the following polynomials are multiples of (x− 2)

(a) x2 + 5x− 14

(b) x2 − x + 6

(c) 4x2 − 5x + 6

(d) 3x2 − 4x− 4

(e) 2x3 + 3x2 − 5x

(f) x3 − 4x2 + 4x + 2

11. Prove the identities in the last section.

1.8 Hard

1. What is the highest common factor of x4 + x3 − x2 + 1 and x3 + 2x2 + 2x + 1.

2. By completing the square, prove the quadratic formula. ie, that the roots of the general quadratic
ax2 + bx + c are given by x = −b±

√
b2−4ac

2a

3. (Rational Root Theorem) If the rational polynomial P(x) = anxn + an−1 + ... + a2x2 + a1x + a0 has root p
q

in simplest form, then p divides into a0, and q divides into an.

4. Prove that if a real quadratic has non-real roots, then they exist in complex conjugate pairs. (ie, if
z = a + ib is a root of a real quadratic, then z̄ = a− ib is also a root.)
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5. Use polynomial division to decide which of the following polynomials are multiples of x2 − 3x + 2

(a) x3 + 2x2 − 3x + 4

(b) x4 − 3x3 + 3x2 − 3x + 2

(c) −x4 + 2x3 + 7x2 − 20x + 12

(d) 3x4 + 3x3 + 2x2 − 5x + 3

6. Solve x3 − 7x2 + 6 = 0.

7. Prove that a− b | P(a)− P(b) for any polynomial P(x).
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2 Functions

Last time, we learnt about polynomials, which involved lots of positive powers of x. But there is a lot more
you can do with x. Polynomials as well as many other expressions involving x are called functions.
Often students are taught that functions are like vending machines. Essentially you put in a number, some
cogs turn and the machine returns a (possibly different) number. Feel free to use this analogy. I prefer
to think of a function as a pairing of numbers, where the first number in each pair is what goes into the
function and the second number is what comes out. A more technical term for these pairs is a relation with
one right number for each left number. We write f (x) and say ‘f of x’ .

1. Is f (x) = x2 a function?

2. Is f (x) =
√

x a function?

3. Is f (x) = ±
√

x a function?

Many common functions include:

• Constant : f (x) = c

• Linear : f (x) = ax + b

• Quadratic : f (x) = ax2 + bx + c

• Polynomial : f (x) = anxn + an−1xn−1 + · · · a1x + a0

• Square Root : f (x) =
√

x

• Exponential : f (x) = ex

• Power : f (x) = xc

• Logarithm : f (x) = ln(x)

• Trigonometric : f (x) = sin(x) etc.

• Reciprocal : f (x) = 1
x

• Floor : f (x) = bxc = greatest integer less than or equal to x

• Fractional : f (x) = {x} = x− bxc

• Ceiling : f (x) = dxe = smallest integer greater than or equal to x

• Absolute Value : f (x) = |x| =
{

x if x ≥ 0
−x if x < 0

When discussing functions, it really is important to specify what kind of numbers can be put into a function.
Sometimes you want to restrict what goes into the function for a particular reason. To be able to do this, let’s
have a quick recap of what sets are.

2.1 Sets

A set is a collection of elements without repetition. Here are a few examples of sets:

• N = {1, 2, 3, . . . } = the natural numbers or positive integers.

• Z = {. . . ,−2,−1, 0, 1, 2, . . . } = the integer numbers or just integers.

• Q = {m
n : m, n ∈ Z} = the rational numbers. Also known as fractions (ratios of integers).
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• R = the real numbers. All of the numbers you would find on a number line.

• C = the complex numbers.

There is a little bit of extra notation to understand about sets. For the explanations below assume A =
{cat, dog} and B = {cat}.

• When we write out the elements of a set, we put them inside curly braces, eg. A = {cat, dog}.

• a ∈ A means a is an element of A. For example, cat ∈ A.

• B ⊂ A means B is a subset of A. In our case, B ⊂ A or {cat} ⊂ A.

• A ∩ B is the intersection of A and B, which is the common elements to both sets. In our case A ∩ B =
{cat}.

• A ∪ B is the union of A and B, which is all the elements in either set. In our case A ∪ B = {cat, dog}.

• Ac is the complement of A, which is all the elements not in A. Here it is really important to know what
universal set we are using. If for example our setting is the set of all pets, then Ac is the set of all pets
that are not dogs or cats.

We will also sometimes add little symbols to well-known sets. For example,

• R+ is the set of all positive real numbers.

• N0 is the set of all natural numbers and zero.

• Q−0 is the set of all non-positive rational numbers.

When working with the reals, we sometimes like to talk about intervals. Intervals are all the reals between
two numbers. If we are talking about real numbers between a and b, we write it as:

• (a, b) = interval between a and b not including a and b.

• (a, b] = interval between a and b not including a and including b.

• [a, b) = interval between a and b including a and not including b.

• [a, b] = interval between a and b including a and b.

2.2 Equations, expressions

Sometimes rather than being provided a function, you may instead have an expression. An expression is a
mathematical statement. An equation is a mathematical expression that contains an equality operation (or
as we call it an ‘equals sign’ ). In algebra, very often you are going to be posed a problem where you want to
solve an equation and more often than not, during your work you will encounter many different equations.
Here are some tips to solving equations:

• Use techniques from high school mathematics: factorise, cancel, complete the square, use common
identities.

• Consider it as a function and use functional techniques.

• Consider the graph of the equation and see if you can make any conclusions from that.

• Maybe there is no solution! Inequalities can be useful here.
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2.3 Properties of Functions

Now that we are more familiar with functions, I would like to be a bit more technical. Functions are depen-
dent on two very important sets: the domain and codomain. The domain is the set of all numbers (things) we
can put into the function and the codomain is the set of all numbers (things) we are allowed to get out. If A
is the domain and B is the codomain, we write f : A→ B.
The range is the set of all numbers that actually come out of the function. By definition, range ⊂ codomain.
A function where every x value gives a unique y value is an injective or one-to-one function. In particular,
f (x) = f (y) then x = y. A function that is not injective is also called many-to-one. A function where you
can get every value in the codomain is surjective or onto. In particular, there is a solution for the equation
f (x) = c for all c ∈ codomain. A function that is both injective and surjective is called bijective.
We can compose functions, which is an interesting way of putting two functions together. Imagine taking x
and putting it into f and then the result of that into g. That is called g( f (x)) or (g ◦ f )(x). When g( f (x)) =
f (g(x)) = x, then we say that g is the inverse of f : A→ B and write g = f−1 : B→ A.
There are other cool properties of certain functions:

• Even. f (−x) = f (x) for all x.

• Odd. f (−x) = − f (x) for all x.

• Periodic. f (x + p) = f (x) for all x.

• Involution. f ( f (x)) = x for all x.

• Fixed point. These are points where f (x) = x.
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Problems

2.4 Easy

1. Is f : N→N, f (x) = x2 the same function as f : R→ R, f (x) = x2?

2. Is f : R+ → R, f (x) = x2 the same function as f : R→ R, f (x) = x2?

3. Is f : R→ R+
0 , f (x) = x2 the same function as f : R→ R, f (x) = x2?

4. What is the range of f : R→ R, f (x) = x2?

5. What is the range of f : N→N, f (x) = x2?

6. What is the largest possible domain for the common functions given before?

7. What is a graphical test for injectivity?

8. For a surjective function, what is the relationship between codomain and range?

9. Find examples of injective and not injective functions.

10. Find examples of surjective and not surjective functions.

11. Find examples of bijective functions.

12. If f (x) = 3x− 2 and g(x) = e7x, what is f (g(x)) and g( f (x))?

13. If f (g(x)) = 5√
3x+1 , what are the possibilities for f and g?

14. What property must f have to have an inverse?

15. What properties do involutions have?

16. Do involutions have inverses and what are they?

2.5 Hard

1. Why is the inverse of a function the reflection of the function in y = x?

2. Find the inverses for each of the common functions.

3. Show that p(x) = 2x3− 8x2 + 3x− 2 has at least one root. Give an interval of length at most 1 in which
such a root lies.

4. Prove that there are two points on Earth which have the exact same temperature? [Hint consider points
opposite each other]

5. Determine all increasing involutions.

6. Prove that you can always balance a rectangular table with four legs at a specific on uneven ground by
simply rotating it.

7. Find all solutions x ≥ 1 to the equation x3 = bxc3 + {x}3.
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3 Graphs

The thing that you draw with an x-axis and a y-axis is called the Cartesian plane. It is the 2D version of the
real number line. It is supposed to be infinitely long in each direction, but usually we focus on a particular
area of the Cartesian plane (and this is usually near the origin - the point where the axes meet). Points in this
plane are of the form (x, y) where x and y are real numbers. Keeping this in mind, the graph of a function of
a function f (x) is (x, f (x)). We can write this in a more familiar form:

y = f (x).

Notice that for a function there is only one f (x)-value for every x, so on the graph there will only be one
y-value for every x.

3.1 Shape of Graphs

Let’s talk about the shape of functions for a little while. An increasing function f is such that f (x) ≥ f (y)
whenever x > y. A strictly increasing function f is such that f (x) > f (y) whenever x > y. Similarly, one can
define decreasing and strictly decreasing functions. A function that is either increasing or decreasing is called
monotonic.
Another very important concept is continuity. We say a function is continuous if we can draw its graph
without taking the pen off the paper. More technically f is continuous at a if lim

x→a
f (x) = f (a). But we

aren’t going to worry about technicalities. Most of the functions you know are continuous. If a function is
continuous we can do this awesome thing called:

Intermediate Value Theorem. Suppose f is a continuous function defined on [a1, a2] and f (a1) = b1 and f (a2) =
b2. Then for any b ∈ [b1, b2], there exists x ∈ [a, b] such that f (x) = b.

Think about what this means. It is saying that if the function is continuous and at some point it is equal to
b1 and somewhere it is equal to b2, then somewhere in between it has to equal all of the numbers between b1
and b2. Amazing!
A function is concave if it looks like a sad face. If you draw a chord it should be completely below the graph. A
convex function is like a happy face and the chord is completely above the graph. This can have implications
for finding maxima and minima of functions.
The following are good techniques to consider when working with graphs:

• Combine graphs: add, subtract.

• Use properties of the common functions.

• Find roots (x-intercepts), y-intercepts, asymptotes.

• Figure out where it is positive, negative.

• Figure out where it is increasing, decreasing, concave, convex.

• Figure out where it is injective, surjective, bijective.

• Look out for other properties of functions: even, odd, periodic, involution, fixed point.

• Look for continuity and the Intermediate Value Theorem.

3.2 Quadratics

Quadratic functions are polynomials as we have already seen, so you should have a good understanding of
them. The graph of a quadratic is called a parabola. It looks like the trajectory of a ball when you throw it.
In fact, one cool property of it is that a parabola is the shape you get if you want to find all the points that are
equally distant from a specific point and a specific line. When working with quadratics, it is important to be
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able to find the roots and the vertex. You can find the equation of the roots using the quadratic formula. If
the parabola is

y = ax2 + bx + c

then the vertex will be the point (
− b

2a
, c− b2

4a

)
.

3.3 Interesting features of graphs

There are other cool properties of certain functions:

• Even. f (−x) = f (x) for all x.

• Odd. f (−x) = − f (x) for all x.

• Periodic. f (x + p) = f (x) for all x.

• Involution. f ( f (x)) = x for all x.

• Fixed point. These are points where f (x) = x.

These features dictate what happens to the graph of the function f (x). It is left to the reader to find a
graphical interpretation of these features.

12



Problems

3.4 Easy

1. Think of a graphical way of determining whether or not a graph represents a function.

2. Graph all the types of functions listed in the functions handout.

3. Consider how the graph transforms if we go from y = f (x) to

• y = a f (x),

• y = f (x + c),

• y = f (bx),

• y = f (x) + d, or

• y = a f (bx + c) + d.

Try this for a few of the types of functions from the previous question. Focus on what happens graphi-
cally.

4. With the help of a graph

(a) Define a strictly decreasing function.

(b) Prove that a strictly monotonic function is injective.

(c) Is a monotonic function surjective?

(d) Give an example of a non-continuous function.

5. What are the three cases that arise from considering the discriminant?

6. Can you ever get three solutions from a quadratic equation?

3.5 Hard

1. What property must f have to have an inverse?

2. What properties do involutions have?

3. Do involutions have inverses and what are they?

4. The section about interesting features of graphs left it up to you the reader, to work out the graphical
implication of each feature. Do this.
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4 Inequalities

At school, we mostly work with equations. These are two expressions separated by the equality symbol,
=, called ’equals’. However, in mathematics it often pays to talk about inequations. If we want to say two
things are unequal we can stick an inequality sign, 6=, between them. This is kind of cool, but not quite
strong enough. We would like to be able to say which expression is bigger or smaller. To do this we use the
following symbols:

• < is less than

• > is more than

• ≤ is less than or equal to

• ≥ is more than or equal to

All inequalities will involve these four symbol >, <, ≥ or ≤. Here they are in action:

5 > 3, 2 < 7, 8 ≥ 1, 4 ≤ 3 + 1.

Note, that it is ok to say 8 ≥ 1 because even though 8 is more than 1 it is also more than or equal to 1, by
definition.

4.1 Solving Inequalities

As you can probably guess we will not be working just with numbers but with algebra and inequalities. So,
just like with equalities, we need to be able to solve inequalities. We know how to solve 2x + 1 = 5, but how
do we solve 2x + 1 > 5?
Well, here are the things you can do with inequalities:

• Add or subtract things from both sides of an inequality. So, if I start with 2x + 1 > 5, I can happily get:
2x > 4 (subtracting 1 from both sides), or −4 > −2x (subtracting 2x + 5 from both sides).

• Multiply or divide both sides of an inequality. CAUTION: if you multiply or divide by a negative
value, the inequality sign flips (from < to > and vice versa or from ≤ to ≥ or vice versa).

• You have to be careful with other algebraic manipulations. In general, you can’t square both sides. The
reason is that on one side you might be squaring a negative number (which should flip the inequality),
but on the other side you might be squaring a positive number (which does not flip the inequality)!
The rule of thumb is that if both sides are the same sign (positive or negative) you can square. Just
remember that if both sides were negative do not forget to flip the inequality.

• Other algebraic manipulations such as exponentiation or logarithms you can do, but many others like
sine or cosine you cannot. You will learn in time how to recognise which ones you can and can’t use.

I now provide a few examples of simple solving of inequalities:

Problem 1. Solve 2x + 1 < 5.

Proof. Subtracting 1 from both sides yields 2x < 4. Dividing both sides and remembering that we do not flip
the inequality because 2 is positive, gives

x < 2.

This is the answer. All numbers x which are less than 2 satisfy the inequality.

Problem 2. Solve x+1
x−1 ≤ 2.
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Proof. Note, the inequality is ≤ not <, so do not forget to keep using the correct symbol. The first thing we
would like to do is multiply by x − 1, but we need to be careful. What if it is negative? So, we have two
cases:
Case 1: x− 1 < 0. This is the same as saying x < 1. Now, when we multiply both sides by x− 1 we have to
flip the inequality so we get

x + 1 ≥ 2x− 2.

Combining a few steps into one, I now subtract x from both sides and add 2 to both sides giving me

3 ≥ x or equivalently x ≤ 3.

So, in this case where x < 1 we get that x ≤ 3, which together implies all x that are less than 1 (x < 1).
Case 2: x− 1 ≥ 0. This is the same as saying x ≥ 1. Now when we multiply both sides by x− 1 we leave the
inequality sign so we get

x + 1 ≤ 2x− 2.

Again applying standard algebraic techniques we get

3 ≤ x or equivalently x ≥ 3.

So, in this case where x ≥ 1, we get x ≥ 3, so together this implies x ≥ 3.
Thus, the answers for this inequality are x < 1 and x ≥ 3.

4.2 The Strongest Inequality

From here on in, we will no longer concentrate on solving inequalities. In much the same way that in school
maths, you have finished learning how to solve maths equations, after a little bit of practice, inequalities
should be easy to solve too.
What we do now is prove that certain inequality statements are always true for all values of our variables. A
lot of this is based on one very simple inequality that we all know and that is especially strong:

Theorem 4.1.
x2 ≥ 0 for all x ∈ R.

This says that all real numbers squared are nonnegative (positive or zero). Pretty straightforward.
Let’s have a look at how powerful this is.

Problem 3. Prove that for all real numbers a and b,

a2 + b2 ≥ 2ab.

Proof. This should be shocking. Why should the left hand side always be bigger than the right hand side?
Well here is why. We know from our strongest inequality that any real number squared is nonnegative.
Therefore,

(a− b)2 ≥ 0.

But this expands to a2 − 2ab + b2 ≥ 0, which when we rearrange becomes

a2 + b2 ≥ 2ab.
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4.3 Useful Inequalities

There are many very useful inequalities that have been proved for us using complicated techniques.

Theorem 4.2. (Discrete Inequality) If a, b ∈ Z and a > b, then a ≥ b + 1.

This is easy to understand. If your variables are whole numbers and one is bigger than the other, then it
must be at least one bigger than the other!

Theorem 4.3. (Rearrangement Inequality) Let x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn be real numbers
and let z1, z2, . . . , zn be any permutation of y1, y2, . . . , yn. Then

x1yn + x2yn−1 + · · ·+ xny1 ≤ x1z1 + x2z2 + · · · xnzn ≤ x1y1 + x2y2 + · · ·+ xnyn

Again, this one can be understood in a common sense way. It is easiest to understand with an example
scenario. Someone is offering you money. You are shown three piles of money which contain $10 notes, $20
notes and $50 notes respectively. You are told that you are allowed to take 1 note from one pile, 2 notes from
another pile and 5 notes from another pile. Obviously, the worst (smallest) choice is to take 1 $50 note, 2 $20
notes and 5 $10 notes, while the best option is to take 5 $50 notes, 2 $20 notes and 1 $10 note.
What we’ve got are two sequences: $10, $20, $50 and 1, 2 and 5. If we pair them up in order we get the
biggest return. If we pair them up in reverse order we get the worst result. Whereas any other pairing is in
between. This is the rearrangement inequality.

Theorem 4.4. (AM-GM-HM Inequality) For positive real numbers x1, x2, . . . , xn,

x1 + x2 + · · ·+ xn

n
≥ n
√

x1x2 · · · xn ≥
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

with equality iff x1 = x2 = · · · = xn.

Theorem 4.5. (Cauchy-Schwarz Inequality) For all real numbers x1, x2, . . . , xn and y1, y2, . . . , yn,

(x1y1 + x2y2 + · · ·+ xnyn)
2 ≤ (x2

1 + x2
2 + · · ·+ x2

n)(y
2
1 + y2

2 + · · ·+ y2
n)

Equality holds iff y1 = rx1, y2 = rx2, . . . , yn = rxn for some real constant r.
There is an alternative version that is perhaps easier to use, but it works only for positive reals x1, x2, . . . , xn and
y1, y2, . . . , yn:

(
√

x1y1 +
√

x2y2 + · · ·+
√

xnyn)
2 ≤ (x1 + x2 + · · ·+ xn)(y1 + y2 + · · ·+ yn)

The trick to solving inequality questions is often to use one of these inequalities and replace the variables
with the ones you have. Here is an example.

Problem 4. If a, b, c > 0 prove that a
b +

b
c +

c
a ≥ 3.

Proof. As a, b, c > 0, then a
b , b

c , c
a > 0 as they are just ratios of positive numbers. So, we can apply the AM-GM

inequality on the three positive numbers a
b , b

c , c
a . What we get is:

a
b +

b
c +

c
a

3
≥ 3

√
a
b
× b

c
× c

a
.

The right hand side cancels to give 3
√

1 = 1. So we get

a
b +

b
c +

c
a

3
≥ 1.

Multiplying by three gives the desired result:

a
b
+

b
c
+

c
a
≥ 3.
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Problems

4.4 Easy

1. Solve the following two questions:

(a) x+2
x > 3

(b) x+2
x ≤ 3

What is the relationship between the answers to (a) and (b)?

2. [Squares] Farmer Brown wants to build a rectangular paddock, but he only has 1000m of fencing. What
is the largest area he can enclose?

3. [Squares] Now Farmer Brown wants to build it next to a straight river, so that the fourth side can be
the river. What is the largest area he can enclose now?

4. [Squares] Prove that a2 + b2 ≥ 2ab. When does equality hold?

5. [Squares] If a, b, c > 0 and a + b + c = 2, prove that ab + bc ≤ 1.

6. [Squares] If x > 0 prove that x + 1
x ≥ 2.

7. [AM-GM-HM] If a, b > 0 prove that (a + b)( 1
a +

1
b ) ≥ 4.

8. [AM-GM-HM] If a, b, c > 0 prove that a
b +

b
c +

c
a ≥ 3.

9. [AM-GM-HM] If a, b, c > 0 and abc = 1, show that (a + b)(b + c)(c + a) ≥ 8.

10. [Rearrangement] Prove that
a2 + b2 + c2 ≥ ab + bc + ca

4.5 Hard

1. [AM-GM-HM] Let a, b, c be positive numbers. Prove that

(a + b + c)
(

1
a
+

1
b
+

1
c

)
≥ 9

2. [AM-GM-HM] Think of a generalisation for the above problem. Prove it.

3. [AM-GM-HM] Let x and y be positive real numbers such that x + y = 1. Show that(
1 +

1
x

)(
1 +

1
y

)
≥ 9

4. [Rearrangement] If a, b, c are positive reals, prove that

a4b + b4c + c4a ≥ a3bc + b3ac + c3ab

5. [Rearrangement] If a, b, c are positive reals, show that

(ab)2 + (bc)2 + (ca)2 ≥ abc(a + b + c)

6. [Cauchy-Schwarz] If a, b, c, d are positive reals, with a + b + c + d = 64, prove that

1
a
+

1
b
+

4
c
+

16
d
≥ 1
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7. [Cauchy-Schwarz] If a, b, c, d are positive reals, then show
√

4a + 1 +
√

4b + 1 +
√

4c + 1 +
√

4d + 1 < 6

when a + b + c + d = 1.

8. [Cauchy-Schwarz] If x, y, z are reals with 8x− 9y + 12z = 10, find the minimum value of x2 + y2 + z2.
For what values of x, y, z does this occur?
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