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Noise in gravitational-wave detectors and other classical-force measurements is not influenced
by test-mass quantization
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It is shown that photon shot noise and radiation-pressure back-action noise are the sole forms of quantum
noise in interferometric gravitational wave detectors that operate near or below the standard quantum limit, if
one filters the interferometer output appropriately. No additional noise arises from the test masses’ initial
quantum state or from reduction of the test-mass state due to measurement of the interferometer output or from
the uncertainty principle associated with the test-mass state. Two features of interferometers are central to these

conclusions:~i! The interferometer output@the photon number fluxN̂(t) entering the final photodetector#

commutes with itself at different times in the Heisenberg picture,@N̂(t),N̂(t8)#50 and thus can be regarded
as classical.~ii ! This number flux is linear to high accuracy in the test-mass initial position and momentum

operatorsx̂o and p̂o , and those operators influence the measured photon fluxN̂(t) in manners that can easily

be removed by filtering. For example, in most interferometersx̂o andp̂o appear inN̂(t) only at the test masses’
;1 Hz pendular swinging frequency and their influence is removed when the output data are high-pass filtered

to get rid of noise below;10 Hz. The test-mass operatorsx̂o and p̂o contained in the unfiltered outputN̂(t)

make a nonzero contribution to the commutator@N̂(t),N̂(t8)#. That contribution is precisely canceled by a

nonzero commutation of the photon shot noise and radiation-pressure noise, which also are contained inN̂(t).
This cancellation of commutators is responsible for the fact that it is possible to derive an interferometer’s
standard quantum limit from test-mass considerations, and independently from photon-noise considerations,
and get identically the same result. These conclusions are all true for a far wider class of measurements than
just gravitational-wave interferometers. To elucidate them, this paper presents a series of idealized thought
experiments that are free from the complexities of real measuring systems.

DOI: 10.1103/PhysRevD.67.082001 PACS number~s!: 04.80.Nn, 03.65.Ta, 42.50.Lc, 95.55.Ym
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I. QUESTIONS TO BE ANALYZED AND SUMMARY
OF ANSWERS

It has long been known that the Heisenberg uncerta
principle imposes a ‘‘standard quantum limit’’~SQL! on
high-precision measurements@1–3#. This SQL can be cir-
cumvented by using ‘‘quantum nondemolition’’~QND! tech-
niques@2–9#.

For broad-band interferometric gravitational-wave det
tors the SQL is a limiting~single-sided! spectral density

Sh~ f !5
8\

m~2p f !2L2 ~1.1!

for the gravitational-wave fieldh(t) @10,11#. Here \ is
Planck’s constant divided by 2p, m is the mass of each o
the interferometer’s four test masses,L is the interferom-
eter’s arm length, andf is frequency.

This SQL firmly constrains the sensitivity of all conve
tional interferometers@interferometers with the same optic
topology as the Laser Interferometric Gravitational Wa
Observatory’s~LIGO’s! first-generation gravitational-wav
detectors# @12,13#. LIGO’s second-generation interferomete
~LIGO-II; ca. 2008! are expected to reach this SQL for the
m540 kg test masses in the vicinity off ;100 Hz@14#, and
may even beat it by a modest amount thanks to a ‘‘sig
0556-2821/2003/67~8!/082001~18!/$20.00 67 0820
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recycling mirror’’ that converts them from conventional in
terferometers into QND devices@15–17#. LIGO-III interfer-
ometers are likely to beat the SQL by a factor;4 or more;
see, e.g.,@13#.

In the research and development for LIGO-II interferom
eters@14–17# and in the attempts to invent strongly QN
LIGO-III interferometers@18–24,13#, it is important to un-
derstand clearly the physical nature of the quantum no
which imposes the SQL, and to be able to compute w
confidence the spectral density of this quantum noise
various interferometer designs. These issues are the su
of this paper.

There are two standard ways to derive the gravitation
wave SQL ~1.1!, and correspondingly two different view
points on it. The first derivation@10,25# focuses on the quan
tum mechanics of the interferometer’s test masses
ignores the interferometer’s other details. In the simplest v
sion of this derivation, one imagines a sequence of insta
neous measurements of the difference

x̂[~ x̂12 x̂2!2~ x̂32 x̂4! ~1.2!

of the center-of-mass positions of the four test masses,
from this measurement sequence one infers the changesx
and thence the time varying gravitational-wave fieldh(t)
5x(t)/L. At time t immediately after one of the measur
©2003 The American Physical Society01-1
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ments, the test masses’ reduced state has position var
@Dx(t)#2 no smaller than the measurement’s accuracy. D
ing the time intervalt5t82t between this measurement an
the next, the test masses are free, sox̂(t) evolves as the
position of a free particle with mass

m5m/4 ~1.3!

@the reduced mass of the four-body system with relative
sition ~1.2!#. The Heisenberg-Picture commutation relatio
for a free particle

@ x̂~ t !,x̂~ t8!#5
i\~ t82t !

m
5

4i\t

m
~1.4!

imply that, whatever may be the state of the test masses
variance@Dx(t8)#2 of x̂ just before the next measureme
must satisfy the Heisenberg uncertainty relation

Dx~ t !Dx~ t8!>
\ut2t8u

2m
5

2\t

m
. ~1.5!

The accuracy with which the change ofx betweent and t8
can be measured is no better than the value obtained
settingDx(t)5Dx(t8), and in classical language that acc
racy is related to the minimum possible spectral density
the noise at frequency f .1/pt by Dx(t)5Dx(t8)
.ASh( f )/t. Simple algebra then gives expression~1.1! for
the SQL ofSh( f ). A more sophisticated analysis@10#, based
on measurements that are continuous rather than discrete
on a nonunitary Feynman-path-integral evolution of the te
mass state@26,27#, gives precisely the SQL~1.1!.

The second derivation of the SQL@28,29# ignores the
quantum mechanics of the test mass, and focuses instea
that of the laser light which monitors the test-mass moti
The light produces two kinds of noise: photon shot noi
which gets superposed on the output gravitational-wave
nal, and radiation-pressure fluctuations, which produce a
dom back-action force on the test masses, thereby influ
ing their position evolution and thence the interferome
output. In an ideal, SQL-limited interferometer, bo
noises—shot and radiation-pressure—arise from quan
electrodynamic vacuum fluctuations that enter the inter
ometer through its dark port and superpose on the hig
classical laser light@28,29#. The radiation-pressure spectr
density is proportional to the laser-light powerP, the shot-
noise spectral density is proportional to 1/P, and their prod-
uct is independent ofP and is constrained by the uncertain
principle for light ~or equivalently by the electromagnet
field commutation relations! to be no smaller than

SxSF5\2 ~1.6!

@cf. Eqs.~6.7! and~6.17! of @3# in which there is a factor 1/4
on the right side because Ref.@3# uses a double-sided spe
tral density, while the present paper uses the gravity-w
community’s single-sided convention#. In Eq. ~1.6! Sx( f ) is
the spectral density of the shot noise that is superpose
the interferometer’s output position signalx(t), SF( f ) is the
spectral density of the radiation-pressure force that acts
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the test-mass center-of-mass degree of freedomx, and we
have assumed that the shot noise and radiation-pressure
are uncorrelated as is the case for conventional~LIGO-I
type! interferometers@13,15–17#. At frequency f the test
mass responds to the Fourier componentF̃( f ) of the force
with a position changex̃( f )52F̃( f )/@m(2p f )2#, and cor-
respondingly the net gravitational-wave noise is

Sh~ f !5
1

L2 S Sx1
SF

m2~2p f !4D . ~1.7!

By combining Eqs.~1.6!, ~1.7! and~1.3!, we obtain the SQL
~1.1! for a conventional interferometer, e.g. LIGO-I.

In view of these two very different derivations of th
SQL, test-mass quantization and light quantization, th
questions arise:~i! Are the test-mass quantization and t
light quantization just two different viewpoints on the sam
physics?—in which case the correct SQL is Eq.~1.1!. Or are
they fully or partially independent effects?—in which ca
we would expect their noises to add, causing the true S
for Sh to be larger by, perhaps, a factor 2@and thence the
event rate in an SQL-limited interferometer to be reduced
a factor ;(A2)3.3]. ~ii ! How should one compute th
quantum noise in candidate designs for the QND LIGO
and LIGO-III interferometers? One inevitably must pay clo
attention to the behavior of the light~and thus also its quan
tization!, since the optical configuration will differ markedl
from one candidate design to another. Must one also
close attention to the quantum mechanics of the test mas
including their commutation relation~1.4! and the continual
reduction of their state as information about them is conti
ally put onto the light’s modulations and then measured?~iii !
Similarly, how should one design a QND interferomete
Need one adjust one’s design so as to drive both the lig
noise and the test-mass noise below the SQL?

As we shall show, the answers are these:~ii ! The test-
mass quantization is irrelevant to the interferometer’s no
and correspondingly test-mass state reduction is irrelevan
one filters the output data appropriately.~For interferometers
with conventional optical topology such as LIGO-I, it is su
ficient to discard all data near the test masses’;1 Hz swing-
ing frequency.! Therefore, one can ignore test-mass quan
zation and state reduction when computing the noise o
candidate interferometer.~iii ! Similarly, one can ignore the
test mass’s quantum noise when designing a QND inter
ometer that beats the SQL. One need only pay attentio
the light’s quantum noise, and in principle, by manipulati
the light appropriately~and filtering the output data appro
priately!, one can circumvent the SQL completely.~i! Corre-
spondingly, the SQL~1.1! as derived from light quantization
is precisely correct; there is no extra factor 2 caused by t
mass quantization.@The fact that one can also derive the SQ
from test-mass quantization is a result of an intimate conn
tion between the uncertainty principles for a measured s
tem ~the test masses in our case! and the system that make
the measurement~the light!. We shall elucidate this intimate
connection from one viewpoint at the end of Sec. II B
From another viewpoint, it is due to the fact that the co
1-2
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mutator@ x̂(t),x̂(t8)#, which underlies the test-mass deriv
tion ~1.4!, ~1.5! of the SQL, also underlies the derivation
the measuring light’s uncertainty relation~1.6!; see the role

of the generalized susceptibilityx(t,t8)5(1/i\)@ x̂(t8),

x̂(t)] in Sec. 6.3 of Ref.@3#.#
Central to our answers~i!, ~ii ! and ~iii ! is the fact that an

interferometric gravitational-wave detector doesnot monitor

the time-evolving test-mass positionx̂(t). Rather, it only

monitorsclassical changesin x̂(t) induced by the classica
gravitational-wave fieldh(t) and other classical1 forces
~thermal, seismic, . . .! acting on the test masses, and it do
so without extracting information about the actual quantiz

positionx̂(t). The detector has a classical input@h(t)# and a
classical output@h(t) contaminated by noise that~as we shall
see! commutes with itself at different times and that the
fore can be regarded as a time-evolvingc number#. The
quantum properties of the test masses and the light
merely intermediaries through which the classical sig
must pass. This would not be the case for a device desig
to make a sequence of absolute measurements of the q
tum mechanical positionx̂(t).

Our answers~i!, ~ii !, ~iii ! hold true for a far wider range o
measuring devices than just interferometric gravitation
wave detectors. They hold quite generally for any we
designed device that measures a classical force acting on
quantum mechanical system. In particular, they remain
if the device makes measurements that arelinear in the sense
of Appendix B, and one filters the device’s output to remo
all information at the natural frequencies of the quant
system’s dynamics~e.g. at its eigenfrequency if the quantu
system is a harmonic oscillator!.

„While this paper was under consideration for publicatio
we became aware of a beautiful path-integral analysis
Caves~Sec. III C of @26#! which elucidates answers like ou
~i!, ~ii !, ~iii ! for a wide class of measurements of a harmo
oscillator, on which a classical force is acting. Caves’ R
@26# contains important insights. We strongly recommend
to all readers of our paper.…

In Sec. II we will elucidate our answers~i!, ~ii !, ~iii ! by
considering pedagogical examples of idealized devices
make discrete, quick measurements on a test mass. T
examples will reveal two central underpinnings of our a
swers: ~a! the vanishing of the measurement’s ‘‘outp
commutators’’—i.e., the commutators of the observab
~Hermitian operators! that represent the entries in the outp
data stream, and~b! a data-processing procedure that
moves from the data all influence of the test-mass quan
observables~initial position x̂o and initial momentump̂o).
Our examples will also elucidate two strategies for beat
the SQL: ~A! put the measuring apparatus~‘‘meters’’! into
specially chosen initial states~the analog of squeezed state!,
and ~B! measure a wisely chosen linear combination of p

1All these forces—gravitational-wave, thermal, seismic, etc
actually do have a quantum component, but in practice their le
of excitation are so large that we can regard them as classical
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sition and momentum for the test mass and thereby rem
the effects of the meters’ back action from the output d
~make a ‘‘quantum variational measurement’’!.

Our examples are the following: We will begin in Se
II A with a simple, idealized, instantaneous single measu
ment of the position of a single test mass. This example w
demonstrate that the noise associated with test-mass qu
zation and the noise associated with the meter’s quantiza
are truly independent~though closely linked!, and will illus-
trate how under some circumstances they can add, produ
a doubling of the noise power. Then, in Sec. II B, we w
analyze the use of a sequence of these idealized, insta
neous position measurements to monitor a classical fo
that acts on the test mass. This example will illustrate
vanishing self-commutator of the output data samples, wh
arises from a cancellation of the test-mass-position com
tator by the measurement-noise commutator; it also will
lustrate how signal processing can remove all influence
test-mass quantization and test-mass state reduction from
output data stream. Our third example~Sec. II C! will be a
Heisenberg-microscope-like realization of these instan
neous, idealized position measurements, in which a puls
near-monochromatic light is reflected off the test ma
thereby encoding the test-mass position in a phase shi
the light. This example will give reality to the idealized e
amples in Secs. II A and II B, and will help connect them
the subsequent discussion of interferometric gravitation
wave detectors.

In Sec. III we will use the insights from our pedagogic
examples to prove and elucidate our three answers@~i!, ~ii !,
~iii ! above# for gravitational-wave interferometers, and al
for a wide range of other classical force measurements.
underpinnings for our answers will be:~a! a proof that for a
quantized electromagnetic wave, such as that entering
final photodetector of an interferometer, the photon num
flux operator commutes with itself at different times~this
flux is the output data stream!, and~b! a proof that all influ-
ence of the test-mass quantum observables can be rem
from the output data stream by appropriate filtering, and
conventional interferometers it is sufficient to remove
data near the test masses’;1 Hz swinging frequency, e.g
by the kind of high-pass filtering that is routinely used
gravitational-wave detectors. Our analysis will also elucid
QND interferometer designs based on~A! squeezed-input
states for light and~B! variational-output measurements.

The issues studied in this paper are most efficiently a
lyzed in the Heisenberg picture, and the Heisenberg pic
gives particularly clear insights into them. For this reas
we will use the Heisenberg picture throughout the body
this paper. Readers who are uncomfortable with the Heis
berg picture may find Appendix A reassuring; there we w
give a detailed Schro¨dinger-picture analysis of the most im
portant of our pedagogical examples, that of Sec. II B.

II. PEDAGOGICAL EXAMPLES

A. A single position measurement:
‘‘Double’’ uncertainty relation

We begin with a simple pedagogical example of a sin
measurement of the position of a single test mass.
Heisenberg microscope is a famous realization of this
ample; see Sec. II C.

ls
1-3
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The measurement is idealized as instantaneous and a
curring at timet50. At times arbitrarily close tot50, the
Hamiltonian for the test mass~with position and momentum
x̂ and p̂) and the measuring device~themeter, with general-
ized positionQ̂ and generalized momentumP̂) is

H5
p̂2

2m
2d~ t !x̂P̂1

P̂2

2M
. ~2.1!

Here d(t) is the Dirac delta function,m is the test mass’s
mass andM is the generalized mass of the meter. For pe
gogical simplicity we makeM arbitrarily large soQ̂ and P̂
do not evolve in the Heisenberg picture except at the mom
of interaction, and correspondingly we rewrite the Ham
tonian as

H5
p̂2

2m
2d~ t !x̂P̂. ~2.2!

A simple calculation in the Heisenberg picture gives t
following expressions for the positions and momenta imm
diately after the measurement, in terms of those immedia
before:

P̂after5 P̂before, ~2.3a!

x̂after5 x̂before, ~2.3b!

Q̂after5Q̂before2 x̂before ~2.3c!

p̂after5 p̂before1 P̂before. ~2.3d!

The meter’s generalized positionQ̂after is amplified and read
out classically immediately after the interaction, to determ
the test-mass position. The resulting measured position,
pressed as an operator, isx̂meas[2Q̂after5 x̂before2Q̂before
@Eq. ~2.3c!#, and the measurement leaves the actual test-m
position operator unperturbed@Eq. ~2.3b!# but it perturbs the
test-mass momentum@Eq. ~2.3d!#.

It is instructive to rewrite Eqs.~2.3c! and ~2.3d! in the
form

x̂meas5 x̂before1d x̂meas, ~2.4a!

p̂after5 p̂before1d p̂BA , ~2.4b!

with

d x̂meas52Q̂before, d p̂BA51 P̂before. ~2.5!

The simple equations~2.4a!, ~2.4b! embody the measure
ment result and its back action;x̂measis the measured valu
of x̂before5 x̂after, d x̂measis the noise superposed on that me
sured value by the meter, andd p̂BA is the back-action im-
pulse given to the test mass by the meter. Equations~2.4! are
actually much more general than our simple example; t
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apply to any sufficiently quick,2 ‘‘linear’’ measurement; see
Eqs.~5.2!, ~5.14! and~5.23! of Ref. @3#, and see Appendix B
below.

The initial test-mass position and momentum and the
tial meter position and momentum have the usual comm
tion relations,

@ x̂before,p̂before#5 i\5@Q̂before,P̂before#. ~2.6!

The second of these and Eqs.~2.5! imply that the measure
ment noised x̂meas and the back-action impulsed p̂BA have
this same standard commutator, but with the sign revers

@d x̂meas,d p̂BA#52 i\. ~2.7!

This has an important implication: The measured value
the test-mass position and the final value of the test-m
momentum commute:

@ x̂meas,p̂after#50. ~2.8!

This result, like the simple measurement and back-ac
equations~2.4a!, ~2.4b!, is true not only for this pedagogica
example, but also for any other sufficiently quick, line
measurement; see, e.g., Sec. II C below.

It is evident from Eqs.~2.4! and~2.5! that the variances o
x̂measand p̂after are influenced by the initial states of both th
meter and the test mass:

~Dxmeas!
25~Dxbefore!

21~DQbefore!
2, ~2.9!

~Dpafter!
25~Dpbefore!

21~DPbefore!
2.

~2.10!

Here we have assumed, as is easy to arrange, that the i
states of the meter and the test mass are uncorrelated.
the initial states of the test mass and meter are constraine
the uncertainty relations

Dxbefore•Dpbefore>
\

2
, ~2.11!

DQbefore•DPbefore>
\

2
, ~2.12!

which follow from the commutators~2.6!. From the view-
point of the measurement equations~2.4a!, ~2.4b!, the meter
equation~2.12! is an uncertainty relation between the noi
d x̂meas52Q̂before that the meter superimposes on the outp
signal, and the back-action impulsed p̂BA5 P̂before that the
meter gives to the test mass. In the Heisenberg microsc
d x̂meas would be photon shot noise andd p̂BA would be
radiation-pressure impulse.

2I.e., quick compared to the evolution of the wave function of t
measured quantity, so it can be regarded as constant during
measurement.
1-4



a-
ty
of

lly
a
tio

-

e
b
re
t

s’
ha
in
e
o

n

e
an

e
p

a
-
e-
an
d
n

y
of
ic

-

its

the
ly

est
’
n

the
test

a

le-

-
le-

t
the

NOISE IN GRAVITATIONAL-WAVE DETECTORS AND . . . PHYSICAL REVIEW D67, 082001 ~2003!
The test-mass uncertainty relation~2.11! and meter uncer-
tainty relation~2.12! both constrain the product of the me
surement error~2.9! and the final momentum uncertain
~2.10!, and by equal amounts. The result is a ‘‘doubling’’
the uncertainty relation, so

Dxmeas•Dpafter>2•
\

2
. ~2.13!

This doubling of the uncertainty relation relies crucia
on our assumption that the initial states of the test mass
meter are uncorrelated. Correlations can produce a viola
of the uncertainty relation~2.13!. For example, initial corre-
lations can be arranged so as to produce~in principle! a
vanishing total measurement errorDxmeas50 and a finite
Dpafter so the productDxmeas•Dpafter vanishes—a result per
mitted by the vanishing commutator~2.8!.

B. Monitoring a classical force:
‘‘Single’’ uncertainty relation

As we emphasized in Sec. I, the goal of LIGO-type d
tectors isnot to measure any observables of a test mass,
rather to monitor an external force that acts on it. Cor
spondingly, it is desirable to design the measurement so
output is devoid of any information about the test mas
initial state. As we shall see, this is readily done in a way t
removes the initial-state information during data process
The result is a ‘‘single’’ uncertainty relation: the measur
ment result is influenced only by the quantum properties
the meter and not by those of the test mass.

1. Von Neumann’s thought experiment

We illustrate this by a variant of a thought experime
devised by von Neumann@30# and often used to illustrate
issues in the quantum theory of measurement; see, e.g.,@31#
and references therein. We analyze this thought experim
using the Heisenberg picture in the body of this paper,
we give a Schro¨dinger-picture analysis in Appendix A.

Our von Neumann thought experiment is a simple gen
alization of the position measurement described above. S
cifically, we consider a free test mass, with massm, position
x̂ and momentump̂, on which acts a classical forceF(t). To
monitor F(t), we probe the test mass instantaneously
timest50, t, . . . , (N21)t usingN independent meters la
beled r 50,1, . . . ,N21. Each meter is prepared in a car
fully chosen state, it then interacts with the test mass,
then is measured. We filter the measurement results to
duceF(t). Meter r has generalized coordinate and mome
tum Q̂r and P̂r , and its free Hamiltonian is vanishingl
small, soQ̂r and P̂r do not evolve except at the moment
interaction. The total Hamiltonian for test mass plus class
force plus meters is

Ĥ5
p̂2

2m
2F~ t !x̂2 (

r 50

N21

d~ t2r t!x̂P̂r . ~2.14!

We denote byx̂0 and p̂0 the test-mass position and mo
mentum at timet50 when the experiment begins, and byx̂r
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and p̂r their values immediatelyafter interacting with meter
r, at timet5r t. The momentum of meterr is a constant of
the motion, so we denote it byP̂r at all times. The meter
coordinate changes due to the interaction; we denote
value before the interaction byQ̂r

before and after the interac-

tion by Q̂r .
It is easy to show, from the Heisenberg equations for

Hamiltonian~2.14!, that the test-mass position immediate
after its r ’th interaction is

x̂r5 x̂o1
p̂o

m
r t1(

s50

r

P̂s

~r 2s!t

m
1j r . ~2.15!

Here the first two terms are the free evolution of the t
mass, the third~with the sum! is the influence of the meters
back-action forces~analog of radiation-pressure force in a
interferometer!, and the fourth,

j r[
1

mE0

r tE
0

t

F~ t8!dt8dt5
1

mE0

r t

~r t2t8!F~ t8!dt8,

~2.16!

is the effect of the classical force. The forceF(t) is encoded
in the sequence of classical displacements$j1 ,j2 , . . . ,jN%.
It is also easy to show from the Heisenberg equations that
meter’s generalized coordinate after interaction with the
mass is

Q̂r5Q̂r
before2 x̂r

5Q̂r
before2 x̂o2

p̂o

m
r t2(

s50

r

P̂s

~r 2s!t

m
2j r .

~2.17!

2. Vanishing of the output’s self-commutator

The set of final meter coordinates QW

[$Q̂0 ,Q̂1 , . . . , Q̂N21% forms the final data string for dat
analysis. It has vanishing self-commutator,

@Q̂s ,Q̂r #50 for all s and r ~2.18!

—a result that can be deduced from the vanishing sing
measurement commutator@ x̂meas,p̂after#50 @Eq. ~2.8!# for
the earlier of the two measurements.

It is instructive to see explicitly how this vanishing com
mutator arises, without explicit reference to our sing
measurement analysis. The test-mass contributions to theQ’s

@ x̂o and p̂o in Eq. ~2.17!# produce

@Q̂s ,Q̂r # test mass5F2 x̂o2
p̂o

m
st, 2 x̂o2

p̂o

m
r tG

5
i\~r 2s!t

m
, ~2.19!

which is the analog of Eq.~1.4! for an interferometer tes
mass. This must be cancelled by a contribution from
meters. Indeed it is. If~for concreteness! r .s, then the can-
celling contribution comes from a commutator of~i! the
1-5
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Q̂s
beforepiece ofQ̂s ~the noise superposed on the output sig

s by meters) and~ii ! the P̂s term inQ̂r ~the noise in the later
measurement produced by the back-action of the earlier m
surement!:

@Q̂s ,Q̂r #meter5F Q̂s
before,2 P̂s

~r 2s!t

m G
5

2 i\~r 2s!t

m
. ~2.20!

In this example, one can trace these cancellations to
bilinear form x̂P̂s and x̂P̂r of each piece of the interactio
Hamiltonian. However, this type of cancellation is far mo
general than just bilinear Hamiltonians: Inevery sequence o
measurements on any kind of system, by the time a human
looks at the output data stream, its entries have all b
amplified to classical size, and therefore they must all
classical quantities and must commute,@Q̂s ,Q̂r #5@Qs ,Qr #
50. Remarkably, quantum mechanics is so constructed
for a wide variety of measurements, the measured va
~regarded as Hermitian observables! commute even before
the amplification to classical size. This is true in the abo
example. It is true in a realistic variant of this example
volving pulsed-light measurements~Sec. II C!. It is true in a
variant of this example involving continuous measureme
by an electromagnetic wave in an idealized transmission
@32#. And, as we shall see in Sec. III A and Appendix C, it
also true for gravitational-wave interferometers—and inde
for all measurements in which the measured results are
coded in the photon number flux of a~quantized! electro-
magnetic wave; i.e., all measurements based on photod
tion. More generally, it is true for anylinear measuremen
@Appendix B below, Ref.@3#, and Eq.~2.34! of Ref. @17##;
and, in fact, all the measurements discussed above, inclu
gravitational-wave measurements, are linear.

The classical nature of the output signal~the commutation
of the data entries! guarantees that, when a human looks
one data entry, the resulting reduction of the state of
measured system cannot have any influence on the obse
values of the other data entries. Correspondingly, we
carry out any data processing procedures we wish on theQ̂r ,
without fear of introducing new quantum noise.

3. Removal of test-mass influence from the output

Our goal is to measure the classical forceF(t) that acted
on the test mass, without any contamination from the
mass’s quantum properties—more specifically, without a
contamination from uncertainty-principle aspects of the t
mass’s initial state. The initial statedoesinfluence the mea-
sured valuesQ̃r of the output observablesQ̂r , since in the
Heisenberg picture theQ̂r contain the test mass’s initial po
sition x̂o and momentump̂o @Eq. ~2.17!#. Therefore, our goa
translates into finding a data analysis procedure that will
move from the output data set$Q̃1 ,Q̃2 , . . . % all influence of
the test-mass initial state~or equivalently all influence ofx̂o
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and p̂o), while retaining the influence ofF(t). In fact, we
can do so rather easily, regardless of what the test-mass
tial state might have been. As we shall see, our ability to
so relies crucially on thelinearity of our measurements; in
particular, on the fact that the output observablesQ̂r are
linear in x̂o and p̂o .

To bring out the essence, we shall restrict ourselves to
three meters,N53. The generalization to largeN is straight-
forward.

The measured data sampleQ̂r is equal to the freely evolv-
ing test-mass position at timer t, x̂free(t5r t)5 x̂o

1( p̂o /m)r t ~which is linear inx̂o , p̂o), plus noise. Since the
free evolution satisfies the equation of motiond2x̂free/dt2

50, it is a reasonable guess that we can remove the in
ence ofx̂o and p̂o from the dataQ̃r by applying to them the
discrete version of a second time derivative3 ~which is a
linear signal processing procedure!. Accordingly, from the
measured values$Q̃0 ,Q̃1 ,Q̃2% of $Q̂0 ,Q̂1 ,Q̂2% in a represen-
tative experiment, we construct the discrete second time
rivative

R̃5~Q̃22Q̃1!2~Q̃12Q̃0!5Q̃022Q̃11Q̃2. ~2.21!

The following argument shows that all the statistical prop
ties of this quantity, in a large series of experiments~in
which the initial statesu in& of the test mass and meters a
always the same! are, indeed, devoid of any influence ofx̂o

and p̂o , and thus are unaffected by the test-mass ini
state.4

3In Sec. III C of Ref.@26#, Caves uses his path-integral formul
tion of measurement theory to analyze measurements of the dis
second time derivative of the position of a free particle on whic
classical force acts. His analysis reveals the same conclusion a
obtain in our pedagogical example: the measured quantity cont
information about the force and is devoid of any influence from
particle’s initial state.

4The crucial idea of avoiding the influence of the test-mass ini

state by monitoring differences of observables@(Q̂22Q̂1)2(Q̂1

2Q̂0) in our case# is contained in a paper and book by Alter an
Yamamoto@33,34#. Alter and Yamamoto point out that, for a te

mass on which a classical force acts, the momentump̂(t) at time t

and the momentump̂(0) at time 0 are correlated in thatp̂(t)

5 p̂(0)1*0
t dt8F(t8); so, if one measures p̂(t)2 p̂(0)

5*0
t dt8F(t8), one thereby can get information about the for

without any contaminating influence of the test-mass initial sta
They say~p. 96 of@34#! that this is so not only when one measur

directly the differencep̂(t)2 p̂(0) ~as in Sec. 7.2.2 of their@34#!,
but also when the difference is determined computationally fr

the results of measurements ofp̂(t) andp̂(0) @an analog of our way

of monitoring (Q̂22Q̂1)2(Q̂12Q̂0)]. When going on to discuss

position measurements, Alter and Yamamoto note thatx̂(t)2 x̂(0)

5 p̂(0)t/m1*0
t dt8*0

t8dt9F(t9)/m, so a measurement ofx̂(t)

2 x̂(0) is contaminated@via p̂(0)t/m] by noise from the test-mas
initial state. Examining this contamination, they conclude th
‘‘force detection via position monitoring of a free mass is limited
1-6
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These statistical properties are embodied in the me
over all the experiments, of arbitrary functionsG(R̃). The
theory of measurement tells us that, because theQ̂’s all com-
mute, the computed mean ofG(R̃) is given by

@computed mean ofG~R̃!#5^ inuG~R̂!u in&, ~2.22!

whereR̂ is the operator corresponding toR̃

R̂5Q̂022Q̂11Q̂2

52~j022j11j2!1F Q̂0
before22Q̂1

before2
P̂1t

m
1Q̂2

beforeG
~2.23!

cf. Eq. ~2.17!. BecauseR̂ is independent ofx̂o and p̂o , the
computed mean (2.22) and thence all the measurement

tistics of R̃will be completely independent of the test-ma
quantum mechanics, and in particular independent of the te
mass’s initial state.Moreover, Eq.~2.22! implies that, so far
as measurement results and statistics are concerned, me
ing the Q̂’s and then computingR̃ is completely equivalen
to measuringR̂ directly.

Although R̂ is independent ofx̂o and p̂o it contains

j022j11j25
1

mE0

2t

~t2ut2tu!F~ t !dt[
t2

m
F̄,

~2.24!

whereF̄ is a weighted mean of the classical forceF over the
time interval 0,t,2t; cf. Eq. ~2.16!.5 Thus, this measure-

ment of R̂is actually a measurement of F,̄ and is contami-
nated by quantum noise from the meters but not by quan
noise from the test mass.The only role of the quantum me
chanical test mass is to feed the classical signalF̄ and the
meter back-action noiseP̂1t/m into the output.

For those readers who are uncomfortable with our use
the Heisenberg picture to derive this very important res
we present a Schro¨dinger-picture derivation in Appendix A.

. . . the SQL’’@33#. While this conclusion is correct when one mon

tors x̂(t)2 x̂(0) in the manner envisioned by Alter and Yamamo
it is incorrect for the alternative strategy embodied in our mo

problem. Instead of monitoringx̂(t)2 x̂(0), one should monitor

x̂(0)22x̂(t)1 x̂(2t), which for a free mass is independent of bo

x̂o[ x̂(0) and p̂o[ p̂(0). Then the measurement output contai
information about the forceF(t), uncontaminated by any influenc
of the test-mass initial state.

5Notice that, aside from meter noise,j r is equal to x̂(t r)

2 p̂(0)t r /m @Eq. ~2.15!#, which is a QND observable~as M.B.

Mensky pointed out long ago!. Therefore, the quantityR̂ that we
measure can be regarded as a discrete second time derivative
QND observable—which suggests that it can be the foundation
a QND measurement; see Sec. II B 5 below.
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This three-meter thought experiment is a prototype for
discussion of gravitational-wave interferometers in S
III B. There as here, thelinearity of the outputin the test-
mass initial positions and momenta will enable us to find
linear signal processing procedure that removes the ini
state influence. Here that procedure was a discrete se
time derivative. For an interferometer it will be a discre
Fourier transform of the measured photon flux~the output!,
and a discarding of Fourier components at the test mas
natural frequencies~the 1 Hz pendular swinging frequency i
the case of conventional interferometers!.

For an elegant path-integral analysis of the removal
test-mass initial conditions from the output of measureme
of any harmonic oscillator on which a classical force ac
see the last portion of Sec. III C of Caves@26#.

4. The SQL for the classical-force measurement

How small can the test-mass noise be? A ‘‘naive’’ optim
zation of the meters leads to the standard quantum limit
the measured force, in the same way as a ‘‘naive’’ optimi
tion of a gravitational-wave interferometer’s design~forcing
it to retain the conventional LIGO-I optical topology bu
optimizing its laser power! leads to the gravitational-wav
SQL. Specifically:

Let the three meters all be prepared in initial states t
are ‘‘naive’’ in the sense that they have no correlations
tween their coordinates and momenta. Then Eqs.~2.23! and
~2.24! imply that the variance of the measured mean force

~DF̄ !25
m2

t4 F ~DQ0
before!21~2DQ1

before!2

1S DP1t

m D 2

1~DQ2
before!2G . ~2.25!

Obviously, this variance is minimized by putting meters
and 2 into ~near! eigenstates of their coordinates, s
DQ0

before5DQ2
before50. To minimize the noise from meter 1

we require that it have the smallest variances compat
with its uncertainty relation,

DQ1
beforeDP15

\

2
, ~2.26!

and we adjust the ratioDQ1
before/DP1 so as to minimize

(DF̄)2. The result is

~DF̄ !25
2m\

t3 , ~2.27!

which is the SQL for measuring a classical force, up to
factor of order unity; cf. Sec. 8.1 of Ref.@3#.

It is evident from this analysis thatthe true physical ori-
gin of the SQL in classical force measurements is the met
noise, not the test-mass noise. On the other hand, the qu
tum properties of the meter and of the test mass are
mately coupled through the requirement that the meter c
mutators cancel the test-mass commutator in
measurement output, so that@Q̂r ,Q̂s#50 @Eq. ~2.18!#. This

,
l

f a
or
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intimate coupling—which, as we have discussed, has e
mous generality—ensures that the SQL can be deri
equally well from test-mass considerations and from me
considerations. We saw this explicitly in Sec. I for an inte
ferometric gravitational-wave detector.

5. Beating the SQL

Equation~2.23! suggests a way to beat the classical-fo
SQL and, in fact, achieve arbitrarily high accuracy: As in o
‘‘naive’’ optimization, before the measurement we pla
meters 0 and 2 in~near! eigenstates of their coordinates,
DQ05DQ250, but instead of putting meter 1 in a ‘‘naive
state with uncorrelated coordinate and momentum, we p
it in a ~near! eigenstate of

Q̂1
squeeze[Q̂1

before2 P̂1t/2m. ~2.28!

~This meter-1 state is analogous to the squeezed-vac
state, which Unruh@18# has proposed be inserted into a co
ventional interferometer’s dark port in order to beat t
gravitational-wave SQL; see Sec. II C below.! These initial
meter states, together with Eqs.~2.23! and ~2.22!, guarantee
that the variance of the computed quantityR̃ vanishesDR̃
50, and thence@via Eqs.~2.24! and~2.23!# that the variance
of the measured mean force vanishes,DF̄50. Thus, by put-
ting the initial state of meter 1 into the analog of a squee
vacuum state, we can achieve an arbitrarily accurate m
surement ofF̄.

The SQL can also be evaded by modifying the mete
measured quantities instead of modifying their initial stat
Specifically, measureQ̂0 and Q̂2 as before, but on meter
instead of measuring the coordinateQ̂1, measure the follow-
ing linear combination of the coordinate and moment
~with the coefficienta to be chosen below!:

Q̂1
var5Q̂11a P̂1

5Q̂1
before2 x̂02

p̂0

m
t2

P̂0

m
t2a P̂12j1 . ~2.29!

From Eqs.~2.29!, ~2.17! and ~2.18!, we see that the outpu
observables$Q̂0 ,Q̂1

var,Q̂2% all commute with each other
Therefore, when we combine their measured values into
discrete second time derivative

R̃var[Q̃022Q̃1
var1Q̃2 , ~2.30!

its statistics will be the same as if we had directly measu
the corresponding operator

R̂var5Q̃022Q̃1
var1Q̃2

52~j022j11j2!1F Q̂0
before22Q̂1

before

1
P̂1

m
t22a P̂11Q̂2

beforeG . ~2.31!
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Evidently, we should choose 2a5t/m, so the quantity mea-
sured is

Q̂1
var5Q̂11 P̂1

t

2m
. ~2.32!

Then Eqs.~2.31! and ~2.24! imply that

R̂var52
t2

m
F̄1Q̂0

before22Q̂1
before1Q̂2

before. ~2.33!

Therefore,by measuring our chosen linear combination
meter 1’s coordinate and momentum, and then computing
discrete second time derivative, we have succeeded in rem

ing from our output observable Rˆ
var not only the test-mass

variables x̂o , p̂o , but also the back-action influence of th

meters on the measurement (all three Pˆ
r ’s).Correspondingly,

by putting the meters into ‘‘naive’’ initial states~states with
no position-momentum correlations! that are near eigenstate
of their coordinates~so DQ0 , DQ1 , DQ2 are arbitrarily
small and the back-action fluctuationsDP0 , DP1 , DP2 are
arbitrarily large!, then from the computed quantityR̃var, we
can infer the mean positionF̄ with arbitrarily good precision.

This strategy was devised, in the context of optical m
surements of test masses, by Vyatchanin, Matsko and Zub
@6–9#, and is called aquantum variational measurement. A
gravitational-wave interferometer that utilizes it~and can
beat the SQL! is called avariational output interferometer
@13#.

Of course, one can also beat the SQL for force meas
ments by a combination of putting the meters into initia
squeezed states and performing a quantum variational m
surement on their outputs. A gravitational-wave detec
based on this mixed strategy is called asqueezed variationa
interferometer, and may have practical advantages ov
squeezed-input and variational-output interferometers@13#.

C. Pulsed-light measurements of test-mass position

Our two pedagogical examples~single position measure
ment, Sec. II A, and classical force measurement, Sec. I!
can be realized using pulsed-light measurements of the
mass position. We exhibit this realization in part to lend
ality to our highly idealized examples, and in part as a brid
from those simple examples to gravitational-wave interf
ometers with their far greater complexity~Sec. III below!.

In each pulsed-light measurement we reflect a laser l
pulse, with carrier frequencyvo and Gaussian-profile dura
tion to , off a mirror on the front face of the test mass, a
from the light’s phase change we deduce the test-mass p
tion x̂ averaged over the pulse. This is a concrete realiza
not only of the pulsed measurements of our pedagogical
amples, but also of a Heisenberg microscope. We pres
that the pulse durationto is long compared to the light’s
period 2p/vo , but short compared to the timet between
measurements.
1-8
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We shall analyze in detail one such pulsed measurem
The electric field of the reflected wave, at some fiducial
cation, is

Ê~ t !5A2p \v0

cS S e2 iv0tFA0e2t2/2t0
2S 11

2iv0

c
x̂~ t ! D

1â~ t !G1H.c.D , ~2.34!

where A0 is the pulse’s amplitude,S is its cross sectiona
area,c is the speed of light, 2(v0 /c) x̂(t) is the phase shift
induced by the test-mass displacementx̂(t), ‘‘H.c.’’ means
Hermitian conjugate, andâ(t) is the electric field’s ampli-
tude operator. Because we are concerned only about tim
cales of order the pulse durationt0 or longer, which means
side-band frequencies&1/t0!v0, we can use thequasimo-
nochromaticapproximation to the commutation relation fo
â(t) @35#:

@ â~ t !,â†~ t8!#5d~ t2t8!. ~2.35!

Note that, when decomposed into quadratures with respe
the carrier frequency, this electric field is

Ê~ t !5ÊA~ t !cosvot1Êf~ t !sinvot, ~2.36!

whereÊA andÊf , the amplitude and phase quadratures~i.e.,
the quadrature components oriented along and perpendi
to the amplitude direction in the quadrature plane! are given
by

ÊA52A2p\vo

cS
FAoe2t2/2to

2
1S â~ t !1â†~ t !

2
D G , ~2.37a!

Êf52A2p\vo

cS
F2Ao

vo

c
e2t2/2to

2
x̂~ t !1S â~ t !2â†~ t !

2i
D G .

~2.37b!

The powerŴ(t) in the incident wave can be written a
the sum of a mean power^W(t)& and a fluctuating~noise!
part W̃(t):

Ŵ~ t !5Sc
Ê2~ t !̄

4p
5^W~ t !&1W̃~ t !, ~2.38a!

^W~ t !&5\v0A0
2e2t2/t0

2
, ~2.38b!

W̃~ t !52\v0A0e2t2/2t0
2S â~ t !1â†~ t !

2
D .

~2.38c!

Here the over bar means ‘‘average over the carrier perio
The light-pressure force on the mirror isF̂(t)52Ŵ(t)/c.
The fluctuating part of this,F̃(t)52W̃(t)/c, is the back-
action of the measurement on the test mass, and it prod
the back-action momentum change
08200
nt.
-

s-

to

lar

.’’

es

d p̂BA5E
2`

`

dt
2W̃~ t !

c

5
4\v0

c
A0 E

2`

`

dte2t2/2t0
2S â~ t !1â†~ t !

2
D . ~2.39!

The test-mass momentum before and after the pulsed m
surement are related by

p̂after5 p̂before1d p̂BA . ~2.40!

The experimenter deduces the phase shift (2vo /c) x̂(t)
and thence the test-mass displacementx̂(t) by measuring the
electric field’s phase quadratureÊf ~e.g., via interferometry
or homodyne detection!. More precisely, the experimente
measures the phase quadrature integrated over the pulse
taining a result proportional to

x̂meas5A cS

2\vo

c

4pv0t0A0
E

2`

1`

e2t2/2t0
2
Êf~ t !dt

5 x̂1d x̂meas; ~2.41!

cf. Eq. ~2.37b!. Here x̂ is the mirror position averaged ove
the short pulse,x̂measis the measured value ofx̂, andd x̂meas
is the measurement noise superposed on the output by
light pulse

d x̂meas5
c

2Ap v0t0 A0
E

2`

`

dte2t2/2t0
2 S â~ t !2â†~ t !

2i
D .

~2.42!

It is straightforward, from the commutator@ â(t),â†(t8)#
5d(t2t8), to show that the measurement noise and
back-action impulse have the same commutator

@d x̂meas,d p̂BA#52 i\ ~2.43!

as for the idealized single measurement of Sec. II A@Eq.
~2.7!#, and correspondingly the mirror’s measured positi
and its final momentum commute,

@ x̂meas,p̂after#50. ~2.44!

The fundamental equations~2.41!, ~2.40!, ~2.43! and
~2.44! for this pulsed-light measurement are the same
those Eqs.~2.4!, ~2.7!, ~2.8! for our idealized single measure
ment, and this measurement is thus a realistic variant of
idealized one. Similarly, a sequence of pulsed-light meas
ments can be used to monitor a classical force acting o
mirror, and the fundamental equations for such measu
ments are the same as for the idealized example of Sec.

In such pulsed-light experiments, the measurement n
d x̂measis proportional to the fluctuations of the light’s pha
quadratureÊf @Eqs.~2.37b! and~2.42!#, and the back-action
impulsed p̂BA is proportional to the fluctuations of its ampl
1-9
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tude quadratureÊA @Eqs.~2.37a! and~2.39!#. Of course, ex-
perimenters can measure any quadrature of the reflected
pulse that they wish. To achieve a QNDquantum variational
measurement of a classical force acting on the test m
@6–9#, the experimenter should measureQ̂1

var5Q̂1

1 P̂1t/2m in the language of our idealized thought expe
ment @Eq. ~2.32!#, which @by Eqs. ~2.5!# translates into
2d x̂meas1d p̂BAt/2m plus the light’s signal and carrier
which in turn is a specific linear combination of the light
amplitude and phase quadraturesÊA and Êf @Eqs. ~2.37!,
~2.42!, ~2.39!#. The experimenter can also prepare the in
dent pulse in asqueezed state, in the manner required for a
Unruh-type@18# QND measurement of the classical force.
the language of our idealized thought experiment, the des
squeezed state is a~near! eigenstate of Q̂1

squeeze5Q̂1

2 P̂1t/2m @Eq. ~2.28!#, which translates into a near eige
state ofd x̂meas1d p̂BAt/2m @cf. Eqs.~2.5!#, or equivalently a
near eigenstate of a specific linear combination ofÊA and
Êf .

III. GRAVITATIONAL-WAVE INTERFEROMETERS
AND OTHER PHOTODETECTION-BASED DEVICES

We now turn our attention to gravitational-wave interfe
ometers and other real, high-precision devices for monitor
classical forces that act on test masses. Our goal is to p
that for these devices, as for our idealized examples,
force-measurement precision can be made completely i
pendent of the test mass’s quantum properties, including
initial state and that this can be achieved by an appropr
filtering of the output data stream.

As in our examples, this conclusion relies on the vani
ing commutator of the observables that constitute the ou
data stream. We shall now discuss the nature of the ou
data stream and show that its commutator does, indeed,
ish.

A. Vanishing commutator of the output

For interferometers and many other force-monitoring
vices, the data stream, shortly before amplification to cla
cal size, is encoded in an output light beam, and that bea
sent into a photodetector which monitors its photon num
flux N̂(t). The photodetector and associated electronics
tegrate upN̂(t) over time intervals with durationt long
compared to the light beam’s carrier period,t@2p/vo
;10215 s, but short compared to the shortest timescales
which the classical force changes (t!tGW;1023 s for the
gravitational waves sought by interferometers!. For LIGO-I
interferometers, the integration time has been chosen to
t5531025 s. The result is a discretized output data strea
whose Hermitian observables are the numbers of photon
the successive data samples,

N̂j5E
2`

`

s~ t2t j !N̂~ t !dt. ~3.1!
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Here t j5 j t0 is the time of samplej, ands(t) is a sampling
function approximately equal to unity during a time interv
Dt5t0 centered ont j and zero outside that time interval.

The photon number samplesN̂j are the analogs, for an
interferometer or other force-monitoring device, of the me
coordinatesQ̂j in the idealized example of Sec. II B.

In Appendix C we show thatfor any free light beam, the
number flux operator, evaluated at a fixed plane orthogo
to the optic axis (e.g. at the entrance to the photodetec
self commutes,

@N̂~ t !,N̂~ t8!#50. ~3.2!

This guarantees, in turn, that all the output photon-num
data samples~3.1! commute with each other

@N̂j ,N̂k#50. ~3.3!

As we shall see below@Eq. ~3.9!#, the initial position and
momentum of the test mass,x̂o andp̂o , appear linearly in the
output variablesN̂(t) and N̂j . They obviously will produce
nonzero contributions to the output commutators. As in o
simple examples~Sec. II!, these nonzero test-mass contrib
tions must be canceled by identical nonzero contributio
from noncommutation of the measurement noise~photon
shot noise! and the back-action noise~radiation-pressure
noise!.

B. Devising a filter to remove test-mass quantum noise

The vanishing output commutators constitute our first u
derpinning for freeing the measurements from the influe
of test-mass quantization. As in the idealized measurem
of Sec. II B, the vanishing commutators guarantee a
property of the data analysis: If, from each specific reali
tion of the output data stream$Ñ1 ,Ñ2 , . . . %, our data analy-
sis produces a new set of quantities~the ‘‘filtered output
variables’’!

R̃J~Ñ1 ,Ñ2 , . . . !, ~3.4!

then the statistics of theseR̃J will be identically the same as
if we had directly measured the corresponding observab

R̂J~N̂1 ,N̂2 , . . . !, ~3.5!

rather than computing them from the measuredÑj ’s. There-
fore, we can regard our interferometer~or other device! as
measuring the filtered output observables$R̂1 ,R̂2 , . . . %,
whatever those observables may be.

By analyzing the test-mass dynamics of the interferome
~or other measuring device! in the Heisenberg picture, on
can learn how the test-mass initial positionx̂o and momen-
tum p̂o influence the operators$N̂1 ,N̂2 , . . . %. One can then
deduce a set of filtered observables$R̂1 ,R̂2 , . . . % in which
x̂o and p̂o do not appear but the gravitational-wave or oth
classical force information is retained.~These will be the
analogues ofR̂5Q̂022Q̂11Q̂2 @Eq. ~2.23!# in our simple
1-10
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model problem.! The filter that leads from$N̂1 ,N̂2 , . . . % to

$R̂1 ,R̂2 , . . . %, when applied to the output (c-number) da

$Ñ1 ,Ñ2 , . . . % to produce$R̃1 ,R̃2 , . . . %, is guaranteed to

remove all influence of xˆ
o and p̂o , and thence all influence o

the test-mass initial state.

1. Influence of x̂o and p̂o on the output data

To make this more specific, let us explore howx̂o and p̂o
influence the output data train.

To very high accuracy~sufficient for our purposes!, inter-
ferometers~and most other force-measuring devices! are lin-

ear. The inputs are:~i! the test-mass positionx̂(t) @actually,
the difference between four test-mass positions in the cas
an interferometer; Eq.~1.2!#, and~ii ! the electric field opera-
tors Êa(t), a51,2, . . . for thefield fluctuations that ente
the interferometer at the bright port, at the dark port, and
all light-dissipation locations~e.g., at mirrors where bits o
light scatter out of the optical train and reciprocally new b
of field fluctuations scatter into it!; see, e.g., the detaile
analysis of interferometers in Ref.@13#. The output photon
flux is a linear functional of these inputs,

N̂~ t !5E
2`

t FKx~ t2t8!x̂~ t8!1(
a

Ka~ t2t8!Êa~ t8!Gdt8;

~3.6!

cf. the discussion in Appendix C. TheÊa terms constitute the
photon shot noise~analogs ofQ̂r

before in our idealized ex-
ample, Sec. II B!.

The test-mass initial observablesx̂o and p̂o enter N̂(t)
and thence$N̂1 ,N̂2 , . . . %, through x̂(t) in a manner gov-
erned by the test masses’ free dynamics. The nature of
free dynamics depends on the interferometer design.
shall consider two examples in turn: interferometers w
pendular dynamics, and signal-recycled interferomet
These examples should be easily extendable to any o
type of interferometer than might be conceived in the futu

2. Interferometers with pendular dynamics

In conventional gravitational-wave interferometers~e.g.
LIGO-I, VIRGO and TAMA! and in the QND interferom-
eters analyzed by Kimbleet al. @13#, the test masses swin
sinusoidally at;1 Hz frequency in response to their suspe
sions’ pendular restoring force~as modified slightly by the
optical cavities’ radiation-pressure force!:

x̂free~ t !5 x̂ocosvmt1
p̂o

mvm
sinvmt. ~3.7!

Herem is the reduced mass~1/4 the actual mass of one te
mass in the case of an interferometer! andvm;2p31 Hz is
the pendular swinging frequency. There is no signific
damping of the free motion~3.7! because the experimente
take great pains to liberate the test masses from all damp
the typical damping times in LIGO-I are of order a day, a
in advanced interferometers~LIGO-II and beyond! will be of
08200
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order a year or more@14,36#, which is far longer than the
data segments used in the data analysis.

Superimposed on the free test-mass dynamics~3.7! are~i!
the influencejGW(t) of the gravitational-wave signal,~ii ! the
‘‘back-action’’ influencex̂BA(t) of the light’s fluctuating ra-
diation pressure~which is linear in the input fieldsÊa and is
the analog of theP̂r and dpBA of our discrete model prob
lems!, and ~iii ! the influencejother(t) of a variety of other
forces—low-frequency feedback forces from servo syste
thermal-noise forces, seismic vibration forces, etc:

x̂~ t !5 x̂free~ t !1jGW~ t !1 x̂BA~ t !1jother~ t !. ~3.8!

Inserting Eq.~3.7! into Eq. ~3.8! and then Eq.~3.8! into
Eq. ~3.6! we see that, for a test-mass with pendular dyna
ics, the initial test-mass position and momentum opera
appear in the output flux operator in the form

N̂~ t !5E
2`

t

Kx~ t2t8!F x̂ocosvmt81
p̂o

mvm
sinvmt8Gdt8

1~other contributions!. ~3.9!

The interferometer’s transfer functionKx(t2t8) is indepen-
dent of absolute time and thus transforms frequency-vm in-
puts into frequency-vm outputs. Therefore,x̂o and p̂o appear
in the output solely at frequencyvm/2p;1 Hz. Now, be-
cause the output data generally have large noise~seismic and
other! at frequencies below;10 Hz, it is routine, in inter-
ferometers, to high-pass filter the output data so as to rem
frequencies below;10 Hz. When one does so,one auto-

matically removes all influence of xˆ
o and p̂o from the filtered

data R̃J @Eq. ~3.4!#. This is a precise analog of applying th
discrete second time derivative to the output data in
simple example~Sec. II B! so as to removex̂o and p̂o from
the data; and it is a realization of a general class of meas
ment procedures, for a harmonic oscillator on which a cl
sical force acts, that is analyzed by Caves using his p
integral formalism~last part of Sec. III C of Ref.@26#!.

3. Signal-recycled interferometers

A signal-recycling mirror, placed at an interferomete
output port, sends information about the test-mass posi
x̂(t) back into the interferometer as part of the back-act
~radiation-pressure! force, and thereby alters the free tes
mass dynamics. The altered free dynamics have been
lyzed in detail by Buonanno and Chen@17#; they find that the
test masses and the interferometer’s side-band light for
coupled system with four degrees of freedom, sox̂o and p̂o

appear inx̂free(t), and thence inx̂(t) and thence inN̂(t) at
four discrete frequenciesvA(A51,2,3,4). Correspondingly
in the output data train, the influence of the test-mass ini
state is confined to the Fourier components at the frequen
vA .

If these frequencies were real, then one could remove
influence of the test-mass initial state from the data by filt
ing out the data’s Fourier components at these four frequ
1-11
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cies. However, as Buonanno and Chen@17# discuss, such
filtering is not necessary: The frequencies are actually c
plex with imaginary parts that produce damping on tim
scales&1 second~when a servo is introduced to control a
instability!. Therefore, the influence ofx̂o and p̂o on the out-
put flux operatorN̂(t) damps out quickly, and correspond
ingly ~see the end of Sec. III A!, the influence of the test
mass initial state on the output data train damps out quic
without any filtering.

IV. CONCLUSIONS

To reiterate: In an interferometer~and many other force
measuring devices!, the output signal is encoded in the ph
ton number flux operatorN̂(t) of a light beam, which is
converted into discrete photon number samplesN̂j by a pho-
todetector and electronics. These outputs have vanis
commutators@N̂(t),N̂(t8)#50 and @N̂j ,N̂k#50 and thus
can be thought of as classical quantities. These outputs
linear in the initial test-mass positionx̂o and momentump̂o
and involve no other test-mass variables. The output com
tators manage to vanish because the photon back-a
noise and photon shot noise have commutators that ca
those ofx̂o and p̂o .

In the outputN̂(t) of any interferometer with pendula
dynamics,x̂o and p̂o appear only at the pendular frequen
vm/2p;1 Hz, and all influences ofx̂o and p̂o ~including all
influences of the test-mass initial state! are removed com-
pletely from the data by the high-pass filtering that is rout
for interferometers. For other types of interferometers, w
different test-mass dynamics, other data filtering procedu
will remove the influence ofx̂o and p̂o and the test-mas
initial state—and in some cases~e.g., a signal-recycled inter
ferometer! no filtering is needed at all.

This complete removal of all influence ofx̂o and p̂o from
the filtered data implies the answers to the three quest
posed in the introduction of this paper~Sec. I!: ~i! The test-
mass quantum mechanics has no influence on the interfe
eter’s noise; the only quantum noise is that arising from
light. ~ii ! Therefore, when analyzing a candidate interfero
eter design, one need not worry about the test-mass qua
mechanics, except for using it to feed the gravity-wave s
nal and the back-action noise through the test mass to
photon-flux output.~iii ! Similarly, when conceiving new de
signs for interferometers, one need not worry about the t
mass quantum mechanics—except for devising approp
data filters to removex̂o and p̂o from the data.
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APPENDIX A: TRIPLE MEASUREMENT
IN THE SCHRÖ DINGER PICTURE

In this appendix we present a Schro¨dinger-picture analysis
of the most important of this paper’s pedagogical thou
experiments~Sec. II B!: a triple measurement of the positio
of a free test mass, using three independent meters, with
goal of determining the mean classical forceF̄ acting on the
test mass without any contaminating noise whatsoever f
the test mass’s initial state. Our analysis will proceed in th
steps:~i! an analysis of one of the position measureme
~any one of the three!, Appendix A 1;~ii ! @relying on step~i!#
a derivation of the probability densityW(Q̃0 ,Q̃1 ,Q̃2) for the
outcome of the triple measurement procedure, Appendix A
and ~iii ! a use of this probability density to show that th

combinationR̃[Q̃022Q̃11Q̃2 of the measurement result
contains the desired information aboutF̄ uncontaminated by
any noise from the test-mass initial state, Appendix A 3.

1. Single position measurement

Let uC& be the state of the test mass before the meas
ment and

uc&5E
2`

`

c~Q!uQ& dQ ~A1!

be the initial state of the meter, where the meter’s eigenst
are normalized by

^Q8uQ&5d~Q2Q8!. ~A2!

We leave the test-mass stateuC& completely unspecified
since our goal is to show that it has no influence at all on
measurement outcome. For concreteness we specify
meter’s initial wave functionc(Q) to be Gaussian:

c~Q!5
1

AA2p DQ

expF2
Q2

2DQ
2 S 1

2
2

iDQP

\
D G . ~A3!

HereDQ ~denotedDQbefore in the text! is the initial variance
of Q and

DQP5
^Q̂P̂1 P̂Q̂&

2
~A4!

is the initial cross correlation of the meter’s position a
momentum. For this Gaussian initial state, the varianceDP
of the meter’s momentum~denotedDPbefore in the text! is
given by the minimum-uncertainty relation
1-12



ra

th

io

te
he
g

e

b-

fs

NOISE IN GRAVITATIONAL-WAVE DETECTORS AND . . . PHYSICAL REVIEW D67, 082001 ~2003!
DQ
2 DP

2 2DPQ
2 5

\2

4
. ~A5!

The first stage of the measurement process is the inte
tion of the test mass and the meter. In the Schro¨dinger pic-
ture this interaction puts the meter and test mass into
entangled state

Ûuc&uC&, ~A6!

where

Û5expS i x̂ P̂

\
D ~A7!

is the evolution operator associated with the interact
~delta function! part of the Hamiltonian~2.14!.

The next stage is a precise measurement of the me
generalized positionQ̂. This measurement disentangles t
quantum states of the test mass and meter: the meter
reduced to the eigenstateuQ̃& of Q̂, whereQ̃ is thec number
obtained as a result of this measurement, and the test m
gets reduced to the state

^Q̃uÛuc&uC&

AW~Q̃!
5

V̂~Q̃!uC&

AW~Q̃!
, ~A8!

where

V̂~Q̃!5^Q̃uÛuc& ~A9!

is the reduction operator describing the entire two-stage m
surement procedure, and

W~Q̃!5^CuV̂†~Q̃!V̂~Q̃!uC& ~A10!

is the probability density for obtaining the resultQ̃.
An explicit form for the reduction operator can be o

tained by substituting Eqs.~A1!, ~A3! and ~A7! into Eq.
~A9!; the result is

V~Q̃!5^Q̃uexpS i x̂ P̂

\
D E

2`

`

c~Q!uQ&dQ

5^Q̃u E
2`

`

ux&^xuc~Q!uQ2x&dxdQ

5E
2`

`

ux&^xuc~Q̃1x!dx

5
1

AA2p DQ

expF2
~Q̃1 x̂!2

2DQ
2 S 1

2
2

iDQP

\
D G ,

~A11!
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where we have used the shift-operator relationeix̂P̂/\uQ&
5uQ2 x̂&5*2`

` dxux&^xuQ2x& and the relation̂ Q̃uQ2x&
5d(Q2x2Q̃).

We will need below the following formulas~some are
evident, and for the others we provide outlines of the proo!:

E
2`

`

V̂†~Q̃!V̂~Q̃!dQ̃51, ~A12!

E
2`

`

V̂†~Q̃!V̂~Q̃!Q̃dQ̃52 x̂, ~A13!

E
2`

`

V̂†~Q̃!V̂~Q̃!Q̃2dQ̃5 x̂21DQ
2 , ~A14!

E
2`

`

V̂†~Q̃!x̂nV̂~Q̃!dQ̃5 x̂n ~n50,1, . . .!, ~A15!

E
2`

`

V̂†~Q̃!x̂V̂~Q̃!Q̃dQ̃52 x̂2, ~A16!

E
2`

`

V̂†~Q̃!p̂V̂~Q̃!dQ̃

5E
2`

`

V̂†
„Q̃)S V̂~Q̃! p̂1@ p̂,V̂~Q̃!#…dQ̃

5E
2`

`

V̂†~Q̃!V̂~Q̃!dQ̃p̂2 i\E
2`

`

V̂~Q̃!
dV̂†~Q̃!

dx̂
dQ̃

5 p̂, ~A17!

E
2`

`

V̂†~Q̃!p̂2V̂~Q̃!dQ̃

5E
2`

`

„p̂V̂†~Q̃!1@V̂†~Q̃!,p̂#…~V̂~Q̃! p̂1@ p̂,V̂~Q̃!# !dQ̃

5 p̂E
2`

`

V̂†~Q̃!V̂~Q̃!dQ̃p̂1\2E
2`

` dV̂†~Q̃!

dx̂

dV̂~Q̃!

dx̂
dQ̃

5 p̂21
1

DQ
2 S \2

4
1DQP

2 D5 p̂21DP
2 , ~A18!

E
2`

`

V̂†~Q̃!p̂V̂~Q̃!Q̃dQ̃

5E
2`

`

V̂†~Q̃!~V̂~Q̃! p̂1@ p̂,V̂~Q̃!# !Q̃dQ̃
1-13
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5E
2`

`

V̂†~Q̃!V̂~Q̃!Q̃dQ̃p̂2 i\

3E
2`

`

V̂~Q̃!
dV̂†~Q̃!

dx̂
Q̃dQ̃

52 x̂p̂1 i\S 1

2
2

DQP

\ D52
x̂p̂1 p̂x̂

2
1DQP ,

~A19!

E
2`

`

V̂†~Q̃!~ x̂p̂1 p̂x̂!V̂~Q̃!dQ̃5 x̂p̂1 p̂x̂. ~A20!

2. The triple measurement procedure

The triple measurement procedure described in Sec. II
of the text consists of the following five stages.

~1! An initial position measurement of the type we ha
just analyzed, using meter number 0. This measuremen
duces the test mass’s wave function to

V̂0~Q̃0!uC&

AW0~Q̃0!
~A21!

@Eq. ~A8!#, where V̂0(Q̃0) is the reduction operator@Eq.
~A9!#, and Q̃0 is the result of this measurement. The pro
ability density for obtaining this result is equal to

W0~Q̃0!5^CuV̂0
†~Q̃0!V̂0~Q̃0!uC& ~A22!

@Eq. ~A10!#.
~2! Free evolution of the test mass during the timet.

Denoting the corresponding evolution operator byÛ0, the
test-mass wave function after this stage is given by

Û0V̂0~Q̃0!uC&

AW0~Q̃0!
. ~A23!

~3! Second position measurement of the same type a
the first stage, but using a new meter, number 1. The m
surement result is denotedQ̃1, the reduction operator is
V1(Q̃1), and the measurement reduces the test-mass sta

V̂1~Q̃1!Û0V̂0~Q̃0!uC&

AW1~Q̃0 ,Q̃1!
, ~A24!

where

W1~Q̃0 ,Q̃1!5^CuV̂0
†~Q̃0!Û0

†V̂1
†~Q̃1!V̂1~Q̃1!Û0V̂0~Q̃0!uC&

~A25!

is the joint probability distribution for the first two measur
ment results,Q̃0 andQ̃1.
08200
1

e-

-

in
a-

to

~4! Second free evolution of the test mass with the evo
tion operatorÛ1. After this stage the test-mass wave functi
is

Û1V̂1~Q̃1!Û0V̂0~Q̃0!uC&

AW1~Q̃0 ,Q̃1!
. ~A26!

~5! Finally, a third position measurement using a ne
meter, number 2, with the resultQ̃2. After this measuremen
the test-mass state is

V̂2~Q̃2!Û1V̂1~Q̃1!Û0V̂0~Q̃0!uC&

AW2~Q̃0 ,Q̃1 ,Q̃2!
, ~A27!

where

W2~Q̃0 ,Q̃1 ,Q̃2!5^CuV̂0
†~Q̃0!Û0

†V̂1
†~Q̃1!Û1

†V̂2
†~Q̃2!

3V̂2~Q̃2!Û1V̂1~Q̃1!Û0V̂0~Q̃0!uC&

~A28!

is the joint probability distribution for all three measureme
outcomes.

Equation~A28! is the principal result of this subsection
We shall use it to study the statistics of the measurem
outcomes. In that study we shall need the following expr
sion for each of the three reduction operators@Eq. ~A11!#:

V̂s~Q̃s!5
1

AA2p DQs

expF2
~Q̃s1 x̂!2

2DQs
2

S 1

2
2

iDQPs

\
D G ,

~A29!

wheres51,2,3.

3. Statistics of the measurement results

If an explicit form for the initial wave functionuC& were
specified, then the probability density~A28! could be calcu-
lated directly. However, that calculation would be very cu
bersome, the final result would be quite complicated, and
have no need for it. Our final goal is not to studyW2, but
rather to analyze the statistics of the quantityR̃5Q̃022Q̃1

1Q̃2, which the experimenter computes from the three m
surement outcomesQ̃s after the triple measurement proc
dure is complete. Specifically, we wish to verify the resu
of the text’s Heisenberg-picture analysis:~i! That the mean
value of R̃ over a large number of experiments is^R̃&
5(2t2/m)F̄, wheret is the time between each pair of me
surements,m is the mass of the test mass, andF̄ is the mean
force that acts on the test mass@Eqs.~2.24! and~2.23! of the
text#. ~ii ! That the variance ofR̃ ~and thence of the measure
value ofF̄) is independent of the test-mass initial stateuC&,
and is given by Eq.~2.25! when the meters’ individual initial
1-14
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states have no position-momentum correlations,DQPs50,
and can be made to vanish by a clever, ‘‘squeezed’’ choic
the meters’ initial states.

a. Mean value.The mean value ofR̃ over a large numbe
of experiments is determined by the joint probability dist
bution W3 for the measurement outcomes:

^R̃&5^Q̃022Q̃11Q̃2&

5E
2`

`

~Q̃022Q̃11Q̃2!

3W2~Q̃0 ,Q̃1 ,Q̃2!dQ̃0dQ̃1dQ̃2 . ~A30!

Using Eqs.~A12!, ~A13!, we bring this into the form

^R̃&5E
2`

`

^CuV̂0
†~Q̃0!Û0

†V̂1
†~Q̃1!Û1

†~Q̃022Q̃12 x̂!

3Û1V̂1~Q̃1!Û0V̂0~Q̃0!uC&dQ̃0dQ̃1 . ~A31!

Taking into account that

U 1
†U151, ~A32!

U 1
†x̂U15x1

p̂t

m
1xF 1 , ~A33!

wherem is the mass of the test mass and

xF 15
1

mEt

2t

~2t2t !F~ t !dt ~A34!
08200
of
is the displacement of the test mass during stage~4! ~the
second interval of free evolution! caused by the externa
force F(t), expression~A31! can be further reduced to th
form

^R̃&5E
2`

`

^CuV̂0
†~Q̃0!U 0

†V̂1
†~Q̃1!S Q̃022Q̃1

2 x̂2
p̂t

m
2xF 1D V̂1~Q̃1!Û0V̂0~Q̃0!uC&dQ̃0dQ̃1 .

~A35!

The next calculations are just a repetition of the previo
ones, with only the addition of Eqs.~A15!, ~A17! and

U 0
†x̂U05x1

p̂t

m
1xF0 , ~A36!

U 0
†p̂U05p1pF0 , ~A37!

where

xF05
1

m E
0

t

~t2t !F~ t !dt, ~A38!

pF05E
0

t

F~ t !dt. ~A39!

They give
rs’
^R̃&5E
2`

`

^CuV̂0
†~Q̃0!U 0

†S Q̃012x̂2 x̂2
p̂t

m
2xF1DU0V̂0~Q̃0!uC&dQ̃0

5E
2`

`

^CuV̂0
†~Q̃0!U 0

†S Q̃01 x̂1xF02
pF0t

m
2xF1D V̂0~Q̃0!uC&dQ̃0

5^CuS xF02
pF0t

m
2xF1D uC&5xF02

pF0t

m
2xF1

52
1

mE0

2t

~t2ut2tu!F~ t !dt[2
t2

m
F̄. ~A40!

This agrees with the Heisenberg-picture prediction@Eqs. ~2.24! and ~2.23! of the text, where we must note that the mete
initial states havêQs&5^Ps&50].

b. Variance. The mean square value of the measurement outcomeR̃ over a large number of experiments is given by
1-15
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^R̃2&5^~Q̃022Q̃11Q̃2!2&5E
2`

`

~Q̃022Q̃11Q̃2!2W2~Q̃0 ,Q̃1 ,Q̃2!dQ̃0dQ̃1dQ̃2 . ~A41!

Using Eqs.~A12!–~A20!, ~A32!, ~A33!, ~A36!, and~A37!, we obtain

^R̃2&5^~Q̃022Q̃11Q̃2!2&

5E
2`

`

^CuV̂0
†~Q̃0!Û0

†V̂1
†~Q̃1!Û1

†@~Q̃022Q̃12 x̂!21DQ
2 #Û1V̂1~Q̃1!Û0V̂0~Q̃0!uC&dQ̃0dQ̃1

5E
2`

`

^CuV̂0
†~Q̃0!U 0

†V̂1
†~Q̃1!F S Q̃022Q̃12 x̂2

p̂t

m
2xF1D 2

1DQ2
2 GV̂1~Q̃1!Û0V̂0~Q̃0!uC&dQ̃0dQ̃1

5E
2`

`

^CuV̂0
†~Q̃0!U 0

†F S Q̃01 x̂2
p̂t

m
2xF1D 2

14DQ1
2 1

4DQP1t

m
1S DP1t

m D 2

1DQ2
2 G Û0V̂0~Q̃0!uC&dQ̃0

5E
2`

`

^CuV̂0
†~Q̃0!F S Q̃01 x̂1xF02

pF0t

m
2xF1D 2

14DQ1
2 1

4DQP1t

m
1S DP1t

m D 2

1DQ2
2 GV̂0~Q̃0!uC&dQ̃0

5^CuF S xF02
pF0t

m
2xF1D 2

1DQ0
2 14DQ1

2 1
4DQP1t

m
1S DP1t

m D 2

1DQ2
2 G uC&

5^Q̃022Q̃11Q̃2&
21DQ0

2 14DQ1
2 1

4DQP1t

m
1S DP1t

m D 2

1DQ2
2 . ~A42!
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Subtracting off the square of the mean,^R̃&25^Q̃022Q̃1

1Q̃2&
2, we obtain for the variance of the computed quant

R̃, over many experiments,

t4

m2 ~DF̄ !25~DR̃!25^R̂2&2^R&2

5DQ0
2 14DQ1

2 1
4DQP1t

m
1S DP1t

m D 2

1DQ2
2 ;

~A43!

see Eq.~A40! for the first equality.This variance is indepen
dent of the test-mass initial stateuC&, in accord with predic-
tion of the Heisenberg-picture analysis@passage following
Eq. ~2.22! of the text#. When the three meters are all pr
pared in ‘‘naive’’ initial states, i.e. in states with uncorrelat
generalized positionQ̂s and momentumP̂s , i.e. when
DQPs50, then the variance~A43! has the form that we de
duced using the Heisenberg picture@Eq. ~2.25!#. When the
meters are prepared in the more clever ‘‘squeezed’’ man
i.e. in near eigenstates ofQ̂0 , Q̂1

squeeze5Q̂12 P̂1t/2m and

Q̂2, then the variance~A43! vanishes, in accord with the
Heisenberg-picture prediction@passage following Eq
~2.28!#.

APPENDIX B: LINEAR MEASUREMENTS

An important feature of our pedagogical examples~Sec.
II !, and of measurements performed by interferome
08200
r,

c

gravitational-wave detectors, is that they all arelinear mea-
surementsin the sense of Ref.@3#; i.e., they all satisfy the
following two conditions:

~i! Linearity of the output. The meter’s output can be writ
ten as the sum of the operator for the test object’s meas
variable and the operator for the meter’s additive noise@cf.
Eq. ~2.4a!#, and the additive noise does not depend on
initial state of the test object. Formally this sum is an ope
tor, but it can be treated as a classical variable becaus
turns out to commute with itself at different times.

~ii ! Linearity of the back action. The measurement
induced perturbations of all the test-object observables
are involved in the measurement procedure can be descr
by linear formulas similar to Eq.~2.4b!, and the perturba-
tions @e.g. the second term on the right side of~2.4b!# do not
depend on the initial state of the test object.

This second condition requires discussion: The pertur
tions’ independence of the test-object initial state is parti
larly important when several test-object variables are m
sured consecutively—for example, if the same Heisenbe
Picture variable is measured quickly and repetitively
different moments of time as in our pedagogical examp
~Sec. II!, or if a variable is measured continuously as in
gravitational-wave detector~Sec. III!. Suppose, for example

that the variablex̂1 is measured with precisionDx1
meas

thereby perturbing, via back-action, some other variablex̂2.

Then the accuracy of a subsequent measurement ofx̂2 will
be constrained by the perturbation
1-16
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Dx2
pert5

\

2Dx1
meas

u^@ x̂1 ,x̂2#&u. ~B1!

Our condition~ii ! of back-action linearity requires that th
perturbation not depend on the initial state of the test obj
A sufficient condition for this is that the commutator@ x̂1 ,x̂2#
be ac-number, and that this requirement be fulfilled for a
the operators involved in the measurement.6

Linear measurements are closely related to linear syst
~those for which the equations of motion for the generaliz
coordinates and momenta are linear; for example, a free m
and a harmonic oscillator! because the commutators of su
systems’ coordinates and momenta arec-numbers.

In nonlinear measurements~e.g. measurements of a pa
ticle in a double-welled potential!, some very strange phe
nomena can arise, for example the quantum Zeno effect

Strictly speaking, all real meters are nonlinear. Howev
in most cases they can be regarded as linear to high accu
For example, if one measures displacements of a mirror
Fabry-Perot cavity by monitoring the phase of light th
passes through the cavity~as is done in LIGO!, then the
measurements are linear so long as the displacements
much smaller than the width of a cavity resonance, i.e. m
smaller thanl/F wherel is the wavelength of the light an
F is the cavity finesse.

If, by contrast, the displacements are comparable to
much larger thanl/F, then the measurements are strong
nonlinear. An example is a proposednull-detectortechnique
@37# for measuring the phase of a mechanical oscillator
which the oscillating mass is an end mirror of a Fabry-Pe
cavity, and the times at which the mirror passes throu
cavity-resonant positions are measured with high accur
by the cavity’s momentary transmissivity. These measu
ments are highly nonlinear because, in the proposed de
not only are the mirror displacements large compared to
cavity’s linearity regime,l/F; the mechanical oscillator’s
amplitude of zero-point oscillationsdxzp is also large com-
pared tol/F. State reduction plays an important role in th
null detector’s measurements: it drives the mechanical os
lator into a squeezed-phase state, thereby facilitating a h
precision monitoring of the oscillator’s phase@37#. It would
be instructive to analyze the use of this highly nonline
meter to monitor a classical force that acts on the oscillat
mass. Does the oscillator’s initial quantum state influence
accuracy of the monitoring?

Three properties of an interferometric gravitational-wa
detector~interferometric position meter! allow one to con-
sider it as linear with sufficiently high precision to justify th
linear analysis given in this paper.First, its test-mass mirrors
can be regarded as free masses~or as harmonic oscillators i
significant electromagnetic rigidity exists in the system!.
Second, its linearity rangel/F;1026 cm is much greater
than the wave-induced displacements of the test mas

6It can be shown that a slightly weaker condition is sufficie

second-order commutation of all these operators,@ x̂i ,@ x̂ j ,x̂k##50
for all i , j ,k.
08200
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(&10215 cm). Hence, the signal phase shift of the outp
optical beam depends linearly on the displacement.Third,
the measurement of the photon flux out the dark port is
tually equivalent to the measurement of the phase of
output beam because~i! the signal phase shift is much les
than one radian and~ii ! the mean value of the amplitude o
the optical pumping field is much larger than the quant
uncertainties of its quadrature amplitudes.

For a detailed presentation of the theory of linear m
surements see Chaps. 5 and 6 of Ref.@3#. For a detailed
application of this theory to interferometric gravitationa
wave detectors see Ref.@17#.

APPENDIX C: VANISHING SELF-COMMUTATOR
OF THE PHOTON NUMBER FLUX

For any light beam~or other electromagnetic wave wit
confined cross section!, the number flux operator at som
chosen transverse plane~e.g. the entry to a photodetector! is

N̂~ t !5E
0

`dv

2pE0

`dv8

2p
âv

† âv8 ei (v2v8)t. ~C1!

Here âv
† is the creation operator andâv the annihilation op-

erator for photons of frequencyv, and their commutators ar

@ âv ,âv8#5@ âv
† ,âv8

†
#50, @ âv ,âv8

†
#52pd~v2v8!.

~C2!

It is straightforward to verify from Eqs.~C1! and ~C2! that

@N̂~ t !,N̂~ t8!#50. ~C3!

Although this result is completely general, it is instructiv
to derive the vanishing self commutator for the specializ
type of light beam that is used in interferometers and ot
force-measuring devices: a beam consisting of a monoc
matic carrier with frequencyvo plus sidebands embodied i
âv andâv

† . In this case to high accuracy we can linearize
the product of the carrier field and the side-band fields,
taining for the relevant~side-band! photon flux

N̂1~ t !5AN0@ â~ t !1â†~ t !#. ~C4!

Here @in the notation of Eqs.~2.34!–~2.37!# N05A0
2 is the

carrier’s photon flux andâ(t), â†(t) are the time-domain
side-band annihilation and creation operators with commu
tion relations@time-domain versions of Eq.~C2!#

@ â~ t !,â~ t8!#50, @ â†~ t !,â†~ t8!#50,

@ â~ t !,â†~ t8!#5d~ t2t8!. ~C5!

It is straightforward, using these commutation relations,
verify that

@N1~ t !,N1~ t8!#50. ~C6!

:
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It is interesting to note that, although the photon num
flux self commutes, the energy flux~energy passing a fixed
transverse surface per unit time!

Ê~ t !5\E
0

`

dvE
0

`

dv8Avv8 âv
† âv8e

iv(t2t8) ~C7!

doesnot self-commute,
,

t

s.

-

P.

S
G
el

.

s.

s.

08200
r @ Ê~ t !,Ê~ t8!#Þ0. ~C8!

This can be thought of as due to the energy-time uncerta
relation for photons. On the other hand, when~as in
gravitational-wave interferometers! the light consists of a
monochromatic carrier plus signals encoded in side ba
with frequencyV5v2vo!vo , then for all practical pur-
poses,Ê(t) doesself commute.
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