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We examine the motions of particles in quadrupole ion traps as a function of damping and trapping

forces, including cases where nonlinear damping or nonlinearities in the electric field geometry

play significant roles. In the absence of nonlinearities, particles are either damped to the trap center

or ejected, while their addition brings about a rich spectrum of stable closed particle trajectories. In

three-dimensional (3D) quadrupole traps, the extended orbits are typically confined to the trap axis,

and for this case we present a 1D analysis of the relevant equation of motion. We follow this with

an analysis of 2D quadrupole traps that frequently show diamond-shaped closed orbits. For both

the 1D and 2D cases, we present experimental observations of the calculated trajectories in

microparticle ion traps. We also report the discovery of a new collective behavior in damped 2D

microparticle ion traps, where particles spontaneously assemble into a remarkable knot of

overlapping, corotating diamond orbits, self-stabilized by air currents arising from the particle

motion. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4902185]

I. INTRODUCTION

Electrodynamic ion traps, also known as Paul traps or
quadrupole ion traps (QITs), have found a broad range of
applications in physics and chemistry, including precision
mass spectrometry,1 quantum computing,2 and improved
atomic frequency standards.3 Wolfgang Paul and Hans
Dehmelt received the Nobel Prize for Physics in 1989 for the
initial development of ion trapping, which uses sinusoidal
quadrupolar electric fields to trap charged particles in free
space. The electric force on a particle results in an oscillatory
micromotion at the drive frequency, and the time-averaged
net force pushes the particle toward regions of lower electric
field strength. With a quadrupolar field geometry, particles
are pushed toward the zero-field point, where they become
trapped. When trapping atomic or molecular ions, QITs often
operate with radiofrequency electric fields in vacuum, and
the particle dynamics in these traps is reviewed in detail in
several references.1,4,5

Microparticle quadrupole ion traps (MQITs) are also com-
monly used to measure the detailed properties of individual
charged particles in the 100 nm to 100 lm size range, includ-
ing aerosols,6,7 liquid droplets,8,9 solid particles,10–12 nano-
particles,13,14 and even microorganisms.15,16 MQITs have
also become popular in physics teaching, as they provide a
fascinating and somewhat counterintuitive demonstration of
oscillatory mechanics and electric forces. Moreover, MQITs
are quite inexpensive to construct, levitating particles in air
using 50–60 Hz electric fields, making them well suited for
teaching.10,17,18 Besides individual particles, MQITs can also
trap large numbers of charged particles that self-organize
into Coulomb crystalline structures.10,18,19

The addition of motional damping, for example, from gas
damping or laser cooling, significantly alters the particle
dynamics in QITs, and there has been considerable interest
in understanding these effects,20–23,25 particularly in spectro-
scopic applications when weak damping is used to stabilize
the particle motions.5 For the simplest and best-studied
case—linear damping in purely quadrupolar electric fields—
the addition of damping enlarges and shifts the stability
regions in parameter space,21 but the boundaries between

stable and unstable regions remain sharp. In other words,
particles either spiral down until they are at rest at the trap
center, or the oscillating electric forces overpower the damp-
ing and eject particles from the trap. Thus for the simplest
damped QITs, the only stable dynamical solution to the trap
equations is the~xðtÞ ¼ 0 solution.

We have found, however, that the situation changes
markedly with the addition of weak nonlinearities in the
trap equations—either nonlinearities in the field geometry
(a deviation from a pure quadrupole field configuration) or
nonlinearities in the damping. In both cases, the boundaries
between stable and unstable regions in parameter space
may no longer be sharp, and nontrivial stable solutions to
the trap equations appear. We use the term “extended
orbits” for these solutions, describing particles that execute
stable, closed oscillatory trajectories within a damped ion
trap.

We have calculated and experimentally confirmed several
examples of these extended orbits, as described below.
Nonlinear field geometries in QITs have been investigated
by several authors,24,26–29 but to our knowledge the different
types of extended orbits in damped nonlinear QITs have not
previously been characterized. We have found that these
states appear quite readily in MQITs when the drive voltage
is sufficiently high. After observing this behavior frequently
in our own laboratory investigations, we also identified simi-
lar examples in online videos.30,31 Although it appears that
extended orbital behaviors are fairly common in MQITs, we
were not able to find an adequate explanation of these obser-
vations in our literature search.

The detailed characteristics of an extended orbit depend
on the trapped particle properties, including its charge, mass,
and radius, so the appearance of a specific dynamical behav-
ior could serve as a convenient and accurate measurement
tool in MQITs. And since the extended orbits are stable,
measurements of the orbital properties are nondestructive in
that they do not eject particles from the trap. Although we
have identified several examples of extended orbital behav-
ior, the parameter space of nonlinearities in trap geometry is
large, so additional examples may exist. Whether any of
these novel dynamical behaviors can be gainfully harnessed
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in ion trapping applications remains a question for additional
study.

II. AXIAL MOTION IN 3D DAMPED ION TRAPS

To connect to the existing ion-trapping literature, we
begin with a description of the equations of motion for a sin-
gle charged particle in a purely quadrupolar field geometry
with the simplest linear damping, following the standard
notation.5,20 In particular, we consider a 3D quadrupole trap
in cylindrical (r, z) coordinates,5 focusing on the equation of
motion describing the axial motion z(t). In our damped 3D
MQITs, the extended orbits we have observed were all con-
fined to the z-axis. The radial trapping forces, including
damping, keep the particle confined to r¼ 0 even in the
presence of extended motions in z, reducing the dynamical
problem to one dimension. Although the 1D equation of
motion cannot fully describe all aspects of particle motion in
a 3D damped ion trap,21 we have nevertheless found that it
captures the essence of the extended orbits we have
observed. We therefore begin with the simpler 1D problem
as a means of characterizing these extended orbital motions.

We write the 1D particle equation of motion

m
d2z

dt2
þ c

dz

dt
¼ QEz z; tð Þ; (1)

where z is the axial position in the trap, m is the particle
mass, c is the linear damping coefficient, Q is the particle
charge, and Ez is the axial electric field. Including ac and
dc quadrupole electric fields, we write Ezðz; tÞ ¼ Adcz
þAacz cos ðXtÞ, where Adc and Aac are constants. The stand-
ard trap equation then becomes5,20

d2z

dn2
þ b

dz

dn
þ a� 2q cos 2nð Þ½ �z ¼ 0; (2)

where n¼Xt/2 is the dimensionless time, b¼ 2c/mX is the
damping parameter, a¼�4QAdc/mX2 is the dc electric force
parameter, and q¼ 2QAac/mX2 is the ac force parameter.

Previous treatments of damped QITs in the absence of
nonlinearities (in either the damping or the electric field ge-
ometry)20–23 have shown that it is possible to eliminate the
dz/dn term by substituting z ¼ u exp ð�bn=2Þ, giving

d2u

dn2
þ ~a � 2q cos 2nð Þ½ �u ¼ 0; (3)

where ~a ¼ a� b2=4. This equation has the form of the
Mathieu equation, which has a well-studied stability dia-
gram.4,5 As described previously,20,21 stability in z is differ-
ent from stability in u, owing to the additional exp ð�bn=2Þ
factor. In Nasse and Foot,21 the authors plot stability dia-
grams in the (a, q) plane for several nonzero b values, show-
ing that the stable regions are larger and shifted relative to
the corresponding regions when b¼ 0. As described in these
references, particles decay to z¼ 0 within the stable regions
of parameter space, and are expelled from the trap outside
the stable regions.

In our experiments with MQITs, the particles are large
enough that the gravitational force is significant, plus we
often add a uniform electric field E0 that produces a constant
force similar to gravity. With both forces in the vertical
z-direction, this adds an additional downward force

mgeff¼ (mgþQE0) to Eq. (1). After transformations and fo-
cusing on the a¼ 0 special case, Eq. (2) becomes

d2~z

dn2
þ b

d~z

dn
� 2q~z cos 2nð Þ ¼ �1; (4)

where ~z ¼ zX2=4geff , and the other parameters are the same
as above.

With the additional constant force, there is an accompany-
ing change in the particle dynamics, which we investigated
by integrating Eq. (4) to directly observe the dynamical
behavior of ~zðnÞ for input b, q, and the initial conditions ~z
and d~z=dn at n¼ 0. For this we used the NDSolve com-
mand in MATHEMATICA, which could typically compute 20–30
orbital periods before encountering numerical instabilities.
This was usually sufficient for our purposes, as the solutions
~zðnÞ usually settled quickly into stable orbits that were insen-
sitive to the chosen initial conditions. In difficult cases, we
performed longer integrations using the ode45 command in
MATLAB. By examining computed particle trajectories
with many different inputs, we obtained the results shown in
Fig. 1.

When q is above the stability line shown in Fig. 1, the sol-
utions are unbounded and particles are ejected from the trap.
Below the stability line, in the Normal region shown in the
figure, the gravitational force pulls particles down to ~z < 0,
where they exhibit simple oscillatory micromotion. These
orbits are stable, as the average trapping force balances grav-
ity, and an example of this simple motion is shown in the top
panel in Fig. 2.

In the ZC1 region in Fig. 1, particles exhibit zero-crossing
orbits (i.e., the motion passes through ~z ¼ 0), with an exam-
ple shown in the middle panel of Fig. 2. From Fig. 1, we see
that the ZC1 orbits only occur for b � 3.5, when the particle
motion is sufficiently overdamped. In the Normal region,
increasing q pulls the particle closer to the trap center at
~z ¼ 0. In the ZC1 region, however, increasing q results in an
orbit with a greater overall extent, which grows to infinity as
the stability line is approached.

Fig. 1. Stability diagram in (b, q) describing solutions to Eq. (4). Above the

labeled stability line, particles are ejected from the trap. Below the stability

line, in the “normal” region, particles exhibit a simple oscillatory behavior

with ~z < 0 for all n. In the ZC1 region, particles exhibit zero-crossing orbits

that extend into the ~z > 0 region. Examples of both these behaviors are

shown in Fig. 2.
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Since ~z ¼ zX2=4geff , we see that z ! 0 as geff ! 0, and
for geff¼ 0 we confirmed in our numerical analysis that the
stability line in Fig. 1 separates stable solutions that decay to
z¼ 0 from unstable solutions that eject particles from the
trap. This is consistent with the fact that Eq. (4) reduces to
the Mathieu equation for geff¼ 0, and the stability line in
Fig. 1 is consistent with the related analysis already
presented.21

We confirmed the calculated behavior using an MQIT
operating at X/2p¼ 60 Hz, loaded with a single Borosilicate
glass microsphere having a specified density of 2230 kg/m3.
A microscope objective built into the MQIT allowed us to
image the trapped particle directly, yielding a measured
diameter of 2R¼ 9 6 2 lm, which was consistent with the
nominal diameter of 10 6 1 lm specified by the manufac-
turer. Balancing gravity with a constant electric field E0

gave a measured Q/m¼ g/E0¼ 0.0176 6 0.0015 C/kg. Using
Stoke’s-law damping in air (c¼ 6plR, with l¼ 1.8
� 10�5 kg/m-s) gave b¼ 9.5 6 3, and the electric field
Ez(z, t) was calculated from the known geometry of the trap,
giving q as a function of the applied voltage.

With all the relevant particle and trap properties deter-
mined, we were able to create a model of the particle behav-
ior with no free parameters for comparison with experiment.
The uncertainty in the particle radius was rather large,

however, so in the end we adjusted this parameter (within
the stated uncertainty limits) to better fit the data, thus essen-
tially using the orbital motion to measure R. We measured
and calculated zmin and zmax, the extrema of the particle
motion (which was purely axial), as a function of the applied
voltage. Figure 3 shows results with no bias field to counter-
act gravity (E0¼ 0). The smooth transition from Normal
to ZC1 behavior was essentially as calculated, and we also
confirmed (not shown in the figure) that the overall scale of
the motion was proportional to geff.

From this and other observations of orbital behaviors in
MQITs, we confirmed the simple 1D theory for a 3D quadru-
pole trap with linear damping and the addition of a constant
gravity-like force. The Normal and ZC1 orbits were
observed as purely axial motions, and our measurements
showed good quantitative agreement with calculations.

A. Nonlinear damping

In MQITs, the Reynolds number of the motion is often of
order unity or higher, requiring an additional damping force
proportional to v2¼ (dz/dt)2, giving the total damping force
�cvð1þ ajvjÞ, where c describes the linear damping and a is
a nonlinear damping constant.32 For the zero-gravity case
with no dc fields (a¼ 0), the equation of motion then
becomes

d2u

dn2
þ b

du

dn
1þ du

dn

����
����

 !
� 2qu cos 2nð Þ ¼ 0; (5)

where u¼ aXz/2. A dynamical analysis of the solutions to
this equation yields the stability diagram shown in Fig. 4.

As this is a zero-gravity case, the solutions below the sta-
bility line are all damped to u¼ 0. This makes physical
sense, since the additional nonlinear damping can only
increase the stability. Above the stability line, however, the
increased damping is sufficient to prevent the realization of
any unbounded solutions that eject particles from the trap.
Just above the lowest branch of the stability line, particles
exhibit a new type of stable zero-crossing orbit we label
ZC2; an example of this motion is shown in the third panel
in Fig. 2. Since the particle spends one ac cycle above u¼ 0

Fig. 2. Examples of the Normal (top), ZC1 (middle), and ZC2 (bottom)

extended orbits. The top two panels show ~zðnÞ from solving Eq. (4) (assum-

ing a nonzero geff), starting with the initial conditions ~zð0Þ ¼ d~z=dnð0Þ ¼ 0.

These two solutions show the particle dropping down to a stable periodic

orbit after a few oscillation periods. The bottom panel shows u(n) from solv-

ing Eq. (5) (which assumes geff¼ 0) after a stable orbit has been achieved.

Note that the period of the ZC2 orbit is twice that of the ZC1 orbit. The

insets in all three panels show phase portraits of d~z=dn versus ~z (or du/dn
versus u) after each particle has reached a stable orbit. These three examples

are intended only to show the essential morphologies of the most common

Normal, ZC1, and ZC2 extended orbits; the orbital amplitudes and other

details depend on the specific parameters used in the equations.

Fig. 3. A comparison of measured zmin and zmax for a particle in an MQIT

(points) with model calculations (lines). The particle behavior transitioned

from Normal on the left to a ZC1 zero-crossing orbit on the right.
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and one ac cycle below, the total period is 4p/X, double the
period of the ac drive and the other orbital motions described
above, as shown in Fig. 2.

For higher b, again just above the stability line, particles
exhibit stable ZC1 or ZC2 orbits as shown in Fig. 4. Note
that the ZC1 orbits arising from the nonlinear Eq. (5) occur
for geff¼ 0, although their morphology is essentially the
same as we found with the linear geff 6¼ 0 case described
above. Since there is no effective gravity to break the
up/down symmetry in Eq. (5), a ZC1 orbit may point up or
down depending on initial conditions. Note also that the
boundaries between the ZC1 and ZC2 regions are not sharp,
especially at high q, where the particle motions are sensitive
to initial conditions and may be aperiodic. The ZC1 and
ZC2 regions are quite distinct just above the stability line,
however, segregating the two morphologies as shown in
Fig. 4.

The physical size of an extended particle orbit depends on
the nonlinear damping via z¼ 2 u/aX, so as expected z
becomes unbounded above the stability line as a ! 0. This
makes it possible to measure the nonlinear damping coeffi-
cient directly at low Reynolds number by observing the ZC2
orbital behavior in an MQIT, perhaps to higher accuracy
than has been accomplished to date by more traditional
means.32 For example, for b< 2 the physical size of a ZC2
orbit scales approximately as z� 1/ca. The linear damping
coefficient is typically Stoke’s damping in an MQIT, so the
nonlinear damping coefficient a can be extracted from a
measurement of the orbital size.

In our MQITs, we have found that the ZC2 orbital behav-
ior is quite common, and Fig. 5 shows one example. To
obtain this measurement, we strobed the laser illuminating
the particle near 30 Hz, allowing the particle position to be
measured from a simple video recording of the motion.
Again the overall characteristics of the observed motion are
well described by the 1D equation of motion. Another exam-
ple showing ZC2 axial motion can be found online.30

B. Nonlinear electric fields

We have also examined particle behavior when the elec-
tric field geometry deviates from the linear Eac (z)¼Aacz
found in a pure quadrupole ion trap. There are many simple
MQIT geometries in which the electric field rolls off at high
z, and we model these nonlinear field geometries using
EacðzÞ ¼ k�1Aac tan�1ðkzÞ, where k sets the scale of the roll-
off in the field. With this functional form, the field is
approximately linear when z � k�1, reaching a constant
value when z � k�1, and taking k ! 0 returns the purely
linear field. With this change, the equation of motion
becomes

d2~u

dn2
þ b

d~u

dn
� 2q tan�1 ~uð Þcos 2nð Þ ¼ 0 (6)

for the case a¼ 0 and geff¼ 0, where ~u ¼ kz. Analyzing this
equation yields a stability diagram quite similar to that
shown in Fig. 4, featuring both ZC1 and ZC2 extended
orbits. Again the orbits decay to ~u ¼ 0 below the stability
line, and there are no unbounded solutions above this
line. Examining other electric field configurations, e.g.,
E ¼ Ak�1 logð1þ kzÞ and E¼Az/(k3z3þ 1), we found that
the stability diagrams were all similar to that shown in
Fig. 4, as long as the field rolled off at high z.

In Ref. 25, the authors describe calculated axial ZC2 orbits
in a 3D QIT with linear damping in a purely quadrupole field
geometry, in contradiction to our results. We also found,
however, that a ZC2-like behavior could be seen in the
absence of nonlinearities when sufficiently close to the sta-
bility line, so this may explain the discrepancy. Integrating
the equation of motion for �20 orbital periods (using
MATHEMATICA) can yield a ZC2-like orbit that appears to be
stable, but integrating with the same parameters for several
hundred periods (using MATLAB) reveals that these orbits are
in fact slowly decaying. We only found truly stable extended
orbits with the addition of nonlinear damping or nonlinear
field geometries, or both.

Fig. 4. A stability diagram for the zero-gravity case with a¼ 0 and an addi-

tional nonlinear damping term, described by Eq. (5). The stability line is

identical to that shown in Fig. 1. Below the stability line, all solutions decay

to u¼ 0. Above the stability line, the nonlinear damping causes all solutions

to be bounded, so no particles are ejected from the trap. Just above the

stability line, particles exhibit stable ZC1 or ZC2 orbital behaviors that are

largely independent of initial conditions, as labeled in the diagram. Far

above the stability line, the particle behavior is typically aperiodic and

strongly dependent on initial conditions.

Fig. 5. Measurements of a typical ZC2 orbit in a 60-Hz MQIT, showing the

axial motion z(t). The radial motion was confined to r¼ 0 in the trap. The

zero point of the measured motion presented in the plot is relative to the trap

center, as determined by cancelling gravity and observing the stable position

of the particle at z¼ 0. The overall characteristics of the orbital motion are

consistent with that shown in Fig. 2, including the 30-Hz oscillation

frequency.
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III. 2D DAMPED ION TRAPS

While 3D QITs are used for trapping, 2D QITs are often
used for guiding a beam of particles along a line, with appli-
cations in mass spectrometry. For the case of a two-
dimensional quadrupole field with a nonlinear damping force
~Fdamping ¼ �c~vð1þ aj~vjÞ, the equations of motion in (x, y)
coordinates can be rescaled to become

d2x̂

dn2
þ b

dx̂

dn
1þ jv̂jð Þ � 2qx̂ cos 2nð Þ ¼ 0;

d2ŷ

dn2
þ b

dŷ

dn
1þ jv̂jð Þ þ 2qŷ cos 2nð Þ ¼ 0;

(7)

where x̂ ¼ aXx=2; ŷ ¼ aXy=2; b ¼ 2c=mX; q ¼ 2QA=mX2,
the ac electric field is (Ex, Ey)¼ (Ax, �Ay), and jv̂j ¼ aj~vj
¼ ½ðdx̂=dnÞ2 þ ðdŷ=dnÞ2�1=2

. Here, we have assumed zero dc
electric field and geff¼ 0. In the absence of nonlinear damp-
ing (a¼ 0), these equations decouple to the 1D case
above, yielding the same stability line shown in Fig. 1. Since
we are taking geff¼ 0 in this case, our numerical analysis
confirmed that particles either decay to (x, y)¼ 0 below the
stability line or are ejected from the trap above the stability
line.

Including nonlinear damping, however, yields a rich spec-
trum of stable extended orbits, as shown in Fig. 6. The
diamond-shaped orbits are rounded for b � 2 and develop
cusp-like corners at higher b. The orbits are typically more
asymmetrical (as shown in the uppermost example of the
three diamond plots) at higher b and higher q, where
the symmetry is more sensitive to initial conditions. Above
the second branch of the stability line, particles are driven
into “bowtie” orbits, while more complex “cloverleaf” orbits
appear above the third branch, as indicated in the figure.
These orbits are most stable when q is just above the stability

line, while at high q the motion can be aperiodic and strongly
dependent on initial conditions.

Note that there are many similarities between the 1D and
2D orbits occurring in 3D and 2D quadrupole traps, respec-
tively. For example, a diamond orbit is essentially a ZC2
orbit in both x and y, while a bowtie orbit is like a ZC1 orbit
in both x and y. The 2D orbits correspond to their 1D analogs
in the stability diagram as well, as can be seen by comparing
Figs. 6 and 4. Similarly, the orbital period is 2p/X for the
bowties and ZC1 orbits, while it is 4p/X for the diamonds,
cloverleafs, and ZC2 orbits.

Experimentally, the diamond orbits are the easiest to
obtain, as they require low damping and a corresponding low
drive voltage. The other orbits occur for larger b, and a much
larger q is therefore needed to get above the stability line. To
date we have only observed diamond and bowtie orbits in
our 2D MQITs, and Fig. 7 shows two examples. Diamond
orbits can also be seen in the online videos,30,31 suggesting
that they are somewhat common in MQITs. We have
observed symmetrical and asymmetrical diamond orbits,
along with a variety of odd time-dependent behaviors we do
not yet understand. Diamond orbits with slowly oscillating
changes in the orbital asymmetry were especially common at
low b, and this behavior remains puzzling. Some of these
behaviors may be driven by residual air currents within the
traps.

Fig. 6. The stability diagram for a 2D quadrupole trap with nonlinear damp-

ing, describing solutions to Eq. (7). Below the stability line, particles are

damped to the center of the trap at (x, y)¼ 0. Above the stability line, in

roughly the same regions shown in Fig. 4, particles are driven into a variety

of stable extended orbits as shown. The inset plots show examples of calcu-

lated closed particle orbits in (x, y) space; the cloverleaf plot shows only the

inner region of the orbit. As with Fig. 2, the inset diagrams here are intended

only to show the morphologies of the different types of extended orbits; the

orbital amplitudes and other details depend on the specific parameters used

in the equations.

Fig. 7. Examples of a diamond (top) and bowtie (bottom) orbit observed in a

4-bar MQIT with geff¼ 0. The two photographs show single particles exe-

cuting stable closed orbits in the xy-plane, illuminated by a laser. The expo-

sure times were longer than the orbital periods, causing the particles to

appear as streaks delineating the orbital paths. Diagonal lines were digitally

superimposed on the top image to show the axes of the 2D quadrupole,

which had the same orientation for both images. Scale bars were also added

digitally, and a dc bias electric field canceled the gravitational force.
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The images in Fig. 7 were obtained in a “4-bar” MQIT
consisting of four identical conducting bars, collinear in the
z-direction and arranged on the corners of a square in the xy-
plane.19 For our trap, the bars had a diameter of 3.2 mm, and
their nearest separation was 6.7 mm. The trap operated in air
and was fully enclosed to shield particles from air currents.
An ac voltage was applied to the bars with alternating polar-
ities to produce approximately quadrupolar electric fields in
x and y, with no electric forces in the z-direction. The trap
operated at 60 Hz in air, with applied voltages up to 6 kV.
Although the electric field geometry in a 4-bar trap is not a
pure quadrupole field, our calculations showed that no
extended orbits were possible in a 4-bar trap in the absence
of nonlinear damping. Thus, the behavior of a 4-bar trap is
qualitatively the same as a 2D quadrupole trap.

One especially noteworthy phenomenon we can produce
on demand in our 2D MQITs is a collective mode that
includes dozens of particles in overlapping corotating dia-
mond orbits. The phenomenon is difficult to describe
adequately, and still photos show little more than a blur of
rapidly moving trapped particles. Videos are somewhat more
informative, and examples can be found online.33 Based on
our observations of the formation, behavior, and decay of
this collective mode, we believe it is stabilized by air cur-
rents within the trap.

When several particles are initially driven into nearby
corotating diamond orbits, we believe that the particle
motions create a fan-like effect that pushes air radially out-
ward from the trap; that is, the flow is outward in x and y
away from the trap center at (x, y)¼ 0. This radial outflow is
accompanied by an axial inflow along the z axis. Since there
are no electrical forces in the z-direction, the axial inflow
pulls the nearby corotating particles together in spite of the
repulsive forces arising from their like charges. The result is
a frenetic knot of particles moving in overlapping corotating
diamond orbits, which we call a trapnado.

Once a small trapnado forms, the axial airflow quickly
pulls in additional particles that join the knot and reinforce
the air motions. Trapnados form easily with either rotation
direction, and we have even witnessed axial collisions
between two independent trapnados,33 the outcome depend-
ing on their relative rotation directions. We discovered trap-
nados serendipitously in our 4-bar MQITs, and we believe
that our hypothesis of air-stabilized diamond orbits provides
a sound (albeit qualitative) physical explanation for this re-
markable phenomenon.

IV. DISCUSSION

Our initial motivation for undertaking this investigation
was experimental: we built a number of MQITs operating in
air and soon began seeing extended orbital behaviors, both
1D axial orbits in 3D MQITs and diamond-shaped orbits in
2D MQITs. Although our online research suggests that
others have observed these behaviors numerous times over
the past several decades, our literature search did not turn up
an adequate characterization or theoretical explanation of the
extended orbits.

Our analysis of single-particle trajectories in damped ion
traps shows that nonlinearities are required to produce stable
extended orbits, in particular either nonlinear damping or
nonlinearities in the electric field geometry. In the absence
of nonlinearities, particles are either damped to the trap cen-
ter or ejected from the trap. As has been documented by

others, the stability line between damped and ejected motion
is sharp, and the only stable trajectory in this case is the
~xðtÞ ¼ 0 solution.

With the addition of nonlinearities, a variety of stable,
closed trajectories appear, as described in detail above. We
have not examined all possible nonlinearities, as this param-
eter space is large, so additional novel particle behaviors
may exist. Besides 2D quadrupole geometries, we have also
calculated diamond-like orbits in 2D hexapole and octapole
geometries, where the diamonds then show six or eight cor-
ners, respectively. Our focus in the present work was on
MQITs operating in air at 60 Hz, driven by experimental
considerations, and we have not yet done an additional anal-
ysis with a focus on atomic/molecular QITs.

Possible applications include measurements of nonlinear-
ity parameters in ion traps. For example, the orbital motion
in a MQIT with nonlinear damping depends strongly on the
nonlinearity parameter a, somewhat independently of the lin-
ear damping. Because of this, a could be measured directly
even when nonlinear damping is a small perturbation of the
total damping. In contrast, a measurement of a particle’s ter-
minal velocity (for example) yields the total damping only,
so a cannot be extracted independently from such a
measurement.

Nonlinearities in the electric field geometry could also be
measured using extended orbital motions, and these meas-
urements are nondestructive in that particles are not ejected
from the trap. Observing the full range of particle motions
both above and below the nominal stability line could allow
independent measurements of many particle properties.
Tayloring the electric field geometry to facilitate a specific
measurement of some kind may be possible.

In addition to calculating single-particle orbits in detail,
we also discovered the remarkable trapnado phenomenon
described above. We believe this is only the second self-
organizing collective behavior seen in MQITs to date, sup-
plementing the well-known Coulomb crystalline structures
that have been observed for many decades.
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