Lecture 26: The Standard Linear Model: Hypothesis Testing

Relevant textbook passages:
Larsen–Marx [4]: Section 11.4. Chapter 12.
Theil [6]: Chapters 3–5.

26.1 The OLS estimator

Let there be N observations on K regressors X (including any constant term), and a response y. The matrix X is $N \times K$, and assume it has rank K. A constant term is a column of all ones. The standard linear model is

$$ y = X\beta + \varepsilon, $$

where

$$ E\varepsilon = 0 \quad \text{and} \quad \text{Var}\varepsilon = E(\varepsilon\varepsilon') = \sigma^2 I. $$

The OLS estimator $\hat{\beta}_{ols}$ of the coefficients β is given by

$$ \hat{\beta}_{ols} = (X'X)^{-1}X'y. $$

The coefficient on the constant term is called the intercept. Set

$$ \hat{y} = X\hat{\beta}_{ols} $$

and

$$ e = y - \hat{y} = y - X\hat{\beta}_{ols}. $$

The vector e of residuals satisfies

$$ X'e = 0. $$

That is, e is orthogonal to each column vector of regressors. If there is a constant term in the regression, then the sum of residuals $1'e = 0$, so \bar{e}, the mean residual is also zero.

26.2 More complicated hypotheses

Sometimes we entertain more complicated null hypotheses on our coefficients. For instance, economists are often interested in whether estimated shares of income add up to one. This material is not in Larsen and Marx [4], but can be found for instance, in Theil [6, pp. 143–144].

The general linear hypothesis of q linear constraints on the vector β can be written simply as

$$ H_0: a = A\beta, $$
where A is a $q \times K$ matrix and a is $q \times 1$ column vector. We assume that A has rank q.

For instance the hypothesis that $\beta_1 + \cdots + \beta_K = 1$ uses $a = [1]$ and $A = [1, \ldots, 1]$.

The next result may be found in [6, Theorem 3.9, p. 144]. It may seem impossibly opaque now, but I will explain it in Section 26.4*.

26.2.1 Theorem Under the null hypothesis, the test statistic

$$F = \frac{1}{qs^2} (a - A\hat{\beta}_{OLs})' [A(X'X)^{-1}A'] (a - A\hat{\beta}_{OLs})$$

has a Snedecor F-distribution with $(q, N - K)$ degrees of freedom.

Tests based on these statistics are called **F-tests**.

Many software packages, including R, compute for you something called the “F-statistic for the regression.” If you have a constant term, it is usually the first one, X_1 in our terminology. The F-statistic for the regression test the null hypothesis that all the coefficients on the non-constant terms are zero,

$$H_0: \beta_2 = \beta_3 = \cdots = \beta_K = 0.$$

The F-statistic for this test has $(K - 1, N - K)$ degrees of freedom, and it only makes sense to perform this test if one of the regressors is a constant term. This is a hypothesis that you probably would like to reject, so a small p-value (or large F-statistic) is a good thing. The reason this is important is that if the columns of X are nearly collinear, each individual $\hat{\beta}_{k,OLs}$ is hard to estimate, that is, it will have a large standard error, so each one may turn out to be statistically insignificant, but together they could truly determine y.

26.3* Lagrange Multiplier Theorem

Before I can explain why the test of general linear restriction is based on an F-test, or the ratio of independent χ^2 random variables, we need to characterize how to impose restrictions on a minimization problem.

Figure 26.1. Geometry of OLS.
26.3.1 Lagrange Multiplier Theorem
Let X be a subset of \mathbb{R}^n, and assume that the functions $f, g_1, \ldots, g_m : X \to \mathbb{R}$ are continuous. Let x^* be an interior constrained local minimizer of f subject to $g_i(x) = 0$, $i = 1, \ldots, m$. Suppose f, g_1, \ldots, g_m are differentiable at x^*, and that $\nabla g_1(x^*), \ldots, \nabla g_m(x^*)$ are linearly independent. Then there exist real numbers $\lambda_1^*, \ldots, \lambda_m^*$, such that
\[
\nabla f(x^*) - \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0.
\]
(2)

The function
\[
L(x, \lambda) = f(x) - \sum_{i=1}^m \lambda_i g_i(x)
\]
is called the Lagrangean and (2) is the set of first order conditions for a constrained extremum. It is also the set of FOCs for the minimization of the Lagrangean. When f is quadratic, and each g_i is linear, it turns out that the constrained minimizer of f is an unconstrained minimizer of the Lagrangean $L(x, \lambda^*)$. For a discussion and proof of the Lagrange Multiplier Theorem, see my online notes [1].

26.4 * Restricted regression

In Section 26.2 *, I asserted how to test a linear restriction on the coefficients. Here’s how to derive that.

In the linear model
\[
y = X\beta + \varepsilon,
\]
to test the linear restriction on β
\[
H_0 : a = A\beta,
\]
where A is $q \times K$ and has full rank, we first estimate (3) by minimizing the sum of squared residuals without restrictions, this gives us our usual estimates, but let me label them
\[
\hat{b}_u = (X'X)^{-1}X'y, \quad \hat{y}_u = X\hat{b}_u, \quad e_u = y - \hat{y}_u.
\]
Next we impose the restriction $a = Ab$ and minimize the sum of squared residuals (with respect to b) to get the restricted estimates: \hat{b}_r, \hat{y}_r, and residuals e_r.

To minimize the sum of squared residuals subject to the constraints, instead of projecting y onto the space $\{Xb : b \in \mathbb{R}^K\}$ spanned by the columns of X, we have to project y onto $\{Xb : b \in \mathbb{R}^K$ and $Ab = a\}$. The point y_r is still a linear combination of the columns of X, so the unrestricted residual vector e_u is orthogonal to $y_u - y_r$ and the Pythagorean Theorem tells us that
\[
e_r' e_r - e_u' e_u = (y_u - y_r)'(y_u - y_r).
\]
See Figure 26.2.

The first question is, “What is the formula for \hat{b}_r?” To answer this, note that the Lagrangean for this minimization is
\[
(y - Xb)'(y - Xb) - \lambda'(Ab - a)
\]
where λ is a q-vector of Lagrange multipliers. The Lagrange Multiplier Theorem states that the first order condition for a constrained minimum is that the vector of partial derivatives with respect to b of the Lagrangean must be zero,
\[
-2X'y + 2X'X \hat{b}_r - A'\lambda^* = 0.
\]
(4)
Figure 26.2. Restricted regression with restriction $\beta_1 = 1$. The points y_r, y_u, y form a right triangle with hypotenuse $\overline{y_r y}$.
Premultiply by $A(X'X)^{-1}$:

$$-2A(X'X)^{-1}X'y + 2A(X'X)^{-1}(X'X)\hat{b}_r = -A(X'X)^{-1}A'\lambda^* = 0,$$

or

$$A(X'X)^{-1}A'\lambda^* = 2(a - A\hat{b}_u).$$

(5)

I now claim that $A(X'X)^{-1}A'$ is a $q \times q$ matrix of full rank, so it has an inverse. This let’s us solve (5) for λ^*:

$$\lambda^* = 2 [A(X'X)^{-1}A']^{-1} [a - A\hat{b}_u].$$

Substitute this into (4) to get

$$-X'y + X'X\hat{b}_r - A'[A(X'X)^{-1}A']^{-1} [a - A\hat{b}_u] = 0.$$

Premultiply this by $(X'X)^{-1}$ to get

$$-(X'X)^{-1}X'y + (X'X)^{-1}X'X\hat{b}_r - (X'X)^{-1}A'[A(X'X)^{-1}A']^{-1} [a - A\hat{b}_u] = 0$$

so the formula for the restricted estimator is:

$$\hat{b}_r = \hat{b}_u + (X'X)^{-1}A'[A(X'X)^{-1}A']^{-1} [a - A\hat{b}_u]$$

(6)

The next question is, “What is the sum of squared residuals?” Well

$$e_r'e_r = (y - X\hat{b}_r)'(y - \hat{b}_r)$$

and we can use (6) to write

$$y - X\hat{b}_r = y - X\hat{b}_u - X(X'X)^{-1}A'[A(X'X)^{-1}A']^{-1} [a - A\hat{b}_u] = e_u + XC,$$

where $C = (X'X)^{-1}A'[A(X'X)^{-1}A']^{-1} [a - A\hat{b}_u]$. This means we can write

$$e_r'e_r = (e_u + XC)'(e_u + XC) = e_u'e_u + 2e_u'XC + (XC)'(XC).$$

But since the unrestricted residual vector e_u is orthogonal to the columns of X, we have $e_u'X$. Now let’s write out (recalling that the transpose of a product is the product of the transpose in reverse order, and observing that $[A(X'X)^{-1}A']^{-1}$ and $(X'X)^{-1}$ are symmetric):

$$(XC)'(XC) = [a - A\hat{b}_u]'[A(X'X)^{-1}A']^{-1}A'(X'X)^{-1}A'[A(X'X)^{-1}A']^{-1} [a - A\hat{b}_u]$$

$$= [a - A\hat{b}_u]'[A(X'X)^{-1}A']^{-1} [a - A\hat{b}_u]$$

Thus

$$e_r'e_r = e_u'e_u + [a - A\hat{b}_u]'[A(X'X)^{-1}A']^{-1} [a - A\hat{b}_u].$$

(7)

1 To see that the $q \times q$ matrix $A(X'X)^{-1}A'$ has full rank, suppose $A(X'X)^{-1}A'b = 0$ for some q-vector b. We want to show that this implies that $b = 0$.

Since A has rank q, so does $A'A$, so $(A'A)^{-1}$ exists. Premultiply the equation above by $(X'X)(A'A)^{-1}A'$ to get

$$(X'X)(A'A)^{-1}A'A(X'X)^{-1}A'b = A'b = 0.$$

Since A has rank q, this implies $b = 0$. q.e.d.
A test of H_0 amounts to a test of the null hypothesis

$$H_0: \frac{e'_u e_r}{e'_u e_u} = 1$$

versus the alternative hypothesis

$$H_1: \frac{e'_u e_r}{e'_u e_u} = e'_u e_u + [a - A \hat{b}_u]'[A(X'X)^{-1}A']^{-1}[a - A \hat{b}_u] > 1.$$

Now recalling that $s^2 = e'_u e_u/(N - K)$ is the unbiased estimate of the variance we can rewrite the ratio as

$$1 + \frac{(a - A\hat{\beta}_{OLS})'[A(X'X)^{-1}A']^{-1}(a - A\hat{\beta}_{OLS})}{(n - K)s^2}.$$

So form the test statistic

$$F = \frac{[a - A\hat{b}_u]'[A(X'X)^{-1}A']^{-1}[a - A\hat{b}_u]/q}{e'_u e_u/(N - K)}$$

Using a little tedious manipulation, you can show that if $a = A\hat{b}_u$, that is, if the null hypothesis is true, then the numerator is distributed $\chi^2(q)$. The denominator is distributed as $\sigma^2 \chi^2(n - k)$ and you can show that it is independent of the numerator. Thus, under the null hypothesis, the test statistic has an F-distribution with $(q, n - k)$ degrees of freedom. The null hypothesis should be rejected if $F \geq F_{1 - \alpha, q, n - k}$.

For the missing details see, e.g., Theil [6], Section 1.8, pages 42–45, and the discussion on pages 141–144.

26.5 The t-test vs. the F-test

We have now seen to ways to test the null hypothesis H_0: $\beta_j = 0$ against the alternative H_1: $\beta_j \neq 0$. One way is to use the t-test from Section 25.10 based the test statistic

$$t = \frac{\hat{\beta}_{JOLS}}{s \sqrt{(X'X)^{-1}_{jj}}}.$$

The other is to treat it as linear restriction $e^j' \beta = 0$, and use the F-statistic, which for this case ($A = e^j'$, $a = 0$, $q = 1$) becomes

$$F = \frac{\hat{\beta}_{JOLS}[(X'X)^{-1}]^{-1}\hat{\beta}_{JOLS}}{s^2}.$$

Note that $F = t^2$, so either test (with the same significance level α) leads to the same decision.

26.6 Two t-tests vs. a single F-test

While the t-test and the F-test for single $\hat{\beta}_{JOLS}$ agree, there can be disagreement between a joint test and two separate tests. For instance, consider the joint null hypothesis $H_0: (\hat{\beta}_1, \hat{\beta}_2) = (0, 0)$. This will be rejected at the $\alpha = 0.05\%$ level if the vector $(\hat{\beta}_1, \hat{\beta}_2)$ lies outside the ellipse shown in Figure 26.3. The point A is such a point, but B is not. Now consider the two hypotheses $H'_0: \hat{\beta}_1 = 0$ and $H'_0: \hat{\beta}_2 = 0$. The first will be rejected if $(\hat{\beta}_1, \hat{\beta}_2)$ lies outside the vertical lines, and the second will be rejected if $(\hat{\beta}_1, \hat{\beta}_2)$ lies outside the horizontal lines. Thus A fails the joint test, but passes both separate tests; and B passes the joint test, fails the each of the separate
Figure 26.3. A joint test vs. two separate tests.
tests. This need not always happen, but it might. You as a researcher have to decide what is the appropriate test.

(By the way the figure is drawn assuming that \((\hat{\beta}_1, \hat{\beta}_2)\) is bivariate normal with mean zero and covariance matrix \[
\begin{bmatrix}
1.0 & 0.8 \\
0.8 & 1.0
\end{bmatrix}
\]. The correlation of 0.8 is important in making the ellipse the right size and shape for the example. The fact that I use the multivariate normal instead of a multivariate \(t\) is secondary.)

26.7 The Coefficient of Determination, \(R^2\)

Given the standard linear model

\[
y = X\beta + \varepsilon = X\hat{\beta}_{OLS} + e = \hat{y} + e
\]

the Pythagorean theorem tells us that

\[
y'y = \hat{\beta}_{OLS}'X'X\hat{\beta}_{OLS} + e' + 2\hat{\beta}_{OLS}'X'e = \hat{y}'\hat{y} + e'e = 0
\]

as \(X'e = 0\).

Let \(\bar{y} = \sum t y_t / N\) be the sample average value of \(y\), and let \(\tilde{y}\) be the vector of centered values of \(y\), that is, \(\tilde{y}_t = y_t - \bar{y}\). If the set of regressors includes a constant term, that is, the model is

\[
Y_t = 1 \cdot \beta_0 + X_{1t} \beta_1 + \ldots + X_{k-1,t} \beta_{k-1} + \varepsilon_t,
\]

then regressing \(y\) on \(x\) and regressing \(\tilde{y}\) on \(x\) will give the same estimates of \(\hat{\beta}_i\), \(i = 1, \ldots, k - 1\) and exactly the same residuals \(e_t\), \(t = 1, \ldots, N\). But the estimated coefficient \(\hat{\beta}_0\) on the constant term shifts down by \(\bar{y}\). In fact, the scatterplot of the data and the regression line just shift down by \(\bar{y}\).

Now \(\tilde{y}'\tilde{y} = \sum (y_t - \bar{y})^2\) is a measure of the total variation of \(y\) in the sample. There are two reasons the values \(y_t\) are not all the same and equal to \(\bar{y}\). One is that the error terms \(\varepsilon_t\) are not all the same. The other is that the values \(x_t\) of the regressors are not all the same. How much of the variation is due to randomness (\(\varepsilon_t\)'s) and how much is “explained” by the regressors?

The coefficient of determination, which is denoted either by \(R^2\) or \(r^2\) is defined to be

\[
R^2 = 1 - \frac{e'e}{\tilde{y}'\tilde{y}},
\]

is often used as a measure of the fraction of the variation in \(y\) “explained” by the regressors. One of the consequences of (8) is that \(\hat{y}'\hat{y} \geq e'e\) and \(\tilde{y}'\tilde{y} \geq e'e\), so it is always the case that

\[
0 \leq R^2 \leq 1.
\]

The geometric interpretation of \(R^2\) is that \(R = \sqrt{R^2}\) is the cosine of the angle between \(\hat{y}\) and \(\bar{y}\). (Since \(e\) is orthogonal to \(\tilde{y} = X\hat{\beta}_{OLS}\), the three points \(0, \hat{y}, \text{and } y\) form a right triangle in \(\mathbb{R}^N\) with \(\bar{y}\) as the hypotenuse. Thus \(R\) is the ratio \(||\tilde{y}|| / ||\bar{y}||\), which is the cosine of the angle between them. An \(R\) near one corresponds to an angle near zero. The quantity \(R^2\) is usually referred to simply as “R squared.” Incidentally, almost no one talks about the value \(R\) for a regression. Instead they talk about \(R^2\), and most software reports \(R^2\).
Note that increasing the number of right-hand side variates can only decrease the sum of squared residuals, so it is desirable to penalize the measure of “fit.” One way to do this is with the adjusted R^2.

The adjusted \bar{R}^2 is defined by:

$$ (1 - \bar{R}^2) = \frac{1}{N-K} \frac{e'e}{y'y} = \frac{N - 1}{N - K} (1 - R^2) $$

or

$$ \bar{R}^2 = 1 - \frac{K}{N-K} \frac{N - 1}{N - K} R^2. $$

It is possible for the adjusted R^2 to be negative.

I am embarrassed to say that if you read the textbooks in econometrics that I used as an undergraduate, you will find an entirely different definition of R^2, which is sometimes referred to as the coefficient of multiple correlation. In this definition, the vector \hat{y} is replaced by y and R^2 is defined by

$$ R^2 = 1 - \frac{e'e}{y'y} = \frac{\hat{y}'\hat{y}}{y'y}. $$

(See e.g., Johnston [2, p. 36], Theil [6, p. 164].)

You might ask why do we divide $e'e$ by $y'y$ instead of $\hat{y}'\hat{y}$? Theil [6, p. 164n] claims that it is for notational simplicity. But if the regression model includes a constant term (one of the columns of X is a vector of ones), then the mean residual is zero, so $e'e/(N-K)$ is the unbiased estimate of σ^2. Moreover the regression plane passes through the sample mean; $\hat{y} = \bar{x}\beta_{OLS}$, where \bar{x} is the vector of regressor sample means. So if we drop the constant term and express all variates as deviations from their sample mean, we still get the same estimate of β. But the adjusted coefficient of multiple correlation is now a ratio of unbiased estimated variances [6, § 4.4, p. 175–177], and is sometimes also called the coefficient of determination [4, p. 579], and denoted r^2. Thus it make more sense to say that the coefficient of determination is the fraction of the sample variance of the y’s that is explained by the X’s.

What is a “good” value of R^2

A natural question is, “Is this a good R^2?” Unfortunately there is no simple answer to that question. Sometimes you might hope to get a low value for the R^2 in a regression. For instance, in HW 6, you were given Problem 7.4.9 in Larsen–Marx [4, pp. 399–400], which concerned the
age at which scientists did their best work. You were asked, “Plot the age versus date for these twelve discoveries. (Put the date on the abscissa.) Does the variability of the y_i’s appear to be random with respect to time?” In HW 8 you are asked to regress the age on the date. In each instance, you are hoping that there is no significant time trend, so that the data from different centuries are comparable. In this case, you would hope for an insignificant coefficient and a low R^2. Other times you may hope to get a high R^2. For instance, if you are testing Hubble’s Law using the data from [4, p. 543], you might be disappointed if your R^2 is less than 0.95. On the other hand if you are regressing economic growth rates on literacy rates an R^2 of 0.30 could be a significant find.

There is no necessary connection between the R^2 of a regression and the significance of a particular coefficient. I use significance here in the usual sense that an estimated coefficient $\hat{\beta}_i$ is significant at the α level if the null hypothesis $H_0: \beta_i = 0$ is rejected at the α level. It could well be that the value of X has a nonzero effect on the value of Y, but that a regression of Y on X and a constant still has a low value of R^2 because the variance of the error term ϵ is large. On the other hand, I could have a zero coefficient on one regressor and the R^2 could still be close to one if the other regressor determined Y.

26.8 Prediction intervals in the linear model

We often want to “predict” the value of Y for values of X_1, \ldots, X_K that we have not observed. (Recall the Road & Track example.) Let $x_\star = (x_1, \ldots, x_K)$ be a vector of values for the independent variables. Our model predicts

$$y_\star = x'_\star \beta + \epsilon_\star$$

so we form the prediction

$$\hat{y}_\star = x'_\star \hat{\beta}_{\text{OLS}}.$$

What is the confidence interval for y_\star? Now

$$\hat{y}_\star - y_\star = x'_\star \hat{\beta}_{\text{OLS}} - x'_\star \beta - \epsilon_\star = x'_\star (\hat{\beta}_{\text{OLS}} - \beta) - \epsilon_\star.$$

Therefore

$$\text{Var}(\hat{y}_\star - y_\star) = \text{Var}(x'_\star (\hat{\beta}_{\text{OLS}} - \beta) - \epsilon_\star)$$

$$= \text{Var}(x'_\star (\hat{\beta}_{\text{OLS}} - \beta)) + \text{Var}(\epsilon_\star)$$

$$= \sigma^2(x'_\star (X'X)^{-1}x_\star + 1).$$

Therefore

$$\frac{x'_\star \hat{\beta}_{\text{OLS}} - y_\star}{\sqrt{\sigma^2(x'_\star (X'X)^{-1}x_\star + 1)}} \sim N(0, 1).$$ (9)

Recall that $s^2 = e'e/(N - K)$, and that

$$\frac{(N - K)s^2}{\sigma^2} \sim \chi^2(N - K),$$

and note that this is independent of the ratio (9), because s^2 and $\hat{\beta}_{\text{OLS}}$ are independent and ϵ_\star is independent of ϵ from the sample. Therefore the ratio

$$\frac{x'_\star \hat{\beta}_{\text{OLS}} - y_\star}{\sqrt{\sigma^2(x'_\star (X'X)^{-1}x_\star + 1)}} = \frac{x'_\star \hat{\beta}_{\text{OLS}} - y_\star}{s\sqrt{x'_\star (X'X)^{-1}x_\star + 1}} \sim t(N - K).$$

Thus a $(1 - \alpha)$ confidence interval of y_\star is

$$\left[\hat{y}_\star - t_{\alpha/2, N-K}s\sqrt{x'_\star (X'X)^{-1}x_\star + 1}, \quad \hat{y}_\star + t_{\alpha/2, N-K}s\sqrt{x'_\star (X'X)^{-1}x_\star + 1}\right].$$

v. 2019.08.28::13.27 KC Border
26.9 * Measurement error

When the variables X_1, \ldots, X_K are measured with error, then the previous results need to be modified. It is no longer true that $\hat{\beta}_{\text{OLS}}$ is consistent and unbiased.

Suppose that the observed data X is actually

$$X = \tilde{X} + V,$$

where V is a matrix of measurement errors. We estimate the model

$$y = X\beta + u,$$

when in fact the correct model is

$$y = \tilde{X}\beta + \varepsilon,$$

or

$$y = (X - V)\beta + \varepsilon = X\beta + (\varepsilon - V\beta).$$

The OLS estimate derived from (10) is

$$\hat{\beta} = \beta + (X'X)^{-1}X'(\varepsilon - V\beta).$$

The expectation is

$$E\hat{\beta} = \beta + E(X'X)^{-1}X'\varepsilon.$$

One way to correct for this problem is to find a vector of random variables Z, called instrumental variables, which is uncorrelated with the errors V and with ε, then we can use these to estimate \tilde{X} and then use the estimated X’s to estimate β. See, e.g., Johnston [2, pp. 282–283]

26.10 * ANOVA is Multiple Regression in disguise

According to Wikipedia, the “law of the instrument” was formulated by Abraham Kaplan [3, p. 28]:

Give a small boy a hammer, and he will find that everything he encounters needs pounding.

This was reformulated by Abraham Maslow [5, p. 15]:

... it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail.

Perhaps that is why I think of ANalysis Of VAriance, or ANOVA for short, as a special case of multiple linear regression (which it is). However, the language of those who use ANOVA tends to be different from that of those who use linear regression, and part of what we will do today is learn that language.

26.11 Some Terminology

According to Larsen–Marx [4, pp. 431–432],

The word factor is used to denote any treatment or therapy “applied to” the subjects being measured or any relevant feature (age, sex, ethnicity, etc.) “characteristic” of those subjects. Different versions, extents, or aspects, of a factor are referred to as levels. ... Sometimes subjects or environments share certain characteristics that affect the way levels of a factor respond, yet those characteristics are of no intrinsic interest to the experimenter. Any such set of conditions or subjects is called a block.
I would probably call a factor an explanatory variable, and the level its value. Blocks would correspond to additional variables. The thing actually being measured is called the response, or what I would call the dependent, or left-hand side, variable.

Analysis of variance is designed to address data from a completely randomized single factor design with two or more levels.

26.12 The model

In terms of model equations (which is the most transparent way to look at models), we have

\[Y_{ij} = \mu_j + \varepsilon_{ij}, \quad (i = 1, \ldots, n_j; \ j = 1, \ldots, k) \] (11)

where there are \(k \) different factor levels, we have \(n_j \) observations of the response \(Y \) at level \(j \), and \(Y_{ij} \) is the \(i \)th measurement of the response at level \(j \), \(j = 1, \ldots, k \). Let \(n = n_1 + \cdots + n_k \) be the total number of observations.

The random variables \(\varepsilon_{ij} \) are assumed to be independent, have common mean zero and common variance \(\sigma^2 \). Thus \(\mu_j \) is just the expected value of the response at level \(j \).

The object of the analysis is estimate the vector \(\mu = (\mu_1, \ldots, \mu_k) \) and test hypotheses regarding it. The most common hypothesis is

\[H_0: \mu_1 = \cdots = \mu_k, \]

against the alternative

\[H_1: \text{not all the } \mu_j \text{'s are equal.} \]

To see why this framework is subsumed by regression, stack the vectors of observations \(y \) and errors \(\varepsilon_{ij} \), let \(X_j \) be a dummy variable or indicator for the \(j \)th level, and create an \(n \times k \) matrix \(X \) and rewrite the system (11) as

\[
\begin{bmatrix}
y_{11} \\
\vdots \\
y_{n_11} \\
y_{12} \\
\vdots \\
y_{n_22} \\
\vdots \\
y_{1k} \\
\vdots \\
y_{n_kk}
\end{bmatrix} = \begin{bmatrix}
1 \\
\vdots \\
1 \\
0 \\
\vdots \\
0 \\
\vdots \\
0 \\
\vdots \\
0
\end{bmatrix} \begin{bmatrix}
\mu_1 \\
\vdots \\
\mu_2 \\
\vdots \\
\mu_k
\end{bmatrix} + \begin{bmatrix}
\varepsilon_{11} \\
\vdots \\
\varepsilon_{n_11} \\
\varepsilon_{12} \\
\vdots \\
\varepsilon_{n_22} \\
\vdots \\
\varepsilon_{1k} \\
\vdots \\
\varepsilon_{n_kk}
\end{bmatrix}.
\]

This is a regression model with no constant term. If were to add a constant term it would be the sum of the off the other columns so \(X'X \) would be singular. As it is, \(X'X \) is the diagonal matrix with \(n_j \) on the diagonal (and therefore nonsingular) and it is easy to see that the OLS
estimated coefficients are the sample means for each level:

\[
X'X = \begin{bmatrix}
1 & 1 & 0 & \cdots & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \cdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \\
\end{bmatrix}
= \begin{bmatrix}
n_1 & 0 & \cdots & 0 \\
0 & n_2 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & n_k
\end{bmatrix}
\]

and

\[
X'y = \begin{bmatrix}
1 & 1 & 0 & \cdots & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \cdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \\
\end{bmatrix}
= \begin{bmatrix}
y_{11} \\
y_{n_11} \\
y_{12} \\
y_{n_22} \\
y_{1k} \\
y_{nk_k}
\end{bmatrix}
\]

so

\[
(X'X)^{-1}X'y = \begin{bmatrix}
\frac{\sum_{i=1}^{n_1} y_{i1}}{n_1} \\
\frac{\sum_{i=1}^{n_2} y_{i2}}{n_2} \\
\vdots \\
\frac{\sum_{i=1}^{n_k} y_{ik}}{n_k}
\end{bmatrix}
\]

In Lecture 26 we saw how to use an \(F \)-statistic to test linear restrictions on the coefficient vector \((\hat{\mu}_1, \ldots, \hat{\mu}_k) \). So we could stop here.

One reason for not stopping here is that the \(F \)-statistic is more transparent and intuitive in the traditional analysis. The other reason is that ANOVA analysis is usually presented in particular format, so you should learn to understand that. Historically, the traditional analysis
may have developed because it is less computationally intensive than OLS. (The general matrix
inversion to obtain \((X'X)^{-1}\) is replaced by \(k\) division operations.)

26.13 ANOVA terminology

Time for some more terminology:

- \(y_{ij}\) is the response of the \(i^{th}\) observation at level \(j\).
- \(T_{\bullet j} = \sum_{i=1}^{n_j} y_{ij}\) is the **response total** at level \(j\).
- \(\bar{Y}_{\bullet j} = \frac{T_{\bullet j}}{n_j}\) is the sample mean at level \(j\).
- \(T_{\bullet} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} y_{ij}\) is the sample overall total response.
- \(\bar{Y}_{\bullet} = \frac{1}{n} \sum_{j=1}^{k} \sum_{i=1}^{n_j} y_{ij} = \frac{1}{n} \sum_{j=1}^{k} T_{\bullet j}\) is the sample overall average response.
- The **treatment sum of squares** \(SSTR\) is defined to be
 \[
 SSTR = \sum_{j=1}^{k} n_j (\bar{Y}_{\bullet j} - \bar{Y}_{\bullet})^2
 \]
- \(\mu = \sum_{j=1}^{k} \frac{n_j}{n} \mu_j\) is the overall average of the (unobserved) \(\mu_j\)'s.

Now the MLE of \(\mu_j = \bar{Y}_{\bullet j}\), so the MLE of \(\mu\) is \(\bar{Y}_{\bullet}\).

It is not hard to show that (see Larsen–Marx [4, Theorem 12.2.1, p. 598–599])

\[
E(SSTR) = (k - 1)\sigma^2 + \sum_{j=1}^{k} n_j (\mu_j - \mu)^2.
\]

(12)

Now \(\sigma^2\) is not generally known, so we must estimate it. Start by defining

\[
s_j^2 = \frac{\sum_{i=1}^{n_j} (Y_{ij} - \bar{Y}_{\bullet j})^2}{n_j - 1},
\]

and aggregating

\[
SSE = \sum_{j=1}^{k} (n_j - 1) s_j^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_{\bullet j})^2,
\]

(13)

which is called the **error sum of squares**. The important fact about these is:

26.13.1 Theorem (Larsen–Marx [4, Theorem 12.2.3, p. 600])

\[
\frac{SSE}{\sigma^2} \sim \chi^2(n - k)
\]

and \(SSE\) and \(SSTR\) are stochastically independent.
There is one last sum of squares of interest. If we ignore the levels (treatments) the variance about \(\mu \) can be estimated by the total sum of squares \(\text{SSTOT} \):

\[
\text{SSTOT} = \sum_{j=1}^{k} (n_j - 1) s_j^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_{..})^2
\]

Tedious arithmetic (Larsen–Marx [4, Theorem 12.2.4, pp. 600–601]) shows that

\[
\text{SSTOT} = \text{SSTR} + \text{SSE}
\]

26.14 Testing equality of means

Note that if the null hypothesis

\[H_0 : \mu_1 = \cdots = \mu_k \]

is true, then

\[E \text{SSTR} = (k - 1) \sigma^2 \text{(by (12))} \quad \text{and} \quad E \text{SSE} = (n - k) \sigma^2 \text{(by (13))}. \]

Therefore we should expect

\[F = \frac{\text{SSTR}/(k - 1)}{\text{SSE}/(n - k)} \]

to be close to one. Otherwise it will be significantly greater than one. So the appropriate test is a one-sided \(F \)-test,

| Reject the null hypothesis \(H_0 \) if \(F \geq F_{1 - \alpha, k - 1, n - k} \). |

26.15 ANOVA tables

The traditional way to present ANOVA data is in the form of a table like this:

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>(k-1)</td>
<td>SSTR</td>
<td>(\frac{\text{SSTR}}{k-1})</td>
<td>(\frac{\text{SSTR}/(k - 1)}{\text{SSE}/(n - k)})</td>
<td>(F \leq F_{k-1, n-k})</td>
</tr>
<tr>
<td>Error</td>
<td>(n-k)</td>
<td>SSE</td>
<td>(\frac{\text{SSE}}{n-k})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(n-1)</td>
<td>SSTOT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two more terms: the mean square for treatments is

\[
\text{MSTR} = \frac{\text{SSTR}}{k - 1}
\]

the mean square for errors is

\[
\text{MSE} = \frac{\text{SSE}}{n - k}
\]
26.16 Contrasts

A linear combination of the form

\[C = w' \mu, \]

where \(1'w = 0 \) is called a contrast. A typical contrast uses a vector of the form

\[w = (0, \ldots, 0, 1, 0, \ldots, 0, -1, 0 \ldots, 0), \]

so

\[C = w' \mu = \mu_j - \mu_{j'}. \]

Then the hypothesis \(H_0: C = 0 \) amounts to \(H_0: \mu_j = \mu_{j'} \). This is probably why it is called a contrast.

To test a hypothesis that \(C = 0 \), we weight the sample means

\[\hat{C} = \sum_{j=1}^{k} w_j \bar{y}_{jj}. \]

Then

\[\mathbf{E} \hat{C} = C \quad \mathbf{Var} \hat{C} = \sigma^2 \sum_{j=1}^{k} \frac{w_j^2}{n_j}. \]

Define

\[\text{SS}_C = \frac{\hat{C}^2}{\sum_{j=1}^{k} \frac{w_j^2}{n_j}}. \]

\[F = \frac{\text{SS}_C}{\text{SSE}/(n - k)} \]

has \(F \)-distribution with \((1, n - k)\) degrees of freedom. The null hypothesis

\[H_0: w' \mu = 0 \]

should be rejected if \(F \geq F_{1-\alpha,1,n-k} \).

Bibliography

\[\text{http://www.its.caltech.edu/~kcborder/Notes/Max2.pdf} \]

