Non-symmetric Simple Random Walks along Orbits of Ergodic Automorphisms.

V. Yu. Kaloshin *, Ya. G. Sinai *†

Consider an ergodic measure-preserving automorphism T of probability space (M, \mathcal{M}, μ). Having a measurable function $p, 0 < p(x) < 1$ a.e., we can construct Markov chain whose phase space is M and a moving point $x \in M$ jumps from x to Tx with probability $p(x)$ and to $T^{-1}x$ with probability $1 - p(x)$. Such Markov chains are called simple random walks along orbits of T. If x_0 is an initial position then the position x_n at any moment of time n can be written as $x_n = T^{b_n}x_0$. For the sequence b_n we have $b_0 = 0$, $b_{n+1} - b_n = \pm 1$, i.e. b_n is a simple random walk on \mathbb{Z}^1, for which $P\{b_{n+1} = k + 1|b_n = k\} = p(T^kx)$, $P\{b_{n+1} = k - 1|b_n = k\} = 1 - p(T^kx)$. The first question which arises in this situation is whether this Markov chain has a stationary measure absolutely continuous wrt to μ. The density r of this measure must satisfy the equation

$$r(x) = r(T^{-1}x)p(T^{-1}x) + r(Tx)(1 - p(Tx)) \tag{1}$$

Assume that $0 < c_1 = const < p(x) < c_2 = const < 1$ a.e. and put $q(x) = r(x)p(x)$. Then

$$\frac{q(x)}{p(x)} = q(T^{-1}x) + q(Tx)\frac{1 - p(Tx)}{p(Tx)}$$

or

$$q(x) - q(Tx)\frac{1 - p(Tx)}{p(Tx)} = q(T^{-1}x) - q(x)\frac{1 - p(x)}{p(x)}.$$

This shows that $q(x) - q(Tx)\frac{1 - p(Tx)}{p(Tx)}$ is invariant under T and must be a constant a.e. since T is ergodic:

$$q(x) - q(Tx)\frac{1 - p(Tx)}{p(Tx)} = C$$

*Mathematics Department of Princeton University.
†Landau Institute of Theoretical Physics, Moscow
or

\[q(x) = q(Tx) \frac{1 - p(Tx)}{p(Tx)} + C, \quad C = \text{const} \] \quad (2)

Definition 1. Simple random walks is called symmetric if

\[\int \ln p(x) d\mu(x) = \int \ln(1 - p(x)) d\mu(x). \]

Otherwise it is called non-symmetric.

Let us show that in the non-symmetric case (2) and therefore (1) always have a solution. Assume for the definiteness that

\[\int \ln(1 - p(x)) d\mu(x) < \int \ln p(x) d\mu(x). \] \quad (3)

It is easy to see that the series below converges for a.e. \(x \)

\[q(x) = C + C \frac{1 - p(Tx)}{p(Tx)} + C \frac{1 - p(Tx)}{p(Tx)} \cdot \frac{1 - p(T^2x)}{p(T^2x)} + \ldots \] \quad (4)

Indeed, the product of \(k \) terms can be rewritten as

\[\prod_{i=1}^{k} \frac{1 - p(T^i x)}{p(T^i x)} = \exp \left[\sum_{i=1}^{k} \ln \frac{1 - p(T^i x)}{p(T^i x)} \right]. \]

The last sum behaves a.e. as \(-ck\) as \(k \to \infty\) in a view of ergodic theorem where \(c = \int \ln \frac{1}{1 - p(x)} d\mu(x) > 0 \). The case \(\int \ln(1 - p(x)) d\mu(x) > \int \ln p(x) d\mu(x) \) can be considered in the same way.

If the random walk is symmetric then \(C = 0 \). Indeed, we must have

\[\int q(x) d\mu(x) = \int \ln \left(q(Tx) \cdot \frac{1 - p(Tx)}{p(Tx)} + C \right) d\mu(x) \] \quad (5)

The right-hand side is a monotone function of \(C \). Since (5) holds for \(C = 0 \) we get the result. In this case (2) is reduced to

\[\frac{q(x)}{q(Tx)} = \frac{1 - p(Tx)}{p(Tx)} \]

or

\[\ln q(x) - \ln q(Tx) = \ln(1 - p(Tx)) - \ln p(Tx) \] \quad (6)
The last equation has a solution for generic \(p \) only if \(T \) is a shift on a compact abelian group i.e. it is an automorphism with pure point spectrum [S2] Lect.4. This follows easily from the spectral theory of dynamical systems. This case with \(M = Tor^d \) was considered in [S1]. For other transformations having a continuous component in the spectrum the equation (6) has no solution for generic \(p \).

Fix \(x \in M \) and consider the probabilities \(p^{(+)}_{2n}(x) \) of random walks \(\{b(m) \ 0 \leq m \leq 2n\} \) (see above) for which \(b(m) > 0 \) for \(0 < m < 2n \), \(b(2n) = 0 \). Following P.Levy we call such walks positive excursions. One can consider also negative excursions and corresponding probabilities \(p^{(-)}_{2n}(x) \). It is easy to see that

\[
p^{(+)}_{2}(x) = p(x)(1 - p(Tx)),
\]

\[
p^{(+)}_{2n}(x) = p(x) \left[\sum_{s \geq 1} \sum_{n_1 + n_2 + \cdots + n_s = n - 1 \atop n_i \geq 0, 1 \leq i \leq s} p^{(+)}_{2n_1}(Tx) \cdots p^{(+)}_{2n_s}(Tx) \right] (1 - p(Tx))
\]

For the generating \(\varphi^{(+)}(x, \Theta) = \sum_{n \geq 1} p^{(+)}_{2n}(x) \Theta^{2n}, \ |\Theta| \leq 1 \), we derive from (7) and (8) the equation (see also [S1])

\[
\varphi^{(+)}(x, \Theta) = \frac{p(x)(1 - p(Tx))\Theta^2}{1 - \varphi^{(+)}(Tx, \Theta)}.
\]

Lemma 1. If (3) is valid then \(\varphi^{(+)}(x, 1) = p(x) \frac{\Lambda(x)}{\Lambda(x) + 1} \) where \(\Lambda(x) = \sum_{k=1}^{\infty} \prod_{i=1}^{k} \frac{1 - p(T^i x)}{p(T^i x)} \).

The last series converges a.e.

Proof. For \(\varphi^{(+)}(x, 1) \) we have from (9)

\[
\varphi^{(+)}(x, 1) = \frac{p(x)(1 - p(Tx))}{1 - \varphi^{(+)}(Tx, 1)}.
\]

Then for \(\psi^{(+)}(x, 1) = \varphi^{(+)}(x, 1)/p(x) \leq 1 \) we have

\[
\psi^{(+)}(x, 1) = \frac{\frac{1 - p(Tx)}{p(Tx)}}{1 - \psi^{(+)}(Tx, 1)}.
\]

3
Since $\psi^+(y, 1) > 0$ one can write $\psi^+(T^k x, 1) = \frac{\Lambda(T^k x)}{\Lambda(T^k x) + 1}$. Then (11) gives

$$\frac{\Lambda(x)}{\Lambda(x) + 1} = \frac{1 - p(Tx)}{p(Tx)} \Lambda(Tx) + \frac{1}{\varphi(Tx)}.$$

or

$$\Lambda(x) = \frac{1 - p(Tx)}{p(Tx)} + \frac{1 - p(Tx)}{p(Tx)} \Lambda(Tx)$$

(12)

This shows that

$$\Lambda(x) = \sum_{k=1}^{\infty} \prod_{i=1}^{k} \frac{1 - p(T^i x)}{p(T^i x)}$$

The last series converges a.e. in view of (3) and gives the result, QED. Notice that $\Lambda(x) = C^{-1} q(x)$, where $q(x)$ is defined by formula (4).

If we calculate in the same way the distribution of negative Levy excursions we shall easily get for the corresponding generating functions that $\varphi^-(x, 1) = 1 - p(x)$.

Thus in the non-symmetric case (3) the probability of the negative excursion is $1 - p(x)$, the probability of the positive excursion is $p(x) \frac{\Lambda(x)}{\Lambda(x) + 1}$ and the probability that the moving point jumps from x to Tx and does not return back to x is $p(x) \frac{\Lambda(x)}{\Lambda(x) + 1}$.

Let us calculate the expectation of the length of the positive excursion $m^+_1(x) = \sum_{n \geq 1} 2n p^+_n(x)$. We have by differentiating (9)

$$m^+_1(x) = \frac{\partial \varphi^+(x, 1)}{\partial \Theta} = \frac{2p(x)(1 - p(Tx))}{1 - \varphi^+(Tx, 1)} + \frac{p(x)(1 - p(Tx))}{(1 - \varphi^+(Tx, 1))^2} m^+_1(Tx)$$

(13)

The ratio $\frac{p(x)(1 - p(Tx))}{(1 - \varphi^+(Tx, 1))^2}$ equals

$$\frac{p(x)(1 - p(Tx))(\Lambda(Tx) + 1)^2}{((1 - p(Tx))\Lambda(Tx) + 1)^2} = \frac{p(x)}{p(Tx)} \cdot \frac{1 - p(Tx)}{p(Tx)} \cdot \frac{(\Lambda(Tx) + 1)^2}{\left(1 - \frac{p(Tx)}{p(Tx)} \cdot \Lambda(Tx) + \frac{1 - p(Tx)}{p(Tx)} + 1\right)^2}$$

$$= \frac{p(x)}{p(Tx)} \cdot \frac{(\Lambda(Tx) + 1)^2}{(\Lambda(x) + 1)^2} \cdot \frac{1 - p(Tx)}{p(Tx)}.$$
The last step was based on (12). If we put \(h(x) = \frac{2p(x)(1-p(Tx))}{1-\varphi^{(+)}(Tx,1)} \) then we can write \(m_1^{(+)}(x) \) in the form

\[
m_1^{(+)}(x) = h(x) + \frac{p(x)}{(\Lambda(x) + 1)^2} \cdot \sum_{k=1}^{\infty} h(T^k x) \prod_{i=1}^{k} \frac{1 - p(T^i x)}{p(T^i x)} \cdot \frac{(\Lambda(T^k x) + 1)^2}{p(T^{k+1} x)} \quad (14)
\]

In view of our assumption concerning \(p \) the function \(h \) is bounded from above and below. We need

Assumption 1. The function \(\Lambda \in L^1 (M, \mathcal{M}, \mu) \).

Under this assumption the density \(r(x) \in L^1 (M, \mathcal{M}, \mu) \) (see (1) and (4)).

In a similar way one can write down the expressions for the derivatives \(m_i^{(+)}(x) = \frac{d^i \varphi^{(+)}(x,1)}{dx^i} \) which are finite a.e. if the Assumption 1 holds.

The same analysis can be applied to \(\varphi^{(-)}(x,1) \) and its derivatives. One can show that if (3) holds then the probabilities \(p_n^{(-)}(x) \) decay exponentially. The sum \(\varphi(x, \Theta) = \varphi^{(+)}(x, \Theta) + \varphi^{(-)}(x, \Theta) \) is generating function for excursions, both negative and positive.

Consider the probability distribution \(P_{x}^{(n)} \) concentrated on the set \(\bigcup_{|k| \leq n} T^k x \) where \(P_{x}^{(n)}(k) \) is the probability of random walks starting from \(x = x_0 \) for which \(x_n = T^k x_0 \) or \(b(n) = k \). For \(k > 0 \) such random walks have the following structure. First it makes some numbers of positive or negative excursions coming back to \(x_0 \). Then it jumps to \(T x_0 \) and makes \(\nu_1 \) positive excursions. After this it jumps to \(T^2 x_1 \), makes there \(\nu_2 \) positive excursions and so on. We denote \(\nu_0, \nu_1, \cdots, \nu_k \) the numbers of these excursions and \(\xi_{i1}, \xi_{i2}, \cdots, \xi_{i\nu_i} \) are their lengths, \(i = 0, 1, \cdots, k \) \(\zeta_i = \xi_{i1} + \cdots + \xi_{i\nu_i} \). Then \(P\{\nu_i = r\} = \left(\frac{p(T^i x) \Lambda(T^i x)}{\Lambda(T^i x) + 1} \right)^r \), \(r = 1, 2, \cdots \) and we can write

\[
P_{x}^{(n)}(k) = \frac{1}{p(T^k x_0)} \cdot \frac{1}{1 - \frac{p(T^k x_0) \Lambda(T^k x_0)}{\Lambda(T^k x_0) + 1}} \cdot \sum_{r=0}^{\infty} \left(\frac{p(T^r x) \Lambda(T^r x)}{\Lambda(T^r x) + 1} \right)^r \quad (15)
\]

The factor \(\sum_{r=0}^{\infty} \left(\frac{p(T^r x) \Lambda(T^r x)}{\Lambda(T^r x) + 1} \right)^r \) is the sum over the values of \(\nu_i \) of probabilities to have \(r \) positive excursions. From (12)

\[
\frac{p(T^i x)}{1 - \frac{p(T^i x) \Lambda(T^i x)}{\Lambda(T^i x) + 1}} = \frac{\Lambda(T^i x) + 1}{(1-p(T^i x)) (\Lambda(T^i x) + 1)} = \frac{\Lambda(T^i x) + 1}{\Lambda(T^{i-1} x) + 1}
\]

Therefore
\[P_x^{(n)}(k) = \frac{1}{p(T^k x)} \frac{\Lambda(T^k x)}{\Lambda(x)} + 1 \hat{P}\{\zeta_0 + \zeta_1 + \cdots + \zeta_k = n - k\} = \frac{r(T^k x)}{\Lambda(x)} + 1 \hat{P}\{\zeta_0 + \zeta_1 + \cdots + \zeta_k = n - k\} \quad (16) \]

Here \(\hat{P} \) is the probability distribution corresponding to the distribution of the sum of \(k+1 \) independent random variables \(\zeta_i \) for which
\[
\hat{P}\{\zeta_i = 2m\} = \left(1 - \frac{p(T^i x)\Lambda(T^i x)}{\Lambda(T^i x) + 1}\right) P\{\zeta_i = 2m\}.
\]

Now we can formulate the main result of this paper.

Main theorem. For a non-symmetric random walks along orbits of \(T \) for which inequality (3), Assumption 1 hold and \(m_1^{(+)}(x), m_2^{(+)}(x), m_3^{(+)}(x) \in L^1(M, \mathcal{M}, \mu) \) the distribution \(P_x^{(n)} \) converges to \(r(z)d\mu(z) \) in the following sense: for any bounded measurable \(\varphi \)
\[
\lim_{n \to \infty} \int M \varphi(z) dP_x^{(n)}(z) = \lim_{n \to \infty} \sum_k P_x^{(n)}(k) \varphi(T^k x) = \int M \varphi(z) r(z) d\mu(z)
\]

for \(\mu \)-a.e. \(x \).

Proof. Using (16) we can write
\[
\sum_k P_x^{(n)}(k) \varphi(T^k x) = \frac{1}{\Lambda(x)} + 1 \sum_{i=1}^k \frac{r(T^i x) \varphi(T^i x) \hat{P}\{\zeta_0 + \zeta_1 + \cdots + \zeta_k = n - k\}}{\Lambda(x) + 1}
\]

In view of our assumptions the sequence of random variables \(\zeta_0, \zeta_1, \cdots, \zeta_k \) satisfies the local central limit theorem of probability theory. Therefore if \(a(T^i x) \) is the expectation of \(\zeta_i \) (with respect to \(\mathcal{P} \)), \(\sigma(T^i x) \) is its variance we can write
\[
\hat{P}\{\zeta_0 + \zeta_1 + \cdots + \zeta_k = n - k\} \sim \frac{1}{\sqrt{2\pi k \sigma}} \cdot \exp \left\{ -\frac{1}{2} \frac{(n - k - \sum_{i=1}^k a(T^i x))^2}{\sum_{i=1}^k \sigma(T^i x)} \right\}
\]

\[\sigma = \frac{1}{k} \sum_{i=1}^k \sigma(T^i x). \] The last formula shows that \(\hat{P} \) is a slowly varying function of \(n - k \). Therefore the average over \(k \) of \(r(T^k x) \varphi(T^k x) \) with respect to this probability distribution is equivalent to the usual average with respect to the uniform distribution which gives in the limit \(\int M \varphi(z) d\mu(z) \), QED.
Thus, the Proposition. QED.

Let us rewrite \(\Delta(\mathbf{x}) \) and any \(\mathbf{y} \). By formula (17), \(\Delta(\mathbf{x}) \) converges to \(r(\mathbf{y})d\mu(\mathbf{z}) \) in the following sense

\[
\lim_{n \to \infty} \int \phi(z) dP^{(n)}_x(z) = \lim_{n \to \infty} \sum_{k=1}^n P^{(n)}_x(k) \phi(T^k \mathbf{x}) = \int \phi(z) r(\mathbf{y}) d\mu(\mathbf{y})
\]

for all \(\mathbf{x} \in M \).

This theorem was proved in [S1] for any diophantine \(\omega \).

Proof Assume for definiteness that \(\int \ln(1 - p(x)) d\mu(x) \neq \int \ln p(x) d\mu(x) \).

Proposition \(\Lambda(\mathbf{x}) = \sum_{k=1}^{\infty} \prod_{i=1}^{k} \frac{1-p(T^i x)}{p(T^i x)} \) is a continuous function.

Proof of the Proposition. Put \(\eta(x) = \ln(1 - p(x))/p(x) \) and \(-C = \int \eta(x) d\mu(x) < 0 \). Rewrite \(\Lambda(\mathbf{x}) = \sum_{k=1}^{n} \exp(\sum_{k=1}^{n} \eta(T^k \mathbf{x})) \). Show that for any \(\epsilon > 0 \) there exists a constant \(n_0 = n_0(\epsilon) \) such that for any \(x \in M \) and \(n > n_0 \) the following holds:

\[
\sum_{k=1}^{n} \eta(T^k \mathbf{x}) < -(C - \epsilon)n < -Cn/2.
\]

(17)

Since, \(\eta(x) \) is a continuous function for any \(\epsilon > 0 \) there exists \(\delta = \delta(\epsilon) \) such that \(|\eta(x) - \eta(y)| < \epsilon/2 \) for any \(|x - y| < d\delta \). Fix a \(\delta \)-grid \(\{x_j\}_{i=1}^{N} \) on \(M = \text{Torus}^d \). By ergodic theorem there exists a universal constant \(n_0 \) such that for any \(j = 1, \ldots, N \) and any \(n > n_0 \)

\[
\left| \frac{1}{n} \sum_{i=1}^{n} \eta(T^i x_j) - \int \eta(y) d\mu(y) \right| < \epsilon/2.
\]

Then for any point \(x \in M \) there exists a point of the grid \(x_j \) such that \(|x - x_j| < \delta \). Thus,

\[
\left| \frac{1}{n} \sum_{i=1}^{n} \eta(T^i x) - \int \eta(y) d\mu(y) \right| < \epsilon.
\]

Formula (17) implies continuity of \(\Lambda(\mathbf{x}) \), because \(a_n(x) = \exp(\sum_{k=1}^{n} \eta(T^k \mathbf{x})) \) exponentially small and the sum over \(n > n_0 \) is uniformly small. This completes the proof of the Proposition. QED.

Let us rewrite

\[
m_1^{(+)}(x) = \frac{\partial \phi^+(x, \theta)}{\partial \theta} |_{\theta=1}
\]
in the form
\[m_1^{(+)}(x) = h(x) + h(x) \sum_{k=1}^{\infty} \prod_{j=0}^{k} \frac{\Lambda(T^{j+1}x)}{\Lambda(T^jx) + 1}. \]

\(\Lambda(x) \) is continuous and, therefore, bounded. This implies that \(m^{(+)}(x) \) is a bounded function of \(x \). One can check that
\[m_2^{(+)}(x) = \frac{\partial^2 \phi^{(+)}(x, \theta)}{\partial \theta^2} \bigg|_{\theta=1} \]
can be presented in the following form: Put \(\Phi(x) = 1 + \sum_{k=1}^{\infty} \prod_{j=0}^{k} \frac{\Lambda(T^{j+1}x)}{\Lambda(T^jx) + 1}. \) Then
\[m_2^{(+)}(x) = \left(h(x) + 2h(x)h(Tx) \frac{\Lambda(Tx) + 1}{p(Tx)(\Lambda(x) + 1)} \Phi(Tx) \right) \Phi(x). \]

It is easy to see that \(\Phi(x) \) is continuous and bounded. Therefore, \(m_2^{(+)}(x) \) is bounded. In a similar fashion one can check the third moment. Thus, we can apply the Main theorem. This completes the proof of the theorem. QED.

The second author thanks NSF and RFFI for financial support (grant DMS-9706794 and 96-01-0037).

Reference.