Heterostructure symmetry and the orientation of the quantum Hall nematic phases

J. Pollanen, K. B. Cooper, S. Brandsen, and J. P. Eisenstein
Institute of Quantum Information and Matter, Department of Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA

L. N. Pfeiffer and K. W. West
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received 29 June 2015; published 9 September 2015)

Clean two-dimensional electron systems in GaAs/AlGaAs heterostructures exhibit anisotropic collective phases, the quantum Hall nematics, at high Landau-level occupancy and low temperatures. An as yet unknown native symmetry-breaking potential consistently orients these phases relative to the crystalline axes of the host material. Here we report an extensive set of measurements examining the role of the structural symmetries of the heterostructure in determining the orientation of the nematics. In single quantum well samples we find that neither the local symmetry of the confinement potential nor the distance between the electron system and the sample surface dictates the orientation of the nematic. In remarkable contrast, for two-dimensional electrons confined at a single heterointerface between GaAs and AlGaAs, the nematic orientation depends on the depth of the two-dimensional electron system beneath the sample surface.

DOI: 10.1103/PhysRevB.92.115410

I. INTRODUCTION

High mobility two-dimensional electron systems (2DES) in GaAs/AlGaAs heterostructures have provided some of the earliest evidence for the existence of electronic nematic liquid crystals [1]. In such a nematic, electron-electron interactions can stabilize a phase with translational invariance but spontaneous orientational order. If the orientational order is pinned by a weak symmetry-breaking field (arising from the host crystal structure, or applied externally), the resistivity of the electron system becomes anisotropic, a readily observable signature. That such phases can arise out of a collection of pointlike electrons, in contrast to a conventional nematic liquid crystal composed of elongated molecules, is remarkable.

Electrical transport experiments [2,3] on ultraclean GaAs-based 2DESes revealed that a strong anisotropy in the longitudinal resistivity develops at temperatures below about $T \approx 150$ mK when a perpendicular magnetic field $B_{⊥}$ has positioned the Fermi level near half filling of the second (or a few higher) excited Landau level (LL). This anisotropy contrasts sharply with the observed isotropy of the resistivity, in the same samples, at half filling of the ground and first-excited LL, where electron-electron interactions lead to strongly correlated phases lacking orientational order, and at zero and low magnetic field where interactions are generally weak and the 2DES behaves semiclassically. These early observations are in qualitative agreement with prior theoretical work [4–6], at the Hartree-Fock level, which predicted the existence of charge density wave (or “stripe”) phases at half filling of the same LLs as found in experiment. Additional theoretical work, incorporating quantum and thermal fluctuations, led to the prediction that static long-range stripe order was likely absent, being replaced, via a Kosterlitz-Thouless transition, by nematic orientational order at low temperatures [7,8]. There is both experimental and additional theoretical support for this scenario [9–11].

An important aspect of the experimental observations of the nematic phases in 2DESs that is not understood is their consistent orientation relative to the crystalline axes of the host GaAs lattice. In all but a very few cases [12,13], the observed transport anisotropy is oriented such that the measured resistivity is large when the mean direction of the current flow is parallel to the (110) crystal axis and small when the current flow is parallel to (110), thus suggesting that the stripes align parallel to (110). Since the crystalline symmetry of bulk GaAs provides no distinction between the orthogonal (110) and (110) directions, the experimental observation of just such a distinction must arise from the fact that the 2DES resides not in pristine bulk GaAs, but instead in a complex semiconductor heterostructure grown one atomic layer at a time. In particular, the absence of mirror symmetry across the 2DES plane in such heterostructures opens the door to a distinction between (110) and (110), even if it does not identify the mechanism whereby the nematic phases sense that distinction [16].

In this paper we report on how the nematic phases respond to two types of controlled modification of heterostructure symmetry. In the first, we examine the nematic phases in a set of samples in which the 2DES is confined to a single quantum well that is either doped symmetrically or asymmetrically. In this way we show that in these samples the sign of the local perpendicular electric field experienced by the 2D electrons does not alter the orientation of the nematic phases. In the second set of experiments, the distance between the 2DES and the surface of the heterostructure is the controlled variable. Here we find that if the 2DES is confined in a quantum well, the orientation of the nematic phases in our samples is unaffected by the distance to the surface. In contrast, when the 2DES is confined at a single heterointerface, we find that the stripes lie along the “normal” direction (i.e., parallel to (110)), when the surface is fairly close to the heterointerface, but along (110) when the surface is more remote. We discuss these results...
in the context of the various symmetry-breaking mechanisms that have been proposed theoretically to be responsible for the orientation of the quantum Hall nematic phases.

II. EXPERIMENT

A. Samples

The samples used in this work are conventional modulation-doped GaAs/AlGaAs heterostructures grown by molecular beam epitaxy (MBE) on (001)-oriented GaAs substrates. A total of 13 independently grown samples have been examined. Ten of these are single GaAs quantum wells embedded in the alloy Al$_{0.32}$Ga$_{0.68}$As. Silicon δ-doping layers in the alloy are set back a distance d_β above and d_α below the quantum well and populate it with a high mobility two-dimensional electron system. These quantum well samples comprise three groups, A, B, and C, of three samples each (A_1, A_2, A_3; B_1, B_2, B_3; and C_1, C_2, C_3), plus one additional sample D_1. For samples A_1, B_1, C_1, D_1, the doping is symmetric, i.e., $d_\alpha = d_\beta$, while for samples A_2, B_2, and C_2 (A_3, B_3, and C_3) the doping is asymmetric, with $d_\alpha > d_\beta$ ($d_\alpha < d_\beta$). The doping asymmetry

\[d_\alpha : d_\beta = 1:4 (4:1) \]

in samples A_1 and C_1 (A_3 and C_3) and 1:1.7 (1.7:1) in sample B_1 (B_3). As intended, the measured [17] electron density in the 2DES in the group A and group C samples, and in sample D_1, are nearly identical, ranging from

\[n = 2.7 \times 10^1 \text{cm}^{-2} \]

The density in the group B samples ranges from

\[n = 3.0 \times 10^1 \text{cm}^{-2} \]

and

\[n = 3.1 \times 10^1 \text{cm}^{-2} \]

The width of the quantum well is $d_w = 30$ nm for the group A and C samples, 32 nm for the group B samples, and 28.3 nm for sample D_1.

In addition to these quantum well samples, three single heterointerface samples, H_1, H_2, and H_3, were examined. In these, the 2DES resides on the GaAs side of an interface between a GaAs and Al$_{0.32}$Ga$_{0.68}$As. A single Si δ-doping layer in the AlGaAs is positioned $d_\alpha = 80$ nm above the interface. The measured [17] 2DES density in these three samples ranges from

\[n = 2.0 \times 2.3 \times 10^1 \text{cm}^{-2} \]

For all six groups A and B samples, and for samples D_1 and H_1, the distance d_{cap} between the upper Si δ-doping layer at the sample top surface is $d_{\text{cap}} = 110$ nm. For the three group C samples and sample H_2, this “cap layer” thickness was increased tenfold to $d_{\text{cap}} = 1010$ nm. Finally, for sample H_3, $d_{\text{cap}} = 2010$ nm. In none of the samples was an additional doping sheet placed within the cap layer.

Although the low temperature electron mobility among the 13 samples varied from $\mu = 6$ to 20×10^6 cm2/V s, all exhibited robust transport signatures of the fractional quantized Hall effect and, most importantly, the quantum Hall nematic phases at $\nu = n h/e B_L = 9/2$ and $11/2$ filling factor. (Since the degeneracy of a single, spin-resolved LL is $e B_L/h$, $\nu = 9/2$ corresponds to half filling of the lower spin branch of the $N = 2$ excited LL [18].) The important parameters for the various samples are summarized in Table I.

B. Transport measurements

Each sample consists of a ~5 × 5 mm square chip cleaved from its parent MBE wafer. The crystallographic orientation of each sample is unambiguously established by one or more methods, including visual inspection of known surface defects. The samples are mounted on a rotation stage and thermally anchored to the mixing chamber of a dilution refrigerator. The rotation stage allows the magnetic field supplied by a superconducting solenoid to have components both perpendicular (B_L) and, when needed, parallel (B_\perp) to the 2DES plane. The in-plane field B_\parallel is directed along the (110) crystallographic direction.

Eight diffused In (or In-Sn) Ohmic contacts positioned at the corners and side midpoints of each sample enabled standard low-frequency ac electrical transport measurements. Excitation currents were kept small enough (typically 10 nA) to avoid electron heating.

The measurements reported here focus on the longitudinal resistances R_{xx} and R_{yy} of the nematic phase at $\nu = 9/2$, with the \hat{x} and \hat{y} directions corresponding to the $\langle 110 \rangle$ and $\langle 110 \rangle$ crystallographic axes, respectively. For these measurements, two opposing side midpoint Ohmic contacts are used to inject and withdraw current, while the voltage difference between the two corner contacts on one side of the mean current flow axis is recorded. Typically, R_{xx} and R_{yy} can differ by factors of order a few, even at high temperatures and at zero magnetic field. We attribute this to contact misalignments, inhomogeneities in the 2DES density, and other mundane sources. In any case, this effect in no way interferes with the identification of the nematic phases since the latter exhibit vastly larger differences between R_{xx} and R_{yy} that are highly temperature and filling factor dependent.

C. Signatures of the quantum Hall nematic

Figure 1 illustrates the basic phenomenology of the quantum Hall nematic phases. In Fig. 1(a) the measured longitudinal resistances R_{xx} and R_{yy} are compared, at $T = 50$ mK, in sample A_1, a symmetrically doped 30-nm quantum well. The resistances are plotted versus perpendicular magnetic field B_L (here the sample is not tilted, hence $B_\parallel = 0$) over a range encompassing both the nematic phase at $\nu = 9/2$ in the $N = 2$ LL and the incompressible fractional quantized Hall

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type</th>
<th>n</th>
<th>μ</th>
<th>d_{cap}</th>
<th>d_α</th>
<th>d_β</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>30 nm QW</td>
<td>2.7</td>
<td>8.8</td>
<td>110</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td>A_2</td>
<td>"</td>
<td>2.8</td>
<td>5.5</td>
<td>110</td>
<td>265</td>
<td>66</td>
</tr>
<tr>
<td>A_3</td>
<td>"</td>
<td>2.7</td>
<td>8.2</td>
<td>110</td>
<td>66</td>
<td>265</td>
</tr>
<tr>
<td>B_1</td>
<td>32 nm QW</td>
<td>3.0</td>
<td>9.9</td>
<td>110</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>B_2</td>
<td>"</td>
<td>3.0</td>
<td>10</td>
<td>110</td>
<td>135</td>
<td>78</td>
</tr>
<tr>
<td>B_3</td>
<td>"</td>
<td>3.1</td>
<td>8.8</td>
<td>110</td>
<td>78</td>
<td>135</td>
</tr>
<tr>
<td>C_1</td>
<td>30 nm QW</td>
<td>2.9</td>
<td>19.5</td>
<td>1010</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td>C_2</td>
<td>"</td>
<td>2.8</td>
<td>10.5</td>
<td>1010</td>
<td>265</td>
<td>66</td>
</tr>
<tr>
<td>C_3</td>
<td>"</td>
<td>2.7</td>
<td>11.6</td>
<td>1010</td>
<td>66</td>
<td>265</td>
</tr>
<tr>
<td>D_1</td>
<td>28.3 nm QW</td>
<td>2.8</td>
<td>16.5</td>
<td>110</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td>H_1</td>
<td>SI</td>
<td>2.2</td>
<td>13</td>
<td>110</td>
<td>80</td>
<td>n/a</td>
</tr>
<tr>
<td>H_2</td>
<td>SI</td>
<td>2.3</td>
<td>11</td>
<td>1010</td>
<td>80</td>
<td>n/a</td>
</tr>
<tr>
<td>H_3</td>
<td>SI</td>
<td>2.0</td>
<td>10</td>
<td>2010</td>
<td>80</td>
<td>n/a</td>
</tr>
</tbody>
</table>
magnetic field, through its mixing of Landau levels and quantum well subbands, creates an extrinsic rotational symmetry-breaking potential that competes with the native symmetry breaker responsible for the orientation of the resistive anisotropy at $B_{\parallel} = 0$. Indeed, the “critical” in-plane magnetic field, B_{\parallel}^c, needed to reorient the anisotropy provides a measure of the strength of the native symmetry-breaking potential; ~ 1 mK per electron being typical. However, as we explain below, difficulties arise when comparing B_{\parallel}^c among samples with differing structures.

III. RESULTS

A. Quantum well symmetry

To a good approximation, the density of electrons transferred from a Si δ-doping layer in an AlGaAs alloy across an interface to GaAs is simply $n = (\kappa \epsilon_0/e) \Delta V_2/d$, where d is the distance between the doping layer and the interface, ΔV_2 is the conduction-band edge offset at the interface, and κ is the alloy dielectric constant [26]. The validity of this approximation relies on the dopant concentration being large enough to pin the Fermi level in the Si layer close to the conduction-band edge. We have found that it provides a highly successful design rule for a wide variety of 2D electron systems in GaAs-based heterostructures.

For a single quantum well doped from both sides, the donors create a perpendicular electric field at the location of the 2DES given approximately by $E_{\perp}^d = \Delta V_2 (d_1 - d_0)/2d_1d_i$, where d_i and d_0 are the doping setback distances. Since in the same approximation the total electron density in the 2DES is given by $n = (\kappa \epsilon_0/e) \Delta V_2 (d_i + d_0)/d_0 d_i$ we have

$$E_{\perp}^d = n \frac{e}{2\kappa \epsilon_0} \frac{d_i - d_0}{d_i + d_0}.$$

(1)

E_{\perp}^d is a convenient quantitative measure of the asymmetry of the potential well confining the 2DES. Here and below, a positive electric field points along the MBE growth direction.

The nine quantum well samples in groups A, B, and C were designed specifically to determine whether confinement asymmetry was important in determining the orientation of the quantum Hall nematic phases. Using Eq. (1) and the doping setbacks listed in Table I, the donor electric field at the 2DES is $E_{\perp}^d = (+(-)1.2 \times 10^6$ V/m for samples A_5 and C_3 (A_i and C_i) and $E_{\perp}^d = (+(-)0.61 \times 10^6$ V/m for sample B_6 (B_i). Obviously, $E_{\perp}^d = 0$ for samples A_s, B_s, and C_s.

Figure 2 shows R_{xx} and R_{yy} around $\nu = 9/2$ at $T = 50$ mK in all six samples in groups A and B. The large transport anisotropy characteristic of the nematic phase is clearly evident in all of the samples. Furthermore, in all cases $R_{xx} \gg R_{yy}$ at $\nu = 9/2$, demonstrating that the stripe orientation is the same in all six samples. From these data we conclude that local symmetry of the potential confining the 2DES in these quantum well samples does not determine the orientation of the quantum Hall nematic phase at $\nu = 9/2$. Though not shown in the figure, the same conclusion applies to the group C samples, and to the nematic phase at $\nu = 11/2$ in all nine samples.
Dangling bonds at the physical surface of GaAs-based heterostructures create midgap states which pin the Fermi level about \(\Delta V_c \sim 800 \text{meV} \) below the GaAs conduction-band edge [27]. In our samples the single Si\(\delta \)-doping layer between the surface and the buried quantum well (or heterointerface) transfers electrons both to the quantum well and to the sample surface to bring the conduction-band edge down to the Fermi level in the Si donor layer. As a result, there is a perpendicular electric field, of magnitude \(E_{\perp} = \Delta V_c/d_{\text{cap}} \), in the cap layer. We note that this electric field does not affect the calculated donor electric field \(E_{\parallel}^c \) discussed in the previous section.

While all group A and group B quantum well samples have cap layers with thickness \(d_{\text{cap}} = 110 \text{nm} \), the three group C quantum well samples have a cap layer that is almost ten times larger: \(d_{\text{cap}} = 1010 \text{nm} \). For the group A and B samples \(E_{\perp}^c \approx 9 \times 10^6 \text{V/m} \), whereas for the group C samples \(E_{\perp}^c \approx 1 \times 10^6 \text{V/m} \). In spite of this large difference, the orientation of the quantum Hall nematic phase in the group C samples is the same as in groups A and B; the hard transport direction is \(\langle 110 \rangle \). Apparently, the cap layer thickness does not affect the orientation of the nematic phases, at least in these quantum well samples.

Remarkably, this conclusion does not carry over to the single heterointerface samples, \(H_1 \), \(H_2 \), and \(H_3 \), that we have examined. Figure 3 displays data from samples \(H_1 \) and \(H_2 \). For sample \(H_1 \), \(d_{\text{cap}} = 110 \text{nm} \), while for sample \(H_2 \), \(d_{\text{cap}} = 1010 \text{nm} \); these are the same thicknesses which distinguish the group A and B quantum wells from the group C samples. Now we find that the transport hard axis at \(\nu = 9/2 \) is along the “usual” direction, i.e., \(\langle 110 \rangle \), in sample \(H_1 \), but along \(\langle 110 \rangle \) in sample \(H_2 \). The same finding applies to the nematic phase at \(\nu = 11/2 \). Since the 2DES density, doping setback \(d_i \), and mobility in these two samples are nearly the same, it seems that the one structural difference between the two, the cap layer thickness \(d_{\text{cap}} \), must be responsible for the differing orientation of the nematic phase. Consistent with this, the third single heterointerface sample, \(H_3 \), for which \(d_{\text{cap}} = 2010 \text{nm} \), also exhibits the hard transport axis along \(\langle 110 \rangle \). We emphasize that beyond these two thick cap heterointerface samples (\(H_2 \) and \(H_3 \)), there has, to our knowledge, been only one other reported example [12,13] of a 2D electron system in which the hard transport axis of the \(\nu = 9/2 \) nematic phase is along \(\langle 110 \rangle \) instead of \(\langle 110 \rangle \) (absent a symmetry-breaking in-plane magnetic field).
nematic phase at

overcomes the native potential responsible for orienting the extrinsic symmetry-breaking potential due to the in-plane field the hard and easy transport directions of the quantum Hall field.

\[\frac{\Delta E_{1,0}}{\Delta E_{1,0}} \]

to that in the two 30-nm asymmetric samples, \(A_t \) and \(A_b \). As Fig. 4 shows, the interchange of the resistive anisotropy axes at \(v = 9/2 \) in sample \(D_s \) occurs at \(B_c \) = 0.6 T. This is much larger than the \(B_c \) = 0.25 T seen in sample \(A_t \), and not far from the values found in samples \(A_t \) and \(A_b \). These results demonstrate the sensitivity of the in-plane field effect to the details of the 2DES confinement potential and suggest caution in interpreting the magnitude of \(B_c \).

As mentioned in Sec. II C, a small in-plane magnetic field \(B_1 \) directed along \(\langle 110 \rangle \) is often sufficient to interchange the hard and easy transport directions of the quantum Hall nematic phases [20,21,28]. This interchange occurs when the extrinsic symmetry-breaking potential due to the in-plane field overcomes the native potential responsible for orienting the nematic phase at \(B_1 = 0 \). The magnitude (and sign) of the extrinsic \(B_1 \)-induced potential is highly sensitive to the details of the quantum well confining the 2DES [24].

Figure 4 compares the \(B_1 \) dependence of the resistive anisotropy in the \(v = 9/2 \) nematic phase in the symmetrically doped sample \(A_s \) to that in its asymmetrically doped partner samples, \(A_t \), and \(A_b \). The figure reveals that the critical in-plane field \(B_c^\ast \) is considerably larger in the asymmetric samples than in the symmetric sample. It therefore seems that either (a) the native symmetry-breaking potential orienting the \(v = 9/2 \) nematic phase in samples \(A_t \) and \(A_b \) is stronger than it is in sample \(A_s \), or (b) the extrinsic symmetry-breaking potential due to the in-plane field is weaker in samples \(A_t \) and \(A_b \) than it is in sample \(A_s \).

The in-plane magnetic field creates its symmetry-breaking effect by mixing electric subbands of the confinement potential with the Landau levels arising from the perpendicular magnetic field \(B_z \). The energy splitting \(\Delta E_{1,0} \) between the ground and first excited electric subband is therefore crucial, with larger splittings leading to a weaker \(B_1 \) effect. The calculated [29] values of this splitting are \(\Delta E_{1,0} = 11.4 \text{ meV} \) for the symmetric sample \(A_s \), and \(\Delta E_{1,0} = 13.3 \text{ meV} \) for the asymmetric samples \(A_t \) and \(A_b \). To investigate whether this modest difference is sufficient to explain the large discrepancy in the \(B_c^\ast \) values between sample \(A_s \) and samples \(A_t \) and \(A_b \), an additional symmetric quantum well sample was grown and studied. Structurally, sample \(D_s \) differs from sample \(A_s \) only in the width of the quantum well: 28.3 vs 30 nm, respectively. The two samples have very nearly the same 2DES density and both clearly exhibit the quantum Hall nematic phases with the hard transport axis along \(\langle 110 \rangle \). The calculated subband splitting in sample \(D_s \) is \(\Delta E_{1,0} = 13.1 \text{ meV} \); as intended this is close to that in the two 30-nm asymmetric samples, \(A_t \) and \(A_b \). As Fig. 4 shows, the interchange of the resistive anisotropy axes at \(v = 9/2 \) in sample \(D_s \) occurs at \(B_c^\ast \) = 0.6 T. This is much larger than the \(B_c^\ast \) = 0.25 T seen in sample \(A_t \), and not far from the values found in samples \(A_t \) and \(A_b \). These results demonstrate the sensitivity of the in-plane field effect to the details of the 2DES confinement potential and suggest caution in interpreting the magnitude of \(B_c^\ast \).

Figure 5 plots the observed \(B_c^\ast \) values versus the calculated values of \(\Delta E_{1,0} \) for all ten quantum well samples in this study [30]. The solid circles represent the symmetrically doped samples, the open circles those asymmetric quantum wells for which \(d_b < d_t \), and the open diamonds the asymmetric wells for which \(d_b > d_t \). The symbols are blue for the group A samples, red for group B, black for group C, and green for sample \(D_s \). Not surprisingly, since the group A and C samples have the same doping profiles and nearly equal electron densities, their calculated subband splittings are very similar. The symmetrically doped samples \(A_t \) and \(C_t \) exhibit almost identical critical fields, \(B_c^\ast \approx 0.25 \text{ T} \). The asymmetric samples \(A_t \), \(A_b \), \(C_t \), and \(C_b \) show considerable variation in the critical field (to which we return below) but, as already mentioned, \(B_c^\ast \) is substantially larger than in the symmetric samples \(A_t \) and \(C_t \). On average, these asymmetric samples exhibit a \(B_c^\ast \) close to that observed in sample \(D_s \). The group B samples, with their wider quantum wells (32 vs 30 nm) and smaller doping asymmetries (1.7:1 vs 4:1), have very nearly equal calculated subband splittings \(\Delta E_{1,0} \) and measured critical fields \(B_c^\ast \). Figure 4 demonstrates that, as expected, \(B_c^\ast \) rises quickly with \(\Delta E_{1,0} \).
There have been several suggestions for the origin of native symmetry-breaking field responsible for the consistent orientation of the quantum Hall nematic phases in 2D electron systems in GaAs/AlGaAs heterostructures. Taktamirov and Volkov [31] and Rosenow and Scheidl [32] suggested that anisotropy in the conduction-band effective mass, due to the asymmetric confinement field in single heterointerfaces, was responsible. Fil [33] pointed out that the piezoelectricity of GaAs explains why a one-dimensional charge density modulation in the 2DES prefers to lie along either along MacDonald [39] in the asymmetric quantum well samples or Volkov [31] systems in GaAs/AlGaAs heterostructures. Takhtamirov and native symmetry-breaking field responsible for the consistent vs systems in which the quantum Hall nematic phases are oriented in sample 31. Thus it appears that both the anisotropic effective mass models [31,32] and the recent spin-orbit model [39] are of at most secondary importance to the native symmetry-breaker.

Interestingly, Fig. 5 shows that the critical field B^c_\parallel for interchanging the resistive anisotropy axes is larger in sample A_b than it is in sample A_c, and larger in sample C_b than in sample C_c. These four samples are asymmetrically doped quantum wells, with $d_b = d_c/4$ in samples A_b and C_b, but $d_b = 4d_c$ in samples A_c and C_c. This might imply that the symmetry-breaking potential does contain a term proportional to the sign of the asymmetric donor electric field E^d_\parallel. Although not strong enough to determine the orientation of the nematic, this term would influence the net strength of the symmetry-breaking potential, and thereby affect B^c_\parallel. While appealing, we believe this conclusion is premature. First, we note that the asymmetric quantum well samples B_b and B_c exhibit essentially identical B^c_\parallel values. Although the donor electric fields in these group B samples are a factor of 2 less than those in the asymmetric group A and C samples ($E^d_\parallel = \pm 0.6 \times 10^6$ vs $\pm 1.2 \times 10^6$ V/m), a symmetry-breaking term proportional to E^d_\parallel should have shown up in samples B_b and B_c.

Alternatively, the variation in B^c_\parallel values among the group A and C asymmetrically doped samples might be due to unintentional structural differences among these samples. For example, the doping asymmetry of samples A_b (C_b) and A_c (C_c) might not be simply opposite in sign, but also differ in magnitude. Indeed, an “upward” diffusion of Si donors during MBE growth would reduce the effective value of d_b and increase that of d_c. While our growth procedure is designed to minimize this effect, it is unlikely to be wholly absent. In any case, such diffusion would increase $\Delta E_{1,0}$ in samples where $d_b < d_c$ and decrease it in samples where $d_b > d_c$. Since B^c_\parallel increases with $\Delta E_{1,0}$, this diffusion mechanism might explain why B^c_\parallel is larger in sample A_b (C_b) than in sample A_c (C_c).

While the same diffusion effect would exist in the group B samples, it would have much less effect since the calculated subband splittings already show little sensitivity to the doping asymmetry.

We turn now to our observations regarding the cap layer thickness d_{cap}. First, irrespective of its orientation, the quantum Hall nematic phase is clearly observed in samples C_1, C_2, C_3, H_2, and H_3, in all of which the 2DES lies more than 1 μm below the physical surface of the heterostructure [42]. This is an order of magnitude larger than the period λ of the charge density modulation of the “stripe” phases predicted by Hartree-Fock theory [4–6]. For example, at $\nu = 9/2$, $\lambda \approx 6\ell_c$, with $\ell_c = e\hbar/B_\parallel$ the magnetic length; $\lambda \approx 100$ nm in our samples. This observation thus discounts orientational symmetry-breaking mechanisms which rely on a nearby physical surface [35].

Our findings also impact the recent suggestion [37] that piezoelectric strain, created by built-in electric fields in complex GaAs/AlGaAs heterostructures, governs the native symmetry-breaking potential. For example, sample A_s and C_s are both symmetrically doped 30 nm quantum wells. Their 2DES densities, $n = 2.7$ and 2.9×10^{11} cm$^{-2}$; subband splittings, $\Delta E_{1,0} = 11.4$ and 11.2 meV; and critical in-plane fields, $B^c_\parallel = 0.25$ and 0.27 T; respectively, are all virtually identical. Both exhibit strong quantum Hall nematic phases, with hard transport in the usual direction: (110). However, as mentioned in Sec. III B, the thickness and perpendicular electric field in the cap layer of these two samples differ by a factor of almost 10: $d_{\text{cap}} = 110$ nm and $E^d_\perp = 9 \times 10^6$ V/m in sample A_s, but $d_{\text{cap}} = 1010$ nm and $E^d_\perp = 1 \times 10^6$ V/m in sample C_s. Consequently, the strain induced by the electric field E^d_\parallel in the cap layer is almost ten times smaller in sample C_s than it is in sample A_s. From this we conclude that piezoelectric strain in the cap layer due to Fermi level pinning at the surface is not the dominant source of the native symmetry-breaking potential in our quantum well samples.

In surprising contrast, the cap layer thickness strongly influences the symmetry-breaking potential in our single heterojunction samples. Both thick cap samples we examined, H_2 and H_3, exhibited well-developed quantum Hall nematic phases with their hard transport direction along (110). These two samples, along with the unusual sample employed Zhu et al. [12], are the only reported examples of 2D electron systems in which the quantum Hall nematic phases are oriented in this manner, at least in the absence of external perturbations or second subband occupation [13]. In their experiment, Zhu et al. employed a top-gated undoped single heterointerface. In this density-tunable sample, the hard axis of the $\nu = 9/2$ nematic was found to switch from (110) to (110) when the
density was increased beyond about $3 \times 10^{11} \text{ cm}^{-2}$. Although the mechanism for this switching is unknown, it is interesting to note that the electric field E_\perp^c in the cap layer of their sample was negative at all 2DES densities, with the switching observed for $E_\perp^c \leq -4 \times 10^4 \text{ V/m}$. In our heterointerface samples, the hard axis of the $v = 9/2$ nematic switched from (110) to (110) when E_\perp^c was reduced from $+9 \times 10^4$ to $+1 \times 10^5 \text{ V/m}$. Hence, in both experiments the switching is observed as E_\perp^c is changed in the same sense. The relationship, if any, between these observations remains to be investigated.

The single heterointerface results reported here suggest that the net native symmetry-breaking potential includes multiple contributions. One of these could be piezoelectric strain due to the electric field E_\perp^c in the cap layer [37]. This would be in competition with strain arising from the oppositely directed electric field $2E_\parallel^d$ in the doping setback region between the Si donors and the heterointerface and the average electric field E_\parallel^d experienced by the 2D electrons themselves. This last electric field might also contribute to the symmetry-breaking potential via the spin-orbit or effective mass anisotropy effects [31,32,39] mentioned above. The strain due to the cap layer electric field might determine the orientation of the nematic phases in the thin cap heterointerface sample H_1, while these other effects win in the thick cap samples H_2 and H_3.

While appealing, this scenario conflicts with our results in the quantum well samples. For example, the two asymmetrically doped samples A_i and C_i differ only in their cap layer thicknesses: $110 \text{ vs } 1010 \text{ nm}$, respectively. Their large doping asymmetries result in electric fields in the quantum well and the top doping setback region which are the same sign and close in magnitude to those in the single heterointerface samples H_1 and H_2. Nevertheless, in contrast to samples H_1 and H_2, these two quantum wells both display nematic phases with hard transport axes along (110). Furthermore, as already mentioned, the symmetric quantum well samples A_i and C_i, in which the electric fields in the top and bottom doping setbacks cancel and the average field in the quantum well itself vanishes, show the same orientation for the nematic (and essentially the same critical magnetic field B_1^c) in spite of their very different cap layer thicknesses.

The different dependence upon cap layer thickness of the single heterointerface and quantum well samples presents an intriguing puzzle. It suggests, perhaps not surprisingly, that the material both above and below the 2DES plays a role in the net native symmetry-breaking potential experienced by the nematic phases. In the single interface samples, the 2DES sits atop a thick (typically 1 m) layer of GaAs whereas in the quantum well samples there are relatively thick AlGaAs alloy layers both above and below the thin GaAs quantum well containing the 2DES. One manifestation of this structural difference is apparent in the response of the samples to the transient red light illumination applied as they are cooled from room temperature. Typically, the carrier density and mobility of the 2DES in single heterointerface samples both increase significantly after illumination. In part, this results from the photoexcitation of electron-hole pairs in the thin GaAs layer beneath the 2DES. Owing to the electric field in this layer, the electrons drift into the 2DES while the holes move toward the substrate. This charge separation in turn reduces the electric field in this region, thus altering the electronic structure of the sample. In contrast, the density and mobility of the 2DES in quantum wells is much less sensitive to illumination (although the “quality” of the magnetotransport is generally improved). While it has been previously reported [41] that the orientation of the quantum Hall nematic phases in quantum well samples is independent of whether the sample is illuminated or not, separation of photoexcited charges likely modifies the electronic structure in these samples as well. Whether these modifications can explain the peculiar cap layer dependence of the nematic phase orientation reported here is at present unknown. Certainly, the net strain profile and detailed electronic structure in these two types of heterostructures differ in detail and will be quite challenging to model quantitatively [43].

V. CONCLUSION

We have here reported on an extensive set of experiments, involving 13 distinct samples, designed to elucidate the nature of the native symmetry-breaking potential which orients the quantum Hall nematic phases that emerge at low temperature and high Landau-level occupancy in clean 2D electron systems in GaAs. Although the fundamental origin of the symmetry-breaking potential has not been determined, our findings significantly constrain theoretical models of it. In particular, we have found the orientation of the quantum Hall nematic to be insensitive to the sign of the perpendicular electric field E_\perp^c at the location of the 2DES. This electric field, through its coupling to the orbital and spin-orbital degrees of freedom of the 2DES, has been suggested as responsible for the orientation of the nematic phases [31,32,39].

In addition to the local symmetry of the 2DES confinement potential, we have also examined the quantum Hall nematic phases in samples with varying distances [42] between the 2DES and the physical surface of the heterostructure. Increasing the cap layer thickness d_{cap} from 0.1 to 1.0 μm was observed to have no effect on the orientation of the nematic phases in our quantum well samples but, remarkably, to interchange the hard and easy transport directions in our single heterointerfaces. While these opposite findings demonstrate that the cap layer thickness is not a reliable predictor [37] of the orientation, they do prove that a nearby surface is not essential for the robust pinning of it [35] and, at the same time, open an interesting avenue for future research.

Finally, we have shown that the reorientation of the transport anisotropy axes of the nematic phases due to an applied in-plane magnetic field B_1^c, while fundamentally well understood [24,25], is not well suited as a quantitative tool for comparing the strength of the native symmetry-breaker among disparate samples. In particular, our measurements have shown that even a small change in the energy splitting between subbands in the confinement potential can significantly alter the critical in-plane field B_1^c needed to reorient the nematic phase.

ACKNOWLEDGMENTS

We thank I. Sodemann, A. MacDonald, S. Kivelson, and E. Fradkin for discussions. The Caltech portion of this work was supported by NSF Grant No. DMR-0070890, DOE Grant No. FG02-99ER45766, and the Institute for Quantum Information.

115410-7
and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation, through Grant No. GBMF1250. The work at Princeton University was funded by the Gordon and Betty Moore Foundation through Grant No. GBMF 4420, and by National Science Foundation MRSEC Grant No. 1420541.

[13] We restrict our attention here to 2D systems in which only the ground electric subband of the confinement potential is occupied by electrons. Alternative orientations of the nematic phases have been reported in 2D systems in which the ground and first excited subbands of the confinement potential are occupied [14, 15].
[17] At low temperatures and after transient illumination with red light during the cooldown from room temperature.
[18] Calculations [28] show that in all samples save those in group B, only the ground electric subband is occupied by electrons. For the group B samples, the calculations suggest that about 6% of the total electron density resides in the second electric subband at zero magnetic field. In spite of this, the clear presence of the quantum Hall nematic phases at $v = 9/2$ and $11/2$ in these samples demonstrates that at these magnetic fields the Fermi level resides in the $N = 2$ LL of the ground subband, not the $N = 0$ LL of the second subband. The second subband is thus unoccupied at these fields.
[19] Anisotropy does develop at $v = 7/2$ and $5/2$ in 2D electron systems when an in-plane magnetic field is applied [20, 21]. Also, anisotropy at these filling factors is observed in 2D hole systems even in a purely perpendicular magnetic field [22,23].
[26] A more refined model includes subtracting the confinement and Fermi energy of the 2DES from ΔV_e.
[27] Although all our samples have a thin (10 nm) GaAs layer at the very top, the Si donors are in the AlGaAs alloy. Thus the effective value of ΔV_e is actually close to 1 eV.
[28] Typically the in-plane field orient the resistive anisotropy so that the hard axis is parallel to B_x. However, at large B_x and in 2D electron systems in which both the ground and first excited electric subband in the confinement potential are occupied with electrons, the hard axis can be parallel or perpendicular to the in-plane field, depending on details [24, 14].
[29] The calculation self-consistently solves the Schrodinger and Poisson equations in the local-density approximation.
[30] Results for the heterointerface samples H_x, H_z, and H_f are not included in Fig. 5 because of significantly greater uncertainty in the calculated ΔE_{10} values. This greater uncertainty arises primarily from the poorly known concentration of unintentional impurities in the thick GaAs layer atop which the 2DES resides in these samples.
[34] Experimental evidence in support of this conclusion can be found in K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 92, 026806 (2004).
[40] Liu et al. [15] observed that the hard axis of the quantum Hall nematic at $v = 13/2$ could switch from $\langle 110 \rangle$ to $\langle 110 \rangle$ if the confining quantum well was rendered even slightly asymmetric (in either sense) by electrostatic gating. The sample in question was a wide quantum well with two occupied subbands, and the switching was observed when the system was close to a Landau-level crossing.

[42] The total distance between the 2DES and the sample surface is the sum $d_{\text{cap}} + d_t$ of the cap layer thickness and the top doping setback distance.

[43] We remark that the lattice mismatch between GaAs and AlGaAs is not obviously irrelevant. For example, in our quantum well samples, the GaAs well is flanked by Al$_{0.2}$Ga$_{0.8}$As layers. These presumably random [44] alloys produce an isotropic tensile strain of approximately $\epsilon_{xx} = \epsilon_{yy} \approx 4 \times 10^{-4}$ in the thin GaAs layer. For comparison, in GaAs the biaxial piezoelectric strain arising from a perpendicular electric field of 1×10^7 V/m is only $\epsilon_{xx} = -\epsilon_{yy} \approx 3 \times 10^{-5}$. If the alloys are not truly random, owing, for example, to anisotropic growth kinetics, then the lattice mismatch might play a role in orienting the nematic phases.