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(a) α = 0°.
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(b) β = 0°.

Figure 15: Non-dimensionalized heat transfer (St) at x = 400 mm, φ = 45°.

B. Azimuthal Variation

The x = 0.4 m axial station illustrates the effect of vehicle attitude on transition, and was reported on
most thoroughly in Ref. 27. The x = 0.4 m axial station was HIFiRE-5b’s most densely instrumented, with
sensors spaced azimuthally in 5° increments (the φ = 50° sensor was repositioned to φ = 48° to obviate a
clash with a seam in the flight vehicle). The vehicle’s semi-major axis is 127 mm at this station, so the
average spanwise spacing between sensors was about 7 mm. Figure 14 in Ref. 27 presented the heat-flux
time histories for all 19 sensors between φ = 0 and 90°, inclusive. Figures 16 and 17 show the equivalents
for zero angle of attack and yaw in terms of Stanton number. Although the φ = 40° sensor data (Figs. 16i
and 17i) appear anomalous, transition at this station was determined as for the other sensors.

The observations and interpretations of the corresponding heat-flux data in Ref. 27 are generally repeated
and borne out by this new analysis. Previously, large heat-flux variations were attributed to the sensitivity
of the configuration to yaw.18,25,29 It is now observed that transition at some azimuths is more sensitive to
angle of attack than yaw (see Section VI, below, for further explanation). Unlike previously, it is possible
to discern sensors exhibiting large heat-flux variation despite controlling for attitude. The sensors nearest
the centerline — φ ≤ 10° — are good examples (Figs. 16a, 16b, and 16c). Note the relatively large scatter
in St, compared to sensors near the leading edge (e.g., Fig. 16s). These variations are more evidence that
the complex flowfield near the centerline leads to finely spaced hot streaks whose position is very sensitive
to attitude, especially yaw.24,27
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(a) φ = 0°.
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(b) φ = 5°.

0 5 10 15 20 25 30 35 40

Re (*106 /m)

0

0.5

1

1.5

S
t (

*1
0-3

)

> 0
 < 0

lam. emp.
turb. emp.

(c) φ = 10°.
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(d) φ = 15°.

0 5 10 15 20 25 30 35 40

Re (*106 /m)

0

0.5

1

1.5

2

S
t (

*1
0-3

)

 > 0
 < 0

lam. emp.
turb. emp.

(e) φ = 20°.
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(f) φ = 25°.
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(g) φ = 30°.
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(h) φ = 35°.
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(i) φ = 40°.
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(j) φ = 45°.
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(k) φ = 48°.
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(l) φ = 55°.

Figure 16: St(Re), α = 0°, x = 0.4 m.
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(m) φ = 60°.
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(n) φ = 65°.
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(o) φ = 70°
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(p) φ = 75°.
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(q) φ = 80°.
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(r) φ = 85°.
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(s) φ = 90°.

Figure 16: St(Re), α = 0°, x = 0.4 m. (Continued)
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(a) φ = 0°.
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(b) φ = 5°.
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(c) φ = 10°.
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(d) φ = 15°.
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(e) φ = 20°.
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(f) φ = 25°.
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(g) φ = 30°.

0 5 10 15 20 25 30 35 40

Re (*106 /m)

0

0.5

1

1.5

2

2.5

S
t (

*1
0-3

)

 > 0
 < 0

lam. emp.
turb. emp.

(h) φ = 35°.
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(i) φ = 40°.
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(j) φ = 45°.
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(k) φ = 48°.
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(l) φ = 55°.

Figure 17: St(Re), β = 0°, x = 0.4 m.
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(m) φ = 60°.
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(o) φ = 70°.

0 5 10 15 20 25 30 35 40

Re (*106 /m)

0

0.5

1

1.5

2

2.5

3

3.5

S
t (

*1
0-3

)

> 0
 < 0

lam. emp.
turb. emp.

(p) φ = 75°.

0 5 10 15 20 25 30 35 40

Re (*106 /m)

0

0.5

1

1.5

2

2.5

3

3.5

S
t (

*1
0-3

)

 > 0
 < 0

lam. emp.
turb. emp.

(q) φ = 80°.
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Figure 17: St(Re), β = 0°, x = 0.4 m. (Continued)

Figure 18 is a contour plot showing the ranges of freestream unit Reynolds number and azimuth where
heat flux is especially sensitive to angle of attack and yaw. The contours show ∆St, the difference between
St on the windward and leeward sides. Positive ∆St indicates higher St on the windward side; negative
∆St indicates higher St on the leeward side. The filtered Stanton number (the black and green lines in
Figures 16 and 17) was used to calculate ∆St. Using the filtered data, plus the white null space near zero
in the contour levels, results in these clean contour plots that summarize Figures 16 and 17 and highlight
their differences.

In Figure 18a, the angle of attack is fixed at zero and the effect of yaw is displayed. The prevalence of
positive ∆St shows that, when yawed, the windward side experiences greater peak heat flux. This is true
for all azimuths, but the freestream Reynolds number at which the heating imbalance occurs varies with
azimuth. For example, if HIFiRE-5b flew for an extended duration at Re = 14 ·106 /m, zero angle of attack,
and fixed small yaw angle (≈ 1°), the leading edge (φ = 90°) on the windward side at x = 0.4 m would
experience much larger heating than at the same station on the leeward leading edge. Or, equivalently, if
HIFiRE-5b flew for an extended duration at zero angle of attack and a small, oscillating yaw angle (β = ±1°),
the fluctuating heating amplitude at x = 0.4 m would be largest at φ = 90° and Re = 14·106 /m. The vehicle
would also experience relatively large thermal fatigue at φ = 55°, Re = 15 · 106 /m; φ = 25°, Re = 20 · 106

to 25 · 106 /m; and elsewhere. Note that the heating isn’t higher everywhere on the windward side —
slightly off the centerline (φ = 5–15°), the heating is lower for Re = 12 · 106 to 23 · 106 /m (but higher for
Re > 23 · 106 /m). This result is explained by the deflection to leeward of the region of high heating that
exists at the centerline for α = β = 0° (see, for example, Figure 8 in Ref. 28).
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Figure 18: Distribution of heating sensitivity. x = 0.4 m.

The heating imbalance between windward and leeward at zero yaw is shown in Figure 18b. There are
interesting differences compared to Figure 18a. Whereas nonzero yaw has a fairly large effect (at some Re) at
every azimuth, the effect of nonzero angle of attack is largely confined to the crossflow region (φ ≈ 25–70°).
Furthermore, where the difference between windward and leeward heating is largest, the heating is lower
on the windward side. This does not imply that windward heating is generally lower than leeward, but
rather that transition — specifically, crossflow-induced transition — is delayed on the windward side. For
example, recall Figure 17h (St as a function of Re at φ = 35°). The laminar heating rate is higher on the
windward side (α > 0) and the windward turbulent heating rate is higher, but transition on the leeward side
is earlier, so during a portion of the trajectory the transitional leeward heat flux is larger than the laminar
windward heat flux. This observation is explained by the reduced circumferential pressure gradient between
the windward centerline and leading edges at positive angle of attack and in agreement with ground-test
results (e.g., Figure 13 in Ref. 14).

VI. Results: Transition Onset and End

Figures 19, 20, and 21 are spanwise profiles of the freestream unit Re at boundary-layer transition. Each
corresponds to one of the densely instrumented axial stations: 0.4, 0.6, and 0.8 m, respectively. Green lines
and symbols show data from sensors on the windward side; black lines and symbols are used when those
sensors are on the leeward side. Circular markers show transition onset and the × symbols show transition
end (heat flux minimum and maximum, respectively).

Many observations can be made from these profiles. The three-lobed transition front is visible at each
station, with each lobe corresponding to a different transition mechanism: a traveling instability near the
centerline (φ . 20°), where the boundary-layer velocity profile has an inflection point, crossflow instability
between the planes of symmetry, and second-mode waves near the leading edges (φ & 70°).29 By comparing
Re at transition onset and end for a particular sensor, the extent of the transitional region can be determined.
Where transition onset is relatively insensitive to angle of attack or yaw, the black and green curves will
coincide; wide divergence shows where heat flux may vary significantly for small changes in attitude. Some
regions may be almost insensitive to yaw, but very sensitive to angle of attack, and vice versa. Heating near
the centerline is very sensitive to yaw. The azimuthal extent of crossflow transition is similarly sensitive to
yaw. From φ = 50 to 70°, where crossflow transition appears earliest, the freestream Reynolds number at
which it first appears is apparently more sensitive to angle of attack than yaw.
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Figure 19: Freestream unit Re at transition onset and end. x = 0.4 m.
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Figure 20: Freestream unit Re at transition onset and end. x = 0.6 m.
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Figure 21: Freestream unit Re at transition onset and end. x = 0.8 m.
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Figure 22 shows profiles of Rex at transition onset. Transition location is observed to collapse significantly,
but not completely. There are several reasons for the imperfect collapse. One is the time-varying, non-uniform
wall temperature across the vehicle surface; although probably not a large driver of variability in transition,
temporal, streamwise, and spanwise temperature gradients are all present (see Fig. 16 in Ref. 27). Another
is the decreasing amplitude of the attitude variations throughout descent. For example, many sensors at
x = 0.8 m experienced transition at t ≈ 513 s, when the non-zero attitude was mostly > 1.0° (recall Figs. 8
and 9). Farther upstream, transition occurred at higher Re, which corresponds to a later time, and smaller
angles of attack and yaw angles (typically 0.5 to 1.0°). The third reason transition does not occur at constant
Rex is that the boundary layer on the HIFiRE-5 is not self-similar in the vicinity of the centerline (Fig. 5.1 in
Ref. 21), where low-momentum fluid is driven by the crossflow pressure gradient. Indeed, Rex at transition
onset during the HIFiRE-5b flight exhibited much more scatter near the centerline than toward the leading
edges — precisely where the the boundary layer is least similar and most sensitive to attitude variation.
Finally, ground-test results with TSP and IR thermography show a jagged transition front, with a lot of
spanwise variability for both crossflow-induced transition and transition near the centerline.31,38 With the
limited spanwise resolution of the flight-test instrumentation, this would be hard to discern.
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Figure 22: Rex at transition onset.
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VII. Conclusions

The successful HIFiRE-5b hypersonic flight test provided a wealth of surface-temperature data, from
which heat flux was calculated and boundary-layer transition was derived. A three-lobed transition front
was observed, with transition onset farthest forward near the centerline, along the leading edges, and part way
in between. Three different instability mechanisms are suspected as the causes of boundary-layer transition:
inviscid instability near the centerline, where the boundary-layer velocity profile has an inflection point,
second-mode waves at the leading edges, and crossflow instability in between.

Correlating pressure-transducer data with CFD analysis has been found to be effective for determining
angle of attack and yaw. Their effects on heat transfer and boundary-layer transition have been isolated
by sub-sampling the data. Controlling for vehicle attitude significantly reduced heat-flux fluctuations. The
heating rate at the leading edge exhibits the expected dependence on yaw angle and insensitivity to angle
of attack. Data from the crossflow-dominated portion of the flowfield shows the region’s sensitivity to angle
of attack and dependence on yaw. Transition near the centerline exhibited a small dependence on angle of
attack, but a large effect from yaw. These results agree well with ground-test data.
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