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ABSTRACT

We experimentally test a theory of risky choice in which the perception of a lottery payoff is noisy
due to information processing constraints in the brain. We model perception using the principle of
efficient coding, which implies that perception is most accurate for those payoffs that occur most
frequently. Across two pre-registered laboratory experiments, we manipulate the distribution from
which payoffs in the choice set are drawn. In our first experiment, we find that risk taking is
more sensitive to payoffs that are presented more frequently. In a follow-up task, we incentivize
subjects to classify which of two symbolic numbers is larger. Subjects exhibit higher accuracy and
faster response times for numbers they have observed more frequently. In our second experiment,
we manipulate the payoff distribution so that efficient coding modulates the strength of valuation
biases. As we experimentally increase the frequency of large payoffs, we find that subjects perceive
the upside of a risky lottery more accurately and take greater risk. Together, our experimental
results suggest that risk taking depends systematically on the payoff distribution to which the
decision maker’s perceptual system has recently adapted. More broadly, our findings highlight the
importance of imprecise and efficient coding in economic decision-making.
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I. Introduction

In nearly all economic models of risky choice, the decision maker (henceforthDM ) is assumed

to make a choice based on a precise representation of available lotteries. Yet a large literature

in numerical cognition �nds that humans perceive numerical quantities with noise, even when

the quantities are clearly presented to the DM through Arabic numerals (see Dehaene, 2011,

for a review). This basic premise leads to the hypothesis, recently proposed by Khaw, Li, and

Woodford (2020) (henceforth KLW), that risky choice will also be based on a noisy representation

of available lotteries. As KLW show theoretically, noisy perception of lottery payo�s can provide a

microfoundation for small-stakes risk aversion and stochastic choice.

The idea that perceptual noise drives risk aversion has a variety of important but untested

implications. For instance, if perceptual noise systematically varies across environments, so should

the DM 's appetite for risk (Woodford, 2012a,b). This implication is particularly relevant because

there is evidence that noise in perception of sensory stimuli|such as light or sound|changes

optimally with the environment. Speci�cally, a core principle from neuroscience called e�cient

coding states that the brain should allocate resources so that perception is relatively more precise

for those stimuli that are expected to occur relatively more frequently (Barlow, 1961; Laughlin,

1981).1 This principle explains the temporary \blindness" that we experience when moving from a

dark room to a brightly lit one, because resources have not yet been adjusted for precisely perceiving

objects in the new bright environment. If the principle of e�cient coding also governs choice under

risk, then the DM 's perception of a lottery payo�|and hence her appetite for risk|will vary with

the environment.

In this paper, we design and conduct two pre-registered experiments to test the hypothesis that

e�cient coding operates during risky choice. In each experiment, we measure how the demand for

a risky lottery varies as we change the payo� distribution to which a subject has recently adapted.

To guide our experimental design, we build a theoretical framework that combines principles from

two existing models. First, the foundation of our framework is the KLW model, which assumes

that the DM observes noisy signals of lottery payo�s and subsequently forms optimal estimates of

1For experimental evidence consistent with e�cient coding in sensory perception, see Girshick, Landy, and Si-
moncelli (2011), Wei and Stocker (2015, 2017), Heng, Woodford, and Polan��a (2020), and Payzan-LeNestour and
Woodford (2021). See also the evidence from Polan��a, Woodford, and Ru� (2019) on e�cient coding in choice
between food items.
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these payo�s through Bayesian inference. Second, we rely on the e�cient coding model from Heng,

Woodford, and Polan��a (2020) (henceforth HWP) to endogenize the conditional distribution of

noisy signals|which is called the \e�cient code." As in KLW, our framework generates stochastic

choice between a risky lottery and a certain option; but, crucially, by adding the e�cient coding

mechanism from HWP, we can assess how the environment modulates the probability of choosing

the risky lottery.

To build intuition, consider a DM who chooses between a binary risky lottery and a certain

option. Furthermore, suppose theDM is in a low volatility environment where the upside of the

risky lottery is drawn from a narrow range between $15 and $25. E�cient coding implies that

the brain will allocate its limited resources across this narrow range, allowing theDM to easily

distinguish between payo�s in the range [$15, $25]. Suppose now the volatility increases, so that

the upside of the risky lottery is drawn from a wider range between $5 and $35. E�cient coding

then predicts that resources will be partially reallocated away from the narrow range and towards

the extremes of the new range. As the perceptual system must now \cover more ground" with its

limited resources, theDM �nds it more di�cult to distinguish between payo�s in the range [$15,

$25].

The shift in perceptual resources immediately leads to a testable prediction about choice. In

the low volatility environment, if we increase the upside of the risky lottery from, say, $20 to

$21, the DM will �nd it easy to distinguish between the two payo�s, and therefore she can easily

perceive the increase in the attractiveness of the risky lottery. As a result, the increase in the risky

lottery's upside payo� will have a large impact on the likelihood that the DM accepts the risky

lottery. Conversely, in the high volatility environment, perceptual resources are spread across a

wider range, and therefore theDM will have greater di�culty distinguishing between $20 to $21.

As such, the same $1 increase in the risky lottery payo� will have asmaller impact on the DM 's

likelihood of accepting the risky lottery, compared to that in the low volatility environment.

More generally, the e�cient coding model of HWP predicts that perception|and hence behavior|

is more sensitive to changes in payo� values when the dispersion of potential payo�s is smaller.2

This prediction is inconsistent with most standard economic models of risky choice in which val-

2This prediction is derived under the assumption that coding resources do not change with the volatility of the
payo� environment. Later in the paper, we discuss implications for the case when coding resources can change with
the volatility of the payo� environment.
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uation is non-stochastic and independent of context. At the same time, the prediction is shared

by a broad class of theories including the prominent decision-by-sampling model from cognitive

science (Stewart, Chater, and Brown, 2006), theories of normalization from neuroscience (Rangel

and Clithero, 2012; Carandini and Heeger, 2012; Louie, Glimcher, and Webb, 2015), and alternative

speci�cations of e�cient coding (Wei and Stocker, 2015; KLW).

In our �rst experiment, we test the above prediction by incentivizing subjects to make a series of

decisions between a risky lottery and a certain option. We manipulate the range of payo�s across a

high volatility condition and a low volatility condition, and crucially, we include a set of 30 \common

trials" that are presented in both conditions. These common trials allow us to cleanly compare

behavior across conditions and identify the e�ect of the prior distribution. Another important

component of our design is that our tests do not depend on whether theDM 's objective is to

maximize the precision of her payo� estimate (as in models of sensory perception) or to maximize

her expected �nancial gain (as in models of economic decision-making) (Rustichini, Conen, Cai,

and Padoa-Schioppa, 2017; Ma and Woodford, 2020).3 Thus, the data we produce can be used to

simultaneously test di�erent speci�cations of e�cient coding in choice under risk.

The results from our �rst experiment provide strong evidence that e�cient coding in
uences the

demand for risky lotteries. We �nd that in the low volatility condition, a $1 increase in the payo�

of the certain option is associated with an 18.6% increase in the probability of choosing the certain

option, compared to a smaller increase of 13.7% in the high volatility condition. These estimates

are based on the same exact choice sets from each condition, and the e�ect is signi�cant both

between and within subjects. We also �nd that subjects execute decisions signi�cantly faster in

the low volatility condition, and therefore our results cannot be driven by an alternative hypothesis

where subjects in the low volatility condition choose to process information for a longer period of

time.

As an additional test of the mechanism, we present each subject with a \perceptual choice"

task following the risky choice task. In this second task, subjects still need to perceive numerical

quantities, but they do not need to perceive any probabilities or integrate them with payo�s. We

3As emphasized in Ma and Woodford (2020), there are di�erences in the way that resource constraints are imposed
across di�erent models of e�cient coding. While we use a speci�c constraint levied by HWP, the main prediction we
test is qualitatively similar to other models of e�cient coding in sensory perception that assume di�erent constraints,
such as Wei and Stocker (2015).
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incentivize subjects to classify whether a two-digit number displayed on each trial is above or

below a reference number. We �nd that even in this simpler environment, classi�cation accuracy

depends strongly on the distribution of numbers to which the subject has adapted. Subjects are

signi�cantly more accurate and they respond faster if the number they are classifying was presented

more frequently in the recent past.

When viewed through the lens of e�cient coding, the results from our �rst experiment indi-

cate that noisier perception generates noisier choice. At the same time, valuation remains largely

unbiased, in the sense that the average perception of a payo� is approximately the same as the

true payo�. The \bias towards the prior" e�ect, which is commonly associated with Bayesian mod-

els, does not arise in our model when the prior is uniform|as in our �rst experiment. For other

types of priors, however, e�cient coding can give rise to strong biases in valuation. As emphasized

by Woodford (2012a,b), e�cient coding can theoretically generate a value function that exhibits

several features from prospect theory, including reference dependence and diminishing sensitivity

(Kahneman and Tversky, 1979). Moreover, these features will 
uctuate over time as an optimal

response to changes in the environment. For example, an environment with a decreasing distribu-

tion of payo�s will induce the familiar value function with diminishing sensitivity as payo�s become

larger, while an environment with an increasing distribution of payo�s will generate diminishing

sensitivity as payo�s become smaller. Both types of value functions are a consequence of the per-

ceptual system's limited capacity to discriminate between payo�s that occur infrequently (Robson,

2001; Rayo and Becker, 2007; Netzer, 2009; Payzan-LeNestour and Woodford, 2021).

In our second experiment, we test whether risk taking is greater when theDM has adapted to an

increasing distribution compared to a decreasing distribution. Across two experimental conditions,

we manipulate theshapeof the payo� distribution while holding constant its range. When analyzing

identical choice sets across the two conditions, we �nd evidence consistent with a systematic bias

in valuation. As predicted by e�cient coding, a subject exhibits greater risk taking when she is

adapted to the increasing distribution, compared to the decreasing distribution. Intuitively, when

the subject is adapted to an increasing distribution, perceptual resources are allocated towards large

payo�s; this resource allocation enables theDM to accurately perceive the large and attractive

upside of the risky lottery, and thus she chooses to take risk. In contrast, when the subject is

adapted to a decreasing distribution, she has di�culty recognizing the large upside of the risky
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lottery, and hence is unwilling to take risk. Our results are consistent with those from a recent

perceptual choice experiment by Payzan-LeNestour and Woodford (2021), who �nd that \outlier"

stimuli are perceived less accurately than more frequently occurring stimuli. More generally, we

provide novel evidence consistent with the hypothesis that diminishing sensitivity to payo�s arises,

in part, from an optimal allocation of perceptual resources.

We emphasize that the existing evidence of e�cient coding, which comes almost exclusively

from data on sensory perception, in no way implies that the same mechanisms are deployed during

decision-making under risk. Indeed, it is plausible that sensory perception is governed by e�cient

coding while a di�erent decision system is activated when a subject is presented with a decision

concerning monetary risk. What we test in this paper is precisely the hypothesis that e�cient

coding and noisy perception are also active in higher-level decision systems that govern risky choice.

Our experimental evidence therefore supports a nascent theoretical agenda on the implications

of imprecise and e�cient coding for economic behavior (Woodford, 2012a,b; Steiner and Stewart,

2016; Gabaix and Laibson, 2017; Natenzon, 2019; Woodford, 2020; KLW; Enke and Graeber, 2021).

At a broader level, our results contribute to a growing literature that builds cognitive and

perceptual foundations for the psychological assumptions in behavioral economics. For instance,

several behavioral models of �nancial markets demonstrate that prospect theory preferences can

explain puzzling facts such as the high equity premium of the aggregate stock market (see Barberis,

2018, for a review). Our results provide novel empirical evidence consistent with the proposition

that e�cient coding provides a normative foundation for the value function assumed in prospect

theory (Woodford, 2012a,b).4

The rest of the paper is organized as follows. In Section II, we present a theory of e�cient

coding that guides our experimental design. Section III provides experimental tests of the model

by studying how the payo� distribution a�ects choice. Section IV provides additional discussions,

and Section V concludes.

4For alternative approaches to endogenizing the value function in prospect theory, see Friedman (1989) and Denrell
(2015).
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II. The Model

In this section, we present a theory of e�cient coding and risky choice that integrates two

existing theoretical models. The foundation of our theory is the KLW model of noisy perception of

lottery payo�s. In their baseline model, KLW assume a particular form of noisy coding of lottery

payo�s and a speci�c prior distribution, which they use to derive a series of novel implications

for risky choice. We build on KLW by integrating it with the e�cient coding model of HWP. By

combining these two models, the theory is able to generate predictions about how noisy coding|

and the probability of risky choice|systematically changes for any payo� distribution to which the

DM has adapted.5

II.A. Choice environment

The DM faces a choice set that contains two options: a certain option and a risky lottery. The

certain option, denoted as (C; 1), pays C > 0 dollars with certainty. The risky lottery, denoted as

(X; p; 0; 1 � p), pays X > 0 dollars with probability p and zero dollars with probability 1 � p. The

DM 's task is to choose between these two options.

Under Expected Utility Theory, a DM with utility U(�) and no background wealth chooses the

risky lottery over the certain option if and only if

p � U(X ) + (1 � p) � U(0) > U (C): (1)

Conditional on X , C, and p, the DM 's choice is non-stochastic.

We now present the KLW framework of noisy coding, which departs from Expected Utility The-

ory by assuming that perceptions ofX and C are noisy. The noisy coding assumption is motivated

by the literature in sensory perception, where a common �nding is that, when an identical stimulus

is presented on di�erent occasions (e.g., a �xed number of dots presented across di�erent trials of

an experiment), experimental subjects judge the stimulus di�erently across the di�erent occasions.

Before observing the choice set that containsX and C, the DM holds a prior belief, f (X; C ),

about X and C. We further assume the DM believes that X and C are drawn independently:

5KLW also provide an extension to their baseline model in which the precision of noisy coding can 
exibly change
with the volatility of a particular (lognormal) prior distribution. Our framework further generalizes this 
exibility
by deriving optimal coding rules for any prior distribution.
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f (X; C ) = f (X )f (C): Upon observing the choice set, theDM 's perceptual system spontaneously

generates a noisy signal,Rx , of X , and a noisy signal,Rc, of C.6 Each of the two signals is drawn

from a distinct conditional distribution: Rx is randomly drawn from f (Rx jX ) and Rc is randomly

drawn from f (RcjC). In the language of Bayesian inference, these conditional distributions are the

likelihood functions, which we de�ne in Section II.B.

Given the prior beliefs and the noisy signals, theDM follows Bayes' rule to generate posterior

distributions about X and C, which we denote byf (X jRx ) and f (CjRc). As in KLW, we assume

that the DM has linear utility. 7 Under this assumption, the optimal decision rule depends only

on the conditional means of the posterior distributions, E[ ~X jRx ] and E[ ~CjRc].8 The DM chooses

the risky lottery if and only if the perceived expected value of the risky lottery exceeds that of the

certain option, which occurs under the following condition: p � E[ ~X jRx ] > E[ ~CjRc].

It is worth noting that the encoding process described above|the process that mapsX and C

to Rx and Rc|is conditional on the values of X and C, which we assume are perfectly observable

to the econometrician but not to the DM . In other words, even after the DM is presented with

a choice set, she still faces uncertainty about the payo� values ofX and C. As such, Bayesian

inference takes place at the level of a single choice set, and it characterizes how theDM 's prior

belief shifts after observing a noisy signal of the true payo�. The noisy encoding of payo�s drives

the main predictions of the model.

II.B. Likelihood function and coding optimality

We depart from KLW by allowing the DM to choose the optimal likelihood functions according

to the prior distribution. In this case, the DM still encodes each payo� with noise, but the noise

distribution can be optimized to meet a speci�c performance objective. We rely on the e�cient

coding model of HWP to endogenize the likelihood functionsf (Rx jX ) and f (RcjC). We also

retain the assumption from KLW that the DM encodesX and C independently; this is a natural

6 In the choice environment we study here, our interpretation is that the noisy signals are generated unconsciously;
they are not the outcome of deliberate and conscious information acquisition in the sense of Stigler (1961). For more
discussion on this point, see Ma and Woodford (2020).

7Although we focus on how imperfect perception a�ects risky choice, our model does not preclude the more
traditional source of risk aversion that operates through diminishing marginal utility of wealth. In Section III.A, we
extend the model by allowing for both imperfect perception and intrinsic risk aversion.

8We use the notations ~X and ~C to emphasize that, when the DM forms the posterior means E[ ~X jRx ] and E[ ~CjRc ],
she does not directly observeX and C; she treats these payo�s as random variables.
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assumption given theDM 's prior belief that X and C are drawn independently. In addition, we

assume theDM 's performance objective is to maximize expected �nancial gain, de�ned as

Expected �nancial gain �
ZZ

pX � Prob(choose the risky lotteryjX; C ) � f (X )f (C) � dXdC

+
ZZ

C � Prob(choose the certain optionjX; C ) � f (X )f (C) � dXdC:
(2)

We focus on the performance objective in (2) because it is commonly used in economic settings|

although we discuss alternative objectives below.

When maximizing expected �nancial gain, the DM faces an information processing constraint.

Speci�cally, HWP assume that the DM encodesX through a �nite number of n \neurons," where

the output state of each neuron takes the value 0 or 1. The output states of thesen neurons are

assumed to be mutually independent, and each neuron takes the value 1 with probability� (X ) and

0 with the remaining probability 1 � � (X ). The encoded value ofX is therefore represented by an

output vector of 0s and 1s, with length n. Given that the neurons are mutually independent, a

su�cient statistic for the output vector is the sum across the n output values, which we denote by

Rx . Thus, the noisy signal Rx can take on integer values from 0 ton. The likelihood function of

X can then be de�ned by

f (Rx jX ) =
�

n
Rx

�
(� (X ))Rx (1 � � (X ))n� Rx : (3)

We do not interpret the encoding process described above as a literal description of brain function;

rather, we share with HWP the view that equation (3) is useful in analyzing how a system with

limited resources may transmit information through a set of n binary signals. As such, n can

be thought of as representing an individual-speci�c capacity constraint: asn goes to in�nity, the

random variable Rx=n converges almost surely to its mean� (X ), and therefore the amount of noise

in perceiving X is reduced to zero.

The DM encodesC using a process that is identical to that for encodingX . Each neuron takes

the value 1 with probability � (C) and 0 with the remaining probability 1 � � (C). The sum across
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the n output values is denoted asRc. The likelihood function of C is de�ned by

f (RcjC) =
�

n
Rc

�
(� (C))Rc (1 � � (C))n� Rc : (4)

Equations (3) and (4) show that the likelihood functions are driven by the coding rules,� (X )

and � (C), which map X and C into the probability that a neuron emits a value of 1. Intuitively, if

the DM is particularly concerned about perceiving values ofX within a given range, then a good

coding rule, � (X ), should be very sensitive toX over that range.

When n is large, and whenpX and C are i.i.d, HWP show that the coding rules that maximize

expected �nancial gain are given by9

� (X ) =

2

6
6
6
4

sin

0

B
B
B
@

�
2

Z X

�1
f (x)2=3dx

Z 1

�1
f (x)2=3dx

1

C
C
C
A

3

7
7
7
5

2

(5)

and

� (C) =

2

6
6
6
4

sin

0

B
B
B
@

�
2

Z C

�1
f (c)2=3dc

Z 1

�1
f (c)2=3dc

1

C
C
C
A

3

7
7
7
5

2

: (6)

HWP also consider two alternative performance objectives besides maximizing expected �nan-

cial gain. The �rst alternative objective is to maximize mutual information between X and its

noisy signal, Rx ,

max
� (X )

I (X; R x ); (7)

where the mutual information I (X; R x ) is de�ned as the di�erence between the marginal entropy

of Rx and the entropy of Rx conditional on X . Similarly, the DM is assumed to maximize mutual

information between C and Rc. The second alternative objective is to maximize the probability of

9The coding rules described in this section are derived when n, the parameter for the capacity constraint, is
su�ciently large. Appendix 7 of HWP shows that, with any �nite n that is greater than or equal to 5, the coding
rules remain approximately optimal. When illustrating the model's implications in Section II, we set n to 10.
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an accurate choice, given by

Probaccurate �
ZZ �

Prob(Rx > R cj� (X ) > � (C)) � 1� (X )>� (C)
�

� f (X )f (C) � dXdC

+
ZZ �

Prob(Rx < R cj� (X ) < � (C)) � 1� (X )<� (C)
�

� f (X )f (C) � dXdC:
(8)

Interestingly, there exists a class of priors for which the three performance objectives in (2), (7),

and (8) all lead to the same optimal coding rules (asn goes to in�nity). Speci�cally, in Online

Appendix A, we show that, when the following two conditions

(i ) pX and C are i.i.d.

and (ii ) pX and C are uniformly distributed
(9)

are satis�ed, the coding rules under all three objectives reduce to

� (X ) =
�
sin

�
�
2

X � X l

X u � X l

�� 2

(10)

and

� (C) =
�
sin

�
�
2

C � Cl

Cu � Cl

�� 2

; (11)

where X l , X u , Cl and Cu are the bounds of the uniform distributions, with X l < X u and Cl < C u .

This result is useful because it enables tests of e�cient coding which are robust to changing the

assumption that the DM maximizes expected �nancial gain. In our main risky choice experiment,

we build a design that satis�es the conditions in (9).

1. Properties of likelihood function. Here we illustrate how the likelihood function depends

explicitly on the DM 's prior beliefs. For now, we suppose that theDM 's prior belief about X is a

uniform distribution between X l and X u , and that her prior belief about C is a uniform distribution

betweenCl and Cu . In keeping with the conditions in (9), we further set Cl = p�X l and Cu = p�X u ,

so that pX and C are identically distributed. Given these assumptions, the likelihood functions of
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X and C are

f (Rx jX ) =
�

n
Rx

�  �
sin

�
�
2

X � X l

X u � X l

�� 2
! Rx

 

1 �
�
sin

�
�
2

X � X l

X u � X l

�� 2
! n� Rx

;

f (RcjC) =
�

n
Rc

�  �
sin

�
�
2

C � Cl

Cu � Cl

�� 2
! Rc

 

1 �
�
sin

�
�
2

C � Cl

Cu � Cl

�� 2
! n� Rc

:

(12)

The expressions in (12) show that the likelihood functions depend directly on the parameters of the

prior distributions, X l , X u , Cl , and Cu . This dependence of the likelihood function on the prior is

a signature characteristic of e�cient coding.

[Place Figure I about here]

Figure I illustrates the malleability of the likelihood function. Panel A presents two di�erent

prior distributions over X , one with high volatility and the other with low volatility. In the high

volatility environment, X is distributed uniformly over a wide range (X l = 8 and X u = 32). In the

low volatility environment, X is distributed uniformly over a narrow range (X l = 16 and X u = 24).

Equation (10) implies that these two distributions induce di�erent coding rules � (X ). Panel B

of Figure I shows that the coding rule is steeper for the low volatility distribution, compared to

the high volatility distribution. Recall that the coding rule gives the \success probability" of the

binomial distribution in (3). Thus, a steeper coding rule implies that the success probability is more

sensitive to changes inX . Panel C plots the implied likelihood function for two values, X = 18 and

X = 22, and for each of the two prior distributions. In the low volatility environment, a payo� of

X = 18 generates a very di�erent distribution of signals f (Rx jX ) compared to a payo� of X = 22.

Thus, as X increases from 18 to 22, theDM 's perceptual system can easily detect this change. In

the high volatility distribution, however, X = 18 and X = 22 generate distributions of signals that

overlap extensively. The more extensive overlap of the likelihood functions in the high volatility

environment leads to less discriminability between the two payo�s, compared to the low volatility

environment. As we show in the next section, this di�erence in discriminability has a direct impact

on risky choice.
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II.C. Value function and implications for choice

Given the prior and likelihood functions de�ned above, the DM proceeds by using Bayesian

inference to compute a posterior distribution of each payo� in the choice set. Under the assumption

of linear utility, the DM 's optimal decision rule depends only on the conditional means of the

posterior distributions. Speci�cally, the posterior means of X and C, conditional on Rx and Rc,

are given by

E[ ~X jRx ] �
Z X u

X l

f (X jRx )XdX =

Z X u

X l

f (Rx jX )f (X )XdX

Z X u

X l

f (Rx jX )f (X )dX

(13)

and

E[ ~CjRc] �
Z Cu

Cl

f (CjRc)CdC =

Z Cu

Cl

f (RcjC)f (C)CdC

Z Cu

Cl

f (RcjC)f (C)dC

; (14)

where f (X ) and f (C) are the DM 's prior beliefs about X and C, and the likelihood functions

f (Rx jX ) and f (RcjC) are from (12).

Importantly, equation (13) shows that the DM 's estimate of X is a random variable, and the

randomness comes fromRx . Therefore, the DM faces adistribution of perceived values for eachX .

We now characterize the mean and standard deviation of this distribution. Speci�cally, we de�ne

the value function, v(X ), by

v(X ) =
X n

Rx =0
f (Rx jX ) � E[ ~X jRx ]; (15)

where f (Rx jX ) is from (12) and E[ ~X jRx ] is from (13). That is, v(X ) represents the subjective

valuation of X averaged across di�erent values ofRx . Moreover, we de�ne the standard deviation

for the subjective valuation, � (X ), by

� (X ) =
hX n

Rx =0
f (Rx jX )(E[ ~X jRx ])

2
� v2(X )

i 1=2
: (16)

Equations (15) and (16), together with equations (12) and (13), indicate that the curvature of the

value function and the randomness in subjective valuation are jointly determined by theDM 's

prior belief and the implied likelihood functions.
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[Place Figure II about here]

In keeping with the running example from the previous section, Panel A of Figure II plots, for

both the high volatility environment ( X l = 8 and X u = 32) and the low volatility environment

(X l = 16 and X u = 24), the average subjective valuationv(X ), as well as its one-standard-deviation

bounds v(X ) � � (X ).

The �gure shows that randomness in utility, � (X ), is substantially higher in the high volatility

environment. This is driven by the greater overlap of likelihood functions in the high volatility

environment, compared to the low volatility environment. Because subjective valuation is noisier

in the high volatility environment, the model predicts that choices will also be noisier, and hence

less sensitive to a given change in payo� values.

To formalize this prediction, we compute the probability of choosing the risky lottery|which

we refer to from now on as the \probability of risk taking." Recall that, conditional on X and C,

the noisy signalsRx and Rc are drawn from the likelihood functions f (Rx jX ) and f (RcjC). For

a given realization of (Rx , Rc), the DM then chooses between the risky lottery and the certain

option by comparing the posterior means ofX and C in equations (13) and (14). As a result, when

�xing X , C, and the stimulus distributions, we compute the probability of risk taking as follows:

Prob(risk taking jX; C ) =
nX

Rx =0

nX

Rc=0

�
1p�E[ ~X jRx ]> E[ ~CjRc ] � f (Rx jX ) � f (RcjC)

�

+
nX

Rx =0

nX

Rc=0

�
1p�E[ ~X jRx ]= E[ ~CjRc ] �

1
2

f (Rx jX ) � f (RcjC)
�

:

(17)

Equation (17) says that the DM chooses the risky lottery over the certain option whenp�E[ ~X jRx ] >

E[ ~CjRc], and that the DM randomly chooses between the two options whenp� E[ ~X jRx ] = E[ ~CjRc].

[Place Figure III about here]

Figure III plots the probability of risk taking against the di�erence in expected values between

the two options, namely pX � C. We examine the same two volatility environments as before and

we set p, the probability that the risky lottery pays X to 0.5. We set n, the capacity constraint

parameter, to 10. For each volatility environment, we draw X uniformly from [16; 24] and C

uniformly from [8 ; 12]; that is, we draw the payo�s from the common support of the low and high
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volatility distributions. We then compute, for a given X and C, the probability of risk taking

in (17). Finally, we aggregate these probabilities for each level ofpX � C.

Naturally, a higher value of pX � C increases the attractiveness of the risky lottery and hence

increases the probability of risk taking. Note that, for an expected utility maximizer with no

background wealth, the probability of risk taking should be a step function of pX � C with a single

step at pU� 1((U(C) � (1 � p)U(0))=p) � C. However, Figure III shows that under noisy coding,

the probability of risk taking has an S-shaped relationship with pX � C. More important, under

e�cient coding, the slope of this function is negatively related to the volatility of the stimulus

distribution (for those values of pX � C that do not deliver an extreme probability near 0 or 1).

Thus, for a given increase in the payo� X , the probability of choosing the risky lottery increases

more in the low volatility condition. This di�erence in sensitivity to a lottery payo� is inherited

directly from the property of the likelihood functions, namely that a given increase in X leads to

a larger di�erence in the distribution of noisy signals in the low volatility condition, compared to

the high volatility condition (Panel C of Figure I).

II.D. Increasing and decreasing payo� distributions

The results presented so far show that payo� volatility a�ects the dispersion in perceived val-

uation, � (X ). At the same time, the average subjective valuationv(X ) largely coincides with X

when the prior distribution is uniform. Under other types of priors, however, e�cient coding can

induce strongbiasesin valuation, in the sense that v(X ) can di�er signi�cantly from X (Woodford,

2012a,b; KLW). To illustrate how these strong biases arise, we consider a di�erent environment in

which the payo�s of X and C are drawn either from an increasing distribution or from a decreasing

distribution. We specify the increasing distribution by

f (X ; X l ; X u ; X i
m ; h; l ) =

8
>><

>>:

l; if X l � X � X i
m

h; if X i
m < X � X u

: (18)
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And we specify the decreasing distribution by

f (X ; X l ; X u ; X d
m ; h; l ) =

8
>><

>>:

h; if X l � X � X d
m

l; if X d
m < X � X u

: (19)

Panel B of Figure II plots, for both the increasing payo� distribution ( X l = 2, X u = 8, X i
m = 4 :5,

h = 7
25, and l = 1

125) and the decreasing payo� distribution ( X l = 2, X u = 8, X d
m = 5 :5, h = 7

25,

and l = 1
125), the average subjective valuationv(X ), as well as its one-standard-deviation bounds

v(X ) � � (X ).10 For the increasing distribution, small values of X occur with low frequency, and

the DM therefore allocates little coding resources towards these infrequent and small values. The

lack of coding resources dedicated to small values ofX gives rise to a positive perceptual bias

towards the mean of the distribution: v(X ) > X when X is small. Conversely, for the decreasing

distribution, the DM allocates little coding resources towards large values ofX . As a result, the

DM is insensitive to high values ofX and exhibits a negative perceptual bias towards the mean

of the distribution: v(X ) < X when X is large. We test implications of these value functions after

presenting our main experiment. In particular, whenX takes on large values, we experimentally test

whether demand for risk taking is higher in the increasing condition, compared to the decreasing

condition.

III. Experimental Tests

In this section, we provide experimental tests of the model. We �rst examine how the volatility

of the payo� distribution a�ects risky choice. We then study how the shape of the payo� distribution

a�ects risky choice.

III.A. Experiment 1: Volatility manipulation

Our �rst experiment tests the model by manipulating the volatility of payo�s. We pre-register

the experiment and recruit 150 students from the University of Southern California to participate

10 When the payo� distribution is increasing or decreasing, the conditions in (9) for the equivalence of coding rules
no longer hold. Panel B of Figure II presents the subjective valuations based on the coding rule that maximizes the
DM 's expected �nancial gain. The results are quantitatively similar if the subjective valuations are instead based on
the coding rule that maximizes mutual information.
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in the laboratory; see Online Appendix B for the pre-registration document. Each subject �rst

completes a risky choice task, and then a perceptual choice task. This ordering is chosen to

minimize any fatigue e�ects in the risky choice task, which is our main task of interest. Subjects

were paid a $7 participation fee, in addition to earnings from each task.

1. Design of the risky choice task. On each trial, subjects choose between the risky lottery

(X; p; 0; 1 � p) and the certain option (C; 1). The probability p is �xed at 0.5 for all trials. The

values of X and C are drawn independently, and we manipulate the distribution of each payo�

across two volatility conditions. In the high volatility condition, X is drawn uniformly from [8, 32],

and C is drawn uniformly from [4, 16]. In the low volatility condition, X is drawn uniformly from

[16, 24], andC is drawn uniformly from [8, 12].

We choose the above design parameters for two reasons. First, our goal is to isolate the e�ect

of volatility. Therefore, our parameters keep the mean of each payo� distribution constant across

conditions; the mean ofX is �xed at 20 and the mean of C is �xed at 10. Second, our parameter

values satisfy the conditions in (9): the distributions of X and C are independent, andpX and

C are identically and uniformly distributed. These conditions imply that the e�cient coding rules

are the same, regardless of whether the subject's objective is to maximize expected �nancial gain,

mutual information, or the probability of an accurate choice. Thus, our design is optimized to test

generic predictions of e�cient coding.

[Place Figure IV about here]

Figure IV shows a schematic of the task design. Each subject goes through both the high

and low volatility conditions; the order of the two conditions is randomized across subjects. Each

condition contains 300 trials, which are broken into two phases: an initial \adaptation" phase with

30 trials, and a subsequent \test" phase with 270 trials. The adaptation phase is intended to allow

the subjects to adapt to the condition-speci�c payo� distribution. The test phase contains the

trials that we are interested in analyzing.

In order to generate a clean test of e�cient coding, we want to compare decisions on the

same choice sets across the two volatility conditions. One constraint we face, when designing

these \common trials" in the test phase, is that the lottery payo�s must fall in the support of the
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distribution of both conditions. Our goal is to maximize the number of common trials that satisfy

this constraint, while staying faithful to the statistical properties of each payo� distribution.

To do so, we �rst note that the support of the low volatility distribution is a subset of the

support of the high volatility distribution; therefore, payo�s on common trials must fall in the

support of the low volatility distribution. Speci�cally, with 1 =9 probability, a pair ( X; C ) drawn

from the high volatility distribution falls in the support of the low volatility distribution. As such, in

each condition, we designate 30 of the 270 trials in the test phase as common trials. These common

trials are identical across conditions, and we generate them by drawing 30 pairs of (X; C ) over

approximately equally-spaced grid points of the low volatility distribution; see Table D.1 in Online

Appendix D for exact values. In each condition, the location of a common trial is randomized at

the subject level across the 270 possible test trial locations.

We draw the remaining 240 test trials in the low volatility condition from the low volatility

distribution. For the remaining 240 test trials in the high volatility distribution, we draw ( X; C )

uniformly from the high volatility distribution, but critically, we \re-draw" the pair ( X; C ) if it falls

in the support of the low volatility distribution|since this part of the high volatility distribution is

already covered by the common trials. Therefore, for each volatility condition, the distribution of

payo�s across all trials accurately re
ects the appropriate population distribution. In summary, the

common trials simultaneously serve two purposes: they allow for a clean comparison of behavior

across conditions, and they also reinforce the prior on subsequent trials.

Subjects are not explicitly informed about the payo� distributions from which X and C are

drawn. We believe that such a design is more natural than telling subjects the payo� distributions

that they will experience. In particular, if the experimenter explicitly gives information about the

distribution of payo�s, subjects may arti�cially direct their attention to this information, which,

in turn, could generate an experimenter demand e�ect. Furthermore, our design enables us to test

for learning e�ects, which are important when conducting our within subject analyses.

One of the 600 trials was randomly selected for payment and the subject was paid according

to their choice on this randomly selected trial. The average earning for the risky choice task was

$10.14. Online Appendix B provides the exact instructions that were given to subjects before the

experiment.
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2. Results from the risky choice task.We produce a large data set that contains 90,000 total

observations across all subjects and conditions. As part of our pre-registered data exclusion rule,

we drop one subject who chose the certain option on all trials in the �rst condition. We are then

left with 89,400 trials across the �rst and second experimental conditions, of which we analyze only

the 8,940 common trials.

We begin our analysis with between subjects tests, which we construct using only trials from

the �rst condition. We �nd that, on average, subjects choose the risky option on 52.3% of trials

(standard error: 2.3%) with an average response time of 2.0 seconds (standard error: 0.085 seconds).

Table I provides results from a set of mixed e�ects linear regressions, which account for heterogeneity

across subjects in average levels of risk taking and in sensitivity toX and C.11 Column (1) shows

that risk taking increases signi�cantly in X and decreases signi�cantly in C. The coe�cients of

interest are those on the interaction terms: the coe�cient on X � high is negative (p-value = 0.038)

and the coe�cient on C� high is positive (p-value = 0.056). This is our �rst piece of evidence

consistent with e�cient coding, namely, that a $1 increase in X and a $1 decrease inC each leads

to a greater increase in the likelihood of choosing the risky lottery in the low volatility condition.

[Place Table I about here]

Before conducting further analyses, we take one additional step to clean the data. We exclude

the trials on which a subject exhibits an excessively fast response time of less than 0.5 seconds,

which constitutes 7.6% of the data; the remaining data are referred to as the \restricted sample."

This exclusion was not pre-registered, but unsurprisingly these fast decisions are not responsive to

the underlying payo� values, and thus we employ this exclusion in all subsequent analyses. Column

(2) of Table 2 shows that after excluding fast decisions, the conclusion remains largely the same:

the coe�cient on X � high is negative (p-value = 0.003) and the coe�cient on C� high is positive

(p-value = 0.003).

To see a graphical representation of the di�erence in behavior across conditions, Panel A of

11 We have also estimated an analogous set of mixed e�ects logistic regressions; however, with random e�ects on
X , C, and the intercept, we �nd that these mixed e�ects logistic regressions do not converge to numerically stable
estimates. As an alternative, we estimate a set of logistic regressions without random e�ects, in which we pool all
subjects. Table D.2 in Online Appendix D shows that the results from the logistic regressions are consistent with
those presented in Table I. Our preferred speci�cation is the mixed e�ects linear regression because it accounts for
heterogeneity across subjects.
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Figure V uses the data from Column (2) of Table I to plot the probability of risk taking as a

function of the di�erence in expected values between the two options, namelypX � C.

[Place Figure V about here]

The �gure shows a striking di�erence across conditions: a $1 increase inpX � C leads to a greater

increase in the probability of choosing the risky lottery in the low volatility condition, compared to

the high volatility condition. Panel B of Figure V presents the data in a di�erent manner, without

imposing the assumption that the probability of risk taking is a function of pX � C. Each point

represents one of the 30 common trials. Thex-axis measures the probability of risk taking in the

high volatility condition, while the y-axis measures the probability of risk taking in the low volatility

condition. When the probability of risk taking (in both conditions) is low, most of the data points

fall below the 45-degree line. Conversely, when the probability of risk taking is high, most of the

data points are above the 45-degree line. This pattern is consistent with the model: the likelihood

functions in the high volatility condition generally lead to less discriminability between the payo�s

of X and C, compared to the low volatility condition. As such, the model tends to predict that the

probability of risk taking is less extreme|that is, closer to 50%|in the high volatility condition.

Our design also enables us to examine how coding varieswithin subjects over time when faced

with a change in the environment. While our model does not make predictions about adaptation,

we can test whether behavior changes in the direction predicted by e�cient coding as subjects

experience a shift in the environment. Recall that halfway through the risky choice task, the payo�

distribution switches. Thus, by re-estimating the regression in Column (2) of Table I using data

from both conditions for each subject, we can measure the e�ect within subjects. Column (3) shows

that the coe�cients on the interaction terms have the predicted sign, though the e�ects are weaker

compared to those from the between subjects tests. One reason for these weaker e�ects is that, at

the beginning of the second condition, subjects may still be adapted to the �rst condition. To allow

for longer adaptation in the second condition, we restrict the data to only trials from the last half

of the second condition, namely trials 451 through 600. Column (4) shows that the magnitudes of

the interaction e�ects do indeed get larger.

Columns (5) and (6) further disaggregate the data based on whether the subject experiences

the low or high volatility condition �rst. Column (5) shows that for those subjects who begin
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with the low volatility condition, the coe�cients on X � high and C� high are both signi�cant at

the 1% level. This result is important because it rules out an alternative theory whereby subjects

encode payo�s with noise, and through repeated experience with a payo�, the subjects' perceptual

noise for the payo� decreases over time. Such a \learning from experience" theory can explain our

between subjects results, because subjects in the low volatility condition experience low volatility

payo�s more frequently than subjects in the high volatility condition. However, this alternative

theory cannot explain the within subject result in Column (5): under this theory, behavior in the

second (high volatility) condition should be less noisy, as subjects experience the same set of 30

common trials for a second time; however, we �nd that the e�ect has the opposite sign, and is

therefore consistent with noisy ande�cient coding.

Column (6) provides results for those subjects who experience the high volatility condition

�rst. The coe�cients on X � high and C� high have the predicted sign, but the e�ects become

weaker and are no longer statistically signi�cant. We conjecture that it is easier for subjects to

detect a change in the environment when moving from a low volatility to high volatility condition,

because \outlier payo�s" that are never experienced in the �rst condition begin to appear in the

second condition. In contrast, when moving from a high volatility to low volatility condition, the

information that signals a change in environment is less salient.

Response times

Not only are subjects more sensitive to payo�s in the low volatility condition, but they also

implement decisions more quickly in the low volatility condition. Among common test trials,

subjects take an average of 2.02 seconds in the high volatility condition vs. 1.79 seconds in the low

volatility condition ( p-value = 0.001 for a within subject test). This di�erence in response times

rules out the hypothesis that subjects perceive payo�s more precisely in the low volatility condition

because they spend more time on each decision.

Response times can also be used to understand how subjects adapt to a new payo� distribution.

Speci�cally, we examine the time series evolution of response times over the course of the entire 600

trials during the risky choice task. Figure VI shows the response time data, disaggregated by which

condition a subject experienced �rst; here the �gure presents data from both the common and

non-common trials. The upper panel plots, for each of the 600 trials, the response time averaged
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across subjects who �rst go through the low volatility condition, followed by the high volatility

condition. We see a spike in response time at trial 301, which is the beginning of the high volatility

condition. This spike in response time may be due to the fact that subjects begin to experience

novel and hence salient payo�s that they had not seen in the �rst 300 trials. As a result, these

payo�s signal a change in environment and presumably restart the adaptation process.

[Place Figure VI about here]

In contrast, the lower panel plots the response time averaged across subjects who �rst go through

the high volatility condition, followed by the low volatility condition. In this cut of the data, we �nd

no corresponding spike in response time at the beginning of the second condition. Here, subjects

do not observe salient \outlier" payo�s: every payo� in the second (low volatility) condition is in

the support of the payo� distribution from the recently experienced �rst (high volatility) condition.

We speculate that this extra di�culty in adapting to the low volatility distribution may be partly

responsible for the stronger within subject results in Column (5), compared to those in Column (6)

of Table I.

While our theory does not make predictions about response times, the data strongly suggest

that response times are systematically related to the prior distribution. A natural way to incor-

porate response times into our framework would be to allow theDM to draw a sequenceof noisy

signals, f Rx;i gS
i =1 for a given payo� X . The time that the DM takes to execute a decision would

then re
ect the number of signals drawn, which is a common interpretation of sequential sampling

models from mathematical psychology (Ratcli�, 1978; Bogacz, Brown, Moehlis, Holmes, and Co-

hen, 2006; Krajbich, Armel, and Rangel, 2010), and more recently, from economics (Woodford,

2014; Fudenberg, Strack, and Strzalecki, 2018; H�ebert and Woodford, 2019).

3. Design of the perceptual choice task.Recall that all the implications of our model are driven

by the noisy encoding ofX and C. In particular, we make two simplifying assumptions: (i ) there is

no noise in encoding the probabilityp or the $0 payo�, and ( ii ) there is no noise in computing the

product of p and E[ ~X jRx ]. In reality, there is likely to be noise in both of these processes, which

could potentially be responsible for some of the experimental results discussed above.

To provide a more targeted test of the key e�cient coding mechanism, each subject participates
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in a second \perceptual choice task." In this task, subjects still need to perceiveX , but do not

need to perceive the probability p or integrate probabilities with perceived payo�s. Given that the

noisy encoding of payo�s is su�cient to generate our main theoretical predictions in Section II, we

expect to �nd evidence that the perception of X depends on the recent stimulus distribution even

when there is no need to perceive the probabilityp.

Our perceptual choice task is informed by work from the literature in perception of symbolic

numbers (Moyer and Landauer, 1967). We build on the design of Dehaene, Dupoux, and Mehler

(1990), who present subjects with an Arabic number between 31 and 99 on each trial of their

experiment. The subjects' task is to classify whether the Arabic numeral presented on the screen

is larger or smaller than the reference level of 65. Dehaene et al. (1990) �nd that as the stimulus

gets closer to the reference level, accuracy decreases and response times increase. These results are

consistent with the noisy encoding of Arabic numerals, which lies at the foundation of the model

of risky choice we present in Section II.

One notable feature of the Dehaene et al. (1990) experiment is that the stimulus distribution

is held constant throughout the experiment. Here, we exogenously vary the stimulus distribution

across two conditions: a high volatility condition and a low volatility condition. In the high

volatility condition, subjects are presented with an Arabic numeral, which we denote byX , that is

drawn uniformly from integers in the set [31; 99]nf 65g. In the low volatility condition, X is drawn

uniformly from integers in the set [56; 74]nf 65g. In each condition, subjects are asked to classify

whether X is above or below the reference level of 65. Each subject completes both conditions, and

we randomize the order of conditions across subjects. Figure VII gives a schematic of the design.

[Place Figure VII about here]

In all other respects, the perceptual choice task design follows closely the design of the risky

choice task. In each condition, there is an initial set of 60 trials which are intended to allow

subjects to adapt to a given distribution. As outlined in our pre-registration document, we only

analyze behavior after the adaptation phase in the subsequent 340 test trials. To generate a clean

comparison across conditions, our main analysis focuses on those trials in the test phase for which

the stimulus numbers fall in the range of common support across the two conditions, [56; 74].12 As

12 For the high volatility condition, we designate 90 out of the 340 test trials as common trials. These 90 common
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in the risky choice task, the restriction to common trials is crucial because it allows us to cleanly

identify the e�ect of the prior distribution on behavior.

We pay subjects based on both the accuracy and speed of their classi�cations. Speci�cally,

subjects earn a payo� of $(15� accuracy � 10� avgseconds), where accuracy is the percentage of

correctly classi�ed trials, and avgsecondsis the average response time (in seconds) across all trials

in the perceptual choice task. We incentivize fast responses in this task (but not in the risky

choice task) in order to avoid a \ceiling e�ect" in the choice data where subjects would approach

100% accuracy. While the ceiling e�ect is not problematic on its own, it would cause di�culty in

detecting any di�erences in the choice data across experimental conditions. The average earning

for the perceptual choice task was $8.70.

4. Results from the perceptual choice task.We begin by reporting results for between subjects

tests using all common trials from the �rst condition. Subjects correctly classify the number on

93.5% of trials (standard error: 0.7%) with an average response time of 0.573 seconds (standard

error: 0.012 seconds). Two out of the 150 subjects exhibit an average response time of only 0.05

and 0.10 seconds, which indicates that they used a guessing strategy. Therefore, we exclude them

from all subsequent analyses (their average accuracy rates were 51.8% and 55.0%, respectively).13

[Place Figure VIII about here]

Panel A of Figure VIII plots, for each value of X , the proportion of trials that subjects clas-

si�ed X as greater than the reference level of 65. Consistent with previous research on numerical

cognition, we see that subjects exhibit errors in classi�cation; moreover, the errors increase asX

approaches 65. While it is unsurprising that subjects exhibit errors, the fact that the frequency of

errors correlates with jX � 65j provides evidence that coding is noisy and that number comparison

is more di�cult when the numbers are closer together.

The novel aspect of our design that enables us to test for e�cient coding is the manipulation

across the two volatility conditions. Among trials for which X 2 [56; 74], we �nd that subjects

trials are created by sampling each element in the low volatility condition 5 times. The remaining 250 trials in the
high volatility condition are drawn with 50% probability from a uniform distribution over [31 ; 55] and with 50%
probability from a uniform distribution over [75 ; 99]. For the low volatility condition, we designate the entire 340 test
trials as common trials as they all fall in the range [56 ; 74]. This procedure ensures that X is drawn according to its
population distribution in both conditions.

13 Including these two subjects in our subsequent analyses does not a�ect any of the main results.
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exhibit signi�cantly greater accuracy in the low volatility condition, compared to the high volatility

condition (95.0% vs. 92.3%, with p-value < 0:001 under a mixed e�ects linear regression). Not

only are subjects more accurate in the low volatility condition, they also respond signi�cantly faster

(0.576 seconds vs. 0.611 seconds, withp-value = 0:03 under a mixed e�ects linear regression). This

result is analogous to our �nding from the risky choice task, in which subjects are more sensitive

to payo�s and respond faster in the low volatility condition. Panel B of Figure VIII shows that the

average response time for trials on which subjects responded correctly increases asX approaches

65, and that, across the distribution of X , the average response time is shorter in the low volatility

condition.

Next, we test for a di�erence in slope between the two choice curves presented in Panel A of

Figure VIII; e�cient coding predicts a steeper slope for the choice curve from the low volatility

condition. Before proceeding to the test, we note that in the perceptual choice task, the conditions

in (9) no longer hold because theDM needs to only encode one payo�. We therefore base our

analyses for the perceptual choice task on the assumption that theDM maximizes mutual infor-

mation.14 To formally test for the di�erence in slope, Table II presents results from a set of mixed

e�ects logistic regressions. The dependent variable takes the value of one if the subject classi�esX

as above 65, and zero otherwise.

[Place Table II about here]

In Column (1), the coe�cient on X � 65 is signi�cantly positive, indicating that subjects'

propensity to classify X as greater than 65 is increasing inX . More importantly, the coe�cient on

the interaction term, ( X � 65)� high, is signi�cantly negative, indicating that choices are noisier

on trials in the high volatility condition. Column (2) and Column (3) examine only numbers inside

the 60s decade and only numbers outside the 60s decade, respectively; in both cases, the coe�cient

on the interaction term remains signi�cant. Lastly, Columns (4) to (6) provide within subject tests

by pooling data across both conditions for each subject. For each of these three speci�cations, the

coe�cient on the interaction term remains signi�cant at the 1% level.

14 In the perceptual choice task, we incentivize fast responses; therefore, the coding rule from (5) does not necessarily
maximize expected �nancial gain. At the same time, the coding rule from (10) continues to maximize mutual
information. For this reason, we opt for the assumption that the DM maximizes mutual information in this task.
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5. Model estimation. In this section, we structurally estimate the model. For each subject, we

�rst estimate the model using data from the risky choice task, and then we estimate the model

using data from the perceptual choice task.

Estimation of the risky choice task

Recall that the one free parameter of the model,n, denotes the number of binary readings

that are used to generate the noisy signalRx or Rc. That is, n represents the amount of the

subject's limited perceptual resources for encodingX or C. A larger value of n will generate a

more precise representation of each risky payo�. We note that our model only accounts for noise

in the perception of X and C. Additional sources of noise in the decision process that are outside

the model|for example, noise in computing the product of p and E[ ~X jRx ]|may also be captured

by the structural estimate of n, because it is the only free parameter of the model.

To estimate n, we use maximum likelihood. Speci�cally, for each subject, we maximize the

following log likelihood function over n, using choice data from the test phase of the �rst condition:

LL (njy ) =
X 300

t=31
yt � log(Prob(yt jn)) + (1 � yt ) � log(1 � Prob(yt jn)) ; (20)

where y = f yt g300
t=31 and yt denotes the subject's choice on trialt; yt = 1 if the subject chooses

the risky lottery, and yt = 0 if the subject chooses the certain option. In addition, Prob(yt jn)

in (20) denotes the model predicted probability of choosing the risky lottery givenn, X t , and Ct ;

it is computed using (17) from Section II.C. We maximize the log likelihood function in (20) by

searching over integer values ofn in [5; 40]. We �nd that the average estimate of n, across subjects,

is 8.9 with a standard deviation of 9.7, indicating substantial heterogeneity.

Our baseline model of e�cient coding assumes linear utility; as such, theDM 's optimal de-

cision rule depends onE[ ~X jRx ] and E[ ~CjRc]. However, the model can be easily integrated with

standard nonlinear utility functions: we can generalize the baseline model by assuming that the

DM maximizes expected utility, with a utility function U(�) = ( �) � . Under this assumption, the

DM chooses the risky lottery if and only if p � E[( ~X ) � jRx ] > E[( ~C) � jRc].15 Moreover, the coding

15 As in equation (17), we also assume that the DM randomly chooses between the risky lottery and the certain
option when p � E[( ~X ) � jRx ] = E[( ~C) � jRc ].
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rules presented in equations (5) and (6) are replaced by
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and
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: (22)

These coding rules are optimal when theDM 's objective is to maximize expected utility.16 Finally,

the probability of risk taking from equation (17) is replaced by

Prob(risk taking jX; C ) =
nX

Rx =0

nX

Rc=0

�
1p�E[( ~X ) � jRx ]> E[( ~C) � jRc ] � f (Rx jX ) � f (RcjC)

�

+
nX

Rx =0

nX

Rc=0

�
1p�E[( ~X ) � jRx ]= E[( ~C) � jRc ] �

1
2

f (Rx jX ) � f (RcjC)
�

:

(23)

We estimate this generalized model using the same maximum likelihood procedure as above,

but for each subject we now estimate two parameters,n and � . We �nd that the best �tting

parameter pair, averaged across subjects, is (n; � ) = (10 :1; 0:93). This result indicates that the

average subject exhibits a modest degree of intrinsic risk aversion with the small stakes in our

experiment. We also quantitatively assess the validity of our linear utility assumption by running

an Akaike information criterion (AIC) test at the subject level. For each subject, we compare the

AIC across the baseline model in which we constrain� = 1 and the generalized model. We �nd

that 54% of subjects are best �t using the restricted model; therefore, our baseline assumption

of linear utility is not overwhelmingly restrictive. At the same time, the generalized model with

intrinsic risk aversion provides a better �t to a substantial number of subjects.

Estimation of the perceptual choice task

We now estimate the model for each subject using data from the perceptual choice task. The

16 The generalization of the coding rules to allow for nonlinear utility follows the analysis of this issue in Payzan-
LeNestour and Woodford (2021).
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maximum likelihood procedure we implement is nearly identical to that from (20). For each subject,

we maximize the following log likelihood function over n, using choice data from the test phase of

the �rst condition:

LL (njz) =
X 400

t=61
zt � log(Prob(zt jn)) + (1 � zt ) � log(1 � Prob(zt jn)) ; (24)

where z = f zt g400
t=61 and zt denotes the subject's choice on trialt; zt = 1 if the subject classi�es the

stimulus X t on trial t as greater than 65, andzt = 0 if the subject classi�es X t as less than 65. The

term Prob(zt jn) in (24) denotes the model predicted probability that the subject classi�es X t as

greater than 65. We maximize the log likelihood function in (24) by searching over integer values

of n in [5; 40]. The best �tting value of n, averaged across all subjects, is 15.8, with a standard

deviation of 13.1.

Given that each subject completes both the risky choice task and the perceptual choice task,

our design enables us to compare the latent structural parametern across the two tasks. Two

observations are worth noting. First, the average value ofn is lower in the risky choice task than

in the perceptual choice task. This di�erence is likely driven by the fact that the risky choice task

is more complex, and hence additional sources of noise enter the decision process (e.g., encoding

the probability p and integrating p with E[ ~X jRx ] or E[( ~X ) � jRx ]); as noted above, the structural

estimation may then account for these outside sources of noise through a lower value ofn.

Second, we test for a correlation between the estimatedn from each task, across subjects. This

test is important because it allows us to assess whether errors in numerical discrimination from

the perceptual choice task can explain variation in the risky choice task. We �nd a modest but

signi�cant rank correlation of 0.30 between the estimatedn from each task when allowing� � 1

(p-value < 0:001). The correlation remains signi�cant at 0.26 when using the estimatedn from

the restricted model where� = 1 for all subjects (p-value = 0:001). The results are also robust to

using Pearson correlations for both models (p-value = 0:002 for the unrestricted model, andp-value

= 0 :001 for the restricted model). These positive correlations demonstrate that, across subjects,

variation in perception partly explains variation in risk taking behavior.
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III.B. Experiment 2: Shape manipulation

In the experiments reported in the previous section, we focused on manipulating the range|and

hence the volatility|of the payo� distribution while holding the mean constant. In this section,

we investigate whether manipulating the shapeof the payo� distribution, while holding the range

constant, a�ects risk taking in the manner predicted by e�cient coding. Such a manipulation allows

us to test for a bias in perception, which can systematically change the averagelevel of risk taking.

As in the risky choice task from Experiment 1, here we design an experiment in which subjects

are presented with choice sets of the formf (X; 0:5; 0; 0:5); (C; 1)g. There are two experimental

conditions: in one condition, X is drawn from a weakly decreasing distribution over the range

[2; 8]; in the other condition, X is drawn from a weakly increasing distribution over the same range.

The speci�c distributions that we use are shown in Panel B of Figure II.17 Note that large values

of X |for example, those between $7 and $8|are frequent in the increasing condition, but are

rare in the decreasing condition. For both experimental conditions, we set the distribution ofC

to be that of pX . This is an important feature of the design because it implies that, under both

conditions, the expected payo�s of the risky lottery and the certain option are the same. Therefore,

any observed di�erence in risk taking across conditions provides evidence for an endogenous shift

in the likelihood function|rather than just a shift in the prior. 18 In other words, our design helps

us target a test of e�cient coding, rather than just noisy coding.

Panel B of Figure II shows that, under e�cient coding, the decreasing distribution of X generates

perception that is insensitive and biased downward for high values ofX . On the other hand, the

increasing distribution generates perception that is insensitive and biased upward for low values of

X . The di�erence in perceived valuation of X between the increasing and decreasing conditions

is largest when X takes extreme values, and this di�erence will systematically a�ect the DM 's

appetite for risk.

To test the predicted di�erence in risk taking, we again create a set of common test trials

that subjects face in both conditions. Speci�cally, we create 8 common trials, where we �xC at

$2.70 and varyX from $7.13 to $7.99 in approximately $0.12 increments; see Table D.3 in Online

17 The increasing and the decreasing distributions take the form of (18) and (19) from Section II.D. The parameter
values are: X l = 2, X u = 8, h = 7

25 , l = 1
125 , X i

m = 4 :5, and X d
m = 5 :5.

18 Online Appendix A provides a brief proof of this statement.
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Appendix D for exact values.19

There are 300 trials per experimental condition, and subjects are randomized into whether they

�rst experience the increasing condition or the decreasing condition. In each condition, subjects

�rst make choices on 60 \adaptation trials." Subjects then go through 8 consecutive test blocks,

where each test block contains 30 trials. At the end of each test block, we insert a common trial.

For example, the �rst common trial from the second condition occurs on trial 390, and the last

common trial occurs on trial 600. The order of the 8 common trials is randomized at the subject-

condition level. On non-common trials, we draw payo�s according to the increasing or decreasing

payo� distribution, depending on the condition to which the trial belongs. 20

Our main testable prediction is that a subject's average demand for the risky lottery on common

trials is greater in the increasing condition, compared to that in the decreasing condition. Recall

that on common trials, X takes values between $7 and $8. For the increasing condition, these values

of X are frequent outcomes because they come from the high density part of the increasing prior

distribution. As such, the perceptual bias in X is minimal: v(X ) � X . However, in the decreasing

condition, these large values ofX are rare outcomes. They come from the long right tail of the

decreasing prior distribution and hence lead to a perceptual bias that is substantially negative:

v(X ) < X . E�cient coding therefore predicts that a subject will perceive the risky lottery on each

common trial to be less attractive in the decreasing condition, compared to when it is presented in

the increasing condition.

We pre-register the experiment and recruit 200 subjects from Proli�c, an online data collec-

tion platform; see Online Appendix B for the pre-registration document. As outlined in our pre-

registration document, all of our statistical tests in Experiment 2 are conducted within subjects.21

Given that Experiment 2 is conducted online, we impose a 10-second time limit on each trial in

19 Our common test trials focus on large values of X because these values lead to a di�erence in risk taking across
the two experimental conditions that remains substantial even when subjects exhibit a strong degree of intrinsic risk
aversion. By contrast, small values of X lead to a di�erence in risk taking across the two conditions that diminishes
when subjects' degree of risk aversion is su�ciently high. Moreover, we �x the value of C at $2.70 so that it has a
high density in both conditions. As a result, the di�erence in the perception of C across the two conditions is minimal
and only has a small impact on the di�erence in risk taking across conditions.

20 The design in this task is similar to that of Payzan-LeNestour and Woodford (2021) who insert a \test trial"
every 40 trials, although their design is implemented in the domain of a perceptual task where a subject is incentivized
to discriminate between shades of grey.

21 We choose a within subject design because of the added statistical power it provides, which is useful for two
reasons. First, in pilot testing on Proli�c, we observed substantial variation across subjects in their frequency of
choosing the risky lottery. Second, we restrict our analysis to only 8 common trials per condition; in comparison, the
risky choice task from Experiment 1 contains 30 common trials per condition.
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order to promote engagement. If a subject does not respond within the 10-second time limit, the

computer randomly chooses one of the two options. Each subject completes the task and is paid

according to one randomly selected trial, in addition to a $6.50 participation fee. The average

earning for this task, including the participation fee, was $9.27. The experimental instructions for

Experiment 2 are provided in Online Appendix B.

1. Results from Experiment 2. We begin our analysis by applying the following four exclusion

criteria outlined in the pre-registration document. First, we exclude those subjects who failed to

correctly answer at least one of the two comprehension quiz questions. Second, we exclude those

trials for which subjects failed to respond within the 10-second time limit. Third, we exclude those

subjects who chose the risky option on less than 2.5% or more than 97.5% of non-common trials.22

Finally, we exclude those trials for which subjects exhibited excessively fast response times, de�ned

as less than 0.5 seconds. After applying these four exclusion criteria, 151 subjects remain with a

total 85,703 trials, of which 2,278 are common trials. All regression results presented below are

robust to using the full sample without applying the above exclusion criteria.

Our main hypothesis involves testing whether, for a �xed value of C, a subject's appetite for

risk is higher when large values ofX are more frequent. Table III presents results from mixed

e�ects linear regressions in which the dependent variable takes the value of one if the subject

chooses the risky lottery, and zero otherwise. All regressions in Table III include only common

trials. Column (1) shows that the probability of choosing the risky lottery is 7.5% higher in the

context of the increasing distribution, compared to the decreasing distribution (p-value = 0.001).

As in Experiment 1, this result is based on a comparison where the choice sets are �xed and only

the context varies across conditions. We emphasize that the signi�cant di�erence in risk taking

cannot be driven by the mere fact that X has a higher mean in the increasing condition, because

this e�ect is exactly o�set by a higher mean of C in the increasing condition. Thus, we interpret the

empirical �nding in Column (1) as a consequence of an endogenous shift in the likelihood function,

rather than of an exogenous shift in the prior mean ofX .

22 This exclusion criterion is motivated by the observation that, in pilot testing on Proli�c, a small fraction of
subjects exhibited almost zero variation in behavior across the entire 600 trials, indicating a strategy that does not
depend on the values ofX and C. So as not to select on the dependent variable, this criterion is based on choices
from non-common trials, which never enter our main analyses.
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[Place Table III about here]

The signi�cant di�erence in risk taking also holds when we add a linear control for X across

the 8 common trials, as shown in Column (2). Note that we do not include any controls forC

because it is �xed at $2.70 across all common trials. Columns (3) and (4) demonstrate that the

main result in Column (1) continues to hold when we condition only on trials in the �rst half or the

second half of each condition. Overall, the systematic increase in risk taking as we shift from the

decreasing to increasing distribution demonstrates that diminishing sensitivity can arise, in part,

as a consequence of an optimal allocation of perceptual resources.

Our results from this experiment complement recent empirical evidence from a perceptual

decision-making task on \outlier blindness" (Payzan-LeNestour and Woodford, 2021). Those au-

thors provide data that subjects are less accurate in classifying shades of grey when the stimuli

under consideration are outliers relative to the distribution to which a subject has recently adapted.

Analogously, we show that when a subject faces an outlier payo�|a large payo� in the decreasing

distribution|the perceptual system is \blinded" and cannot accurately perceive such a high value.

Crucially, e�cient coding provides a directional prediction regarding the misperception of outliers,

and our data are consistent with this prediction of a negative perceptual bias on large payo�s in

the decreasing condition.

IV. Discussion

IV.A. Adaptation dynamics

The theoretical framework presented in Section II is a static model of risky choice, and hence

does not tackle the important question regardinghow the DM learns the prior distribution. Most

empirical tests of e�cient coding in sensory perception assume full adaptation to the prior distribu-

tion (Laughlin, 1981; Wei and Stocker, 2015), and this assumption has also been recently invoked

in papers on e�cient coding in value-based decisions (Polan��a et al., 2019; Rustichini et al., 2017).

Following this literature, we assume that subjects in our experiments are fully adapted to the

population distribution after completing an initial set of pre-registered \adaptation trials." Yet we

emphasize this assumption is not trivial, particularly because theDM 's learning problem is more
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complex than in standard settings, where Bayesian inference would typically generate convergence.

The additional layer of complexity is due to the DM 's inability to observe the sequence ofobjective

payo�s, and as a result, the DM must learn from the history of perceived payo�s (Robson and

Whitehead, 2018; M lynarski and Hermundstad, 2019; Aridor, Grechi, and Woodford, 2020).

Moreover, even if we assume that subjects can fully adapt to the environment through experi-

ence, this leaves open an important question regarding how much experience is needed to learn the

prior distribution. For example, previous experimental work from HWP shows that convergence

takes place after about 200 trials. To explore these dynamics in our data, we analyze the patterns

of risky choice over the course of Experiment 1. Speci�cally, we compare behavior across the �rst

and second half of the �rst experimental condition; that is, we compare behavior on trials 31 to

165 with behavior on trials 166 to 300. For each of these two subsamples, we estimate the mixed

e�ects linear regression speci�ed in Table I. If the treatment e�ect becomes stronger in the second

half of the �rst condition, this would provide evidence that adaptation is not complete by trial 165.

Table D.4 in Online Appendix D shows that the estimated coe�cients on X � high and C� high

are signi�cant at the 5% level in both subsamples, indicating that the treatment e�ect is present

in both halves of the �rst condition. Nonetheless, we do not detect any signi�cant di�erence in

the strength of the treatment e�ect between the two subsamples. Thus, we cannot rule out the

possibility that full adaptation has taken place by trial 165.

An alternative way to assess the speed of adaptation is by looking at the time series of response

times from Figure VI. One can see signatures of adaptation dynamics as response times fall sharply

at the beginning of the experiment; importantly, we �nd that the decrease in response times

continues after the �rst 30 adaptation trials. In fact, response times asymptote around trial 200,

consistent with the experimental evidence from HWP. While the decrease in response times may

re
ect learning about the task in general|rather than about the prior exclusively|the spike in

average response time in the upper panel of Figure VI (at trial 301) strongly suggests that response

times capture information about the adaptation process. We also emphasize that not all past

observations are likely to receive the same weight when subjects form a prior. For example, if

subjects are more likely to recall past payo�s that were experienced more recently or payo�s that

are more similar to those in the current choice set, then they may overweight these recent or

similar stimuli when forming a prior. As such, research from the memory literature is likely to have
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important implications for e�cient coding of economic stimuli (Kahana, 2012; Bordalo, Gennaioli,

and Shleifer, 2020; Wachter and Kahana, 2021).

IV.B. Multi-dimensional e�cient coding

The e�cient coding model we present in Section II assumes that the capacity constraint param-

eter n is �xed and does not vary with the prior distribution. It is conceivable, however, that the

DM optimally chooses to allocate a larger capacityn towards the dimensions ofX and C when the

payo� volatility along these dimensions is higher. Intuitively, when the payo� volatility along the

two dimensions ofX and C becomes higher, these dimensions could receive more resources from a

\third" dimension, which we can think of as representing other task demands besides perceivingX

and C. Indeed, this is an implication from the multi-dimensional e�cient coding models of Wood-

ford (2012a,b) and Dewan (2020)|although the performance objectives in those models slightly

di�er from what we assume in Section II.

Interestingly, our experimental data are consistent with this implication: when separately es-

timating the capacity constraint parameter n across the low and high volatility conditions using

the risky choice data from Experiment 1, we �nd n = 7.05 for the low volatility condition and n

= 11.66 for the high volatility condition ( p-value < 0:001 for a within subject test). Moreover,

the rank correlation between the values ofn estimated from the two volatility conditions is 0.53

(p-value < 0:001), indicating that n is a persistent trait at the subject level.

[Place Figure IX about here]

While we do �nd that subjects allocate a larger capacity towards the payo�s of X and C

in the high volatility condition, this does not imply that choice sensitivity is higher in the high

volatility condition, compared to the low volatility condition. Indeed, Figure IX shows that our

main theoretical result, as presented earlier in Figure III, continues to hold when we setn = 7

for the low volatility condition and n = 12 for the high volatility condition; these values of n are

chosen to match the results from the structural estimation.

How can the larger capacity parameter n that we estimate in the high volatility condition

generate less choice sensitivity displayed in Figure IX? As we have done throughout the paper,

here we analyze only those payo�s that are drawn from the common support of the high and low
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volatility distributions. This restriction is crucial for identifying the e�ect of context, which we

implement in our experiment through the use of common trials. But importantly, the optimal

coding capacity allocated to the common trials in the high volatility condition is only a small

fraction of the overall capacity; a large remaining fraction of the coding capacity is consumed by

perceiving payo�s in the tails of the high volatility distribution. Therefore, while the DM chooses

a larger overall capacity in the high volatility condition, this e�ect is more than o�set by the fact

that we restrict our analysis to only those payo�s in the common support of the two volatility

conditions.

IV.C. Comparison with alternative theories

In this section, we discuss alternative models of behavior and how their predictions relate to our

experimental results. As noted in the Introduction, the main prediction we test in Experiment 1|

that choice sensitivity to payo� values increases when the dispersion of potential values decreases|

is also shared by models of \normalization" (Rangel and Clithero, 2012; Louie et al., 2015).23 A

particularly relevant class of normalization models are those in which value is normalized based

on the range of potential stimuli (Soltani et al., 2012; Rustichini et al., 2017). Under this class of

models, the subjective value of a payo� depends only on the payo� itself and the range of potential

payo�s. The results from Experiment 1 strongly support the predictions of range normalization

models. In particular, our results highlight the interpretation that normalization can implement

normative principles of e�cient coding. 24 It is worth noting that Experiment 2 o�ers a test between

our e�cient coding model and range normalization models. In Experiment 2, we hold constant the

range of payo�s across experimental conditions. Therefore, our �nding of greater risk taking in

the increasing condition cannot be explained by range normalization models, suggesting that other

23 Several experiments have found evidence consistent with normalization of value signals in the brain (e.g., Tobler,
Fiorillo, and Schultz, 2005; Padoa-Schoppa, 2009). For behavioral evidence consistent with normalization, see Soltani,
De Martino, and Camerer (2012), Khaw, Glimcher, and Louie (2017), and Zimmermann, Glimcher, and Louie (2018).
Recent behavioral economic theories also invoke normalization to explain several prominent patterns of context
dependent choice (Glimcher and Tymula, 2019; Landry and Webb, 2019).

24 Not all models of normalization are grounded in principles of optimization; some are instead developed to describe
the decision process and its outcome. For example, in the Soltani et al. (2012) model, range normalization is assumed,
and its implications are shown to provide a good description of decoy e�ects in risky choice (though normalization
takes place over values on asingle experimental trial, rather than over the history of trials experienced). In more
recent models, such as Rustichini et al. (2017), normalization is the outcome of an optimization procedure. Relatedly,
the prediction of greater sensitivity to attributes with a smaller range is a key assumption in the relative thinking
model by Bushong, Rabin, and Schwartzstein (2020).

34



statistics of the distribution besides the range do a�ect coding. See Online Appendix C for more

discussion.

In the decision-by-sampling (DbS) model by Stewart et al. (2006), theDM 's subjective value

of a stimulus is given by its rank within a distribution of values recalled from memory. To the

extent that the distribution of recalled values is related to the prior distribution that we focus on

in this paper, DbS and e�cient coding models make qualitatively similar predictions. In fact, Bhui

and Gershman (2018) show that e�cient coding can serve as a normative foundation for DbS. We

interpret the data from both of our risky choice experiments as novel evidence consistent with the

core mechanism in DbS.25

K}oszegi and Rabin (2007) (KR) o�er a model of risky choice where the reference point is given

by rational expectations about outcomes from a reference lottery. At a basic level, KR and e�cient

coding share the feature that expectations shape theDM 's perception of a lottery payo�. Yet an

important distinction exists between the two models. In e�cient coding, the driving force of the

model is the DM 's expectation of a payo� value, after it has been presented in the choice set. In

KR, however, the driving force is the DM 's expectation over which payo� value she will receive

as a future, unrealized outcome from the lottery. Therefore, conditional on a choice set, KR does

not predict a change in behavior as the prior distribution varies. We further elaborate this point

in Online Appendix C.

Salience theory is an alternative model of risky choice that is also grounded in principles of per-

ception and delivers context-dependent behavior (Bordalo, Gennaioli, and Shleifer, 2012). Salience

theory and models of e�cient coding are fundamentally linked. Under salience theory, attention is

drawn to payo�s that are very di�erent from a reference payo�. Consistent with this assumption,

the multi-dimensional e�cient coding models of Woodford (2012a,b) and Dewan (2020) imply that,

when the payo� volatility along a dimension increases, more coding resources will 
ow towards that

25 Our evidence also speaks to a recent controversy in interpreting tests of the DbS model. Stewart, Reimers,
and Harris (2015) and Walasek and Stewart (2015) claim to �nd supporting evidence for DbS by manipulating
the distribution of payo�s across choice sets, similar to the manipulation in our design. However, a re-analysis
of their experimental evidence �nds that neither paper can be interpreted as supporting DbS (Alempaki, Canic,
Mullett, Skylark, Starmer, Stewart, and Tufanod, 2019; Andr�e and de Langhe, 2020). The issue arises from the fact
that behavior was analyzed on di�erent choice sets across experimental conditions. In contrast, our design has the
important advantage of presenting a collection of choice sets that are common to both conditions, and the common
choice sets re
ect the statistical properties of the payo� distribution assumed in the theory. Thus, our results should
help restore faith in the empirical validity of DbS. Moreover, our design provides a template for future experimental
tests of the DbS theory.
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dimension, and therefore extreme payo�s will receive more weight in the decision process.

The two models, however, di�er with respect to their primitive assumptions. Bordalo et al.

(2012) appeal to Weber's law of diminishing sensitivity, in part, as a justi�cation for their de�ni-

tion of salience; importantly, in their model, Weber's law is an exogenous assumption. In contrast,

Weber's law arises endogenously under e�cient coding for prior distributions that are decreasing;

when the prior distributions are increasing in payo� values, an \anti-Weber's" law will arise. This

di�erence leads the two models to generate di�erent predictions in many environments. For ex-

ample, salience theory does not predict that risk taking will increase when theDM is adapted

to an increasing payo� distribution, as we �nd in Experiment 2. Nor does it deliver stochastic

choice, where the degree of stochasticity changes systematically with the prior|as we observe in

Experiment 1. At the same time, there are extant empirical patterns in the literature that salience

theory can explain, which the baseline e�cient coding model from Section II cannot, such as the

dependence of risk taking on the correlation between mutually exclusive lotteries.

IV.D. Instability of preference parameter estimates

Our main experimental results are related to, but fundamentally distinct from, much work

in experimental economics that documents how risk taking depends systematically on the realized

lottery outcomesfrom previous choices (Thaler and Johnson, 1990; Weber and Camerer, 1998; Imas,

2016). Importantly, we �nd that, even when lottery outcomes are not presented to subjects, the

distribution of previous choice setsstill causes systematic variation in behavior. As a result, e�cient

coding may provide a distinct source of variation of behavior in typical lab experiments in which

preference parameters are elicited by presenting subjects with a sequence of choice sets (Broomell

and Bhatia, 2014).

The causal e�ect of past choices sets on risk taking is particularly relevant for newer methods

of preference elicitation in which the ordering of choice sets is tailored in real time to a subject's

history of choices. For example, Toubia, Johnson, Evgeniou, and Delqui�e (2013) and Chapman,

Snowberg, Wang, and Camerer (2019) present to subjects a designed sequence of choice sets in order

to maximize the information gain for estimating parameters of the value function from prospect

theory. E�cient coding suggests that the optimal choice set to present to a subject should condition

not only on the history of the subject's choices, but also on the history of the presentedchoice sets.
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Conditioning on this extra aspect of the subject's past experience should therefore aid in further

optimizing experimental design.

V. Conclusion

We have experimentally tested the hypothesis that e�cient coding, a core principle from neuro-

science, is a driving force in decision-making under risk. Our results provide strong evidence that

the DM 's willingness to take risk depends systematically on the payo� distribution to which she

has recently adapted. The results are consistent with the noisy perception of lottery payo�s, and

moreover, we �nd that the noise distribution varies as an optimal response to a change in the envi-

ronment. In Experiment 1, we show that risky choice becomes noisier as the volatility of the payo�

distribution increases. In Experiment 2, we �nd that risk taking becomes greater as the shape of

the payo� distribution changes, which highlights the role that e�cient coding plays in generating

perceptual biases. Together, our data indicate that risk taking is systematically unstable across

environments, in a manner that closely mimics the instability of sensory perception.

Our results raise a number of important directions for future work. There is a strong need

to understand how the DM adapts to a given environment based on the history of perceived

payo�s. This mechanism of course depends on theDM 's prior beliefs about payo�s|which we

manipulate in our experiments|but it also depends on higher order priors about the rate at

which the environment changes. For example, if theDM expects the environmental distribution

to change rapidly, then adaptation will also likely take place at a fast pace (Behrens, Woolrich,

Walton, and Rushworth, 2007; Nassar, Rumsey, Wilson, Parikh, Heasly, and Gold, 2012). Theory

is already being developed along this direction, but future experimental evidence of the adaptation

process will be critical in guiding further development of such theory (Robson and Whitehead,

2018; M lynarski and Hermundstad, 2019; Aridor et al., 2020).

Another important direction for future research is to test the implications of e�cient coding

outside the laboratory. A challenge here is to measure the prior distribution to which theDM has

adapted. A more re�ned theory of adaptation will be integral for guiding empirical work in the

�eld, as it will shed light on the relevant timescale for forming prior beliefs, and hence perceptions.

Institutional factors will also likely shape the relevant timescale for adaptation. For example, in
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�nancial markets, a stock's price distribution over the past 52 weeks is typically salient to investors,

and therefore may be a good candidate for investors' prior distribution. We ourselves expect that

future progress on the topic of e�cient coding will bene�t from the close interplay between theory,

experimental tests, and empirical validations in the �eld.

University of Southern California

California Institute of Technology
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Figure I
Prior distributions, coding rules, and the optimal likelihood functions

Panel A plots two uniform stimulus distributions of X , one with low volatility ( X l = 16 and

X u = 24) and the other with high volatility ( X l = 8 and X u = 32). Panel B plots the coding

rule � (X ), de�ned in equation (10) of the main text, for both volatility environments. Panel C

plots the implied likelihood function f (Rx jX ), de�ned in equation (12) of the main text, for two

values,X = 18 and X = 22, and for each of the two stimulus distributions. The capacity constraint

parameter n is set to 10.
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Figure II
Value functions and the underlying stimulus distributions

Panel A: the upper graph plots two uniform stimulus distributions for X , one with low volatility

(X l = 16 and X u = 24) and the other with high volatility ( X l = 8 and X u = 32). The lower graph

plots the subjective valuations implied by e�cient coding, v(X ), and their one-standard-deviation

bounds v(X ) � � (X ). Panel B: the upper graph plots two stimulus distributions, one increasing

and one decreasing. The increasing distribution is characterized by

f (X ; X l ; X u ; X i
m ; h; l ) =

8
<

:
l; if X l � X � X i

m

h; if X i
m < X � X u

;

whereX l = 2, X u = 8, X i
m = 4 :5, h = 7

25, and l = 1
125. The decreasing distribution is characterized

by

f (X ; X l ; X u ; X d
m ; h; l ) =

8
<

:
h; if X l � X � X d

m

l; if X d
m < X � X u

;

where X l = 2, X u = 8, X d
m = 5 :5, h = 7

25, and l = 1
125. The lower graph plots the subjective

valuations implied by e�cient coding, v(X ), and their one-standard-deviation boundsv(X ) � � (X ).

For both panels, the capacity constraint parametern is set to 10. In the lower graph of each panel,

the green dash-dot line is the forty-�ve degree line.
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Figure III
Model predicted probability of choosing the risky lottery

The graph plots the probability of risk taking, de�ned in equation (17) of the main text, for

each of the two volatility environments (low volatility: X l = 16, X u = 24, Cl = 8, and Cu = 12;

high volatility: X l = 8, X u = 32, Cl = 4, and Cu = 16). The stimulus distributions for X and C

are uniform. The probability p that the risky lottery pays X dollars is set to 0.5. The capacity

constraint parameter n is set to 10. For each volatility environment, we draw X uniformly from

[16; 24] and C uniformly from [8 ; 12]; that is, we draw the payo�s from the common support of the

low volatility distribution and the high volatility distribution. We then compute, for a given X and

C, the probability of risk taking. Finally, we aggregate these probabilities for each level ofpX � C.
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Figure IV
Experimental design for the risky choice task in Experiment 1

The task consists of two blocks of trials: one block contains trials from the high volatility

condition, and the other block contains trials from the low volatility condition. The order of the

two blocks is randomized across subjects. Each block begins with 30 \adaptation trials," followed

by 270 \test trials." Among the 270 test trials, we designate 30 \common trials" that are identical

across both volatility conditions and are the basis of our main tests. On each trial, subjects have

unlimited time to decide which of the two options they prefer.

48



Panel A

Panel B

Figure V
Average probability of risk taking across volatility conditions

Panel A: the graph plots, for each volatility condition, the probability of risk taking against

the di�erence in expected values between the risky lottery and the certain option, namelypX � C.

The probability of risk taking is computed as the proportion of trials on which subjects choose the

risky lottery. Data are pooled across subjects over all common trials in the �rst condition, and thus

represent between subjects comparisons. For each volatility condition, we bin the running variable,

pX � C, to its nearest integer value, and plot the mean for each bin. The length of the vertical

bar inside each data point denotes two standard errors of the mean. Standard errors are clustered

by subject. Panel B: each point represents one of the 30 common trials in the �rst condition.

The x-axis measures the probability of risk taking in the high volatility condition, while the y-axis

measures the probability of risk taking in the low volatility condition. Inside each data point, the

length of the vertical bar denotes two standard errors of the mean probability of risk taking in the

low volatility condition; and the length of the horizontal bar denotes two standard errors of the

mean probability of risk taking in the high volatility condition.
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Figure VI
Evolution of response times over the 600 trials from the risky choice task

Each blue dot represents a trial-speci�c response time averaged across subjects. The upper

panel presents data from subjects who experienced the low volatility condition �rst. The lower

panel presents data from subjects who experienced the high volatility condition �rst. The red

vertical line denotes the onset of the change in environment. Data include both common and

non-common trials.
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Figure VII
Experimental design for the perceptual choice task in Experiment 1

The task consists of two blocks of trials: one block contains trials from the high volatility

condition, and the other block contains trials from the low volatility condition. The order of the

blocks is randomized across subjects. Each block begins with 60 \adaptation trials," followed by

340 \test trials." On each trial, subjects are incentivized to classify whether the number shown on

the screen is greater or less than a reference level of 65.
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Panel A

Panel B

Figure VIII
Classi�cation performance and response time for the perceptual choice task

Panel A: the x-axis denotes the integerX that is presented on each trial, and they-axis denotes

the proportion of trials for which subjects classi�ed X as greater than 65. Panel B: they-axis

denotes the average response time for subjects to execute a decision, for trials on which subjects

responded correctly. Data are pooled across subjects over all test trials in the �rst condition, and

thus represent between subjects comparisons. The length of the vertical bar inside each data point

denotes two standard errors of the mean. Standard errors are clustered by subject.
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Figure IX
Model predicted probability of choosing the risky lottery when the capacity constraint parameter

n changes across volatility environments

The graph plots, for each of the two volatility environments (low volatility: X l = 16, X u = 24,

Cl = 8, and Cu = 12; high volatility: X l = 8, X u = 32, Cl = 4, and Cu = 16), the probability

of risk taking, de�ned in equation (17) of the main text. The stimulus distributions for X and C

are uniform. The probability p that the risky lottery pays X dollars is set to 0.5. The capacity

constraint parameter n is set to 7 for the low volatility environment and 12 for the high volatility

environment. For each volatility environment, we draw X uniformly from [16; 24] and C uniformly

from [8; 12]; that is, we draw the payo�s from the common support of the low volatility distribution

and the high volatility distribution. We then compute, for a given X and C, the probability of risk

taking. Finally, we aggregate these probabilities for each level ofpX � C.

53



Table I
Probability of choosing the risky lottery in Experiment 1 (volatility manipulation)

Between subjects tests Within subject tests

(1) (2) (3) (4) (5) (6)

Dependent variable:
\Choose risky lottery"

Unrestricted
sample

Restricted
sample

Restricted
sample

Restricted sample
(w/out trials 301-450)

Restricted sample
|low volatility �rst

(w/out trials 301-450)

Restricted sample
|high volatility �rst
(w/out trials 301-450)

high 0.023 0.001 {0.023 {0.061 0.016 {0.164

(0.191) (0.200) (0.097) (0.113) (0.168) (0.139)

X 0.066*** 0.074*** 0.062*** 0.064*** 0.073*** 0.052***

(0.006) (0.006) (0.004) (0.004) (0.006) (0.006)

C {0.167*** {0.186*** {0.163*** {0.170*** {0.186*** {0.155***

(0.013) (0.012) (0.009) (0.009) (0.012) (0.014)

X � high {0.017** {0.023*** {0.006 {0.009** {0.015*** {0.002

(0.008) (0.008) (0.003) (0.004) (0.006) (0.005)

C� high 0.033* 0.049*** 0.013* 0.025*** 0.030*** 0.019

(0.017) (0.017) (0.008) (0.009) (0.011) (0.013)

Constant 0.776*** 0.787*** 0.826*** 0.850*** 0.801*** 0.943***

(0.166) (0.179) (0.106) (0.123) (0.180) (0.135)

Observations 4,470 4,170 8,257 6,411 3,125 3,286

Notes. The table reports results from mixed e�ects linear regressions in which the dependent variable takes the value of one if the

subject chooses the risky lottery, and zero otherwise. The dummy variable,high, takes the value of one if the trial belongs to the high

volatility condition, and zero if it belongs to the low volatility condition. Only data from common test trials are included. There are

random e�ects on the independent variablesX , C, and the intercept. Standard errors of the �xed e�ect estimates are clustered at the

subject level and reported in parentheses. *, **, and *** indicate signi�cance at the 10%, 5%, and 1% level, respectively.
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Table II
Probability of classifying X as greater than 65 in the perceptual choice task

Between subjects tests Within subject tests

(1) (2) (3) (4) (5) (6)

Dependent variable:
\Classify X as greater

than 65"

56 � X � 74 60� X � 69 56� X � 59
or

70 � X � 74

56 � X � 74 60� X � 69 56� X � 59
or

70 � X � 74

X � 65 0.855*** 1.096*** 0.578*** 0.792*** 1.051*** 0.558***

(0.047) (0.061) (0.019) (0.028) (0.038) (0.012)

(X � 65)� high {0.209*** {0.279*** {0.081*** {0.147*** {0.236*** {0.077***

(0.051) (0.069) (0.025) (0.014) (0.023) (0.011)

high 0.288*** 0.405*** {0.041 0.259*** 0.300*** 0.146**

(0.052) (0.070) (0.101) (0.037) (0.047) (0.064)

Constant 0.065** 0.071** 0.269*** 0.036* 0.077*** 0.119**

(0.030) (0.036) (0.067) (0.020) (0.023) (0.048)

Observations 31,230 15,522 15,708 63,210 31,580 31,630

Notes. The table reports results from mixed e�ects logistic regressions in which the dependent variable takes the value of one if the

subject classi�es the integerX as larger than 65, and zero otherwise. The integerX is drawn uniformly from the set [31; 99]nf 65g in

the high volatility condition, while it is drawn uniformly from the set [56 ; 74]nf 65g in the low volatility condition. The dummy variable,

high, takes the value of one if the trial belongs to the high volatility condition, and zero if it belongs to the low volatility conditions.

There are random e�ects on the independent variableX � 65 and the intercept. Standard errors of the �xed e�ect estimates are clustered

at the subject level and reported in parentheses. *, **, and *** indicate signi�cance at the 10%, 5%, and 1% level, respectively.
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Table III
Probability of choosing the risky lottery in Experiment 2 (shape manipulation)

(1) (2) (3) (4)

Dependent variable:
\Choose risky lottery"

All common
trials

All common
trials

First half of
each condition

Second half of
each condition

increasing prior 0.075*** 0.075*** 0.088*** 0.070***

(0.023) (0.023) (0.029) (0.024)

X 0.045*

(0.024)

Constant 0.690*** 0.351* 0.684*** 0.695***

(0.029) (0.188) (0.032) (0.030)

Observations 2,278 2,278 862 1,416

Notes. The table reports results from mixed e�ects linear regressions in which the dependent

variable takes the value of one if the subject chooses the risky lottery, and zero otherwise. The

dummy variable, increasing prior, takes the value of one if the trial belongs to the increasing prior

condition, and zero if it belongs to the decreasing prior condition. Only data from common test

trials are included. The variable C is constant among common trials, and therefore is not included

in the regressions as a control variable. There are random e�ects on the independent variableX

and the intercept. Standard errors of the �xed e�ect estimates are clustered at the subject level

and reported in parentheses. *, **, and *** indicate signi�cance at the 10%, 5%, and 1% level,

respectively.
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Online Appendix

A. Theoretical Derivations

A.1. Equivalence of coding rules

HWP have derived coding rules under three di�erent performance objectives: one that max-

imizes expected �nancial gain, one that maximizes mutual information, and one that maximizes

accuracy. In this section, we follow HWP and prove that, when the conditions in equation (9) of

the main text
(i ) pX and C are i.i.d.

and (ii ) pX and C are uniformly distributed
(A.1)

are satis�ed, the three coding rules are equivalent. First, if the performance objective is to maximize

expected �nancial gain, then the coding rules� (X ) and � (C) in equations (5) and (6) of the main

text come directly from HWP.

Next, if the performance objective is to maximize mutual information between a payo� (X or

C) and its noisy signal (Rx or Rc), then HWP derive the following coding rules

� (X ) =
h
sin

� �
2

F (X )
�i 2

and � (C) =
h
sin

� �
2

F (C)
�i 2

; (A.2)

where F (X ) and F (C) are the cumulative distribution function of f (X ) and f (C), respectively.

When X and C are uniformly distributed, the coding rules in (A.2) reduce to equations (5) and (6).

That is, maximizing mutual information and maximizing expected �nancial gain lead to the same

coding rules. Finally, if the performance objective is to maximize accuracy|in the sense of choosing

the option with the highest objective expected value|then, under the conditions in (A.1), we make

two conjectures

(i ) E[p ~X jRx ], viewed as a function ofRx , and E[ ~CjRc], viewed as a function ofRc,

are identical functions,

and (ii ) the optimal coding rules are related: � (X ) = � (C = pX ), 8X 2 [X l ; X u ].

(A.3)

We observe that maximizing accuracy is equivalent to minimizing the probability of error

Proberror �
Z Cu

Cl

dC
Z X u

X l

Prob (error j� (X ); � (C)) � f (X )f (C) � dX; (A.4)

where Prob(error j� (X ); � (C)) represents the probability that the DM chooses the option with the

lower expected payo� observed by the econometrician. Given the two conjectures from (A.3), this

probability of error equals the probability that Rx � Rc and � (X ) � � (C) are of the opposite sign.
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Combining (A.4) with the two conjectures, we observe that whenn is large,

Prob(error j� (X ); � (C))

= Prob(error j� (Y ); � (C)) � �

0

@�
j� (Y ) � � (C)j

q
� (Y )(1 � � (Y )+ � (C)(1 � � (C)))

n

1

A ;
(A.5)

where Y � pX , so Y and C are independently and identically distributed. Moreover, (A.4) can be

written as

Prob(error j� (X ); � (C)) =
Z Cu

Cl

dC
Z X u

X l

f (X )f (C) � Prob (error j� (X ); � (C)) � dX

=
Z Cu

Cl

dC
Z Cu

Cl

f (Y )f (C) � Prob (error j� (Y ); � (C)) � dY:

(A.6)

Given (A.6), the derivation of the optimal coding rules � (X ) and � (C) follow directly from the

Appendix of HWP; these coding rules are identical to those when the performance objective is to

maximize mutual information. Given the coding rules, verifying the two conjectures from (A.3) is

straightforward. �

A.2. Theoretical prediction of e�cient coding in Experiment 2

In this section, we prove an analytical result which justi�es the claim that Experiment 2 in the

main text targets a speci�c test of e�cient coding, rather than a general test of noisy coding.

Proposition : Assume the design of Experiment 2. Further assume (i ) pX and C are inde-

pendently and identically coded, (ii ) f (Rx jX ) is identical across the two experimental conditions

(no e�cient coding), and ( iii ) f (RcjC) is also identical across the two experimental conditions (no

e�cient coding). Then, for all values of X and C, Prob(risk taking jX; C ) is identical across the

two conditions.

Proof : Given assumption (i ), E[p ~X jRx ] = E[ ~CjRc] when Rx = Rc. It is easy to show that this

function of R is increasing inR. As such, the probability of risk taking is

nX

Rx =0

nX

Rc=0

�
1p�E[ ~X jRx ]> E[ ~CjRc ] � f (Rx jX ) � f (RcjC) + 1p�E[ ~X jRx ]= E[ ~CjRc ] �

1
2

f (Rx jX ) � f (RcjC)
�

=
nX

Rx =0

nX

Rc=0

(1Rx >R c � f (Rx jX ) � f (RcjC)) +
nX

R=0

1
2

f (RjX ) � f (RjC):

(A.7)

Given assumptions (ii ) and (iii ), the last line in (A.7) is identical across the two conditions.

In other words, under assumption (i ), any di�erence in risk taking for a given ( X; C ) across the

two conditions serves as evidence that the likelihood functions,f (Rx jX ) and f (RcjC), respond

endogenously to changes in the prior distribution (i.e., a violation of assumptions (ii ) and (iii )). �
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B. Experimental Instructions and Pre-Registration Documents

B.1. Instructions for the risky choice task in Experiment 1
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