1. Note that if two sets are disjoint, then their union is the same as their symmetric difference. Let \(x \) and \(y \) be two sets. Then \(x \setminus y = x \cap (x \Delta y) \), and \(x \cup y \) is the disjoint union of \(x \setminus y \) and \(y \), so

\[
x \cup y = y \Delta (x \cap (x \Delta y))
\]

2. Recall that we have seen that each \(n \in \omega \) is a transitive set, \(n \notin n \), and \(< \) is a total ordering of \(\omega \).

 (a) If \(n < m \) then \(n \in m \) so by transitivity we have \(n \subseteq m \), and since we must have \(n \neq m \), we have \(n \not\subseteq m \). Conversely, if \(n \subseteq m \), we know \(n \neq m \), so we must either have \(n < m \) or \(m < n \). We can not have \(m < n \), since then \(m \subseteq n \), so we must have \(n < m \).

 (b) We can prove this by induction. It clearly holds for \(n = 0 = \emptyset \), so suppose we have \(n = \{m : m < n\} \) for some \(n \). Then \(n + 1 = n \cup \{n\} = \{m : m < n\} \cup \{n\} = \{m : m \leq n\} = \{m : m < n + 1\} \) as we wish.

3. Note that each \(V_n \) is transitive, as clearly \(\emptyset \) is, and if a set \(x \) is transitive then so is \(\varphi(x) \). Also, the three properties below are vacuously true of \(V_0 = \emptyset \).

 (a) Suppose \(x \in V_{n+1} \), so \(x \subseteq V_n \). We have \(y \in \cup x \) iff there is a \(z \in x \) with \(y \in z \). Such a \(z \) is then an element of \(V_n \); since \(V_n \) is transitive then \(y \in V_n \) as well. Hence \(\cup x \subseteq V_n \), so \(y \in \varphi(V_n) = V_{n+1} \).

 (b) If \(x, y \in V_n \) then \(\{x, y\} \subseteq V_n \) and hence is in \(\varphi(V_n) = V_{n+1} \).

 (c) Suppose \(x \in V_{n+1} \). Then \(x \subseteq V_n \), so \(y \subseteq V_n \) and hence \(y \in \varphi(V_n) = V_{n+1} \).

 (d) Extensionality is clear since we are dealing with pure sets. Pairing holds since for any two sets \(x \) and \(y \) in \(V_\omega \), there is some \(V_n \) containing them both, and hence their pair is in \(V_{n+1} \) by part (b) and thus in \(V_\omega \). Union is similar using part (a). Comprehension follows from part (c). Power set follows, since if \(x \in V_n \) then \(x \subseteq V_n \) and hence \(\varphi(x) \subseteq \varphi(V_n) = V_{n+1} \) so \(\varphi(x) \in \varphi(V_{n+1}) = V_{n+2} \).

4. Suppose \(Z \) proved \((*)\). Take \(x \) to be \(V_\omega \), so that for each \(n, f(n) = V_{\omega+n} \). But then \(Z \) proves the existence of the set \(\text{range}(f) = \{V_{\omega+n} : n \in \omega\} \) and hence of the set \(\cup\{V_{\omega+n} : n \in \omega\} = V_{\omega+\omega} \).

As we saw in class, \(Z \) can not prove the existence of this set, since it is a model of \(Z \).

This doesn’t violate the principle of definition by induction, because that depends on having a \textit{function} \(g \) such that \(f(n + 1) = g(f(n)) \), and the power set operation is not a function (its domain is a proper class). We can show that \(\varphi \) restricted to any set \textit{is} a function, but the set we would need here is the set \(V_{\omega+\omega} \) itself.