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1. Motivation and objectives

The use of computational fluid dynamics (CFD) for external aerodynamic applications
has been a key tool for aircraft design in the modern aerospace industry. However, flow
predictions from the state-of-the-art solvers are still unable to comply with the stringent
accuracy requirements and computational efficiency demanded by the industry. In recent
years, wall-modeled large-eddy simulation (WMLES) has gained momentum as a high-
fidelity tool for routine industrial design. In WMLES, only the large-scale motions in the
outer region of the boundary layer are resolved, which enables a competitive computa-
tional cost compared with other CFD approaches (Choi & Moin 2012). As such, NASA
has recognized WMLES as an important pacing item for “developing a visionary CFD
capability required by the notional year 2030” (Slotnick et al. 2014). In the present brief,
we introduce a wall model based on the flow-state classification that is also self-critical,
i.e., it provides a confidence value for the classification.
Several strategies for modeling the near-wall region have been explored in the liter-

ature, and comprehensive reviews can be found in Cabot & Moin (2000), Piomelli &
Balaras (2002), Spalart (2009), Larsson et al. (2016), and Bose & Park (2018). One of
the most widely used approaches for wall modeling is the wall-flux modeling approach (or
approximate boundary conditions modeling), where the no-slip and thermal wall bound-
ary conditions are replaced with stress and heat-flux boundary conditions provided by
the wall model. This category of wall models utilizes the large-eddy simulation (LES)
solution at a given location in the LES domain as input and returns the wall fluxes
needed by the LES solver. Examples of the most popular and well-known approaches
are those computing the wall stress using either the law of the wall (Deardorff 1970;
Schumann 1975; Piomelli et al. 1989), the full/simplified RANS equations (Balaras et al.
1996; Wang & Moin 2002; Chung & Pullin 2009; Bodart & Larsson 2011; Kawai & Lars-
son 2013; Bermejo-Moreno et al. 2014; Park & Moin 2014; Yang et al. 2015) or dynamic
wall models (Bose & Moin 2014; Bae et al. 2019).
In recent years, advances in machine learning and data science have incited new efforts

to complement the existing turbulence modeling approaches in the fluids community.
However, machine learning is still far from being the panacea to solve long-standing
problems in LES. The statement “LES modeling will be solved by machine learning” is
as meaningful as “LES modeling will be solved by the Fourier transform”, i.e., not very.
Machine learning is a tool, as much as the Fourier transform is a tool. Both might aid
the modeling of turbulent flows if properly used. Ultimately, in-depth knowledge of the
physics to be modeled and the formulation of the problem in a language consistent with
machine learning is key to utilizing the tool to its fullest potential.
Supervised learning, i.e., the machine-learning task of learning a function that maps
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an input to an output based on provided training input-output pairs, was first intro-
duced in turbulence modeling in the form of subgrid-scale (SGS) modeling for LES.
Early approaches used neural networks to emulate and speed up a conventional, but
computationally expensive, SGS model (Sarghini et al. 2003). More recently, SGS mod-
els have been trained to predict the (so-called) perfect SGS terms using data from filtered
direct numerical simulation (DNS) (Gamahara & Hattori 2017; Xie et al. 2019). Other
approaches include deriving SGS terms from optimal estimator theory (Vollant et al.
2017) and deconvolution operators (Hickel et al. 2004; Maulik & San 2017; Fukami et al.
2019). One of the first attempts at using supervised learning for WMLES can be found
in Yang et al. (2019). These authors noted that a model trained on channel flow data at
a single Reynolds number could be extrapolated to higher Reynolds numbers and similar
configurations. The model relied on information about the flow that is typically inacces-
sible in real-world applications, such as the boundary-layer thickness, and was limited
to channel flow configurations. The reader is referred to Duraisamy et al. (2019) and
Brunton et al. (2020) for a literature review on machine learning for fluid mechanics.
Currently, the major challenge for WMLES of realistic external aerodynamic applica-

tions is achieving the robustness and accuracy necessary to model the myriad of differ-
ent flow regimes that are characteristic of these problems. Examples include turbulence
with mean-flow three-dimensionality, laminar-to-turbulent transition, flow separation,
secondary flow motions at corners, and shock wave formation, to name a few. The wall-
stress generation mechanisms in these complex scenarios differ from those in flat plate
turbulence. However, the most widespread wall models are built upon the assumption
of statistically-in-equilibrium wall-bounded turbulence, which only applies to a handful
number of flows. The latter raises the question of how to devise models capable of seam-
lessly accounting for such a vast and rich collection of flow physics in a single unified
approach.
In the present brief, we develop a wall-flux-based wall model for LES using a self-critical

machine-learning approach. Since data-driven models are limited by the information they
are provided, the model is formulated to naturally account for various flow configurations.
In this preliminary work, the wall model is trained on DNS data of flow over a flat plate,
flow in a turbulent duct, and separated flow at various Reynolds numbers. The model
comprises two components: a classifier and a predictor. The classifier is trained to place
the flows into the separate categories along with a confidence value, while the predictor
outputs the modeled wall stress based on the likelihood of each category. The model is
validated on a flow over the fuselage and wing-body junction of the NASA Juncture Flow
Experiment.
This brief is organized as follows. The flow setup, mathematical modeling, and nu-

merical approach are presented in Section 2. Results for WMLES with a widely used
equilibrium wall model are presented in Section 3. The results include the prediction of
the mean velocity profiles for three different locations on the aircraft: the upstream re-
gion of the fuselage, the wing-body juncture, and wing-body juncture close to the trailing
edge. The formulation of the new model is discussed in Section 4. The model is validated
in Section 5 and compared with the equilibrium wall model. Finally, conclusions are
offered in Section 6.
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Figure 1. Experimental setup of the NASA Juncture Flow at NASA Langley 14- by 22-foot
Subsonic Wind Tunnel.

2. Simulation setup and methods

2.1. NASA Juncture Flow

The problem considered is the NASA Juncture Flow, which has been recently proposed as
a validation experiment for generic wing-fuselage junctions at subsonic conditions (Rum-
sey et al. 2019). The experiment consists of a full-span wing-fuselage body configured
with truncated DLR-F6 wings and has been tested in the Langley 14- by 22-foot Sub-
sonic Tunnel (Figure 1). The Reynolds number is Re = LU∞/ν = 2.4 million, where L
is the chord at the Yehudi break, U∞ is the freestream velocity and ν is the kinematic
viscosity. The density of the air is ρ. We consider an angle of attack of AoA = 5 degrees.
The experimental dataset comprises a collection of local-in-space time-averaged mea-
surements (Kegerise et al. 2019), such as velocity profiles and Reynolds stresses, which
greatly aid the validation of models and their ability to capture the critical flow physics.
The frame of reference is such that the fuselage nose is located at x = 0, the x-axis is
aligned with the fuselage centerline, the y-axis denotes the spanwise direction, and the
z-axis is the vertical direction. The associated instantaneous velocities are denoted by u,
v, and w, and occasionally by u1, u2, and u3. Time-averaged quantities are denoted by
〈·〉.

2.2. Numerical methods and models

We perform WMLES of the NASA Juncture Flow using the high-fidelity solver charLES.
The reader is referred to Lozano-Durán et al. (2020) for a detailed description of the nu-
merical methods, grid generation and modeling approach. Here, we provide an abridged
description of the numerical setup. The code integrates the compressible LES equations
using a kinetic-energy conserving, second-order accurate, finite volume method. The SGS
model is the dynamic Smagorinsky model (Germano et al. 1991) with the modification by
Lilly (1992). We utilize a wall model to overcome the restrictive grid-resolution require-
ments to resolve the small-scale flow motions in the vicinity of the walls. The working
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Figure 2. Schematic of the working principle of wall-modeled large-eddy simulation.

principle of WMLES is illustrated in Figure 2. Flow information from the LES grid at a
wall-normal distance h is used as input to the wall model. The wall model predicts the
wall stress τw and heat flux at the wall qw, which are imposed back to LES as boundary
conditions. We use an algebraic equilibrium wall model (EQWM) derived from the in-
tegration along the wall-normal direction of an assumed constant-stress layer (Wang &
Moin 2002; Kawai & Larsson 2012; Larsson et al. 2016). At each point of the wall x, this
yields an equation for the wall-model mean velocity profile

u+
|| (y

+
n ) =

{

y+n + a1(y+n )
2 for y+n < yrefn ,

1
κ ln(y+n ) +B otherwise,

(2.1)

where u|| is the magnitude of the wall-parallel velocity, yn is the wall-normal coordinate
such that yn = 0 is the wall, + denotes normalization by ν and τw, κ = 0.41, B = 5.2, yrefn

= 23, and a1 ≈ −0.02. The wall stress τw is computed by solving Eq. (2.1) iteratively
evaluated at the wall-parallel LES velocity u||(x + e2h), where e2 is the wall-normal
direction. The matching location h for the wall model is the first off-wall cell center of
the LES grid. The walls are assumed isothermal. The modeling parameters in Eq. (2.1)
are calibrated to match the wall-stress prediction for a zero-pressure-gradient turbulent
boundary layer (ZPGTBL).

2.3. Grid generation

The mesh generation is based on the Voronoi tessellation of a collection of points. The
points are seeded using a boundary-layer-conforming strategy such that the number of
points per boundary-layer thickness is constant and equal to Nbl = 5. The minimum grid
Reynolds number resolved is Remin

∆ ≡ ∆minU∞/ν = 8 × 103, where ∆min is the smallest
grid size allowed. Figure 3 shows two cuts of the grid along the fuselage and wing, and
Figure 4 contains an isosurface of the instantaneous Q-criterion.

3. Results of WMLES with EQWM

The WMLES discussed above constitutes our baseline case. For reference, this case
corresponds to case C-N5-Rem8e3 in Lozano-Durán et al. (2020). The prediction of the
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Figure 3. Visualization of Voronoi control volumes for boundary-layer-conforming grid with
Nbl = 5 and Remin

∆ = 8× 103 (see Lozano-Durán et al. 2020, for details).

mean velocity profiles is shown in Figure 5 and compared with experimental measure-
ments (uexp). Three locations are considered: the upstream region of the fuselage, the
wing-body juncture∗, and the wing-body juncture close to the trailing edge.
In the first region, the flow resembles a ZPGTBL. Hence, the dynamic Smagorinsky

SGS model and the equilibrium wall-model in Eq. (2.1) perform accordingly (i.e., errors
below 2%), as these have been devised for and validated in ZPGTBL. On the contrary,
there is a decline of accuracy in the WMLES results in the wing-body juncture and
trailing-edge region, which are dominated by secondary motions in the corner and flow
separation. Lozano-Durán et al. (2020) have further shown that not only are the errors
larger in the wing-body juncture and trailing-edge region, but the rate of convergence
of WMLES by merely refining the grid is too slow to compensate for the modeling
deficiencies.
The results above suggest that novel modeling venues must be exploited to improve

WMLES predictions at an affordable computational cost. Here, we focus our efforts on
wall model improvements. Nonetheless, we remark that physical insights, novel SGS
modeling, and numerical/gridding advancements are also essential to attain robust high-
accuracy WMLES. Future work will be devoted to devising an integrated modeling ap-
proach.

∗Note that this location differs from the wing-body juncture location selected in Lozano-
Durán et al. (2020). The current location was chosen to highlight the deficiencies of the EQWM.
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Figure 4. Visualization of the instantaneous isosurfaces of the Q-criterion colored by the velocity
magnitude.

4. Model formulation

The working principle of the proposed model is summarized in Figure 6. The self-
critical model (SCM) is comprised of two elements: a classifier and a predictor. First, the
classifier is fed with data from the LES solver and quantifies the similarities of the input
with a collection of known building-block flows. The predictor leverages the information
of the classifier to generate a wall-stress prediction via non-linear interpolation of the
building-block database. The model is self-critical, i.e., it also outputs a high confidence
value to the prediction if the input flow is recognized as a combination of the building
blocks. If the input data looks extraneous, the model provides a low confidence value,
which essentially means that the flow is unknown. We refer to the current version of the
model as the SCM version 1 (SCMv1).

4.1. Model requirements and assumptions

We consider three basic model requirements. First, to comply with dimensional consis-
tency, the inputs and outputs of the model should be given in non-dimensional form.
Second, the model should be invariant under constant space/time translations and ro-
tations of the frame of reference. Finally, the model should satisfy Galilean invariance,
i.e., invariant under uniform velocity transformations of the frame of reference (Galilean
invariance) or unidirectional accelerations in the case of incompressible flows (extended
Galilean invariance).
The main model assumption is that the myriad of flow configurations encountered in

external aerodynamics might be represented by a finite (hopefully small) set of canonical
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Figure 5. The mean velocity profiles at (a) upstream region of the fuselage at x = 1168.4 mm
and z = 0 mm, (b) wing-body juncture at x = 2747.6 mm and y = 239.1 mm, and (c) wing-body
juncture close to the trailing edge at x = 2922.6 mm and y = 239.1 mm. Solid lines with symbols
denote WMLES with EQWM and dashed lines are experiments. Colors denote different velocity
components. The distances y and z are normalized by the local boundary-layer thickness δ at
each location.

flow units. The assumption relies on the idea that a collection of building blocks contains
the essential flow physics necessary to formulate generalizable models. In this prelimi-
nary work, the set of canonical units selected includes: turbulent channel flows, turbulent
ducts, and turbulent boundary layers with separation. The three flow units are represen-
tative of ZPGTBL, turbulent flow in junctures, and separated turbulence, respectively.
Examples of the three building-block units are included in Figure 7. The use of merely
three building blocks is far from being representative of the rich flow physics (i.e., laminar
flows, shock waves, compressibility effects, flow unsteadiness, adverse/favorable pressure
gradients, other mean-flow three-dimensionalities and separation patterns, chemical re-
actions, etc.). Here, we test the model trained with only three building blocks and the
collection will be extended in upcoming versions.

4.2. Input and output variables

The input velocity is acquired using a seven-point stencil as shown in Figure 6. The
center of the stencil, x0 is located at a wall-normal distance h away from the wall, which
corresponds to the second grid point off the wall, i.e., h ≈ 2∆. The other six components
of the stencil are located ∆ away from x

0 and are denoted as x
±ei = x

0 ± ∆ei for
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Figure 6. Schematic of the self-critical model (SCM). Details are provided in Section 4.2.

Figure 7. Three examples of the building block units taken as representative of the potential
flow configurations. (a) Turbulent channel flow at Reτ = 1000, (b) turbulent duct at Reτ =
180 and aspect ratio 3, and (c) boundary layers with a separation bubble via blowing and
suction at Reτ ≈ 180. The colors are the instantaneous streamwise velocity normalized by the
freestream/centerline velocity. Panels (a) and (c) show the velocity for a streamwise/wall-normal
plane and panel (b) for a wall-normal/spanwise plane.

i = 1, 2, 3, where ei is a unit vector. The vector e2 is parallel to the wall-normal direction
and e1 and e3 are oriented to form an orthogonal basis. The velocity components at the
stencil points are denoted by u0

i and u±ei

i . The input variables are arranged as velocity
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differences

ũ0

i = u0

i − ui,wall, (4.1a)

S̃ij = (δiuj + δjui)/2, (4.1b)

Ω̃ij = (δiuj − δjui)/2, (4.1c)

where δiuj = (uei

j − u−ei

j )/(2∆) and ui,wall is the velocity at the wall. The velocities ui

are obtained by interpolation of the LES velocities to x
0 and x

±ei .

The multi-space structure of a seven-point stencil offers important advantages over the
traditional single-point stencil. A key property is that it makes possible to discern among
different types of flow, such as separation zones, mean-flow three-dimensionality, or even
whether the input variable is within the boundary layer or the freestream. This capability
is unavailable using single-point stencils. The flow-state variables ũ0

i , S̃ij and Ω̃ij comply
with Galilean invariance, as they are constructed using relative velocities. Note that δi
differs from the discrete gradient operators in charLES and the stencil points do not
necessarily coincide with the grid cell centers. In unstructured grids, the location of the
cell centers could follow a complex pattern in space. Additionally, the discrete gradient
operators may differ depending on the discretization method. Hence, the stencil selected
aims at alleviating these problems by facilitating the model training process from DNS
data and promoting generalizability for different numeric and grid strategies.

In addition to velocity information, the model also takes into account the grid size
∆, the distance to the wall h, the fluid properties ρ and ν, and the farfield velocity U∞

(defined with respect to the wall velocity). To ease the classification of different flow
regimes, we introduce a characteristic length-scale L and velocity scale U for each of
the building blocks considered. In the turbulent channel, the characteristic scales are
assumed to be the stress at the wall and the distance to the wall, which yield L1 = h
and U1 =

√

τw/ρ (Townsend 1976). In the steady turbulence with mean-flow three-
dimensionality, such as flow in corners, the fluid motions are controlled by the momentum
flux and mean-shear. Characteristic scales consistent with the previous argument are
U2 =

√

τw/ρ and L2 = U2/S (Lozano-Durán & Bae 2019), where S = ||∇〈u〉||. In
separated flows, the mean momentum equation is balanced by the viscous terms and
pressure gradient, which gives U3 = [(∂〈p〉/∂s)ν/ρ]1/3 and L3 = ν/U3 (Stratford 1959),
where 〈p〉 is mean pressure and s the mean streamwise direction. The values of ∂〈p〉/∂s
and S are evaluated using the discrete seven-point stencil and the wall stress vector τw
is obtained from the previous time step.

Finally, the input to the wall model comprises the non-dimensional groups formed by
the dimensional set

{

ũ0

i , S̃ij , Ω̃ij ;Uk,Lk;U∞, ρ, ν,∆, h : i, j, k = 1, 2, 3
}

, (4.2)

which constitutes a collection of local Reynolds numbers and velocity differences non-
dimensionalized by the characteristic scales. Examples of non-dimensional input variables
can be found in Figure 6.

The output variables are divided into two sets: the wall stress vector expressed as
103 × τw/(ρU2

∞) and the information about the model flow classification and confidence
on the solution. The last two outputs are explained in more detail in the next subsection.
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4.3. Neural network architecture and training

The predictor-classifier structure is outlined in Figure 6. The predictor is a deep feed-
forward neural network with 4 hidden layers and 30 neurons per layer. Both the inputs
and outputs of the predictor are standardized. The classifier is a Bayesian neural net-
work with 3 hidden layers and 15 neurons per layer. The activation functions selected for
the hidden layers are hyperbolic tangent sigmoid transfer functions and rectified linear
activation transfer functions. The present layout was found to give a fair compromise be-
tween neural network complexity and predictive capabilities. Nonetheless, future versions
of the model might be accompanied by a systematic optimization of the neural network
architecture.
Note that we would not even need a neural network to perform the steps above. The

classification step can be conducted by means of other clustering techniques (such as k-
means analysis), and the wall-stress prediction might be attained by switching between
different analytic models (akin to the equilibrium wall model in Eq. (2.1)) according to
the flow classification. Nonetheless, neural networks have shown excellent performance
in classification tasks, and they are a convenient tool to build non-linear interpolations
among datasets.
The training is performed using the following DNS databases: turbulent channel flows

at Reτ ≈ 350, 550, 1000, 2000 and 4200 (Lozano-Durán & Jiménez 2014), turbulent ducts
at Reτ ≈ 180 and 390 and aspect ratios equal to 1, 3, 6 and 10 (Vinuesa et al. 2014), and
turbulent boundary layers with a separation bubble via blowing and suction at Reτ ≈ 180
following the setup from Na & Moin (1998). The input signal is obtained by sampling
the DNS data for various fictitious (isotropic) grid resolutions ranging from ∆/δ = 0.01
to 1 and at multiple wall-normal locations from 0.01δ to δ, where δ is the boundary-
layer thickness (or channel half-height). The DNS velocity is averaged within a sphere
of radius ∆ centered at the location of x0 (similarly for x

±ei). The output is taken as
the wall stress averaged over the surface area ∆2. The training set is also augmented by
performing arbitrary rotations of the frame of reference. The neural network is trained
using Bayesian regularization backpropagation by randomly dividing the training date
into two groups, the training set (80% of the data) and test set (20% of the data).

5. Model validation: Results of WMLES with SCMv1

We validate the model in the NASA Juncture Flow Experiment. The problem setup
is identical to the one described in Section 2 replacing the equilibrium wall model by
the SCMv1. The prediction of the mean velocity profiles is presented in Figure 8 and
compared with WMLES with EQWM for the three locations under consideration. Table 1
contains information about the flow classification and confidence on the solution at each
location. The relative error on the prediction, quantified as ||uexp−u||/||uexp||, is included
in the last rows of Table 1 for both SCMv1 and EQWM.
Figure 8(a) shows that the predictions for SCMv1 and EQWM at the fuselage location

are roughly identical. In both cases, the wall stress is within 2% accuracy as reported
in previous investigations (Lozano-Durán et al. 2020). The flow is identified by SCMv1
as a flat-plate turbulence with 96% confidence. The outcome is expected as SCMv1 was
trained in turbulent channel flows and we have argued that the boundary layer at the
fuselage resembles a ZPGTBL. The most notable improvement is found at the juncture
location (Figure 8b): SCMv1 provides an augmented value of the wall stress, which
alleviates the overprediction of u and w using EQWM. The new wall-stress prediction of
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Location (a) Location (b) Location (c)

Classification
Flat plate flow
Corner flow

Separated flow

91%
9%
0%

27%
73%
0%

20%
52%
28%

Confidence 96% 92% 20%

Error SCMv1 1.4% 7.4% 78.9%
Error EQWM 2.0% 24.5% 98.7%

Table 1. The flow classification, confidence on the solution, and error in the mean velocity
profiles by SCMv1. The errors in the last row are for WMLES with EQWM. The locations are
(a) upstream region of the fuselage, (b) wing-body juncture, and (c) wing-body juncture close
to the trailing edge.

the mean velocity profiles is to within 7.4% error, compared with the 24.5% error using
EQWM. The flow is classified as predominantly corner flow with some traces of flat-plate
turbulence. The confidence in the prediction is also above 90%.
Finally, the performance of SCMv1 in the separated region (Figure 8c) is the poorest

of all three locations, but also the most interesting. There is a moderate improvement
on the mean velocity prediction by SCMv1 with respect to EQWM, but this is still far
from being satisfactory and errors remain above 78.9%. Interestingly, SCMv1 classifies
the flow as a mix of flat plate turbulence, corner flow, and separated flow. Moreover,
despite the erroneous prediction by SCMv1, the model prompts a warning about its
poor performance, which is evidenced by the low confidence on the wall-stress prediction
(∼20%). The deficient performance of both wall models is not surprising if we note that
the separation zone has a wall-normal thickness of 0.3δ, whereas the WMLES grid size is
∆ ≈ 0.2δ. Thus, there is only one grid point across the separation bubble. Despite the fact
that the model was trained in separated flows, numerical errors and SGS model errors
dominate the LES solution in this case. These errors hinder the capability of SCMv1
to classify the flow. Nonetheless, the ability of SCMv1 to assess the confidence on the
prediction is a competitive advantage with respect to traditional wall models.

6. Conclusions and outlook

The prediction of aircraft aerodynamic quantities of interest remains among the most
pressing challenges for computational fluid dynamics, and it has been highlighted as
a Critical Flow Phenomena in the NASA CFD Vision 2030 (Slotnick et al. 2014). The
aircraft aerodynamics are inherently turbulent with mean-flow three-dimensionality, often
accompanied by laminar-to-turbulent transition, flow separation, secondary flow motions
at corners, and shock wave formation, to name a few. However, the most widespread
wall models are built upon the assumption of statistically-in-equilibrium wall-bounded
turbulence and do not faithfully account for the wide variety of flow conditions described
above. This raises the question of how to devise models capable of accounting for such a
vast and rich collection of flow physics in a feasible manner.
In this preliminary work, we have proposed tackling the wall-modeling challenge by
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Figure 8. The mean velocity profiles at (a) upstream region of the fuselage at x = 1168.4 mm
and z = 0 mm, (b) wing-body juncture at x = 2747.6 mm and y = 239.1 mm, and (c) wing-body
juncture close to the trailing edge at x = 2922.6 mm and y = 239.1 mm. Solid lines with open
symbols are for WMLES with EQWM and closed symbols for WMLES with SCMv1. Dashed
lines are experiments. Colors denote different velocity components. The distances y and z are
normalized by the local boundary-layer thickness δ at each location.

devising the flow as a collection of building blocks, whose information enables the pre-
diction of the stress as the wall. We refer to the wall model as SCMv1 (self-critical model
version 0.1). The model relies on the assumption that simple canonical flows (such as
turbulent channel flows, boundary layers, pipes, ducts, speed bumps, etc) contain the
essential flow physics to devise accurate models. Three types of building block units were
used to train the model, namely, turbulent channel flows, turbulent ducts and turbulent
boundary layers with separation. This limited training set will be extended in future
versions of the model. The approach is implemented using two interconnected artificial
neural networks: a classifier, which identifies the contribution of each building block in
the flow; and a predictor, which estimates the wall stress via non-linear combinations of
building-block units. The output of the model is accompanied by the confidence in the
prediction. The latter value aids the detection of areas where the model underperforms,
such as flow regions that are not representative of the building blocks used to train the
model. This is the self-critical component of the SCM and is considered a key step for
developing reliable models. For example, the present model will provide a low confidence
value in the presence of a flow that it has never seen before (e.g., a shock wave), or when
the input velocity is outside of the boundary layer.
The model was validated in a unseen case representative of external aerodynamic

applications: the NASA Juncture Flow Experiment. The case is a generic full-span wing-
fuselage body at Reynolds number Re = 2.4× 106. We have characterized the WMLES
errors in the prediction of mean velocity profiles with SCMv1 and a widely used equi-
librium wall model. Three different locations over the aircraft have been considered: the
upstream region of the fuselage, the wing-body juncture, and the wing-body juncture
close to the trailing edge. The last two locations are characterized by strong mean-
flow three-dimensionality and separation. We have shown that SCMv1 outperforms the
EQWM in the three locations investigated. However, the most remarkable result is not
the higher accuracy of SCM which, due to the larger number of degrees of freedom in



Self-critical machine-learning model for LES

the model, is deemed to outperform the EQWM. Instead, we remark on (1) the success
of the model in providing confidence levels in the wall-stress prediction and (2) its po-
tential to account for new flow physics by including additional building block units. The
promising performance of SCMv1 presented here is still limited to a few observations
and thus should be taken with caution. Further investigation is needed to systematically
characterize errors at multiple grid resolutions and flow configurations.
Several outstanding issues remain to be solved, such as the identification of meaningful

building-block flows, the minimum number of blocks required to make accurate predic-
tions, and their characteristic scales. The choice of input and output variables and their
non-dimensionalization is also of paramount importance in obtaining a successful model.
Here, we have used instantaneous data as input information but time-varying signals are
probably needed to predict strongly unsteady effects. Another outstanding issue is the
necessity of high-quality wind-tunnel experiments as a proxy for evaluating the accuracy
of WMLES in real-world external aerodynamic applications. Useful measurements in-
clude pointwise time-averaged velocities and Reynolds stress profiles along with surface
pressure and friction coefficients. The scarcity to date of granular experimental quantities
hinders our ability to assess and improve the performance of WMLES in more realistic
scenarios.
We have argued that truly revolutionary improvements in WMLES will encompass

advancements in numerics, grid generation, and wall/SGS modeling. Here, we have fo-
cused on wall-modeling and much work remains to be done on other fronts. There is
obviously a data science component to the problem too, such as the need for efficient
and reliable machine-learning techniques for data classification and regression. However,
the main emphasis of this work has been on the physical understanding of the problem
rather than on the details of neural network architecture at hand. The comment in the
introduction about the shallowness of the statement “LES modeling will be solved by
machine learning” is just a reminder that problems are not solved by tools but by people.
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