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Turbulent flows in the presence of walls may be apprehended as a collection of
momentum- and energy-containing eddies (energy-eddies), whose sizes differ by many
orders of magnitude. These eddies follow a self-sustaining cycle, i.e., existing eddies
are seeds for the inception of new ones, and so forth. Understanding this process is
critical for the modelling and control of geophysical and industrial flows, in which
a non-negligible fraction of the energy is dissipated by turbulence in the immediate
vicinity of walls. In this study, we examine the causal interactions of energy-eddies
in wall-bounded turbulence by quantifying how the knowledge of the past states of
eddies reduces the uncertainty of their future states. The analysis is performed via
direct numerical simulation (DNS) of turbulent channel flows in which time-resolved
energy-eddies are isolated at a prescribed scale. Our approach unveils, in a simple
manner, that causality of energy-eddies in the buffer and logarithmic layers is similar
and independent of the eddy size. We further show an example of how novel flow control
and modelling strategies can take advantage of such self-similar causality.
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1. Introduction

Since the first experiments by Klebanoff et al. (1962) and Kline et al. (1967), it was
shortly realised that despite the conspicuous disorder of wall turbulence, the flow is far
from structureless. Instead, fluid motions in the vicinity of walls can be apprehended
as a collection of recurrent patterns usually referred to as coherent structures or eddies
(Richardson 1922). Particularly interesting are those eddies carrying most of the kinetic
energy and momentum, further categorised as streaks (regions of high and low velocity
aligned with the mean-flow direction) and rolls/vortices (regions of rotating fluid).
These eddies are considered the most elementary structures capable of explaining the
energetics of wall-bounded turbulence as a whole, and are the cornerstone of modelling
and controlling geophysical and industrial flows (Sirovich & Karlsson 1997; Hof et al.
2010). The practical implications of wall turbulence are evidenced by the fact that
approximately 25% of the energy used by the industry is spent in transporting fluids along
pipes or in propelling vehicles through air or water (Jiménez 2013). Hence, understanding
the dynamics of energy-eddies has attracted enormous interest within the fluid mechanics
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Figure 1: Instantaneous turbulence kinetic energy, (u′2 + v′2 + w′2)/2, where the prime
denotes fluctuating quantities with respect to their mean values defined by averaging in
the homogeneous directions and time. The turbulence kinetic energy is normalised in wall
units and plotted for planes parallel to streamwise and wall-normal directions. The data
is from a DNS of a turbulent channel flow at Reτ ≈ 4200 in a non-minimal domain by
Lozano-Durán & Jiménez (2014a). The red ovals highlight the location of energy-eddies
of different sizes in the buffer and log layers, respectively, while the white dashed lines
indicate the local domain of each eddy.

community (see reviews by Robinson 1991; Kawahara et al. 2012; Haller 2015; McKeon
2017; Jiménez 2018). In spite of the substantial advancements in the last decades, the
causal interactions among coherent motions have been overlooked in turbulence research.
In the present work, we frame the causal analysis of energy-eddies from an information-
theoretic perspective.
The most celebrated conceptual model for wall-bounded turbulence was pro-

posed by Townsend (1976), who envisioned the flow as a multiscale population of
energy/momentum-eddies starting from the wall and spanning a wide range of sizes
across the boundary layer thickness as highlighted in figure 1. The conceptualisation
of the flow as a superposition of energy-eddies of different sizes is usually referred to
as the wall-attached eddy model. The smallest energy-eddies are located closer to the
wall, in the buffer layer, and their sizes are dictated by the limiting effect of the fluid
viscosity. For example, the size of the buffer layer energy-eddies may be of the order
of millimetres for atmospheric flows (Marusic et al. 2010). Further from the wall, in
the so-called logarithmic layer (log layer), the flow is also organised into energy-eddies
that differ from those in the buffer layer by their larger dimensions, e.g., of the order of
hundreds of meters for atmospheric flows (Marusic et al. 2010).
The existence of wall-attached energy-eddies as depicted above is endorsed by a

growing number of studies. The footprint of attached flow motions has been observed
experimentally and numerically in the spectra and correlations at relatively modest
Reynolds numbers in pipes (Morrison & Kronauer 1969; Perry & Abell 1975, 1977;
Bullock et al. 1978; Kim 1999; Guala et al. 2006; McKeon et al. 2004; Bailey et al.
2008; Hultmark et al. 2012) and in turbulent channels and flat-plate boundary layers
(Tomkins & Adrian 2003; Del Alamo et al. 2004; Hoyas & Jiménez 2006; Monty et al.
2007; Hoyas & Jiménez 2008; Vallikivi et al. 2015; Chandran et al. 2017). Other works
have extended the attached-eddy model (Perry & Chong 1982; Perry et al. 1986; Perry
& Marusic 1995) or complemented the original picture proposed by Townsend (Mizuno
& Jiménez 2011; Davidson et al. 2006; Dong et al. 2017; Lozano-Durán & Bae 2019).
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Reviews of the Townsend’s model can be found in Smits et al. (2011), Jiménez (2012,
2013, 2018) and Marusic & Monty (2019).
Traditionally, wall-attached eddies have been interpreted as statistical entities (Marusic

et al. 2010; Smits et al. 2011), but recent works suggest that they can also be identified
as instantaneous features of the flow (see Jiménez 2018, and references therein). The
methodologies to identify instantaneous energy-eddies are diverse and frequently com-
plementary, ranging from the Fourier characterisation of the turbulent kinetic energy
(Jiménez 2013, 2015) to adaptive mode decomposition (Hellström et al. 2016; Cheng
et al. 2019; Agostini & Leschziner 2019), and three-dimensional clustering techniques
(e.g. Del Álamo et al. 2006; Lozano-Durán et al. 2012; Lozano-Durán & Jiménez 2014b;
Hwang & Sung 2018, 2019), to name a few. The detection and isolation of energy-eddies
have deepened our understanding of the spatial structure of turbulence. However, the
most interesting results are not the kinematic description of these eddies in individual
flow realisations, but rather the elucidation of how they relate to each other and, more
importantly, how they evolve in time.
In the buffer layer, the current consensus is that energy-eddies are involved in a

temporal self-sustaining cycle (Jiménez & Moin 1991; Hamilton et al. 1995; Waleffe 1997;
Schoppa & Hussain 2002; Farrell et al. 2017) based on the emergence of streaks from
wall-normal ejections of fluid (Landahl & Landahlt 1975) followed by the meandering
and breakdown of the newborn streaks (Swearingen & Blackwelder 1987; Waleffe 1995,
1997; Kawahara et al. 2003). The cycle is restarted by the generation of new vortices from
the perturbations created by the disrupted streaks. In this framework, it is hypothesised
that streamwise vortices collect the fluid from the inner region, where the flow is very
slow, and organise it into streaks (cf. Butler & Farrell 1993). Other works suggest that
the generation of streaks are due to the structure-forming properties of the linearised
Navier–Stokes operator, independently of any organised vortices (Chernyshenko & Baig
2005). Conversely, the streaks are hypothesised to trigger the formation of vortices by
losing their stability (Waleffe 1997; Farrell & Ioannou 2012) or the collapse of vortex
sheets via streamwise stretching (Schoppa & Hussain 2002). The reader is referred to
Panton (2001) and Jiménez (2018) for reviews on self-sustaining processes in the buffer
layer.
A similar but more disorganised scenario is hypothesised to occur for the larger wall-

attached energy-eddies within the log layer (Flores & Jiménez 2010; Hwang & Cossu
2011; Cossu & Hwang 2017). The existence of a self-similar streak/roll structure in the
log layer consistent with Townsend’s attached-eddy model has been supported by the
numerical studies by Del Álamo et al. (2006); Flores & Jiménez (2010); Hwang & Cossu
(2011); Lozano-Durán et al. (2012) and Lozano-Durán & Jiménez (2014b), among others.
A growing body of evidence also indicates that the generation of the log-layer streaks
has its origins in the linear lift-up effect (Kim & Lim 2000; Del Álamo & Jiménez 2006;
Pujals et al. 2009; Hwang & Cossu 2010; Moarref et al. 2013; Alizard 2015) in conjunction
with the Orr’s mechanism (Orr 1907; Jiménez 2012). Regarding roll formation, several
works have speculated that they are the consequence of a sinuous secondary instability
of the streaks that collapse through a rapid meander until breakdown (Andersson et al.
2001; Park et al. 2011; Alizard 2015; Cassinelli et al. 2017), while others advocate for a
parametric instability of the streamwise-averagedmean flow as the generating mechanism
of the rolls (Farrell et al. 2016).
Although it is agreed that both the buffer-layer and log-layer energy-eddies are involved

in a self-sustaining cycle, their causal relationships have only been assessed indirectly
by altering the governing equations of fluid motion (Jiménez & Pinelli 1999; Hwang
& Cossu 2010, 2011; Farrell et al. 2017). Moreover, the mechanisms discussed above,
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each capable of leading to the observed turbulence structure, are rooted in simplified
theories or conceptual arguments. Whether the flow follows any or a combination of these
mechanisms is in fact unclear. Most interpretations stem from linear stability theory,
which has proved successful in providing a theoretical framework to rationalise the length
and time scales observed in the flow (Pujals et al. 2009; Del Álamo & Jiménez 2006;
Jiménez 2015). However, a base flow must be selected a priori to enable the linearisation
of the equations, which introduces an important degree of arbitrariness, and quantitative
results are known to be sensitive to the details of the base state (Vaughan & Zaki 2011;
Lozano-Durán et al. 2018b). Another criticism for linear theories comes from the fact
that turbulence is a highly nonlinear phenomenon, and a complete self-sustaining cycle
cannot be anticipated from a single set of linearised equations.
The limitations above have hampered the comparison of the flow dynamics in the buffer

and log layers, and there is no conclusive evidence on whether the mechanisms controlling
the eddies at different scales are of similar nature. One major obstacle arises from the
lack of a tool in turbulence research that resolves the cause-and-effect dilemma and
unambiguously attributes a set of observed dynamics to well-defined causes. This brings
to attention the issue of causal inference, which is a central theme in many scientific
disciplines but has barely been discussed in turbulent flows with the exception of a
handful of works (Cerbus & Goldburg 2013; Tissot et al. 2014; Liang & Lozano-Durán
2017; Bae et al. 2018a). Given that the events in question are usually known in the
form of time series, the quantification of causality among temporal signals has received
the most attention. Typically, causal inference is simplified in terms of time-correlation
between pairs of signals. However, it is known that correlation lacks the directionality
and asymmetry required to guarantee causation (Beebee et al. 2012). To overcome
the pitfalls of correlations, Granger (1969) introduced a widespread test for causality
assessment based on the statistical usefulness of a given time signal in forecasting
another. Nonetheless, there are ongoing concerns regarding the presumptions about the
joint statistical distribution of the data as well as the applicability of Granger causality
to strongly nonlinear systems (Stokes & Purdon 2017). In an attempt to remedy this
deficiency, recent works have centred their attention to information-theoretic measures
of causality such as transfer entropy (Schreiber 2000) and information flow (Liang &
Kleeman 2006; Liang 2014). The former is notoriously challenging to evaluate, requiring
long time series and high associated computation cost (Hlavackova-Schindler et al. 2007),
but recent advancements in entropy estimation from insufficient datasets (Kozachenko &
Leonenko 1987; Kraskov et al. 2004) and the advent of longer time-series from numerical
simulations have made transfer entropy a viable approach.
In this study, we use transfer entropy from information theory to quantify the causality

among energy-eddies. Our goal is to compare the fully nonlinear self-sustaining processes
in the buffer layer and log layer with minimum intrusion. We show that eddies in both
layers follow comparable self-sustaining processes despite their vastly different sizes. Our
findings are also used to inspect the implications of self-similar causality of energy-eddies
for the control and modelling of wall turbulence.
The paper is organised as follows. The numerical experiments and methods are intro-

duced in §2. In §2.1, we describe two numerical simulations to isolate the energy-eddies
in the buffer layer and log layer, respectively. The characterisation of energy-eddies as
time signals is discussed in §2.2, and the methodology for quantifying causal interactions
among the signals is offered in §2.3. The results are presented in §3. We first investigate
the relevant time-scales for causal inference in §3.1, then the causal links among energy-
eddies in §3.2, and finally some applications to flow modelling in §3.3. We conclude our
study in §4.
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Figure 2: Minimal simulations of wall-bounded turbulence to isolate energy-eddies in (a)
the buffer layer, and (b) the log layer. The quantity represented is the turbulence kinetic
energy at different planes. Only half of the channel domain is shown in the y-direction.
The wall is located at y+ = 0, quantities are scaled in + units, and the arrows indicate
the mean flow direction. Panel (a) also includes the computational domain for the buffer-
layer simulation, shown at scale with respect to the log-layer simulation in panel (b). See
also Movie 1.

2. Numerical experiments and methods

2.1. Isolating energy-eddies at different scales

To investigate the self-sustaining process of the energy-eddies at different scales, we
examine data from two temporally resolved DNS of an incompressible turbulent channel
flow. Each simulation is performed within a computational domain tailored to isolate
just a few of the most energetic eddies in either the buffer layer (Jiménez & Moin 1991)
or log layer (Flores & Jiménez 2010), respectively, and can be considered as the simplest
numerical set-up to study wall-bounded energy-eddies of a given size. The configuration
of the two simulations is illustrated in figures 2(a) and (b) (see also Movie 1).
Hereafter, the streamwise, wall-normal, and spanwise directions are denoted by x, y,

and z, respectively, and the corresponding flow velocity components by u, v, and w.
Each DNS is characterised by its friction Reynolds number Reτ = δ/δv, where δ is the
channel half-height and δv is the viscous length scale defined in terms of the kinematic
viscosity of the fluid, ν, and the friction velocity at the wall, uτ . Our friction Reynolds
numbers are Reτ ≈ 180 for the buffer-layer simulation and Reτ ≈ 2000 for the log layer
case, which yield a scale separation of roughly a decade between the energy-eddies in
each simulation. The disparity in sizes between the buffer and log layers DNS domains
is remarked in figure 2. Lengths and velocities normalised by δv and uτ , respectively, are
denoted by the superscript +.
For the buffer-layer simulation, the streamwise, wall-normal, and spanwise domain

sizes are L+
x ≈ 337, L+

y ≈ 368 and L+
z ≈ 168, respectively. Jiménez & Moin (1991)

showed that simulations in this domain constitute an elemental structural unit containing
a single streamwise streak and a pair of staggered quasi-streamwise vortices, which
reproduce reasonably well the statistics of the flow in larger domains. For the log-layer
simulation, the length, height, and width of the computational domain are L+

x ≈ 3148,
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L+
y ≈ 4008 and L+

z ≈ 1574, respectively. These dimensions correspond to a minimal box
simulation for the log layer and are considered to be sufficient to isolate the relevant
dynamical structures involved in the bursting process (Flores & Jiménez 2010). Minimal
log-layer simulations have also demonstrated their ability to reproduce statistics of full-
size turbulence computed in larger domains (Jiménez 2012).
The flow is simulated for more than 800δ/uτ after transients. This period of time is

orders of magnitude longer than the typical lifetime of the individual energy-eddies in
the flow, whose lifespans are statistically shorter than δ/uτ (Lozano-Durán & Jiménez
2014b). During the simulation, snapshots of the flow were stored frequently in time every
0.03δ/uτ (≈5δv/uτ ) and 0.05δ/uτ (≈90δv/uτ ) for the buffer and log layers, respectively.
It is also convenient to normalise the values above with the time-scale introduced by mean
shear S−1, defined by averaging in the homogeneous directions, time, and a prescribed
band along the wall-normal direction. Selecting as representative bands y+ ∈ [40, 80] and
y+ ∈ [500, 700] for the buffer layer and log layer, respectively (more details in §2.2), our
simulations span a period longer than 103S−1, with a time-lag between stored snapshots
smaller than 0.5S−1. The long yet temporally resolved datasets of the current study
enable the statistical characterisation of many eddies throughout their entire life cycle.
The simulations are performed by discretising the incompressible Navier-Stokes equa-

tions with a staggered, second-order accurate, central finite difference method in space
(Orlandi 2000), and a explicit third-order accurate Runge-Kutta method (Wray 1990) for
time advancement. The system of equations is solved via an operator splitting approach
(Chorin 1968). Periodic boundary conditions are imposed in the streamwise and spanwise
directions, and the no-slip condition is applied at the walls. The flow is driven by a
constant mean pressure gradient in the streamwise direction. For both the buffer and log
layers, the streamwise and spanwise grid resolutions are uniform and equal to ∆x+ ≈ 6,
and ∆z+ ≈ 3, respectively. The wall-normal grid resolution, ∆y, is stretched in the wall-
normal direction following an hyperbolic tangent with ∆y+min ≈ 0.3 and ∆y+max ≈ 10. The
time step is such that the Courant-Friedrichs-Lewy condition is always below 0.5 during
the run. The code has been validated in turbulent channel flows (Bae et al. 2018c,b) and
flat-plate boundary layers (Lozano-Durán et al. 2018a). Details on the parameters of the
numerical set-up are included in table 1.

2.2. Characterisation of energy-eddies as time signals

The next step is to quantify the kinetic energy carried by the streaks and rolls as
a function of time. To do that, we use the Fourier decomposition, (̌·), of each velocity
component in the streamwise and spanwise directions (Onsager 1949), i.e., ǔn,m(y, t),
v̌n,m(y, t), and w̌n,m(y, t), where the streamwise (n) and spanwise (m) wavenumbers are
normalised such that n = 1 (m = 1) represents one streamwise (spanwise) period of
the domain. The velocities are first averaged in bands along the wall-normal direction to
produce Fourier components (or modes) that do not depend on y, e.g.,

ûn,m(t) =
1

y1 − y0

∫ y1

y0

ǔn,m(y, t)dy, (2.1)

and similarly for v̂n,m(t) and ŵn,m(t). The bands selected are (y+0 , y
+
1 ) = (40, 80) for

the buffer layer and (y+0 , y
+
1 ) = (500, 700) for the log layer. These bands are chosen

consistently with the regions of realistic turbulence reported for minimal boxes in the
buffer layer (Jiménez & Moin 1991) and the log layer (Flores & Jiménez 2010). It was
tested that the results presented here are qualitatively similar for y+0 and y+1 within the
range [20, 100] and [300, 900] for the buffer and log layers, respectively.
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Simulation Reτ L+
x L+

z ∆x+ ∆z+ ∆y+
min ∆y+

max Nx Ny Nz Tuτ/δ 1/S+

Buffer layer 184 337 168 5.3 2.6 0.2 7.2 32 129 32 830 24
Log layer 2004 3148 1574 6.1 3.1 0.3 13.1 512 769 512 801 212

Table 1: Geometry and parameters of the simulations. Reτ is the friction Reynolds
number. L+

x and L+
z are the streamwise and spanwise dimensions of the numerical box in

wall units, respectively. ∆x+ and ∆z+ are the spatial grid resolutions for the streamwise
and spanwise direction, respectively. ∆y+min and ∆y+max are the finer (closer to the wall)
and coarser (further from the wall) grid resolutions in the wall-normal direction. Nx, Ny,
andNz are the number of streamwise, wall-normal, and spanwise grid points, respectively.
The simulations are integrated for a time Tuτ/δ, where uτ is the friction velocity and δ is
the channel half-height. S is the mean shear within the wall-normal bands y+ ∈ [40, 80]
and y+ ∈ [500, 700] for the buffer layer and log layer, respectively, and 1/S+ defines a
characteristic time-scale for each layer.

The process of decomposing u (similarly for v and w) into time signals for the log layer
(similarly for the buffer layer) is schematically summarised in figure 3: the instantaneous
u (figure 3a) is transformed into the wall-normal averaged Fourier modes û0,1 and û1,1,
whose spatial structure is shown in figures 3(b) and (c), respectively. Then, the kinetic
energy associated with each mode, namely, |û0,1|2 and |û1,1|2, is obtained as a function of
time as shown in figure 3(d) and (e). In this manner, |û0,1|2 characterises the evolution of
the kinetic energy of straight streaks, while meandering or broken streaks are represented
by |û1,1|2. Analogously, rolls identified by |v̂n,m|2 and |ŵn,m|2 are divided into long
motions (|v̂0,1|2 and |ŵ1,0|2) and short motions (|v̂1,1|2 and |ŵ1,1|2). The resulting set
of signals can be arranged into a six-component vector (one per layer) defined by

V(t) = [V1,V2, ...,V6] =
[

|û0,1|
2, |v̂0,1|

2, |ŵ1,0|
2, |û1,1|

2, |v̂1,1|
2, |ŵ1,1|

2
]

. (2.2)

The vector V(t) characterises the spatial and temporal evolution of energy-eddies, and
all together account for roughly 50% of the total kinetic energy of the flow within the
wall-normal band considered in both layers.

2.3. Causality among time-signals as transfer entropy

We use the framework provided by information theory (Shannon 1948) to quantify
causality among time-signals. The central quantity for causal assessment is the Shannon
entropy (or uncertainty) of the signals, which is intimately related to the arrow of time
(Eddington 1929). The connection between the entropy and the arrow of time is argued
by the fact that the laws of physics are time-symmetric at the microscopic level, and it
is only from the macroscopic viewpoint that time-asymmetries arise in the system. Such
asymmetries can be statistically measured using information-theoretic metrics based
on the Shannon entropy. Within this framework, causality from a Vj to Vi is defined
as the decrease in uncertainty of Vi by knowing the past state of Vj . The method
exploits the principle of time-asymmetry of causation (causes precede the effects) and is
mathematically formulated through the transfer entropy (Schreiber 2000). Considering
the vector V(t) as defined in (2.2), the transfer entropy (or causality) from Vj to Vi is
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Figure 3: Characterisation of energy-eddies as time signals. (a) Isosurface of the
instantaneous streamwise velocity in the log layer. The value of the isosurface is 0.7
of the maximum streamwise velocity, coloured by the distance to the wall from dark
blue (close to the wall) to light yellow (far from the wall). The red lines delimit the
wall-normal region where u is averaged. Panels (b) and (c) show the spatial structure of
the Fourier modes associated with û0,1 and û1,1, respectively. Panels (d) and (e) are the
time evolution of |û0,1|2 and |û1,1|2 in the log layer. Time is normalised with the mean
shear across the band considered for extracting the time signals, and the velocities are
scaled in + units.
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defined as (Schreiber 2000; Duan et al. 2013)

Tj→i(∆t) = H(Vi(t)|V ❈j(t−∆t))−H(Vi(t)|V(t−∆t)), (2.3)

where Tj→i is the causality from Vj to Vi, ∆t is the time-lag to evaluate causality,
H(Vi|V) is the conditional Shannon entropy (Shannon 1948) (i.e., the uncertainty in a

variable Vi given V), and V ❈j is equivalent to V but excluding the component j. The
conditional Shannon entropy of a variable Vi given V is defined as

H(Vi|V) = E[log(f(Vi,V))]− E[log(f(V))], (2.4)

where f(·) is the probability density function, and E[·] signifies the expected value.
We are concerned with the cross-induced causalities Tj→i, with j ≠ i, hence, Ti→i are

set to zero. Moreover, our goal is to evaluate the causal effect of Tj→i relative to the total
causality from Vj to all the variables. Thus, we define the normalised causality as

T̃j→i(∆t) =
Tj→i(∆t) − T perm

j→i (∆t)

Tj→(1,···,6)(∆t)− T perm
j→(1,···,6)

, (2.5)

such that the value of T̃j→i is bounded between 0 and 1. The term T perm
j→i aims to

remove spurious contributions due to statistical errors, and it is the transfer entropy
computed from the variables V1, · · · ,Vj−1,V

perm
j ,Vj+1, · · · ,V6, where Vperm

j is Vj ran-
domly permuted in time in order to preserve the one-point statistics of the signal while
breaking time-delayed causal links. The calculation of (2.5) is numerical performed by
estimating the probability density functions and their corresponding entropy using the
binning method. More details about the computation of Tj→i are given in appendix A.
There is a growing recognition that information-theoretic metrics such as transfer

entropy are fundamental physical quantities enabling causal inference from observational
data (Prokopenko & Lizier 2014; Spinney et al. 2016). Moreover, causality measured
by (2.5) is advantageous compared to classic time-correlations employed in previous
studies of wall turbulence (Jiménez 2013). One desirable property is the asymmetry of
the measurement, i.e., if a variable Vi is causal to Vj , it does not imply that Vj is causal
to Vi. Another attractive feature of transfer entropy is that it is based on probability
density functions and, hence, is invariant under shifting, rescaling and, in general, under
nonlinear transformations of the signals (Kaiser & Schreiber 2002). Additionally, Tj→i

accounts for direct causality excluding intermediate variables: if Vi is only caused by Vj

and Vk is only caused by Vj , there is no causality from Vi to Vk provided that the three
components are contained in V (Duan et al. 2013).
Finally, we close the section noting that the quest of identifying cause-effect rela-

tionships among events or variables remains an open challenge in scientific research.
Formally, the transfer entropy in (2.3) determines the statistical direction of information
transfer between time-signals by measuring asymmetries in their interactions. We have
adopted this metric as an indication of causality, but the definition of causation is subject
to ongoing debate and controversy. Although transfer entropy entails a quantitative
improvement with respect to other methodologies for causal inference, it is not flawless.
Previous works have reported that transfer entropy obtained from poor time-resolved
datasets or short time sequences are prone to yield biased estimates (Hahs & Pethel 2011).
More importantly, if some variables in the system are unavailable or neglected, or if the
time-lag in consideration does not account for the actual causal time-lag of the signals,
this could have profound consequences in the observed causality due to intermediate or
confounding hidden variables. The reader is referred to Hlavackova-Schindler et al. (2007)
for an in-depth discussion on information theory in causal inference.
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Figure 4: Summation of causalities
∑

j,i T̃j→i as a function of the time horizon for causal
influence, ∆t, for the buffer layer (black circles) and log layer (red squares). ∆t is scaled
by the average shear of each layer, and causalities in the vertical axis are normalised by
the maximum value among all ∆t.

3. Results

3.1. Time-scales for causal inference

Assessing causality in (2.5) requires the identification of a characteristic time-lag, ∆t.
In the present study, we seek ∆t for maximum causal inference, ∆tmax. The behaviour
of T̃j→i(∆t) can differ for each (j, i) pair, but a sensible choice to estimate ∆tmax is
obtained by defining a global measure based on the summation of all causalities for each
∆t, i.e.,

∑

j,i T̃j→i. The results are shown in figure 4, where ∆t is scaled by the average
shear within the bands considered for each layer.
Interestingly, causalities for both the buffer layer and log layer peak at∆tmax ≈ 0.8S−1,

which is the time-lag selected for the remainder of the study. Note that from table 1, the
ratio Sbuffer/Slog is roughly 10, and there is a non-trivial time-scale separation between
both layers. The value of ∆tmax is comparable to the characteristic lifespan of coherence
structures and the duration of bursting events in turbulent channel flows (Flores &
Jiménez 2010; Lozano-Durán & Jiménez 2014b; Jiménez 2018). Moreover, the collapse
in figure 4 of the causal time-horizon for both layers in shear times points at S−1 as
the physically relevant time-scale controlling the energy-eddies (Mizuno & Jiménez 2011;
Lozano-Durán & Bae 2019). The result is also consistent with previous works on self-
sustaining processes, which have shown that shear turbulence behaves quasi-periodically
with time cycles proportional to S−1 (Sekimoto et al. 2016).

3.2. Causal structure of wall-bounded energy-eddies

The key result of this work is shown in figure 5, which contains the causal relations
T̃j→i among the six flow components. Figure 5 is divided into two causal maps, one for
each layer. The maps should be read as causative variables in the horizontal axis versus
the corresponding effects in the vertical axis. The resemblance between the maps reveals
that, despite the complex nonlinear dynamics and the sizeable length- and time-scale
difference between buffer-layer and log-layer energy-eddies, there is a strikingly similar
causal pattern shared among energy signals in both layers.
The causal maps in figure 5 also unify several well-known flow mechanisms in a single
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(b)(a) Buffer-layer energy-eddies Log-layer energy-eddies

Figure 5: Causal maps for (a) buffer layer and (b) log layer. Greyscale colours
denote normalised causality magnitude. The variables |ûn,m|2, |v̂n,m|2, and |ŵn,m|2

represent the magnitudes of the streamwise, wall-normal, and spanwise velocity
modes, respectively. Red and blue squares enclose intra-scale causalities and inter-scale
causalities, respectively. The statistical convergence of the causal maps is assessed in
appendix B.

visual. If we separate the maps into two subsets, namely, intra-scale causalities (red
squares in figure 5), and inter-scale causalities (black squares in figure 5), the strongest
causalities occur among velocity signals at the same scale. The causal connections
|v̂1,1|2 → |û1,1|2 and |v̂0,1|2 → |û0,1|2 are consistent with the wall-normal momentum
transport by v, which intensifies the streak amplitude through the Orr/lift-up mechanism
(Orr 1907; Landahl & Landahlt 1975). During this process, the causality |v̂1,1|2 → |ŵ1,1|2

is anticipated by the formation of streamwise rolls enforced by the incompressibility of
the flow. The most notable inter-scale causal links arise from |û1,1|2 → |ŵ1,0|2, and
|ŵ1,0|2 → |v̂1,1|2. The former is reminiscent of the spanwise flow motions induced by the
loss of stability of the streaks, while the latter is consistent with the subsequent meander
and breakdown (Swearingen & Blackwelder 1987; Waleffe 1995, 1997; Kawahara et al.
2003; Park et al. 2011; Alizard 2015; Cassinelli et al. 2017). In contrast with previous
studies, our results stem directly from the non-intrusive analysis of the fully non-linear
signals and do not rely on a particular linearisation of the equations of motion. Yet, linear
theories and causal analysis do not oppose to each other and they should be perceived as
complementary approaches; the former as a reduced system to investigate different flow
mechanisms, and the latter as a mean to assess whether those processes are consistent
with the time-evolution of the actual non-linear flow.
For completeness, we also discuss the time cross-correlation between fluctuating signals

V ′

i = Vi − ⟨Vi⟩t calculated as

Cij(∆t) =
⟨V ′

i(t)V
′

j(t+∆t)⟩t

⟨V ′2
i (t)⟩1/2t ⟨V ′2

j (t)⟩1/2t

, (3.1)

where the average ⟨·⟩t is taken over whole time history. The results are displayed in figure
6, which includes correlations whose maxima are above 0.4. Both the buffer and log layers
exhibit similar trends in the correlations, consistent with the self-similar causality shown
above. Here, we wish to make qualitative comparisons of Cij with the maps in figure 5,
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(a) (b)

Figure 6: Temporal cross-correlation of |û0,1|2 → |v̂0,1|2, ◦; |û0,1|2 → |ŵ1,0|2, !; |û1,1|2 →
|v̂1,1|2, ▽; |û1,1|2 → |ŵ1,1|2, △; |v̂1,1|2 → |ŵ1,1|2, . The vertical dashed line is
∆t = 0S−1. (a) buffer layer. (b) Log layer. The notation used is such that Cij represents
Vi → Vj . Lines in black are used for weakly skewed Cij . Time is scaled with the shear
averaged over the respective bands.

and the reader is referred to Jiménez (2013) for a further discussion on time-correlations
in minimal channel flows.
An immediate consequence of causality is the emergence of some degree of correlation

between variables, although the converse is not necessarily true. Despite this footprint
of causality onto the correlations, fair comparisons of Cij and Ti→j are hindered by the
intrinsic differences of each methodology. As discussed in §2.3, the temporal symmetry
of the correlations, Cij(∆t) = Cji(−∆t), does not enable the unidirectional assessment
of interactions between variables. To overcome this limitation and only for the sake of
qualitative comparisons, we assume that the amount of “causality” from Vi to Vj can
be inferred from the skewness of Cij towards later times. Adopting this convention, the
prevailing directionalities in the correlations are identified as |ûi,j |2 → (|v̂i,j |2, |ŵj,i|2)
and |v̂1,1|2 → |ŵ1,1|2, which are also recognised in the causal maps in figure 5. The
picture provided above is that the correlations are mostly dominated by strong events
associated with the redistribution of energy from the streamwise velocity component to
the cross-flow (Mansour et al. 1988). However, Cij fails to account for key mechanisms
required for sustaining wall turbulence, such as the lift-up/Orr effect (Kim & Lim 2000),
which is vividly captured by the causal maps. Regarding the time-scales, the peaks of
the time-correlations are attained within the range ∆t ≈ 0S−1 to ∆t ≈ 3S−1. The range
encloses the averaged time-horizon for maximum causal inference ∆tmax ≈ S−1 (§3.1),
and both approaches appear as valid to extract the representative time-scales of the flow.
Overall, the inference of causality based on the skewness of Cij is obscured by the often
mild asymmetries in Cij and the bias towards strong events, whereas the causal maps in
figure 5 convey a richer vision of the flow mechanisms easing the limitations of Cij .

3.3. Application to flow modelling: bursts prediction in the log layer

The observation of similar causality of energy-eddies at different scales in wall tur-
bulence has striking implications for control and modelling. Our goal in this section
is to provide a simple demonstration of how new models can be conceived for the
computationally affordable smaller eddies in the buffer layer, to later model eddies at
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Figure 7: Schematics of the nonlinear autoregressive exogenous neural network. The input
layer comprises the variables V at past the times t−∆T , t−2∆T , t−3∆T , and t−4∆T .
The five hidden layers consist of weights (w) and bias (b). The output layer returns an
estimation at time t of the variable of interest V∗

5 = |v̂∗1,1|
2.

larger scales. This is shown by constructing a model to predict |v̂1,1|2 in the log layer using
information from buffer layer simulations. Other quantities in V are equally amenable
to modelling, and the choice of |v̂1,1|2 constitutes just one possibility. The selection of
|v̂1,1|2 can be motivated as a marker of the bursting phenomena observed in intense wind
gusts relevant for buildings and aircraft structural loads (Fujita 1981).
We model V5 = |v̂1,1|2 at time t using a nonlinear autoregressive exogenous neural

network (NN) (McCulloch & Pitts 1943). The modelling approach is justified by the
suitability of NN for time-signal forecasting in nonlinear systems, but the remainder of
the section could have been formulated using traditional linear models without altering
our conclusions. Our NN model relates the current value of a time series (V5) to both past
values of the same series and current and past values of the driving (exogenous) series
(Vi, i = 1, . . . , 6, i ≠ 5). Figure 7 shows an schematic of the NN set-up. The input of the
network is the known past states of the log-layer signals V at times t −∆t, ..., t − 4∆t,
with ∆t = 0.8S−1. In present model, V5 = |v̂1,1|2 at time t is estimated as

V∗

5 (t) = F (V(t−∆T ),V(t− 2∆T ),V(t− 3∆T ),V(t− 4∆T )) + ϵ(t), (3.2)

where the function F is a five-layers recursive neural network as detailed in figure 7,
V∗

5 (t) is a prediction of V5(t), ∆T is the time-lag, and ϵ is the model error. The activation
function selected for the hidden layers is the hyperbolic tangent sigmoid transfer function.
The NN is trained using Bayesian regularisation backpropagation with five hidden layers.
The training data is divided randomly into two groups, the training (80%) and validation
(20%) sets. The training is terminated when the damping factor of the Levenberg-
Marquardt algorithm exceeds 1010. Additional details about the NN can be found in
Lin et al. (1996) and Gao & Er (2005).
Three datasets are considered to train the NN prior to performing the predictions

shown in figure 8:
i) In the first case, the NN is trained using signals from the log layer that are

independent of the dataset we aim to predict. Next, the NN is used to make one step
predictions of unseen log layer data as shown in figure 8(a). Under these conditions, the
NN model provides satisfactory predictions of |v̂1,1|2 in the log layer. Given that the NN
was trained using log layer data, the high performance demonstrated in figure 8(a) is
unsurprising.
ii) In the second case, the NN is trained exclusively with signals from the buffer

layer and then used to predict |v̂1,1|2 in the log layer. The accuracy of the forecast
(figure 8b) is comparable to the first case, consistent with the causal similarity argued
in §3.2. The outcome is remarkable, as the buffer layer training set is thousands of times
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time

(a)

(b)

(c)

Actual log-layer 
data

Prediction of 
NN trained with 
log-layer data

Actual log-layer 
data

Prediction of 
NN trained with 
buffer-layer data

Actual log-layer 
data

Prediction of 
NN trained with 
control case

Figure 8: Burst prediction, |v̂1,1|2, in the log layer by a neural network trained with (a)
log-layer data, (b) buffer layer data, and (c) buffer layer data with signals randomly
permuted in time. Solid red lines are actual data to be predicted, and dashed blue lines
are one-step predictions by the neural network with step size equal to ∆t = 0.8S−1

starting from the known solution. Time is normalised with the average shear within the
band considered for extracting the time signals in the buffer or log layer, respectively.
The velocities are normalised in + units.

computationally more economical than the log-layer set used in i). The result illustrates
how the causal resemblance between the energy-eddies in the buffer and log layers can
be advantageous for flow modelling.
iii) The third training set is a control case, in which the NN is fed with signals from

the buffer layer randomly permuted in time in order to destroy time-delayed causal links
between the signals while maintaining their non-temporal properties. Unsurprisingly, the
third case yields completely erroneous predictions of the bursts (figure 8c). Other control
cases can be defined by training the NN with time-reversed signals or signals randomly
shifted in time for long periods. In both cases, the performance of the NN degrades,
yielding inferior predictions with respect to i) and ii).
The primary goal of this section has been to furnish some advantages of causal

inference for flow modelling using a simple example. The interdependence between
model performance and transfer entropy is not coincidental, and both are bonded by
the fact that transfer entropy can be formally expressed in terms of relative errors in
autoregressive models when the variables are Gaussian distributed (Barnett et al. 2009).
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Therefore, even if the correlation between predictee and predictor variables, rather than
causality, is the main requirement to strengthen the predictive capabilities of models, the
understanding of the causal structure of the system can still inform the model design.
Furthermore, the knowledge of the system causal network could be even more beneficial
for the development of control strategies, in which the flow must be modified according
to a set of prescribed rules. In those cases, actual causation between variables might be
preferred to attain an effective control.

4. Conclusions and further discussion

Despite the extensive data provided by simulations of turbulent flows, the causality of
coherent flow motions has often been overlooked in turbulence research. In the present
work, we have investigated the causal interactions of energy-eddies of different size in
wall-bounded turbulence using a novel, nonintrusive technique from information theory
that does not rely on direct modification of the equations of motion (see Movie 1).
Our interest is on quantifying the similarities in the dynamics of the energy-eddies in

the buffer layer and log layer. To that end, we have performed two time-resolved DNS of
minimal turbulent channels, one for each layer. These simple set-ups allow us to isolate
the energy-eddies in the buffer and log layers, respectively, without the complications of
tracking the flow motions in space, scale and time. We have characterised the energy-
eddies in terms of the time-signals obtained from the most energetic spatial Fourier
coefficients of the velocity. Within a given layer, the causality among energy-eddies is
quantified from an information-theoretic perspective by measuring how the knowledge
of the past states of eddies reduces the uncertainty of their future states, i.e., by the
asymmetric transfer of information between signals. Our analysis establishes that the
causal interactions of energy-eddies in the buffer and log layers are similar and essentially
independent of the eddy size. In virtue of this similarity, we have further shown that the
bursting events in the log layer can be predicted using a model trained exclusively with
information from the buffer layer, which is accompanied by significant computational
savings. This modest but revealing example illustrates how the self-similar causality
between the energy-eddies of various sizes can aid the development of new strategies for
turbulence control and modelling.
The causal analysis of time-signals presented here emerges as an uncharted approach

for turbulence research, and future opportunities include the causal investigation of eddies
of distinct nature (temperature, density,...), and the study of key processes in turbulent
flows, such as the cascade of energy from large to smaller scales (Cerbus & Goldburg
2013; Cardesa et al. 2017), transition from laminar to turbulent flow (Hof et al. 2010;
Wu et al. 2017; Kühnen et al. 2018), or the interaction of near-wall turbulence with
large-scale motions in the outer boundary layer region (Marusic et al. 2010), to name a
few.
We conclude this work by discussing some limitations of the approach. First, our

conclusions refer to the dynamics of a few Fourier modes in minimal channels, chosen
as simplified representations of the energy-containing eddies. The results remain to be
confirmed in simulations with larger domains in which unconstrained energy-eddies are
localised in space, scale, and time. In that case, the Fourier analysis employed here to
extract time-signals might be unsuited. The extension of the methodology to arbitrary
flow configurations comprises the identification and time-tracking of energy-eddies at
different scales, which poses a not trivial task. More importantly, the answer to the
question of what is the most natural characterisation of energy-eddies to provide a
comprehensive view of the flow dynamics, if any, is itself unclear. Finally, the notion
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of causality adopted here has its origins in the statistical Shannon entropy and, as such,
should be interpreted as a probabilistic measure of causality rather than as the quan-
tification of causality of individual events. Although the two descriptions are intimately
related, instantiated causality is only unambiguously identified by intrusively perturbing
the system and observing the consequences (Pearl 2009). The latter definition coincides
with our intuition of causality, and it might be preferred for control and prediction of
isolated events. This alternative, but complementary, viewpoint of causality is already
the focus of ongoing investigations and will be discussed in future studies.
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Appendix A. Numerical computation of transfer entropy

Various techniques have been developed to efficiently estimate transfer entropy
(Gencaga et al. 2015). Most approaches rely on decomposing the transfer entropy into
a sum of mutual information components, which are the actual quantities to estimate.
Here, we follow a direct method to compute probability densities by discretising the
continuous valued signals in bins. The binning is performed by adaptive partitioning
(Darbellay & Vajda 1999) with the number of bins in each spatial dimension equal to
ten according to the rule by Palu (1995). It was tested that doubling the number of bins
did not altered the conclusions presented above.
The transfer entropy can also be estimated using kernel density estimators (Wand

& Jones 1994) and k-th-nearest-neighbour estimators (Kozachenko & Leonenko 1987;
Kraskov et al. 2004). Both methodologies alleviate the computational cost associated
with the estimation of transfer entropies and offer improvements for high dimensional
datasets (Kraskov et al. 2004). However, the majority of these approaches depend on
parameters that must be selected a priori, and there are no definite prescriptions available
for selecting these ad hoc values, which may differ according to the specific application.
For those reasons, the binning approach above was preferred. Nevertheless, we verified
that similar conclusions are drawn by computing the values of Tj→i using the Kozachenko-
Leonenko estimator (Kozachenko & Leonenko 1987; Kraskov et al. 2004).

Appendix B. Assessment of statistical significance

To provide a visual impression of the statistical convergence of the causal maps in
figure 3.2, we display in figure 9 the values of T̃j→i using the complete dataset (figure
9a,b, equivalent to figure 3.2 in the manuscript), and a reduced dataset by shortening
the time-signals by half (figures 9c,d). The results indicate that variations in the most
intense transfer entropies are below 10%.
More quantitatively, the statistical significance of the values of Tj→i associated with

T̃j→i > 0.3 are evaluated under null hypothesis (H0) of no transfer entropy among
variables. A new transfer entropy TH0

j→i is estimated replacing Vj by a surrogate signal
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Figure 9: Causal maps computed using the complete temporal dataset (a) and (b), and
half of the time history of the dataset (c) and (d). Results are for the buffer layer in (a)
and (c), and log layer in (b) and (d).

VH0
j synthetically generated from the transitional probability distribution of the actual

sample. The methodology utilised is block bootstrapping preserving the dependencies
within each time series (Kreiss & Lahiri 2012). The procedure is repeated thousand
times for each j = 1, ..., 6 to produce multiple VH0

j , which yield a distribution of transfer
entropies under the null hypothesis of no causality . The p-value associated with the null
hypothesis is then computed by the probability of TH0

j→i being larger than the probability
of the actual estimated value of Tj→i. The details of the procedure are documented
in Thomas & Julia (2013). The p-values, reported in figure 10, are below the level of
significance α = 0.05 and the null hypothesis is rejected.
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