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1. Motivation and objectives

At first sight, walls appear as the most relevant constituent of turbulence confined or
limited by solid surfaces, and it seems natural to assume that they should be the source
and organizing agent of wall-bounded turbulence. Consequently, many efforts have been
devoted to understanding the structure of turbulence in the presence of walls. Particularly
interesting is the region within the so-called logarithmic layer (log-layer), where most of
the dissipation resides in the asymptotic limit of infinite Reynolds number (Marusic et al.
2013). The seminal work by Townsend (1976) conceived the flow across the log-layer as
a self-similar population of eddies of different sizes attached to the wall and organized
according to the only meaningful physical quantities once viscosity is dismissed, i.e.,
the friction velocity and the distance to the wall. In the present work, we propose an
extension of Townsend’s model for the momentum-carrying log-layer motions, where the
length and velocity scales of the eddies are controlled by the turbulent energy production
rate with no direct reference to the distance to the wall.
In addition to Townsend’s attached eddy model (Townsend 1976) and subsequent

refinements by Perry & Chong (1982) and Meneveau & Marusic (2013) (see Marusic &
Monty 2019, for a comprehensive review), the presence of walls is key for many low-order
models and theories aiming to understand the outer-layer dynamics. In the hairpin packet
model (Adrian et al. 2000), arch-like eddies are created at the wall and migrate away from
it. Alternative models by Davidson et al. (2006) do not require wall-attached eddies but
still rely on the distance to the wall as a fundamental scaling property of the flow. The
aforementioned proportionality of the sizes of eddies with the wall-normal distance was
originally hypothesized as an asymptotic limit at very high Reynolds numbers and used in
the classical derivation of the logarithmic velocity profile (Millikan 1938), but it has been
observed experimentally and numerically in spectra and correlations at relatively modest
Reynolds numbers in pipes (Morrison & Kronauer 1969; Perry & Abell 1977; Bullock et al.
1978; Kim & Adrian 1999; Guala et al. 2006; Bailey et al. 2008) and in turbulent channels
and flat-plate boundary layers (Tomkins & Adrian 2003; del Álamo et al. 2004; Monty
et al. 2007; Hoyas & Jiménez 2008). In this framework, the mechanism by which eddies
can “feel” the distance to the wall is through the no transpiration boundary condition
or impermeability.
Previous studies have also revealed that the outer flow can survive independently

of the particular configuration of the eddies closest to the wall. The most well-known
examples are the roughness experiments where properties of the logarithmic and outer
layers remain essentially unaltered despite the fact that roughness destroys the near-wall
region (Perry & Abell 1977; Jiménez 2004; Bakken et al. 2005; Flores et al. 2007). The
independence of the outer layer with respect to the details of the near-wall region was
formulated by Townsend (1976) in the context of rough walls, and it is usually referred
to as Townsend’s similarity hypothesis. The numerical study by Chung et al. (2014)
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assessed an idealized version of the Townsend’s similarity hypothesis by introducing slip
velocities parallel to the wall while still invoking the no transpiration condition for the
wall-normal velocity. Flores & Jiménez (2006) showed that the characteristics of the
outer part of a channel flow remain unchanged when perturbing the velocities at the
wall. Although transpiration at the wall was allowed, it was only for a selected set of
wavenumbers and the wall was still perceived as impermeable by most of the flow scales.
Mizuno & Jiménez (2013) performed computations of turbulent channels in which the
wall was substituted by an off-wall boundary condition mimicking the expected behavior
from an extended logarithmic layer (and hence, a wall), bypassing the buffer layer, with
relatively few deleterious effects on the flow far from the boundaries.
In the present work, we propose characteristic velocity, length, and time scales of the

momentum-carrying eddies by assuming that they are exclusively controlled by the mean
momentum flux and mean shear without explicit reference to the wall.
The brief is organized as follows. The new characteristic scales are presented in Section

2. The proposed scaling is assessed in turbulent channel flows with modified mean mo-
mentum flux in Section 3. In Section 4, we introduce turbulent channels where the no-slip
walls are replaced by Robin boundary conditions for the three velocity components to
analyze the effect of the impermeability condition. Concluding remarks are finally made
in Section 5.

2. Scales controlling wall-attached eddies

We consider a statistically steady, wall-bounded turbulent flow confined between two
parallel walls where ui with i = 1, 2, 3 are the streamwise, wall-normal, and spanwise
velocities, respectively. The pressure is denoted by p. The three spatial directions are xi

with i = 1, 2, 3, and the walls are located at x2 = 0 and x2 = 2h where h is the channel
half-height. The fluid is incompressible with kinematic viscosity ν. We further assume
that the flow is homogeneous in the streamwise and spanwise directions.
First, we briefly revisit the classic scaling by Townsend (1976). The traditional argu-

ment for the characteristic velocity of eddies transporting tangential Reynolds stress is
that their associated turbulence intensities equilibrate to comply with the mean inte-
grated momentum balance

〈u1u2〉 ≈ u2
τ

(x2

h
− 1

)
, (2.1)

where the viscous effects have been neglected, 〈·〉 denotes averaging in the homogeneous
directions and time, and uτ =

√
ν∂〈u1〉/∂x2 is the so-called friction velocity. Hence,

the relevant velocity scale at all wall-normal distances is identified as uτ . Regarding the
characteristic length scale, the classic theory states that the log-layer motions are too
large to be affected by viscosity but small compared to the most restrictive boundary
layer limit O(h). It is argued then that the most meaningful length scale the log-layer
eddies can be influenced by is the distance to the wall.
The hypothesis under consideration here is that the wall is not the organizing element

of the momentum-carrying eddies, whose intensities and sizes are controlled instead by
the mean production rate of turbulent kinetic energy, i.e., by the mean momentum flux
−〈u1u2〉 and associated mean shear ∂〈u1〉/∂x2. The proposed characteristic length l∗,
time t∗, and velocity u∗ scales of wall-attached eddies are sketched in Figure 1.
The characteristic velocity promoted in the present work is dictated by the momentum

flux u∗ ∼
√
−〈u1u2〉. For comparisons with the classic scaling by uτ , we define a new
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Figure 1. Sketch of wall-attached momentum-carrying eddies of different sizes in a
turbulent boundary layer controlled by the mean production rate of turbulent kinetic
energy, −〈u1u2〉∂〈u1〉/∂x2, and proposed velocity, time and length scales.

characteristic velocity by analogy with Eq. (2.1) (Tuerke & Jiménez 2013) as

u∗ ≡
√

−〈u1u2〉
1− x2/h

. (2.2)

Note that we could have also used u∗ ≡
√
−〈u1u2〉, and the wall-normal coordinate x2/h

contained in the left-hand side of Eq. (2.2) is not a definitory element of u∗. The factor√
1− x2/h is introduced in Eq. (2.2) only for convenience such that u∗ collapses to uτ

for a channel flow driven by a constant pressure gradient.
The scenario proposed for the characteristic time and length scales of wall-attached

eddies also differs from the classic theory. Let us consider a momentum-carrying eddy of
size l∗ ∼ u∗ · t∗ controlled by the injection of energy from the mean shear and, therefore,
with characteristic lifespan

t∗ ≡
(
∂〈u1〉
∂x2

)−1

. (2.3)

The scaling in Eq. (2.3) can also be interpreted as the average time for the eddies to
extract energy from the mean shear. Considering the scaling suggested for u∗ in Eq.
(2.2), the resulting length scale is

l∗ ≡ u∗ · t∗ =

√
−〈u1u2〉
1− x2/h

(
∂〈u1〉
∂x2

)−1

. (2.4)

Equation (2.4) can also be obtained by assuming that the momentum-carrying eddies are
controlled by the mean production rate of turbulent kinetic energy, P = −〈u1u2〉∂〈u1〉/∂x2 ∼
u∗3/l∗, which together with Eq. (2.2) yields an expression identical to Eq. (2.4).
For the particular case of a plane channel flow with no-slip walls and constant mean

pressure gradient, we recover u∗ = uτ . Moreover, the characteristic length l∗ in the
log-region of the flow with mean shear ∂〈u1〉/∂x2 = uτ/(κx2) reduces to

l∗ = uτ

(
∂〈u1〉
∂x2

)−1

≈ κx2, (2.5)

which is proportional to the distance to the wall as commonly discussed in the litera-
ture. Therefore, the extension of the characteristic scales proposed above collapses to
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Townsend’s model for a canonical case. It is important to remark that despite the fact
that the velocity and length scales specified by u∗ and l∗ coincide with their classic coun-
terparts uτ and x2 for the traditional channel flow, the former are conceptually distinct
as they remain agnostic to the location of the wall.

3. Turbulent channel with modified mean pressure gradient

3.1. Numerical scheme and computational domain

We perform a set of direct numerical simulations (DNS) of plane turbulent channel
flows by solving the incompressible Navier-Stokes equations with a staggered second-
order finite difference (Orlandi 2000) and a fractional-step method (Kim & Moin 1985)
with a third-order Runge-Kutta time-advancing scheme (Wray 1990). Periodic boundary
conditions are imposed in the streamwise and spanwise directions, and no-slip at the
walls. The code has been validated in previous studies in turbulent channel flows (Lozano-
Durán & Bae 2016; Bae et al. 2018a,b) and flat-plate boundary layers (Lozano-Durán
et al. 2018).
Wall units are denoted by the superscript + and defined in terms of the kinematic

viscosity ν and friction velocity at the wall uτ . Accordingly, the friction Reynolds number
is Reτ = uτh/ν. Velocities normalized by u∗ are denoted by the superscript ∗. Fluctuating
quantities with respect to the mean are represented by (·)′.

3.2. Numerical experiments of channels with modified mean pressure gradient

We devise two sets of conceptual numerical experiments to unravel the characteristic
scales of the outer-layer motions. The first set of experiments is a channel flow with
no-slip walls and modified x2-dependent mean pressure gradients of the form

〈
dp

dx1

〉
= −u2

τ

h

[
1 + ǫ

(
2x2/h− x2

2/h
2
)
− 2/3ǫ

]
, (3.1)

where ǫ is a non-dimensional adjustable parameter. Equation (3.1) is such that Reτ
remains unchanged with ǫ. The goal is to alter the natural balance between eddies which
are forced to readjust their intensities to accommodate the new momentum flux. Two
cases are considered: ǫ = 4, labeled as NS550-p, and ǫ = −2, labeled as NS550-n, where
NS denotes no-slip.
The second set of experiments intends to clarify the characteristic length scales of the

active energy-containing eddies. The change in u∗ and t∗ from NS550-p and NS550-n is
not significant enough to assess conclusively the scaling proposed in Eq. (2.4). For that
reason, two new simulations, NS550-s1 and NS550-s2, are considered by prescribing a
synthetic mean velocity profile of the form

〈u1〉
uref

=
α+ 2

α+ 1

[
1− (x2/h− 1)α+1

]
+

β + 2

β + 1

[
1− (x2/h− 1)β+1

]
, (3.2)

with (α, β) = (41, 11) and (3, 3) for NS550-s1 and NS550-s2, respectively. The parameter
uref was adjusted to achieve Reτ ≈ 550. The profiles from Eq. (3.2) are purposely tailored
to create distinguishable l∗ with values equal to 0.06h, 0.03h, and 0.04h at x2 = 0.10h,
for cases NS550, NS550-s1, and NS550-s2, respectively. All the cases above are designed
such that uτ and x2 remain unchanged but do not coincide with the scaling proposed by
u∗ and l∗, in contrast to the traditional channel flow, where u∗ ≈ uτ and l∗ ≈ κx2. This
will allow us to assess the validity of each scaling.
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Case Reτ ∆x+
1 ∆x+

2,min/max
∆x+

3 Driven by

NS550-p 546 6.7 0.2/9.9 3.3 modified 〈 dp
dx1

〉
NS550-n 546 6.7 0.2/9.9 3.3 modified 〈 dp

dx1
〉

NS550-s1 531 6.5 0.2/9.7 3.2 prescribed 〈u1〉
NS550-s2 546 6.7 0.2/9.9 3.3 prescribed 〈u1〉

Table 1. Tabulated list of cases. The numerical experiments are labeled following the
convention NS[Reτ ]-[specific case], where NS denotes channel with no-slip walls. ∆x1,
∆x2 and ∆x3 are the streamwise, wall-normal, and spanwise grid resolutions, respectively.
The last column shows the method employed to drive the channel flow. See text for details.
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Figure 2. Mean (a) total tangential Reynolds stress for NS550 (dashed line), NS550-p
(open circles), and NS550-n (closed circles). Panels (c) and (d) contain the streamwise
(circles), wall-normal (triangles), and spanwise (squares) root-mean-squared velocity fluc-
tuations scaled with (c) uτ and (d) u∗. Open and closed symbols for R550-p and R550-n,
respectively.

The list of cases is summarized in Table 1. All the simulations were run for at least 10
eddy turnover times (defined as h/uτ ) after transients. We compare our results with DNS
data from del Álamo & Jiménez (2003) and Hoyas & Jiménez (2006) at Reτ ≈ 550, 950,
and 2000, which are labeled as NS550, NS950, and NS2000, respectively.

3.3. Assessment of characteristic velocity and length scales

We examine scaling from Eq. (2.2) in turbulent channel flows with modified mean pressure
gradients given by Eq. (3.1). The imposed x2-dependent pressure gradient breaks the
global velocity scale with uτ , and the new balance for the mean momentum flux requires
that 〈u1u2〉 ≈

∫ x2

0
−〈dp/dx1〉dx2. The total stresses consistent this new set-up for cases

NS550-p and NS550-n are shown in Figure 2(a).
The three root-mean-squared (r.m.s.) fluctuating velocities for NS550, NS550-p, and

NS550-n are reported in Figure 2(b). The pronounced lack of collapse among the three
cases exposes the unsatisfactory scaling with uτ . Conversely, when the r.m.s. fluctuating
velocities are scaled with u∗, which can be analytically evaluated for cases NS550-p and
NS550-n, the agreement is excellent (Figure 2c). Note that the argument above holds for
Townsend’s active motions, i.e., those responsible for the mean momentum transfer, and
that the inactive motions are not expected to scale with u∗ but with the bulk velocity or
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Figure 3. Mean (a) streamwise velocity profile and (b) tangential Reynolds stress. Lines
and symbols are: dashed line for NS550, open circles for NS550-s1, and closed circles for
NS550-s2. The dash-dotted line is x2 = 0.1h.

a mixed scale as suggested in previous works (De Graaff & Eaton 2000; del Álamo et al.
2004; Vallikivi et al. 2015).
Scaling from Eq. (2.4) is investigated in cases NS550, NS550-s1, and NS550-s2 with

mean velocity profiles shown in Figure 3(a). Figure 3(b) contains the tangential Reynolds
stress artificially generated to sustain 〈u1〉. The relevant length scale of the momentum-
carrying eddies is examined in Figure 4 by comparing the premultiplied, two-dimensional
velocity spectra at x2 = 0.10h as a function of the streamwise and spanwise wavelengths
(λ1 and λ3) scaled by the distance to the wall (top panels) and l∗ (bottom panels). The
spectra display a noticeable mismatch when the wavelengths are scaled by x2, whereas
the collapse is appreciably improved when λ1 and λ3 are normalized by l∗, especially for
the most intense spectral cores. Therefore, l∗ stands as a more faithful characterization
of the eddy sizes compared to the distance to the wall.
In summary, we have shown that u∗ and l∗ are tenable candidates to represent the

characteristic scales of the momentum-carrying eddies in wall-bounded turbulence. The
proposed scales are still consistent with the classic scaling provided by uτ and x2, and
can be considered as an extension for more general shear-dominated turbulence.

4. Turbulent channel with Robin boundary conditions

In this section, we analyze the significance of the distance to the wall for the outer flow
by using turbulent channel flows where the no-slip wall is replaced by Robin boundary
conditions. The new set-up allows for instantaneous velocities at the boundaries and, in
particular, for wall-normal transpiration. No transpiration is considered to be the most
distinctive feature of walls, and it is commonly understood as the mean by which the
log-layer motions “feel” the distance to the wall. Hence, the non-zero u2 at x2 = 0 (and
x2 = 2h) introduced by the Robin boundary condition is intended to assess the role of
impermeable walls as organizing agents of wall-attached eddies.

4.1. Numerical experiments of channels with Robin boundary conditions

We perform a set of DNS of turbulent channel flows using the same numerical scheme and
computational domain discussed in Section 3.1. The effect of a permeable boundary is
investigated by replacing the traditional no-slip boundary condition by a Robin boundary
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Figure 4. Premultiplied streamwise (a,d), wall-normal (b,e), and spanwise (c,f) velocity
spectra at x2 = 0.10h for NS550 (solid red), NS550-s1 (open circles), and NS550-s2
(closed circles). The wavelengths are scaled by x2 for the top panels and by l∗ for the
bottom panels. Contours are 0.1 and 0.6 of the maximum.

condition of the form

ui|w = l
∂ui

∂n

∣∣∣∣
w

, i = 1, 2, 3, (4.1)

where the subscript w refers to quantities evaluated at the wall, and n is the wall-normal
(or boundary-normal) direction. We define l to be the slip length that, in general, may be
a function of the spatial wall-parallel coordinates and time. The choice of l must comply
with the symmetries of the flow and, particularly for a channel flow configuration, Eq.
(4.1) should satisfy

〈ui|w〉 =
〈
l
∂ui

∂x2

∣∣∣∣
w

〉
= 0, i = 2, 3. (4.2)

In the present study, we consider a constant value for l. This is consistent with Eq.
(4.2) because 〈ui|w〉 = 0 and 〈∂ui/∂x2|w〉 = 0 for i = 2, 3. The cases simulated are
summarized in Table 2. All the simulations were run for at least 10 eddy turnover times
after transients. Throughout the text, we occasionally refer to cases with the Robin
boundary condition as Robin-bounded and those with the no-slip condition as wall-
bounded.
The motivation of using Eq. (4.1) is to provide a boundary for the flow that deviates

from the behavior of a regular wall. Indeed, for large values of l, Eq. (4.1) constitutes
a significant modification of the classic no-slip boundary condition by suppressing the
formation of near-wall viscous layers (Lozano-Durán & Bae 2016). The mean tangential
Reynolds stress is shown in Figure 5(a) for cases R550, R950, and R2000 with slip length
l = 0.10h. For the three Reynolds numbers under consideration, −〈u1u2〉 captures more
than 90% of the total stress, and this was the criteria used to select l = 0.10h as the
reference slip length. As the Reynolds number increases, so does the contribution of
−〈u1u2〉 close to the wall at the expense of reducing the formation of near-wall viscous
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Case Reτ ∆x+
1 ∆x+

2,min/max
∆x+

3 l/h Driven by

R550 546 6.7 0.2/9.9 3.3 0.10 constant 〈 dp
dx1

〉
R550-l1 546 6.7 0.2/9.9 3.3 0.25 constant 〈 dp

dx1
〉

R550-l2 546 6.7 0.2/9.9 3.3 0.50 constant 〈 dp
dx1

〉
R950 934 5.7 0.5/10.1 2.8 0.10 constant 〈 dp

dx1
〉

R2000 2003 6.1 0.7/15.0 3.1 0.10 constant 〈 dp
dx1

〉

Table 2. Tabulated list of cases. The numerical experiments are labeled following the
convention R[Reτ ]-[specific case], where R denotes channel with Robin boundary condi-
tion. ∆x1, ∆x2 and ∆x3 are the streamwise, wall-normal and spanwise grid resolutions,
respectively. The slip length is l. The last column shows the method employed to drive
the channel flow. See text for details.
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Figure 5. (a) Mean tangential Reynolds stress as a function of the wall-normal coor-
dinate. Symbols are for Robin-bounded channels, ◦, R550; H, R950; �, R2000. Dashed,
dash-dotted, and dotted lines are for wall-bounded channels NS550, NS950 and NS2000,
respectively. (b) Premultiplied wall-normal velocity spectra for Robin-bounded channels
at x2 = 0h. Contours are 0.1 and 0.6 of the maximum. The straight dashed lines are
λ1/h = 1 and λ3/h = 1. Symbols are as in (a).

layers that appear prior to the proximity of the wall. Cases R550-l1 and R550-l2 are for
l = 0.25h and l = 0.50h, respectively, and are intended to test the effect of increasing
slip lengths.
Another two important properties of the Robin boundary condition are that (i) it allows

for transpiration at all flow scales and (ii), it does not encode any specific information
regarding the linear wall-normal scaling of the log-layer eddies. The spectral density of
the wall-normal velocity, φ22, evaluated at x2/h = 0 for Robin-bounded cases is shown
in Figure 5(b) as a function of the streamwise and spanwise wavelengths, λ1 and λ3,
respectively. The spectra are non-zero at the boundary and peak at λ1 ≈ 0.3h and
λ3 ≈ 0.10h, with a non-negligible contribution from wavelengths up to λ1 and λ3 of
O(h). Moreover, the spectral energies obtained by integrating φ22 at x2 = 0h are ≈u2

τ ,
that is of the same order as the values in the bulk flow. This implies that the Robin
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boundary should alter the behavior of eddies with sizes up to O(h) if they are controlled
by the distance to the wall as commonly hypothesized (Townsend 1976).

4.2. One-point statistics and spectra

The mean streamwise velocities for the Robin-bounded and wall-bounded channel flows
are compared in Figure 6. In Figure 6(b), the mean profiles for Robin-bounded cases are
vertically displaced to match the centerline velocity of the corresponding no-slip case. A
first observation is that the shape of 〈u1〉 remains roughly identical for x2 & 0.10h, and
the Robin boundary condition is mainly responsible for a reduction of the total mass flux.
The shifts required to match the Robin-bounded cases to their no-slip counterpart were
positive and equal to 6.4, 8.0, and 8.9 plus units for R550, R950, and R2000, respectively.
Nonetheless, we do not emphasize these values as they can be trivially changed by either
adding a constant uniform velocity to the right-hand side of the Robin boundary condition
in Eq. (4.1) or by a Galilean transformation of the velocity field.
The observations from Figure 6 can be connected to the law of the wall (Prandtl 1925;

Millikan 1938; Townsend 1976),

〈u+
1 〉 =

1

κ
log

(
x+
2

)
+B +Π, (4.3)

where κ and B are the von Kármán and intercept constants for no-slip walls, respectively,
and Π is an additional velocity displacement. From the integrated mean streamwise
momentum balance, the mean velocity profile can be written as

〈u+
1 〉 = l

〈
∂u+

1

∂x+
2

∣∣∣∣
w

〉

︸ ︷︷ ︸
∼Π

+ x+
2

(
1− x2

2h

)
+

∫ x+
2

0

〈u+
1 u

+
2 〉dx′+

2

︸ ︷︷ ︸
∼1/κ log(x+

2 )+B

, (4.4)

and it is reasonable to hypothesize that the Robin boundary condition acts as an effective
drag with a major impact on Π, while 〈u+

1 u
+
2 〉 controls the x2-dependent component,

∼ 1/κ log(x2) + B, linked to the wall-normal mixing of the flow. Note that this is not
strictly the case, and some coupling is expected between all terms in Eq. (4.4).
The r.m.s. velocity fluctuations for the Robin-bounded and wall-bounded channels are

shown in Figure 7(a–c). The most remarkable observation from Figure 7 is that the Robin-
bounded fluctuating velocities match quantitatively their wall-bounded counterparts for
x2 & 0.10h despite the lack of impermeable walls. The presence of a significant non-zero
u2 in Robin-bounded cases is evidenced by the r.m.s. of u2 at x2 = 0 whose values are
comparable to the r.m.s. in the bulk flow. The result is again an indication that the total
contribution of the wall-attached and -detached eddies to the turbulence intensities is
insensitive to the presence of impermeable walls.
The spectral densities of the three velocity fluctuations, φ11, φ22, and φ33, are shown in

Figure 8 as a function of the streamwise and spanwise wavelengths. Several wall-normal
heights are considered for R2000 and NS2000. Unsurprisingly, the spectra for the Robin-
bounded and wall-bounded cases differ significantly in the proximity of x2 = 0h. For
the Robin-bounded case, φ22 is non-zero at the boundary and peaks at λ1 ≈ 0.3h and
λ3 ≈ 0.10h, with a non-negligible contribution from wavelengths up to λ1 and λ3 of O(h).
We can then estimate the flow scales that are expected to be affected by the transpiration
of the boundary by assuming that the stress-carrying eddies follow λ1 ≈ 1.5x2 and
λ3 ≈ x2 (Dong et al. 2017). If the boundary is perceived as permeable for scales up to
O(h), then attached motions below x2 ≈ 0.7h should adjust accordingly to accommodate
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Figure 6. (a) Mean streamwise velocity profiles. (b) Mean streamwise velocity profiles
with the centerline velocity of the Robin-bounded cases shifted to coincide with its cor-
responding wall-bounded case. Profiles at Reτ ≈ 950 and Reτ ≈ 2000 are additionally
shifted by 5 and 10 plus units, respectively, for clarity. Symbols and lines are circles,
R550; triangles, R950; squares, R2000; dashed line, NS550; dash-dotted line, NS950;
dotted line, NS2000.
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Figure 7. (a) Streamwise, (b) wall-normal, and (c) spanwise r.m.s. velocity fluctuations.
Symbols and lines are: circles for R550, triangles for R950, squares for R2000, dashed
line for NS550, dash-dotted line for NS950, and dotted line for NS2000. In all panels, the
profiles for cases at Reτ ≈ 950 and Reτ ≈ 2000 are vertically shifted by 0.5 and 1 plus
units, respectively, for clarity.

transpiration effects, especially if the wall is their primary organizing agent. However,
inspection of the spectra above x2 ≈ 0.10h shows that the agreement between wall-
bounded and Robin-bounded channels is outstanding. Consequently, the distance to the
boundary (or non-existent wall) is not the relevant length scale controlling the size of the
attached eddies, in contrast with the traditional argument by Townsend (1976). Instead,
the resemblance between wall-bounded and Robin-bounded cases presented above should
be attributed to the common momentum transfer u2

τ characteristic of both cases as argued
in Section 2.

4.3. Logarithmic layer without inner-outer scale separation

The Robin boundary condition imposes a new length scale to the eddies in the near-wall
region. The characteristic flow length scales of the no-slip and Robin-bounded channels
are plotted in Figure 9(a) as a function of x2. The small, intermediate, and large scales
are represented by the Kolmogorov length scale η = (ν3/ε)1/4, the Taylor microscale
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Figure 8. Wall-parallel premultiplied streamwise (a,b,c), wall-normal (d,e,f), and span-
wise (g,h,i) velocity spectra at x+

2 = 0 for R2000 and x+
2 = 1 for NS2000 (a,d,g),

x+
2 = 1001 (b,e,h), and x+

2 = 2003 (c,f,i). Solid lines are for the Robin-bounded channel
(R2000) and dashed lines are for the wall-bounded channel (NS2000). Contours are 0.1
and 0.6 of the maximum. The red dotted lines are λ1 = h and λ3 = h.

λT = (15k/ε)1/2, and the integral length scale Lε = (k/3)3/2/ε, respectively, where ε is
the rate of energy dissipation and k is the turbulent kinetic energy. Note that Lε and
λT drop rapidly to zero as x2 approaches the wall for the no-slip channel, whereas they
remain roughly constant in the Robin-bounded case. Moreover, the comparison of Lε at
two different Reτ for the Robin-bounded channels shows that the integral length scale
collapses in outer units across the entire boundary layer thickness, including the region
close to x2 = 0h. These results can be read as the disruption of the classic viscous scaling
of the active energy-containing eddies at the wall, i.e., their sizes are a fixed fraction of
h and do not decrease with Reτ .

In spite of the lack of inner-outer layer scale separation with increasing Reτ , the mean
profile for Robin-bounded cases converges towards a log-layer at a similar rate as wall-
bounded channels. This is shown in Figure 9(b) which contains the L2-norm of the
error function El = x+

2 ∂〈u+
1 〉/∂x+

2 − 1/κ with κ = 0.384 (Lee & Moser 2015) across
x2 ∈ [0.1h, 0.2h] as a function of Reτ . The outcome challenges the log-layer formulations
derived from an inner-outer layer scale separation (Millikan 1938), since Robin-bounded
cases approach a logarithmic profile as Reτ increases despite the inner and outer length
scale separation remains a constant fraction of h. Nonetheless, the Reynolds numbers
in the present work are too low to attain a well-developed log-layer and, therefore, the
results are indicative but not conclusive of the convergence of Robin-bounded cases to
an actual wall-bounded log-layer as Reτ increases.
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Figure 9. (a) Characteristic length scales. Kolmogorov length scale (NS550, dashed
line; R550, circles), Taylor microscale (NS550, dot-dashed line; R550, triangles), and
integral length scale (NS550, solid line; R550, squares; R950, diamonds). (b) L2-norm of
the error function El = x+

2 ∂〈u+
1 〉/∂x+

2 − 1/κ with κ = 0.384 across x2 ∈ [0.1h0.2h] as
a function of Reτ . Open and closed symbols are for wall-bounded and Robin-bounded
cases, respectively.

5. Conclusions

In the present work we have proposed new characteristic velocity, length and time
scales for the momentum-carrying eddies in the log-layer of wall-bounded turbulence.
We have hypothesized that the mean tangential momentum flux and mean shear are the
main contributors to the intensities, lifespan, and sizes of the active energy-containing
motions in the outer region. The proposed characteristic scales are consistent with the
predictions by Townsend’s attached eddy model and extend its applicability to flows
with different mean momentum flux. The mechanism proposed is as follows. The mean
tangential momentum transfer defines a local-in-x2 characteristic velocity scale u∗. The
role of u∗ is twofold: it controls the intensities of the active eddies and the mean shear.
The size of the eddies is governed by the length scale l∗ defined in terms of u∗ and the
characteristic time scaled t∗ imposed by the mean shear. In this framework, the no-slip
and impermeability constraints of the wall are not directly involved in the organization
of the outer flow, and the role of the wall is relegated to serve as a proxy to sustain the
mean momentum flux. The scaling proposed has been successfully assessed through a set
of idealized numerical studies in channel flows with modified streamwise velocity profiles
and mean pressure gradients.

We have further addressed the question of whether the impermeability of the wall is
a foundational component of the outer-layer of wall turbulence by designing a new nu-
merical experiment where the channel walls are replaced by a Robin boundary condition.
In the resulting flow, instantaneous wall transpiration is allowed for scales comparable
to the log-layer motions to the extent that the wall-normal distance can no longer be a
relevant length scale. We have referred to this configuration as Robin-bounded channel
flow as opposed to the traditional wall-bounded channel. A detailed inspection of the
one-point statistics and spectra has shown that both wall-bounded and Robin-bounded
channel flows share identical outer-layer motions, and we have interpreted this evidence
as an indication that the same physical process occurs in both flow configurations.
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