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Convergence of large-eddy simulation in the outer
region of wall-bounded turbulence

By A. Lozano-Durán AND H. J. Bae

1. Motivation and objectives

Most turbulent flows cannot be calculated by direct numerical simulation (DNS) of
the Navier-Stokes equations because the range of scales of motions is so large that the
computational cost becomes prohibitive. In large-eddy simulation (LES), only the large
eddies are resolved and the effect of the small scales on the larger ones is modeled through
a subgrid scale (SGS) model. This process enables a reduction of the computational cost
by several orders of magnitude.
Given that the accurate representation and prediction of turbulence is needed in many

engineering and scientific applications, validation of SGS models must be considered a
task of paramount importance. In particular, the analysis must be framed in the context
of a convergence study, which is the cornerstone of validation in computational fluid
dynamics. In addition, the grid requirements must be determined for LES to be deemed
as a cost-saving approach when compared to DNS. Common benchmark solutions for LES
are simple hydrodynamic cases such as forced or decaying isotropic turbulence (Métais
& Lesieur 1992), spatial or temporal mixing layers (Vreman et al. 1996, 1997) and plane
turbulent channel flow (Piomelli et al. 1988; Germano et al. 1991; Chung & McKeon
2010), among others. See Bonnet et al. (1998) for an overview of LES validation.
Most SGS models assume that the effective filter cutoff lies within the inertial range,

and the Reynolds number and grid resolutions must comply with this requirement in
order to faithfully assess the performance of the models. In unbounded flows, like isotropic
turbulence, LES can be computed at relatively coarse grid resolutions while still meeting
this condition. However, this is not the case in the logarithmic region of wall-bounded
flows, where the energy-containing eddies have sizes proportional to the distance to the
wall (Jiménez 2012; Larsson et al. 2016). In this case, the LES grid must be accordingly
reduced in all directions, increasing the computational cost. This approach is known as
wall-resolved LES (WRLES) and can be achieved, for example, through nested grids
(Sullivan et al. 1996) such as the one depicted in Figure 1. Actual WRLES are scarce,
and typically, only the wall-normal resolution is properly refined according to the size
of the energy-containing eddies, while the wall-parallel directions remain under-resolved.
The grid requirements become more restrictive in the buffer layer, where the viscous
effects are non-negligible. If the near-wall grid resolution does not suffice to capture the
energy-containing eddies, most SGS models perform poorly (Jiménez & Moser 2000).
The consequence is that the majority of validation studies in turbulent channel flows

are WRLES and, hence, their Reynolds numbers tend to be relatively low to make the
computational cost affordable (Choi & Moin 2012). However, it is not clear whether the
SGS models are active enough at these low Reynolds numbers to adequately measure
their performance. In order to test higher Reynolds numbers without the burden of the
wall, a possible solution is the implementation of wall models that act as a surrogate
of the near-wall dynamics, or the wall-less channel flow proposed by Lozano-Durán &
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Figure 1. Instantaneous streamwise velocity contours of a turbulent channel flow and sketch of
wall-attached eddies of different sizes (white circles). Grid 1 (left) depicts a uniform grid typical
of WMLES. Grid 2 (right) is a nested grid necessary for WRLES.

Bae (2016). Note that turbulent free shear flows such as mixing layers, jets, and wakes
are also good candidates in terms of studying shear flows away from the wall. However,
their large scales are linearly unstable and sensitive to initial conditions in contrast to
the typical wall-bounded flows. In this brief, we assess the convergence of SGS models in
the outer region of wall-bounded flows without the effect of the walls. For this purpose,
we will employ the two methods proposed above, that are, supplying the correct stress
at the wall, or suppressing the near-wall dynamics by a wall-less channel flow.
The present brief is organized as follows. In Section 2, we demonstrate the necessity of

wall models before SGS models in LES. We discuss the methodology and the numerical
setup to assess the convergence of SGS models in Section 3. The results are shown in
Section 4 in terms of the error in the mean velocity profile. We also discuss the difficulties
of comparing fluctuating velocities in LES and DNS. Finally, conclusions are given in
Section 5.

2. The necessity of wall models before SGS models in LES

To illustrate the poor performance of SGS models when the near-wall region is under-
resolved, Figure 2 shows the mean streamwise velocity profile, 〈ū1〉, for a turbulent chan-
nel flow as a function of the wall-normal distance x2, where 〈·〉 denotes average in homo-
geneous directions and time, and (̄·) is the filtering operation for LES. The details of the
simulations are discussed in Section 3.2 (see Table 1), but for now, it is only important
to remark that all cases were computed using identical grids (with 13 points per bound-
ary layer thickness, δ) and friction Reynolds number, Reτ ≈ 950. The worst prediction
(squares) is obtained from a coarse DNS (no SGS model and no wall model). Ideally, a
perfect SGS model will supply the missing stresses at all distances from the wall. Indeed,
Figure 2 shows that the solution improves by introducing an SGS model (circles); how-
ever, the performance is still poor and 〈ū1〉 is far from the reference DNS velocity profile.
In contrast, the agreement with DNS is excellent when the equilibrium wall model from
Kawai & Larsson (2012) is applied (triangles), despite the fact that there is no explicit
SGS model in this case (although the numerical errors act as an implicit one).
Note that for all cases, the shape of 〈ū1〉 is barely affected and always very close to the

DNS mean velocity profile, even when there is no SGS model. The main source of error
comes from the inaccurate prediction of the wall friction velocity, uτ , that translates into
a vertical shift of 〈ū1〉. This suggests that the application of a SGS model alone is not
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Figure 2. Mean streamwise velocity profile. The cases plotted are NM950-NS-1 (squares),
DSM950-NS-1 (circles), and NM950-EQWM-1 (triangles). DNS is dashed line.

sufficient to provide the correct stress at the wall, and only by means of a wall model
can the problem be attenuated. The result highlights the rarely mentioned fact that,
for increasing Re or coarsening of grid resolutions, wall models are needed before SGS
models, at least regarding prediction of the mean velocity profile. The rationale behind
this requirement is simple: the energy-containing eddies are smaller as they get closer
to the wall, and without any a-priori knowledge of the flow or without the necessary
computational power, near-wall layer is the first region to become under-resolved.
The problem would be alleviated by performing true WRLES with three-dimensional

refinement as the grid approaches the wall. However, this is a quite uncommon practice,
and most WRLES suffer at some degree from the same limitation demonstrated in Figure
2. Therefore, it is important to emphasize that, in wall-bounded flows, the testing and
validation of SGS is contaminated by the errors accumulated near the wall and many of
the mismatches of mean velocity profiles in DNS and LES reported in the literature are
probably caused by the necessity of wall models before an SGS model. It is necessary to
remark that we do not avocate for LES without a SGS model, but we only underline the
fact that validation at low Reynolds number could be meaningless due to inactive SGS
models far from the wall and the predominance of the near-wall errors.

3. Benchmarks for the outer region of wall-bounded turbulence

We have acknowledged in Section 2 the necessity of benchmarks for wall-bounded
turbulence that are independent of the strict near-wall resolution requirements. To attain
this goal, we discuss two different approaches, namely, wall-less and exact wall-stress
turbulent channel flows.

3.1. Wall-less and exact wall-stress turbulent channel flows

We consider a plane turbulent channel flow with smooth walls and periodic streamwise
and spanwise directions. The incompressible Navier-Stokes equations of motion are

∂ui

∂t
+

∂uiuj

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
,

∂ui

∂xi
= 0, (3.1)
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where ui, i = 1, 2, 3 are the streamwise, wall-normal and spanwise velocities, respectively,
p is the pressure, ρ is the flow density, and ν is the kinematic viscosity. The three spatial
directions are xi, i = 1, 2, 3 and the walls are located at x2 = 0 and x2 = 2δ.
The first approach presented is the wall-less channel flow (Lozano-Durán & Bae 2016).

We define the slip boundary condition with transpiration as

ui|w = l
∂ui

∂n

∣

∣

∣

∣

w

, i = 1, 2, 3, (3.2)

where n is the wall-normal direction and l is the slip length, assumed to be constant. Note
that Eq. (3.2) complies with the symmetries of the channel flow and the impermeability
constraint of the wall on average.
The dynamic system consisting of Eq. (3.1) with boundary conditions in Eq. (3.2) is

well defined and can be solved by DNS. The resulting data will be used as a benchmark
for LES computed using the same slip boundary condition. We will show in Section
3.3 that Eq. (3.2) suppresses the formation of near-wall viscous layers and breaks the
linear scaling of eddies close to the wall. Moreover, in the outer layer, the first-order
statistics and spectra of this wall-less channel flow match quantitatively those of wall-
bounded simulations. Thus, the wall-less channel flow is an excellent candidate to test
the performance of SGS models in the outer region of the flow.
The second approach is the exact wall-stress turbulent channel flow. We perform an

LES of a channel where the correct a-priori known wall stress is imposed as a Neumann
boundary condition,

∂ū1
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w

ν
, (3.3)

where τw is the mean stress at the wall (known from DNS) and τSGS
12 is the tangential

component of the SGS stress tensor. This is equivalent to a wall-modeled LES (WMLES)
where the wall model is assumed to provide the exact stress at the wall. The LES re-
sults are then compared with DNS data. Note that, in contrast to the wall-less channel
approach, the exact wall-stress method is prone to error from the under-resolved eddies
close the wall when the first wall-normal grid point lies within the logarithmic layer
(Larsson et al. 2016).

3.2. Numerical experiments

We run two sets of LES of a plane turbulent channel for the wall-less (WL) and the
exact-wall-stress (EWS) approaches. For the wall-less flow, three reference DNS are also
performed.
The simulations are computed with a staggered second-order finite difference (Orlandi

2000) and fractional-step method (Kim & Moin 1985) with a third-order Runge-Kutta
time-advancing scheme (Wray 1990). The flow is driven by imposing a constant mean
pressure gradient. Periodic boundary conditions are imposed in the streamwise and span-
wise directions. For the top and bottom walls, WL cases are computed imposing the slip
boundary condition from Eq. (3.2) with l = 0.1δ. The choice is not unique but must
be set in outer units and independent of Reτ , as will be discussed in Section 3.3. We
have confirmed by DNS of the WL cases that the mean viscous stress at the wall is less
than 10% of the total stress for the three Reynolds numbers considered. EWS cases are
calculated using Eq. (3.3) as the boundary condition at the walls.
The size of the channel for the WL cases is 2πδ×2δ×πδ in the streamwise, wall-normal

and spanwise directions, respectively. For the EWS cases, the domain is 8πδ× 2δ× 3πδ.
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Case Wall condition Reτ ∆1/δ ∆2/δ ∆3/δ SGS model

NM950-NS-1 NS
950 0.10 0.080 0.050

NM
DSM950-NS-1 NS DSM
NM950-EQWM-1 EQWM NM

Table 1. Tabulated list of cases used in Section 2.

The grid resolution is denoted as ∆1,∆2, and ∆3 for the respective spatial directions.
All channel flow simulations were run for at least 100 eddy-turnover times, defined as
δ/uτ , after transients.
For the WL cases, the convergence of two SGS models is tested: dynamic Smagorinsky

model (DSM) (Germano et al. 1991; Lilly 1992) and anisotropic minimum dissipation
(AMD) model (Rozema et al. 2015). The DSM and AMD model are regarded as repre-
sentative of eddy viscosity models with and without test filtering, respectively. We use a
wide range of grid resolutions ranging from 1/16 to 1/2 of the DNS resolution for three
different Reynolds numbers Reτ ≈ 550, 950, and 2000 and compare the results from WL
DNS. For the EWS cases, the convergence of DSM as a function of the grid resolution
is tested for two different Reynolds numbers Reτ ≈ 4200, and 8000. EWS cases are
compared with DNS data from Lozano-Durán & Jiménez (2014) and Yamamoto & Tsuji
(2017).
The list of cases used to motivate the topic in Section 2 is given in Table 1. The list of

cases that are discussed for the remainder of the paper is given in Tables 2 and 3.

3.3. One-point statistics for wall-less turbulent channel flows

We discuss the first-order statistics for DNS550-WL, DNS950-WL and DNS2000-WL.
These are wall-less DNS cases used as benchmarks in the next section.
First, we assess the contribution of the mean tangential stress in Figure 3(a). The

values are larger than 90% for all cases and roughly 98% for DNS2000-WL due to the
ability of the boundary condition from Eq. (3.2) to generate nonzero u1u2 at the wall.
The result demonstrates that the viscous stress contribution is less than 10% at all
heights, including the near-wall region, and that the trend is decreasing with Reτ . The
observation aligns with our goal of mitigating the previously dominant viscous stress at
the wall.
The characteristic flow length-scales of the no-slip and wall-less DNS are plotted in Fig-

ure 3(b) along the x2 direction. The small, intermediate and large scales are represented
by the Kolmogorov length-scale η = (ν3/ε)1/4, the Taylor microscale λ = (15k/ε)1/2,
and the integral length-scale Lε = (k/3)3/2/ε, respectively, where ε is the rate of energy
dissipation, k = 〈u′

iu
′

i〉, and (·)′ denotes fluctuating quantities (Pope 2000). Note that Lε

and λ drop rapidly to zero as x2 approaches the wall for the no-slip DNS, whereas they
remain roughly constant for the wall-less DNS. Moreover, comparison of Lε at two Reτ
shows that the integral length-scale collapses in outer units across the entire boundary
layer thickness, including close to the wall. These results are of particular importance and
can be read as the disruption of the classic inner-units scaling of the energy-containing
eddies at the wall.
The mean velocity profiles are shown in Figure 3(c) and compared with the corre-



262 Lozano-Durán & Bae

Case Wall condition Reτ ∆1/δ ∆2/δ ∆3/δ SGS model

DNS550-WL 550 0.012 0.0067 0.0061
DNS950-WL WL 950 0.0061 0.0050 0.0031 N/A
DNS2000-WL 2000 0.0041 0.0033 0.0020

DSM550-WL-1

WL 550

0.20 0.10 0.10

DSM
DSM550-WL-2 0.10 0.050 0.050
DSM550-WL-3 0.050 0.025 0.025
DSM550-WL-4 0.025 0.012 0.012

DSM950-WL-1
WL 950

0.10 0.080 0.050
DSMDSM950-WL-2 0.050 0.040 0.025

DSM950-WL-3 0.025 0.020 0.012

DSM2000-WL-1
WL 2000

0.065 0.052 0.032
DSMDSM2000-WL-2 0.032 0.026 0.016

DSM2000-WL-3 0.016 0.013 0.0082

AMD550-WL-1

WL 550

0.20 0.10 0.10

AMD
AMD550-WL-2 0.10 0.050 0.050
AMD550-WL-3 0.050 0.025 0.025
AMD550-WL-4 0.025 0.012 0.012

AMD950-WL-1
WL 950

0.10 0.080 0.050
AMDAMD950-WL-2 0.050 0.040 0.025

AMD950-WL-3 0.025 0.020 0.012

AMD2000-WL-1
WL 2000

0.065 0.052 0.032
AMDAMD2000-WL-2 0.032 0.026 0.016

AMD2000-WL-3 0.016 0.013 0.0082

Table 2. Tabulated list of cases for WL simulations.

sponding no-slip DNS counterparts. The no-slip DNS profiles are shifted to match the
center-line velocity of the WL DNS. The root-mean-squared (RMS) velocity fluctuations
are plotted in Figure 3(d) for DNS550-WL. A similar behavior of the RMS velocities was
observed for DNS950-WL and DNS2000-WL (not shown). Above x2 ≈ 0.2δ, the first-
order statistics of the wall-less channel flows match quantitatively those of wall-bounded
simulations except for a shift in the mean velocity profile. This is consistent with pre-
vious studies indicating that the outer-layer dynamics are relatively independent of the
near-wall cycle (Del Álamo et al. 2006; Flores & Jiménez 2006; Hwang & Cossu 2011;
Mizuno & Jiménez 2013; Jiménez 2013; Lozano-Durán & Jiménez 2014; Dong et al. 2017;
Cossu & Hwang 2017).
The results above indicate that the outer-layer physics of the wall-less channel flow

are similar to those of wall-bounded flows while avoiding both the viscous effects and the
wall-normal scaling of the eddies in the vicinity of the wall. Thus, the wall-less channel
flow is an excellent candidate to examine the convergence of LES in the outer region of
wall-bounded flows.
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Case Wall condition Reτ ∆1/δ ∆2/δ ∆3/δ SGS model

NM4200-EWS-1

EWS 4200

0.20 0.20 0.20

NM
NM4200-EWS-2 0.10 0.10 0.10
NM4200-EWS-3 0.050 0.050 0.050
NM4200-EWS-4 0.025 0.025 0.025

DSM4200-EWS-1

EWS 4200

0.20 0.20 0.20

DSM
DSM4200-EWS-2 0.10 0.10 0.10
DSM4200-EWS-3 0.050 0.050 0.050
DSM4200-EWS-4 0.025 0.025 0.025

NM8000-EWS-1

EWS 8000

0.20 0.20 0.20

NM
NM8000-EWS-2 0.10 0.10 0.10
NM8000-EWS-3 0.050 0.050 0.050
NM8000-EWS-4 0.025 0.025 0.025

DSM8000-EWS-1

EWS 8000

0.20 0.20 0.20

DSM
DSM8000-EWS-2 0.10 0.10 0.10
DSM8000-EWS-3 0.050 0.050 0.050
DSM8000-EWS-4 0.025 0.025 0.025

Table 3. Tabulated list of cases for EWS simulations.

4. Results

4.1. Convergence of the mean velocity profile in the outer region

The mean velocity profile is the figure of merit for most LES studies. We quantify the
error in 〈ū1〉 as the mass flow difference between WL/EWS-LES and the corresponding
DNS in the outer region, defined as 0.2δ < x2 < δ. The choice excludes the unphysical
range x2 < 0.2δ for WL cases and aims to bypass the usually under-resolved region for
EWS. In particular, the mean velocity profile error is measured as

E =

[

∫ δ

0.2δ

(

〈ū1〉 − 〈uDNS
1 〉

)2
dx2

∫ δ

0.2δ
〈uDNS

1 〉2dx2

]1/2

, (4.1)

where uDNS
1 is the DNS solution.

First, we discuss the results for WL cases. Figure 4(a) contains the mean velocity pro-
files for a selection of three cases at Reτ ≈ 2000 with DSM for different grid resolutions.
As expected, 〈ū1〉 converges to 〈uDNS

1 〉 as the grid is refined. The quantitative assessment
of the E is shown in Figure 4(b) as a function of the characteristic grid resolution based
on the cell volume, ∆ = 3

√
∆1∆2∆3. The error ranges from 1% to 20% and is bounded

by

E ≈ ǫ∆/δ, (4.2)

with ǫ ∈ [0.15, 2.5], implying an O(∆) dependence on the grid resolution. For a given
∆, the error increases from Reτ ≈ 550 to Reτ ≈ 950, but shows signs of saturation at
Reτ ≈ 2000, that may be an indication that E will remain constant for higher Reynolds
numbers. Both DSM and AMD model yield comparable errors. Figure 4(b) also includes a
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Figure 3. (a) Mean tangential Reynolds stress for DNS550-WL (circles), DNS950-WL (squares),
and DNS2000-WL (triangles). Corresponding dashed lines are no-slip DNS. (b) Kolmogorov
length-scale (no-slip DNS, dashed line; DNS550-WL, circles), Taylor microscale (no-slip DNS,
dot-dashed line; DNS550-WL, triangles), and integral length-scale (no-slip DNS, solid line;
DNS550-WL, squares; DNS950-WL, crosses). (c) Mean velocity profile for DNS550-WL (cir-
cles), DNS950-WL (squares), and DNS2000-WL (triangles). The profiles for DNS950-WL and
DNS2000-WL are shifted 5 and 10 wall units, respectively, in the vertical direction for clarity.
Dashed lines are corresponding no-slip DNS adjusted to match the center-line velocity of the WL
cases. (d) Streamwise (circles), wall-normal (squares), and spanwise (triangles) RMS velocity
fluctuations for DNS550-WL. Corresponding dashed lines are no-slip DNS.

case equivalent to case DSM550-WL-3 but without an explicit SGS model. Surprisingly,
the error is comparable to but smaller than for DSM550-WL-3. Other cases without
SGS models for various grid resolutions and Reynolds numbers were computed and their
accompanying errors were scattered within the range provided by Eq. (4.2) (not shown).
This is a symptom that, despite the desirable properties of the wall-less channel flow as
a benchmark for LES, the span of Reynolds numbers examined is too low to scrutinize
the effect of the SGS models and offer unambiguous conclusions. This motivates the
examination of the EWS cases until higher Reτ are available for the wall-less channel
flow.
Figure 5 is analogous to Figure 4, but for the EWS cases. The errors in Figure 5(b)

are slightly smaller than those reported in Figure 4(b). In contrast to the WL cases, the
errors for the LES without SGS model are discernibly larger than those calculated with
DSM. They are roughly constant for the range of grid resolutions tested but increase
with Reτ . For cases with a SGS model, E ∼ ∆ and collapses in outer units for the two
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Figure 4. (a) Mean streamwise velocity profile for DSM2000-WL-1 (circles), DSM2000-WL-2
(squares) and DSM2000-WL-3 (triangles). Dashed line is DNS2000-WL. (b) Error in the mass
flow given as a function of grid resolution for two SGS models, DSM (circles) and AMD model
(triangles), and no SGS model (pentagram). Reτ ≈ 550, solid lines; 950, dotted lines; and 2000,
dot-dashed lines. Dashed lines are E = 0.15∆/δ and 2.5∆/δ.

Figure 5. (a) Mean streamwise velocity profile for DSM4200-EWS-1 (circles), DSM4200-EWS-2
(squares), DSM4200-EWS-3 (triangles), and DSM4200-EWS-4 (diamonds). DNS is dashed line.
(b) Error in mass flow as a function of grid resolution. DSM4200-EWS, circles; DSM8000-EWS,
crosses; NM4200-EWS, triangles; and NM8000-EWS, pentagrams. Dashed lines are E = 0.2∆/δ,
0.035 and 0.085.

Reynolds numbers investigated, implying that E ∼ Re0τ given a perfect wall model. The
error with grid refinement saturates at 1%. Only 10 points per δ are enough to predict
the mean velocity with less than 3% error.
Finally, we investigate the relevant physical length-scale for scaling the SGS model

errors. For this purpose, we define the local-in-x2 measure of error as

El(x2) =

(
∫ x2+d

x2−d

(

〈ū1〉 − 〈uDNS
1 〉

)2
dx2

∫ δ

0.2δ〈uDNS
1 〉2dx2

)1/2

, (4.3)

where the integration limits, x2 ± d, coincide with the grid locations of for ū1. The
integrals in Eqs. (4.1) and (4.3) are approximated with the trapezoidal rule. Different
length scales, namely, the Taylor microscale, the Corrsin scale (Corrsin 1958), and the
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Figure 6. (a) Local error as a function of the grid size in integral length-scale units. Dashed
lines are El = 10−2, ∆ = 0.8Lε and ∆ = 0.2Lε. (b) Grid size in integral length-scale units as a
function of the wall-normal direction. The dashed line is ∆ = 0.2Lε. DSM4200-EWS-1 (circles),
DSM4200-EWS-2 (squares), DSM4200-EWS-3 (triangles), and DSM4200-EWS-4 (diamonds).

integral length-scale, computed for the reference DNS were tested. The best collapse was
found for the integral length-scale and the results for DSM4200-EWS-1,2,3,4 are shown
in Figure 6(a). The local error lies below 1% when the grid resolution is at least 0.5
times smaller than Lε, and it drastically drops for ∆ < 0.2Lε. Theses ranges should
be understood as tentative estimates. The disproportionately large errors for ∆/Lε > 1
correspond to the points at the wall. They are the consequence of a very low contribution
of τSGS

12 at x2 = 0 and, hence, a very large 〈∂ū1/∂x2〉 in order to achieve the target τw.
The ratio ∆/Lε is represented in Figure 6(b) as a function of the wall normal distance.
Even when only ten points uniformly distributed along δ are employed, the ratio ∆/Lε

remains below 0.2 for x2 > 0.1δ, consistent with the accurate predictions of the mean
velocity profile reported in Figure 4. Note that, close to the wall, Lε ≈ 33/2κx2. Since
the third grid point is always at x2 = 2∆, then ∆/Lε ≈ 1/(2 · 33/2κ) ≈ 0.25 for the third
grid point independently of ∆. Consequently, no improved predictions are expected in
〈ū1〉 as ∆ is refined until the grid resolution reaches the DNS-like regime. It is important
to remark that all cases studied here have ∆ = ∆1 = ∆2 = ∆3, and the value of ∆
is identical for various different interpretations of the characteristic length-scale of the
grid. For anisotropic grids, it is unclear which definition of ∆, if any, will yield equivalent
conclusions.

4.2. Comparison of root-mean-squared velocity fluctuations in LES and DNS

In the previous section we have measured the errors on 〈ū1〉 by accepting without question
that LES and DNS are directly comparable. The assumption is reasonable if the filtering
operation has little impact on the mean of a variable φ, that is, 〈φ̄〉 ≈ 〈φ〉. This is
probably the case for the mean velocity profile and moderate filter sizes. However, small-
scale motions play a non-negligible role on 〈u′2

i 〉, casting doubt about how to proceed for
a meaningful comparison between LES and DNS. Two approaches are considered.
If LES is formally interpreted by means of a spatial low-pass filter (Deardorff 1970;

Leonard 1975), the meaningful quantities to compare are the RMS of the filtered DNS
velocities. The main caveat of this approach is that the actual filtering operation is
unknown for most LES, and the grid is assumed to act as an implicit filter (Vasilyev et al.
1998; Lund 2003). The question then is which filtering operation should be selected. In
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Figure 7. (a) Streamwise RMS fluctuations for Reτ ≈ 4200. DNS, solid line; filtered DNS, dot–
dashed line; DSM4200-EWS-2, circles; RDNS∗

11 , dashed line; RLES∗

11 , squares. (b) Premultiplied
streamwise energy spectra as a function of the streamwise wavelength for DSM4200-EWS-2
(circles), DSM4200-EWS-3 (squares), and DSM4200-EWS-4 (triangles).

the present study, a three-dimensional box-filter is used with a filter size equal to the
LES grid resolution in each direction.

Another approach for comparing LES and DNS is by considering the subgrid-scale
contribution in the LES terms (Carati et al. 2001). Assuming 〈φ̄〉 ≈ 〈φ〉,

RDNS
ij = 〈uiuj〉 − 〈ui〉〈uj〉 ≈ 〈uiuj〉 − 〈ūi〉〈ūj〉, (4.4)

where the diagonal components ofRDNS
ij are the mean squared DNS velocity fluctuations.

For LES, the SGS model contribution must be included,

RLES
ij = 〈ūiūj〉+ 〈τSGS

ij 〉 − 〈ūi〉〈ūj〉, (4.5)

where RDNS
ij ≈ RLES

ij . A limitation of Eq. (4.5) is that for the incompressible Navier–

Stokes equations, the subgrid contribution τSGS
ij is usually modeled as a traceless quan-

tity. In order to allow for direct comparison, only the deviatoric contributions of RDNS
ij

and RLES
ij must be taken into consideration (Winckelmans et al. 2002). We will denote

the traceless counterparts of RDNS
ij and RLES

ij as RDNS∗

ij and RLES∗

ij , respectively. In this
manner, LES and DNS stresses are comparable without prescribing a particular filtering
operation.

Both approaches are compiled in Figure 7(a) for the streamwise velocity fluctuations.
The unfiltered DNS is also plotted for comparison. The best agreement is between LES
and filtered DNS, while RDNS

11 > RLES
11 . However, the surprisingly good agreement be-

tween the filtered DNS and LES is not consistent with an actual filtering operation, as
evidenced in the one-dimensional premultiplied spectra for cases DSM4200-EWS-2,3,4
at y = δ (Figure 7b). The spectra show that the streamwise energy component is piled
up towards the larger scales as the grid is coarsened, whereas the main expected effect
from an actual filter is the reduction of the energy content in the scales below the filter
cutoff. The energy in the large scales might increase slightly due to the filtering in the
wall-normal direction. However, some tests carried out for filtered DNS and not reported
here revealed that this effect is weak.
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5. Conclusions

The assessment of the error in SGS models as a function of Reynolds number and grid
resolution is a challenging task for LES of wall-bounded flows due to the effect of the wall.
We have shown that the main contributor to the mismatch in the mean velocity profile
can be attributed to errors in the near-wall region. Given that the current SGS models
are known to be deficient near the wall and that true WRLES are uncommon, our results
imply that wall models are necessary prior to SGS models for decreasing resolution in
wall units. For example, for Reτ ≈ 1000 and 20 points per δ, errors smaller than 1% in
the mean velocity profile can be obtained by WMLES without an explicit SGS model.

In order to test the SGS models in the outer region independently of the effect of
the wall, we have designed two numerical experiments: wall-less and exact-wall-stress
channel flows. In the former, the no-slip boundary condition at the wall is replaced by
a slip boundary condition with transpiration. The resulting non-zero Reynolds stresses
at the wall eliminates the severe grid resolution requirements characteristic of the no-
slip wall. In the latter, the integrated effect of the near-wall region on the outer flow is
bypassed by supplying the exact stress at the wall. Both numerical experiments retain
the same physics as the traditional channel flow far from the wall.

The main result is that for the two SGS model tested (DSM and AMD model), the
LES error in the mean velocity profile scales as the grid resolution in outer units for
Reτ > 2000. Note also that only 10 grid points in δ are enough to predict the mean
velocity profile with less than 3% error. When no SGS model is used, the error remains
roughly constant for ∆/δ > 1/40 and increases with Reynolds number. Note that the
discussion above applies only to the outer region of the flow.

We have investigated the relevant physical length-scale to measure the performance of
SGS models. Errors in the mean velocity profile collapse the best when the grid resolution
is expressed in integral length-scale units. Moreover, they remain bounded below 1% when
the grid resolves at least 50% of Lε.

Quantification of the errors in terms of the fluctuating velocities is ambiguous. If we
assume that the LES equations are formally derived from the filtered Navier–Stokes equa-
tions, the turbulence intensities should be compared to the filtered DNS counterparts.
A first examination of this hypothesis shows that the LES RMS fluctuations agree rea-
sonably well with the filtered DNS values using a box-filter with filter size equal to the
LES grid. However, a detailed examination of the spectra shows that the effect of grid
coarsening in LES is inconsistent with a filtering operation. Another alternative was ex-
amined by taking into account the SGS contribution and comparing only the deviatoric
components of the stresses. The results were still unsatisfactory, implying that the LES
RMS velocity fluctuations may have no clear procedence from DNS.

Since we have demonstrated the good performance of two SGS models in predicting the
mean velocity profile in the outer region of wall-bounded turbulence, our work emphasizes
the importance of WMLES. Future efforts should be devoted to the development and
assessment of accurate wall models.
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Mizuno, Y. & Jiménez, J. 2013 Wall turbulence without walls. J. Fluid Mech. 723,
429–455.

Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit . Springer.

Piomelli, U., Moin, P. & Ferziger, J. H. 1988 Model consistency in large eddy
simulation of turbulent channel flows. Phys. Fluids 31, 1884–1891.

Pope, S. B. 2000 Turbulent Flows . Cambridge University Press.

Rozema, W., Bae, H. J., Moin, P. & Verstappen, R. 2015 Minimum-dissipation
models for large-eddy simulation. Phys. Fluids 27, 085107.

Sullivan, P. P., McWilliams, J. C. & Moeng, C.-H. 1996 A grid nesting method
for large-eddy simulation of planetary boundary-layer flows. Bound.-Lay. Meteorol.
80, 167–202.

Vasilyev, O. V., Lund, T. S. & Moin, P. 1998 A general class of commutative filters
for les in complex geometries. J. Comp. Phys. 146, 82–104.

Vreman, B., Geurts, B. & Kuerten, H. 1996 Large-eddy simulation of the temporal
mixing layer using the clark model. Theor. Comp. Fluid Dyn. 8, 309–324.

Vreman, B., Geurts, B. & Kuerten, H. 1997 Large-eddy simulation of the turbulent
mixing layer. J. Fluid Mech. 339, 357–390.

Winckelmans, G., Jeanmart, H. & Carati, D. 2002 On the comparison of turbu-
lence intensities from large-eddy simulation with those from experiment or direct
numerical simulation. Phys. Fluids 14, 1809–1811.

Wray, A. A. 1990 Minimal-storage time advancement schemes for spectral methods.
Unpublished report, NASA Ames Research Center.

Yamamoto, Y. & Tsuji, Y. 2017 Effects of large-scale structures on inner layer in
high reynolds number turbulent channel flow. In 10th International Symposium on
Turbulence and Shear Flow Phenomena (TSFP-10)..


