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Dynamic wall models for the slip
boundary condition

By A. Lozano-Durán, H. J. Bae, S. T. Bose AND P. Moin

1. Motivation and objectives

The near-wall resolution requirements to accurately resolve the boundary layer in wall-
bounded flows remains a pacing item in large-eddy simulation (LES) for high-Reynolds-
number engineering applications. Chapman (1979) and Choi & Moin (2012) estimated
that the number of grid points necessary for a wall-resolved LES scales as Re1.9, where
Re is the characteristic Reynolds number of the problem. The computational cost is still
too high for many practical problems, especially for external aerodynamics, despite the
favorable comparison to the Re2.6 scaling required for direct numerical simulation (DNS)
where all the relevant scales of motion are resolved.
By modeling the near-wall flow such that only the large-scale motions in the outer

region of the boundary layer are resolved, the grid-point requirements for wall-modeled
LES (WMLES) scale at most linearly with increasing Reynolds number. Therefore, wall-
modeling stands as the most feasible approach compared to wall-resolved LES or DNS.
Several strategies for modeling the near-wall region have been explored in the past, and
most of them are effectively applied by replacing the no-slip boundary condition in the
wall-parallel directions by a Neumann condition. This fact is motivated by the observation
that, with the no-slip condition, most subgrid scale models do not provide the correct
stress at the wall when the near-wall layer is not resolved by the grid (Jiménez & Moser
2000).
Examples of the most popular and well-known wall models are the traditional wall-

stress models (or approximate boundary conditions), and detached eddy simulation
(DES) and its variants. Approximate boundary condition models compute the wall stress
using either the law of the wall (Deardorff 1970; Schumann 1975; Piomelli et al. 1989)
or the solution obtained by solving a simplified version of the boundary-layer equations
close to the wall or the Reynolds-averaged Navier-Stokes (RANS) equations (Balaras
et al. 1996; Chung & Pullin 2009; Kawai & Larsson 2013; Park & Moin 2014). DES
(Spalart et al. 1997) combines RANS equations close to the wall and LES in the outer
layer, with the interface between RANS and LES domains enforced implicitly through
the change in the turbulence model. The reader is referred to Piomelli & Balaras (2002),
Cabot & Moin (2000), Spalart (2009), Larsson et al. (2016), and Bose & Park (2018) for
a more comprehensive review of wall-modeled LES.
One of the most important limitations of the models above is that they depend on

precomputed parameters and/or assume explicitly or implicitly a particular law for the
mean velocity profile close to the wall. Only recently this has been challenged by Bose
& Moin (2014) with a dynamic wall model based on the Germano’s identity that is free
of any a-priori specified coefficients. In addition, the no-transpiration condition used
in most wall models was replaced by a Robin boundary condition in the wall-normal
direction. In the present study, we extend the work by Bose & Moin (2014) and propose
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a new methodology to build dynamic wall models for LES independent of any a-priori
tunable parameters.

This report is organized as follows. A new approach for constructing dynamic wall
models is formulated in Section 2. The models are derived and implemented as described
in Sections 3 and 4. The results for turbulent channel flow and three-dimensional transient
channel flow are offered in Section 5. Finally, conclusions are given in Section 6.

2. Formulation of the problem

2.1. Previous dynamic models

Bose & Moin (2014) introduced a dynamic procedure for a wall model free of any a-
priori parameters. The model was motivated from a specific form of the differential filter
at the wall (Germano 1986; Bose & Moin 2014), and takes the form of a Robin boundary
condition,

ūi = l
∂ūi

∂n
, (2.1)

where ui is the i-th velocity component, n is the wall-normal direction, and l is the slip
length. The dynamic model computes l via a modified form of the Germano’s identity
(Germano et al. 1991),

l2
(
∆2

R

∂ ˆ̄ui

∂n

∂ ˆ̄uj

∂n
−

∂ūi

∂n

∂ūj

∂n

)
+ T SGS

ij − τ̂ij
SGS

= ̂̄uiūj − ūiūj, (2.2)

where (̄·) is the grid filter, (̂·) is the test filter, ∆R is the filter size ratio between the test
and grid filters, τSGS

ij and T SGS
ij represent the grid and test filter subgrid stress (SGS)

tensors, respectively. Eq. (2.2) is then solved for l by using a least-squares.

In Bose & Moin (2014), the model was tested for a series of turbulent channel flows
and the NACA 4412 airfoil. We implemented the model and attempted to reproduce the
channel flow results. However, the model did not perform as expected with our current
implementation, which uses a different subgrid scale model and numerical discretization.
This motivated the present study, and our results from model (2.2) are discussed at the
end of Section 5.

2.2. Slip length based formulation

The problem of constructing a wall model consists of estimating the stress at the wall, τw,
given the current and/or past states of the flow. The estimated stress is then imposed as a
boundary condition for wall-modeled LES. An important observation is that the coupling
of the wall model and the governing equations forms a dynamical system such that for a
statistically steady flow, the equilibrium state must be stable and ‖τw − τDNS

w ‖ is below
the acceptable tolerance in some norm ‖ · ‖. We will refer to this condition as the stable-
dynamical-model requirement. The wall model should also encode information about the
type of wall (smooth, rough, hydrophobic, etc.). For the slip boundary condition of the
form Eq. (2.1), the problem can be reformulated as finding the value of l that provides
the correct wall stress. The relationship between l and τw is shown in Section 4 for a
channel flow.

The equilibrium wall model (EQWM) (Kawai & Larsson 2013) can be interpreted
easily in the framework described above. The model computes the wall stress by solving
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the ordinary differential equation (ODE)

d

dn

[
(µ+ µR)

dU

dn

]
= 0, (2.3)

where U is the wall-parallel velocity component, and µR is a RANS-based eddy viscosity
from the zero-pressure-gradient flat-plate turbulent boundary layer (ZPGFPBL), which
contains information that the wall is smooth. The equation is integrated from the wall to
a wall-normal distance of ∆ref , where the external LES velocity field is used to supply
the boundary condition for the ODE. Moreover, for a ZPGFPBL, if ūi is equal to uDNS

i

at a wall-normal distance of ∆ref , then the µR is tuned such that τw ≈ τDNS
w . The

implications are that when the LES grid resolution is fine enough to accurately resolve
the outer flow, the equilibrium solution of the dynamical system is bound to provide
good prediction of the wall stress. It is also easy to show (in the context of ZPGFPBL or
similar flows) that the solution is stable and the flow will tend to the correct equilibrium
when the stress is under- or overestimated.

We propose a procedure to build dynamic wall models based on a stable-dynamical-
system requirement, where dynamic wall model refers to those models that do not depend
on any RANS eddy viscosity or tunable parameters, although they may depend on the
test filter form and width as in the dynamic SGS models (i.e., dynamic Smagorinsky and
its variants). In addition, we will impose four more model requirements, namely, that
(R1) the model only uses information of flow quantities at the wall, (R2) the wall stress
is imposed through a slip boundary condition, (R3) the wall is impermeable on average,
and (R4) the dynamic model should only use up to two test filter levels.

Condition (R1) has a practical implication since wall models using information far
from the wall are difficult (and ambiguous) to implement in complex geometries (Yang
et al. 2017). The use of condition (R2) is beneficial for generating extra wall stress by the
means of nonzero Reynolds stress at the walls. (R3) is an important constraint to support
mass conservation, and in the case of a channel flow, no special treatment is required
given the symmetry of the set-up (see Section 3). Regarding (R4), in the limit of the
grids required for WMLES, increasing the levels of test filtering adds little information
since most of the fluctuating energy content is already lost.

Assuming the slip boundary condition holds for both grid- and test-filtered velocity
fields, the starting point for formulating the model is given by the equation

l2
∂ūi

∂n

∂ūj

∂n
− l̂2

∂ ˆ̄ui

∂n

∂ ˆ̄uj

∂n
= ūiūj − ˆ̄ui ˆ̄uj , (2.4)

where l̂ is the slip length at the test filter level. We will assume a linear functional
dependence of the slip length with the filter size of the form l̂ = ∆Rl. The next step is to
include a control term F , a function of the flow, in order to meet the stable-dynamical-
model requirement,

l2
(
∂ūi

∂n

∂ūj

∂n
−∆2

R

∂ ˆ̄ui

∂n

∂ ˆ̄uj

∂n

)
= ūiūj − ˆ̄ui ˆ̄uj + F . (2.5)

To close the functional form of F , we will assume that it is only a function of the wall
stress at different filter levels. Taking into account restriction (R4), there are six possible
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definitions of wall stress under test filtering,

T 1
ij = −ūiūj − τSGS

ij (ū) + 2νSij(ū)− p(ū)δij , (2.6)

T 2
ij = −̂̄uiūj − τ̂ij

SGS
(ū) + 2νŜij(ū)− p̂(ū)δij , (2.7)

T 3
ij = −̂̄̂uiūj −

̂̂τij
SGS

(ū) + 2ν
̂̂
Sij(ū)− ˆ̂p(ū)δij , (2.8)

T 4
ij = −ˆ̄ui ˆ̄uj − τSGS

ij (ˆ̄u) + 2νSij(ˆ̄u)− p(ˆ̄u)δij , (2.9)

T 5
ij = −̂̄̂ui ˆ̄uj − τ̂ij

SGS
(ˆ̄u) + 2νŜij(ˆ̄u)− p̂(ˆ̄u)δij , (2.10)

T 6
ij = − ˆ̄̂ui

ˆ̄̂uj − τSGS
ij (ˆ̂ū) + 2νSij(

ˆ̂
ū)− p(ˆ̂ū)δij , (2.11)

where T k
ij is the wall stress tensor at different filter levels, and τSGS

ij , Sij and pδij are
the subgrid stress, the strain-rate and pressure tensors, respectively, computed from the
specified (test- or grid-filtered) velocity field. In particular, we elect to compute T SGS

ij

from Eq. (2.2) as τSGS
ij (ˆ̄u). Note that τw can be computed as the norm of the wall-parallel

components of the projection of Tij onto the wall-normal direction. The formulation above
also allows accounting for different types of walls by adding the appropriate drag term
into Eqs. (2.6)-(2.11).
Then, a family of dynamic wall model can be formulated as

l2
(
∂ūi

∂n

∂ūj

∂n
−∆2

R

∂ ˆ̄ui

∂n

∂ ˆ̄uj

∂n

)
= ūiūj − ˆ̄ui ˆ̄uj + akT

k
ij , (2.12)

where ak are constants that need to be specified. In order to limit the parameter space
of ak, we limit the constant ak to have values equal to -1, 0 or 1.
Finally, the model from Eq. (2.12) needs to satisfy the stable-dynamical-model require-

ment in order to be usable. This condition can be formally expressed as




a) If τw ≈ τDNS
w , then akT

k
ij ≈ 0,

b) If τw > τDNS
w , then akT

k
ij < 0 for t > Ta,

c) If τw < τDNS
w , then akT

k
ij > 0 for t > Ta,

(2.13)

where t is time and Ta is a characteristic time scale of the flow to adapt to changes in
the boundary condition. Condition a) implies that the change in the predicted l for the
next step should be minimal when starting from a flow configuration where τw ≈ τDNS

w .
This is achieved by akT

k
ij ≈ 0. The physical response of the flow under changes in the

slip length was studied in Bae et al. (2016), who reported that increasing l results in
increasing τw, and vice versa. Hence, conditions b) and c) are related to the stability of
the model and are necessary to guarantee that the predicted slip length drives the flow in
the correct direction. For example, when τw > τDNS

w , l at the next step should decrease
(that is, akT

k
ij < 0), and when τw < τDNS

w , l must increase (akT
k
ij > 0).

In addition, we make the modeling choice of assuming the invariance of wall stress
under test filtering when the flow is in the equilibrium state, that is, we assume Tij

k

are equivalent when akT
k
ij ≈ 0. The physical rationale behind this assumption lies in the

observation that, in LES, we aim to obtain the same wall stress regardless of the grid
resolution (or filter). A similar approach was adopted by Anderson & Meneveau (2011)
for modeling rough walls. This assumption is taken into account by imposing

∑
k ak = 0.

This assumption is also required in order to guarantee that the wall models revert to the
no-slip boundary condition as the grid size ∆g → 0.
The system in Eq. (2.12) is over-determined and l is computed via least-squares. For
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incompressible flows, the isotropic part τSGS
ij is usually not defined by the SGS models.

Since the system is already over-determined, we will exclude the i = j components of
Eq. (2.12).

2.3. Wall-stress based formulation

An alternative family of wall models can be directly formulated in terms of the wall
stress, independent of the slip length. We propose to introduce a dynamic correction
∆Tij such that

T k∗
ij = T k

ij +∆T k
ij (2.14)

where T 1∗
ij is intended to be an accurate estimation of the stress at the wall. If we assume

that ∆T k
ij is a function of the strain and rotation rate tensors (Sij and Rij), its most

general form is given by (Lund & Novikov 1992)

∆T k
ij = ∆2

g [B1|S|Sij +B2SilSlj +B3RilRlj

+ B4(SilRlj −RilSlj) +B5(SilSlmRmj −RilSlmSmj)] , (2.15)

where |S| = (SijSij)
1/2, ∆g is the grid size based on the volume of the cell, and Bi are

coefficients that depend on the invariants of Sij and Rij .
We further simplify the formulation by setting Bi = B · bi, where bi are fixed prede-

termined values that are either -1, 0, or 1. The different models in the family correspond
to the various combinations of bi. Our modeling choice is to dynamically compute the
coefficient B by assuming

T 2∗
ij = T 4∗

ij . (2.16)

The problem is solved by least squares, omitting the diagonal components. The more gen-
eral formulations where all coefficients Ci are computed dynamically will be investigated
in future works.
The stable-dynamical-model requirement is now formulated as





a) If τw ≈ τDNS
w , then ∆T 1

ij ≈ 0,
b) If τw > τDNS

w , then ∆T 1
ij < 0 for t > Ta,

c) If τw < τDNS
w , then ∆T 1

ij > 0 for t > Ta.
(2.17)

Compared to the family of models presented in Section 2.2, the formulation from Eq.
(2.14) has the advantage of being independent of a particular choice of boundary condi-
tion and may be applied through either a Neumann or a slip (with or without transpira-
tion) boundary condition. We choose to impose the resulting wall stress, T 1∗

ij , through a
slip boundary condition with transpiration (see Eq. 4.2). An additional advantage is the
use of only one test filter level.

3. Numerical experiments

We run a set of simulations divided into two groups. The first group consists of three
WMLES of channel flow denoted by C1, C2 and C3, that will assist to build a-priori
potential dynamic wall models in Section 4. The second group is intended to assess the
performance of the new dynamic wall models in an actual LES implementation under
different grid resolutions and Reynolds numbers. Two flow configurations are tested: a
plane turbulent channel flow (2–D channel) and a three-dimensional transient channel
flow (3–D channel). From now on, the streamwise, wall-normal and spanwise spatial
directions are represented by the subindices 1, 2 and 3, respectively.
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The simulations are computed by discretizing the Navier–Stokes equations in prim-
itive variables with staggered second-order finite differences in space (Orlandi 2000),
and a fractional-step method (Kim & Moin 1985) with a third-order Runge-Kutta time-
advancing scheme (Wray 1990). The flow is driven by imposing a constant mean pressure
gradient. The SGS model used is the dynamic Smagorinsky model (DSM) (Germano et al.
1991; Lilly 1992). The value of eddy viscosity for the ghost cells below the wall is set to
be the same as the first interior grid point (except when explicitly mentioned otherwise).
Periodic boundary conditions are applied in the streamwise and spanwise directions. For
the top and bottom walls, we impose either a no-slip (NS), slip boundary condition (for
dynamic wall models) or the Neuman boundary condition (for EQWM). The formulation
for the EQWM is the one by Kawai & Larsson (2013) with a matching location at the
third grid cell for the streamwise velocity.

The test filter operation on a variable f in a given spatial direction at point i is
computed as 1/6f(i − 1) + 2/3f(i) + 1/6f(i + 1) (Simpson’s rule). The operation is
repeated for all three directions in the interior of the domain. This corresponds to a
discrete fourth-order quadrature over a cell of size 2∆1 × 2∆2 × 2∆3 centered at the
variable that is being filtered, where ∆1, ∆2 and ∆3 are the grid sizes in the three
directions, respectively. At the wall, the same filtering operation is used in the horizontal
directions while the wall-normal filter is one-sided and given by 2/3f(1)+ 1/3f(2), with
f(1) and f(2) denoting values at the first and second wall-normal grid points. This is an
integration over a cell of size 2∆1×∆2×2∆3. We will denote the test filter above by TF1.
A second test filter, TF2, is used to evaluate the effect of the filter shape, and it is given
by 1/4f(i−1)+1/2f(i)+1/4f(i+1) in the interior of the domain and 1/2f(1)+1/2f(2)
at the wall. This corresponds to a second-order quadrature. It is impotant to specify in
detail the filter operation as dynamic wall models are particularly sensitive to this choice
(see Section 5).

The size of the 2–D and 3–D channel domain is 8πδ×2δ×3πδ in the streamwise, wall-
normal and spanwise directions, respectively, where δ is the channel half-height. For the
2–D channel calculations, the simulations are started from a random initial condition and
run for at least 100δ/uτ after transients, where uτ is the friction velocity. In the case of the
3–D channel, the calculations were started from a 2–D fully developed plane channel flow
at Reτ ≈ 950. The subsequent calculations were performed with a transverse pressure
gradient of ∂P

∂x3

= 10τ2Dw /δ, where τ2Dw is the mean wall shear stress in the unperturbed
channel. The simulations were run for one uτ/δ and averaged over six realizations.

Finally, 2–D channel results are compared with DNS data from Hoyas & Jiménez
(2006) and Lozano-Durán & Jiménez (2014) for Reτ ≈ 2000 and 4200, and with the
law-of-the wall for Reτ > 4200. The 3–D channel flow cases are compared with WMLES
using EQWM and non-equilibrium wall model (NEQWM) from Park & Moin (2014),
and DNS data from Giometto et al. (2017).

A detailed list of cases is shown in Table 1. The cases are labeled in the first column
following the convention ([Wall model]-[Reynolds number]-[Grid resolution]). Additional
cases with different values of ∆R, test-filtering operations, or SGS model were run to
study the sensitivity of the model on these choices, but are not included in the table.
The second column lists the wall model applied (NS, EQWM, S-DWM, W-DWM). Note
that for the cases with NS, the SGS model is responsible for providing the necessary wall
stress and is known to be underpredicted for the DSM (Jiménez & Moser 2000). The
dynamic models S-DWM and W-DWM are constructed using the procedure specified
in Section 4, and the exact form of the model will be given there. The third column
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Case Wall model ∆R Reτ Grid

C1 l = lc1 N/A 4200 G1
C2 l = lc2 N/A 4200 G1
C3 l = lc3 N/A 4200 G1

EQ-2000-G1

EQWM N/A

2000 G1
EQ-4200-G0 4200 G0
EQ-4200-G1 4200 G1
EQ-4200-G2 4200 G2
EQ-1E5-G1 105 G1

NS-2000-G1

NS N/A

2000 G1
NS-4200-G0 4200 G0
NS-4200-G1 4200 G1
NS-4200-G2 4200 G2
NS-8000-G1 8000 G1
NS-1E5-G1 105 G1

S-DWM-2000-G1

S-DWM 1.8

2000 G1
S-DWM-4200-G0 4200 G0
S-DWM-4200-G1 4200 G1
S-DWM-4200-G2 4200 G2
S-DWM-8000-G1 8000 G1
S-DWM-1E5-G1 105 G1

W-DWM-4200-G1 4200 G1
W-DWM-4200-G2 W-DWM N/A 4200 G2
W-DWM-1E5-G1 105 G1

S-DWM-3D950-G1 S-DWM 1.8 950 G1

Table 1. Tabulated list of cases for channel flow simulations.

shows the value of ∆R used for the model, and the fourth column is Reτ . The final
column of the table indicates three different grid resolutions, labeled as G0, G1, and
G2, that correspond to 320 × 25 × 120 (∆1 = ∆2 = ∆3 = 0.080δ), 512 × 40 × 192
(∆1 = ∆2 = ∆3 = 0.050δ), and 1024× 80× 384 (∆1 = ∆2 = ∆3 = 0.025δ), respectively,
in the streamwise, wall-normal, and spanwise directions.

3.1. Stability of the slip boundary condition

Although a systematic analysis of the stability of the slip boundary condition was not
performed, all channel flow calculations included in this report were stable starting from
a random initial condition for different grids and Reynolds numbers. However, this was
not the case for some preliminary tests on LES of a flat-plate turbulent boundary layer
not reported here. In those cases, a flow field generated from a previous coarse no-slip
calculation was required as an initial condition for the simulation to be stable. Despite
the limited literature involving the slip boundary condition with transpiration, Carton
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de Wiart & Murman (2017) reported that compressible channel flow calculations with
the slip boundary condition became unstable at high Reynolds numbers.

4. Construction of filter-invariant wall-stress dynamic wall models

4.1. Slip length based dynamic wall models

Ideally, we would like to construct a dynamic wall model of the form (2.12) that satisfies
condition (2.13), where the coefficients ai are determined based only on first principles.
However, the task is quite challenging due to the highly non-linear nature of the Navier–
Stokes equations, and it is difficult to assess whether condition (2.13) will be satisfied
a-priori once the wall model is coupled with the flow. Furthermore, this condition must
hold for a broad range of equilibrium and non-equilibrium flow configurations of interest.
Instead, to make the problem tractable, we will evaluate models in Eq. (2.12) a-posteriori
by considering only three reference channel flow simulations at Reτ = 4200 with DSM
and grid G1. The first case, C1, is computed using the slip length, lc1, that supplies the
correct mean stress at the wall. In a channel flow with transpiration, the wall stress is
given by

〈τw〉 = ν

〈
∂ū1

∂x2

〉∣∣∣∣
w

− 〈ū1ū2〉|w − 〈τSGS
12 〉

∣∣
w
, (4.1)

where 〈·〉 denotes averaging in homogeneous directions and time. If τDNS
w is known, lc1

is easily obtained by introducing the slip boundary condition (2.1) in the term 〈ū1ū2〉|w,
and the resulting equation for lc1 is

l2c1 =
ν 〈∂ū1/∂x2〉|w − 〈τSGS

12 〉
∣∣
w
− τDNS

w

〈(∂ū1/∂x2)(∂ū2/∂x2)〉
. (4.2)

Note that Eq. (4.2) is not a wall model itself but rather a compatibility condition that
links the stress at the wall with the slip length. The second and third cases, denoted by
C2 and C3, are analogous to C1 but with lc2 = 1.35〈lc1〉 and lc3 = 0.65〈lc1〉, respectively.
We proceed to evaluate the performance of different dynamic wall models using condi-

tion (2.13) with Ta = 0. Starting from cases C1, C2 and C3, we compute the slip length
at the next time step, lmc1, l

m
c2, and lmc3, evaluated from all possible models in the family

(2.12). Condition (2.13a) can be quantified by ǫc1 = |lmc1 − lc1|/lc1. Conditions (2.13b)
and (2.13c) can be similarly quantified by ǫc2 = (lc2 − lmc2)/lc2 and ǫc3 = (lmc3 − lc3)/lc3.
For a model to be viable, it is necessary that ǫc1 ≪ 1 and ǫc2, ǫc3 > 0. We defined the
“best” model as the one with ǫc1 < 0.05 and maximum ǫc2+ǫc3. Additionally, in order for
the model to be less sensitive to the filter size ratio, the above requirements should hold
for both ∆R = 1.6 and 1.8. After a search over all possible models complying with our
constraints, Table 2 shows the coefficients ai corresponding to the best potential model,
denoted by S-DWM.

4.2. Wall stresses based dynamic wall models

We apply the same procedure described above for the family of models given in Section
2.3. We define τc1, τc2, and τc3 as the τw for the three test cases C1, C2, and C3, and the
τmc1 , τ

m
c2 , and τmc3 as the corresponding predictions given by the model. This condition was

used to evaluate the requirement (2.17). Many viable models were identified, and one
candidate is shown in Table 3 and denoted by W-DWM. One important remark is that
in this case, the eddy viscosity at the wall was set to be zero, and the cases C1, C2 and
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Model name a1 a2 a3 a4 a5 a6 ∆R ǫc1 ǫc2 ǫc3

S-DWM 1 0 0 −1 −1 1
1.6 0.033 0.203 0.340
1.8 0.023 0.427 0.609

Table 2. Parameters for S-DWM (Eq. 2.12), and its errors associated with Eq. (2.13).

Model name b1 b2 b3 b4 b5
|τm

c1
−τ

c1|

τ
c1

τ
c2−τ

m

c2

τ
c2

τ
m

c3
−τ

c3

τ
c3

W-DWM −1 −1 −1 1 1 0.055 0.070 0.24

Table 3. Parameters for W-DWM (Eq. 2.15), and its errors associated with Eq. (2.17).

C3 were rerun using this condition. A more exhaustive analysis of this family is deferred
to future work.

5. Results

5.1. Channel flow

In this section, we assess the performance of S-DWM and W-DWM compared to EQWM
and NS (coarse LES) calculations. The results are discussed in terms of the error in the
streamwise mean velocity in the log region (x2 = 0.1δ–0.4δ). This choice was necessary
in order to include higher Reynolds number cases where the corresponding DNS was not
available and the law of the wall is used instead. Restricting the error to be evaluated only
in the log-layer is justified as wall models mainly impact the solution by vertically shifting
the mean velocity profile and do not alter its shape for the range of grid resolutions tested
(see Figure 2a). In particular, we measure error as

E =

[∫ 0.4δ

0.1δ

(
〈ū1〉 − 〈uDNS

1 〉
)2

dx2∫ 0.4δ

0.1δ

(
〈uDNS

1 〉
)2

dx2

]1/2

. (5.1)

In the case where a corresponding DNS does not exist, 〈uDNS
1 〉 is taken to be the law of

the wall,

〈uDNS
1 〉 =

1

κ
log x+

2 +B, (5.2)

with κ = 0.392 and B = 4.48 (Luchini 2017), where (·)+ denotes wall units given by uτ

and ν.
Figure 1 shows E as a function of grid resolution and Reynolds number. S-DWM and

W-DWM perform better than the NS by an order of magnitude for all cases. At moderate
Reynolds numbers (Reτ < 8000) and all grid resolutions, the error for S-DWM is almost
identical to that of the EQWM (∼2–4%). The error for W-DWM is slightly larger, but
still comparable to the EQWM (∼5–10%). However, with increasing Reynolds number,
the performance of both S-DWM and W-DWM deteriorates (∼20%), while the EQWM
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Figure 1. Error in the streamwise mean velocity profile, E , as a function of (a) grid size (for
Reτ = 4200) and (b) Reynolds number (for grid G1). NS (×); S-DWM (◦); W-DWM (�); and
EQWM (�).

Figure 2. (a) Mean velocity profiles for S-DWM for Reτ = 2000 (◦), 4200 (▽), and 105 (×)
for grid G1. DNS for Reτ = 4200 and law-of-the-wall (dashed lines). (b) The slip lengths l/δ
as a function of grid resolution for Reτ = 4200 (top axis, +) and Reynolds number for grid G1
(bottom axis, ◦) for S-DWM (solid lines) and optimal slip lengths (dashed lines).

does not. This is not surprising as the EQWM is calibrated to work well in channel flow
settings. The mean velocity profiles for S-DWM at three Reynolds numbers are shown
in Figure 2(a).
The slip lengths predicted by S-DWM are shown in Figure 2(b) as a function of

Reynolds number and grid resolution and compared to the optimal slip lengths (Eq.
4.2). It is remarkable that S-DWM captures the overall behavior of the optimal slip
lengths, that is, a strong dependence on grid resolution and a weak variation in Reynolds
number.
Three additional cases were computed to analyze the sensitivity of the S-DWM to ∆R,

shape of the test filter, and choice of SGS model. The effect of ∆R turned out to be
negligible for the plausible range of values ∆R = 1.4, 1.6, 1.8, and the difference in E was
less than 1%. On the contrary, the test filter shape and SGS model highly impacted the
prediction of the mean flow. Case S-DWM-4200-G1 was repeated using test filter TF2,
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Figure 3. Wall stress in the (a) streamwise and (b) spanwise directions as a function of time
for S-DWM (△), EQWM (•), and NEQWM (×). DNS (dashed line).

and the error increased from 2.5% to 32%. When S-DWM-4200-G1 was run using the
anisotropic minimum-dissipation (AMD) model (Rozema et al. 2015), the stress τSGS

12

was already larger than u2
τ , and the slip length prediction by S-DWM was clipped to

zero, reverting to the no-slip condition. Although this is consistent with the fact that
τSGS
12 > u2

τ , it also implies that the correct stress at the wall can never be obtained
through the slip boundary condition with a single slip length. Indeed, it was shown in
Bae et al. (2016) that the slip lengths in the wall-normal direction must be larger than
the wall-parallel ones in order to drain the excess of stress supplied by the SGS model.
This suggests that the family of models (2.12) should be generalized to a two slip-length
formulation to overcome this limitation.
Finally, we discuss the results for the model presented in Bose & Moin (2014). We tested

three Reynolds numbers (Reτ = 950, 2000, 4200), three grid resolutions (∆x,y,z/δ =
∆/δ = 0.04, 0.05, 0.10), two SGS models (AMD model and DSM), three different values
for ∆R (1.4, 1.6, 1.8), and test filters TF1 and TF2. T SGS

ij was computed as in Section

2. The ambiguity regarding the isotropic part of τSGS
ij mentioned in Section 2 was not

discussed in Bose & Moin (2014), and this component is set to zero in our current
implementation. All of the cases simulated yielded an imaginary slip length (clipped to
zero) when solving Eq. (2.2), and hence, results from Bose & Moin (2014) could not be
reproduced. One certain deviance from Bose &Moin (2014) is the numerical discretization
(staggered second-order finite differences versus collocated second-order finite volumes).
Other differences are the SGS model, test filter, and methodology to compute T SGS

ij .

5.2. Three-dimensional transient channel flow

In order to assess the performance of S-DWM in non-equilibrium scenarios, we simulated
a three-dimensional transient channel flow (Moin et al. 1990). A plane channel flow
simulation was modified to incorporate a lateral (transverse) pressure gradient 10 times
that of the streamwise pressure gradient. The resulting flow is one with strong transverse
acceleration during the initial transient. Details of the simulations are given in Section 3.
The evolution of streamwise and spanwise wall stress as a function of time is shown in

Figure 3. The WMLES tested were S-DWM, EQWM, and NEQWM. The results show
that the NEQWM provides the best prediction for the evolution of the spanwise wall
stress, although the results from the other models are comparable.
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6. Conclusions

Most wall models for LES rely on a RANS eddy viscosity in order to estimate the stress
at the wall. In the present study, we explore the construction of dynamic wall models
that are free from a-priori tunable parameters and only depend on the flow configuration
at the wall and, at most, on the test filter ratio ∆R.
We have presented two families of dynamic models based on the invariance of the wall

stress under test filtering. The models are effectively applied through a slip boundary
condition with the associated slip length l. We have devised the coupling between wall
models and LES as a stable dynamical system that must provide the correct wall stress at
the statistically steady equilibrium. Based on this idea, the potential of different models
has been evaluated for a turbulent channel flow using precomputed flow fields at three
different states: one supplying the correct wall stress, and two whose wall stresses are
above or below the correct value.
We have tested the performance of two dynamic wall models, S-DWM and W-DWM,

in a plane turbulent channel flow at various Reynolds numbers and grid resolutions. The
results have been compared with those from EQWM and no-slip boundary condition (no
WM) on a coarse grid. In all cases, both S-DWM and W-DWM performed substantially
better than the no-slip, and are comparable to the EQWM for Reτ < 8000 and for all grid
resolutions investigated. S-DWM have also been tested for a three-dimensional transient
channel flow, where the performance was also similar to that of the EQWM.
Future efforts will be devoted to investigate the feasibility of dynamic models robust

to different SGS models, numerical methods, and flow configurations.
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