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Resolvent analysis provides a framework to predict coherent spatio-temporal structures of

largest linear energy amplification, through a singular value decomposition (SVD) of the

resolvent operator, obtained by linearizing the Navier–Stokes equations about a known

turbulent mean velocity profile. Resolvent analysis utilizes a Fourier decomposition in time,

which has thus-far limited its application to statistically-stationary or time-periodic flows.

This work develops a variant of resolvent analysis applicable to time-evolving flows, and

proposes a variant that identifies spatio-temporally sparse structures, applicable to either

stationary or time-varying mean velocity profiles. Spatio-temporal resolvent analysis is

formulated through the incorporation of the temporal dimension to the numerical domain via

a discrete time-differentiation operator. Sparsity (which manifests in localisation) is achieved

through the addition of an ;1-norm penalisation term to the optimisation associated with the

SVD. This modified optimization problem can be formulated as a nonlinear eigenproblem,

and solved via an inverse power method. We first demonstrate the implementation of the

sparse analysis on statistically-stationary turbulent channel flow, and demonstrate that the

sparse variant can identify aspects of the physics not directly evident from standard resolvent

analysis. This is followed by applying the sparse space-time formulation on systems that

are time-varying: a time-periodic turbulent Stokes boundary layer, and then a turbulent

channel flow with a sudden change in pressure gradient. We present results demonstrating

how the sparsity-promoting variant can either change the quantitative structure of the leading

space-time modes to increase their sparsity, or identify entirely different linear amplification

mechanisms compared to non-sparse resolvent analysis.

Key words:

1. Introduction

Despite the highly nonlinear nature of turbulent fluid flows, linearised analyses of the

governing Navier–Stokes equations have proven to be effective at capturing several pertinent
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properties of such systems. Resolvent analysis, first applied as a model for turbulent

pipe flow (McKeon & Sharma 2010), has been informative in other problems that involve

wall-bounded turbulence, such as the prediction of hairpin structures (Sharma & McKeon

2013), interscale interactions (McKeon 2017), spatio-temporal flow statistics (Towne et al.

2020), and the identification of coherent structures in turbulent jets (Lesshafft et al. 2019;

Pickering et al. 2021), airfoils (Yeh & Taira 2019) supersonic boundary layers (Bae et al.

2020a,b) and turbulent rectangular duct flows (Lopez-Doriga et al. 2022). This framework

has further been applied for the estimation of flow states (Gómez et al. 2016; Beneddine et al.

2017; Symon et al. 2019; Illingworth et al. 2018), the prediction of coherent structures

(Abreu et al. 2020; Tissot et al. 2021) and statistical quantities and scalings (Hwang & Cossu

2010; Zare et al. 2017; Towne et al. 2020), designing control strategies for drag reduction

(Luhar et al. 2014; Toedtli et al. 2019), and modelling the effect of complex surfaces

(Luhar et al. 2015; Chavarin & Luhar 2019). The broad applicability of such linearised

analysis relies on (and can be seen as evidence to infer) the importance of linear amplification

mechanisms in the generation and evolution of empirically-observed coherent structures

within turbulent flows, such as include near-wall streaks (Kline et al. 1967), hairpin vortices

(Theodorsen 1952; Head & Bandyopadhyay 1981), superstructures (Kim & Adrian 1999),

and a range of other coherent features described in Jiménez (2018).

The linearised analyses discussed thus far assume that the linear system under investigation

is time-invariant, as is the case when the underlying flow is statistically stationary. The

recently-developed harmonic resolvent analysis (Padovan et al. 2020; Padovan & Rowley

2022) enables the resolvent framework to extend to statistically time-periodic flows, enabling

cross-frequency analysis capturing triadic interactions between a time-periodic base flow

and fluctuations about this mean state at other frequencies. In the context of flow control

over a periodically plunging cylinder, Lin et al. (2023) utilizes a Lyapunouv—Floquet

transformation to map the corresponding linear time-periodic system to a time-invariant

equivalent, enabling the application of standard resolvent analysis methods.

Whether considering a statistically-stationary or a time-periodic mean state, the methods

discussed thus far consider a Fourier decomposition in time. Typically, this involves iden-

tifying the forcing (input) and response (output) structures corresponding to largest energy

amplification by the linearized system (represented by the resolvent operator). While this

decomposition arises naturally for such methods, it can potentially obscure the intermittent

nature of velocity fluctuations present in turbulent flows. Alternative linear analyses methods

can be similarly restrictive, with asymptotic stability analysis also identifying eigenmodes

each associated with a single (possibly complex) frequency. Conversely, transient growth

analysis (Böberg & Brösa 1988; Butler & Farrell 1992; Reddy & Henningson 1993; Schmid

2007) considers the unforced response to a specific initial condition, corresponding to

maximal energy growth over a specified time horizon. This again is unrealistic for systems

subject to continuous perturbations (Jovanović & Bamieh 2005), though such analysis has

been used in turbulent flows, such as to predict the emergence of near-wall streamwise streak

(Del Alamo & Jimenez 2006) and vortices (Schoppa & Hussain 2002) in wall-bounded

turbulence. To overcome these limitations, here we introduce a space-time formulation

of the resolvent operator that is firstly applicable to non-statistically-stationary systems

with an arbitrarily time-varying mean profile, and secondly allows for the identification

of optimal input and output trajectories that can have arbitrary time dependence. This builds

upon preliminary work first reported in Lopez-Doriga et al. (2023). While not explored

here, related work also considers explicitly replacing the Fourier transform used in standard

resolvent analysis with a wavelet transform (Ballouz et al. 2023, 2024).

This generalization of operator-based decompositions to enable non-Fourier temporal

modes is somewhat analogous to efforts to similarly generalize data-driven proper orthogonal
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decomposition POD methodology to identify intermittent behavior in turbulent flows, such

as the conditional POD formulated in Schmidt & Schmid (2019), and time-windowed space-

time POD described in Frame & Towne (2022). Note that spectral POD (Towne et al. 2018)

has also been recently generalized for time-periodic systems using cyclostationary analysis

(Heidt & Colonius 2023).

Methods to identify nonmodal linear energy amplification such as resolvent or transient

growth analysis involve computing the leading singular values and vectors of an appropriately-

defined linear operator. The singular value decomposition, by design, is defined as an

optimisation problem that involves an ;2-energy norm. In the context of resolvent analysis,

this optimization problem relates to the energy ratio between input and output flow states, and

naturally yields spatio-temporal structures that are Fourier modes in time. Here, we consider

modifications to the standard optimization problem that yield alternative temporal functions,

which are inclined to be localised in time. This is achieved by incorporating an ;1 norm term

into the optimisation problem. The use of ;1 norms to promote localisation and/or sparsity

has origins in compressive sensing (Candès & Wakin 2008)

In the context of fluid mechanics, sparsity-promoting methods have been utilised

for developing reduced-complexity models across a number of contexts. These include

the identification of sparse nonlinear reduced-order models (Brunton et al. 2016;

Loiseau & Brunton 2018; Rubini et al. 2020), the selection of a sparse set of active

dynamic modes (Jovanović et al. 2014), and in reconstruction of temporal spectral content

from data that is under-resolved in time (Tu et al. 2014). Recently, sparsity promoting

methods have also been incorporated in the resolvent analysis framework in Skene et al.

(2022), where they are used to identify spatially-localized forcing modes, which can be more

directly useful for actuator placement in flow control applications. In Skene et al. (2022),

a Riemannian optimization process is used to solve an ;1-based optimisation problem,

following a similar approach used by Foures et al. (2013) to identify spatially-localised

structures in transient growth analysis. The present work is similarly motivated, though

we focus here on achieving localisation in time as well as space. We also use a different

formulation of the optimisation problem, which allows for a balance between ;1 and ;2 norm

contributions.

The structure of the paper is as follows. A discussion of the fundamentals of pseudospectral

analysis and the wall-normal derivation of the governing equations, along with the space-time

form of the resolvent operator, and a description of the algorithm that promotes sparsity on

the resolvent modes are presented in §2. The main results of our investigation are discussed

in §3: the sparse formulation of the standard resolvent operator is applied in the streamwise

and spanwise directions of a turbulent channel flow in §3.2; and the space-time and sparse

space-time formulations of the resolvent operator are applied on a turbulent channel flow

in §3.3; a turbulent Stokes boundary layer in §3.4; and a channel flow with sudden lateral

pressure gradient in §3.5. Finally, we discuss the main findings and future prospects of our

investigation in §4.

2. Methodology

This section begins with a brief overview of the fundamentals of pseudospectral analysis of

linear operators in §2.1. This is followed by a derivation of the resolvent formulation of the

incompressible Navier–Stokes equations in wall-normal velocity and vorticity variables in

§2.2, assuming homogeneity in both the spatial and temporal dimensions. This is followed by

the development of a space-time resolvent operator where homogeneity is not assumed in the

temporal dimension in §2.3, also in wall-normal velocity and vorticity variables. Following
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this, §2.4 introduces a formulation of resolvent analysis that promotes sparsity on the optimal

resolvent modes.

2.1. Pseudospectral analysis of linear operators

Let us consider a dynamical system governed by

¤q(x, C) + Lq(x, C) = f (x, C), (2.1)

where q denotes the state of the system with respect to a reference state q0, L is a

linear operator and f represents an exogenous input or forcing. The space and time

dimensions are denoted by x and C, respectively. Assuming that the system is homogeneous

in the temporal dimension, we propose solutions of the form (Schmid & Henningson 2001)

q(x, C) = q̂(x) exp (−8lC) with l ∈ C, and substituting in (2.1) gives

(−8lI + L)q̂(x) = f̂ (x). (2.2)

In the case there the forcing term is nonzero, the elements can be rearranged so that the

governing equation represents the following system

q̂(x) = (−8lI + L)−1f̂ (x) := Hlf̂ (x). (2.3)

We refer to Hl as the resolvent operator. Note that the subscript l is retained to highlight

the dependence on the temporal frequency. The original dynamical system in (2.1) has been

recast as a linear mapping between a forcing f̂ and the state q̂.

According to (2.3), the properties of the state q̂ will be affected by both the nature of the

forcing f̂ and the properties of the resolvent Hl . In this work, we focus in particular on the

pairs of forcing-response that produce the largest amplification through the action of Hl .

That is, a forcing of small magnitude yields a response of large magnitude. Such structures

can be identified via a singular value decomposition (SVD) of the resolvent operator Hl as

follows

Hl =

#∑
9=1

ψ 9f9φ
∗
9 , (2.4)

where f9 > f9+1 > 0 for all 9 , and (·∗) denotes the adjoint. Notice that here the resolvent

operator will take the form of a discretised operator, therefore the summation in (2.4) is

truncated to # terms.

In particular, we seek f̂ = φ1 that maximises the largest singular value f1, where

f1 = max
φ

‖Hlφ‖2

‖φ‖2

= min
ψ

‖ψ‖2

‖H∗
lψ‖2

, (2.5)

where the ;2 norm is taken over the spatial domain Ωx, so that, for example,

‖ψ(x)‖2 =

(∫
x∈Ωx

|ψ(x) |2 dx

)1/2

. (2.6)

Alternatively, we can write this optimisation problem in terms of the leading forcing mode

φ1 as

φ1 = arg max
φ

‖Hlφ‖2

‖φ‖2

, (2.7)

or the leading response mode ψ1

k1 = arg min
k

‖k‖2

‖H∗
lk‖2

. (2.8)

Focus on Fluids articles must not exceed this page length
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2.2. Resolvent formulation of the mean-linearised incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations enforce conservation of momentum and mass,

respectively, and are written in a Cartesian coordinate system as follows

mCu = −u · ∇u − ∇? +
1

Re
Δu, (2.9)

∇ · u = 0. (2.10)

Here, the instantaneous velocity field has three components:u = [D(x, C), E(x, C), F(x, C)])

with x = [G, H, I]) and ? = ?(x, C) represents the instantaneous pressure field. In this

reference frame, G and I correspond to the streamwise and spanwise directions, respectively,

and are nominally considered to be infinite in extent. The other variable, H, represents the

wall-normal dimension. Here mC denotes a time (partial) derivative, the spatial gradient

operator is given by ∇ = [mG, mH, mI]
) , and the Laplacian operator is defined as Δ = ∇ · ∇.

We can write a given instantaneous velocity state u as the sum of the temporal mean U
and a fluctuating component u′, such that

u(x, C) = U (x) + u′ (x, C). (2.11)

Applying this decomposition in (2.9)–(2.10) and subtracting the temporal average gives the

governing equations used in this work,

mCu
′ +U · ∇u′ + u′ · ∇U + ∇?′ −

1

Re
Δu′

= −u′ · ∇u′ − u′ · ∇u′ = f ′, (2.12)

∇ · u′
= 0, (2.13)

that is, conservation of momentum and continuity of the fluctuating components. Notice

that here the right-hand side of (2.12) has been condensed into a forcing term f ′ that

represents the effect of the fluctuations about the mean state of the nonlinear terms, and

can be regarded in this context as an exogenous input to a linear system comprising of

the remaining terms. Wall-bounded parallel flows with a mean/base flow in the streamwise

and spanwise dimensions U (H) = [* (H), 0,, (H)]) , admit a transformation of variables

from a primitive reference {D′, E′, F′, ?′} towards a reference in terms of the wall-normal

velocity E′ and vorticity [′ (where [′ = mD′/mI − mF′/mG), without loss of generality

(i.e. resulting in the Orr-Sommerfeld and Squire equations). This formulation is proven to

be equally informative (Moarref et al. 2013; Rosenberg & McKeon 2019; McMullen et al.

2020) for resolvent analysis of planar flows. In this reference, the no-slip and no-penetration

conditions translate into E′(H = 0) = E′ (H = 2ℎ) = 0, mHE
′(H = 0) = mHE

′(H = 2ℎ) = 0

and [′(H = 0) = [′(H = 2ℎ) = 0, where ℎ represents the semi-height of the domain in

the wall-normal dimension. Throughout this paper, the location of the no-slip walls will

coincide with H = 0 and H = 2ℎ. This transformation is achieved according to the process

described in Schmid & Henningson (2001), while including a spanwise component of the

mean/base flow, , . The resulting wall-normal formulation of the conservation laws shown

in (2.12)–(2.13) is formed by the following two equations[
(mC +*mG +,mI) ∇

2 − m2
H*mG − m2

H,mI −
1

Re
∇4

]
E′ = 5 ′E , (2.14)

(
mC +*mG +,mI −

1

Re
∇2

)
[′ +

(
mH*mI − mH,mG

)
E′ = 5 ′[ . (2.15)

Assuming that the system is homogeneous in the temporal dimension and the streamwise
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and spanwise directions, we introduce assumed solutions of the form

E′ (x, C) = Ê(H) exp [8(: GG + : II − lC)], (2.16a)

[′(x, C) = [̂(H) exp [8(: GG + : II − lC)], (2.16b)

f ′ (x, C) = f̂ (H) exp [8(: GG + : II − lC)], (2.16c)

where : G and : I denote the streamwise and spanwise wavenumbers, respectively, and l

denotes temporal frequency. Substituting these assumed solutions in (2.14)–(2.15) gives the

following system of equations,

(−8lM + L)

(
Ê

[̂

)
=

(
5̂E
5̂[

)
, (2.17)

where

M =

(
Δ̂ 0

0 I

)
and L =

(
L>B 0

8: ImH* − 8: GmH, LB@

)
. (2.18)

The modified Laplacian operator Δ̂ = mHH − (:2
G + :2

I) is introduced for simplicity, and

L>B = (8: G* + 8: I,) Δ̂ −
1

Re
Δ̂

2 − 8: Gm
2
H* − 8: Im

2
H,, (2.19)

LB@ = 8: G* + 8: I, −
1

Re
Δ̂, (2.20)

represent the Orr-Sommerfeld (OS) and Squire (SQ) operators, respectively. Premultiplying

both sides of equation (2.17) by M−1 and solving for the state [Ê(H), [̂(H)]) gives(
Ê

[̂

)
= (−8lI + L)−1

(
6̂E
6̂[

)
:= Hω

(
6̂E
6̂[

)
, (2.21)

where

L = M
−1

L and

(
6̂E
6̂[

)
= M

−1

(
5̂E
5̂[

)
. (2.22)

This transfer function Hω is denoted as the resolvent operator, in analogy to the definition

introduced for a general linear system in (2.3) when I becomes I = −8l. Note that the

resolvent operator is dependent on the triad {l, : G, : I}, but for the sake of readability

this dependence is indicated by the subscript ω. Expanding the terms in accordance to the

derivation described in Rosenberg & McKeon (2019) gives(
Ê

[̂

)
= Hω

(
6̂E
6̂[

)
:=

(
HEE 0

−H[[ (8: ImH* − 8: GmH,)HEE H[[

) (
6̂E
6̂[

)
, (2.23)

where the scalar operators are defined as

HEE = (−8l + Δ̂
−1L>B)

−1, (2.24)

H[[ = (−8l + LB@)
−1. (2.25)

Notice that the formulation in wall-normal variables enables the study of the dynamical

properties of each of the variables independently. Nevertheless, it is possible to define

a direct transformation of the resolvent operator, as well as the resolvent modes, from

wall-normal velocity and vorticity {E, [} to primitive velocity variables {D, E, F} (and vice

versa), according to the mapping that was introduced in Meseguer & Trefethen (2003) and

further developed and applied in Jovanović & Bamieh (2005); McKeon & Sharma (2010);
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Moarref et al. (2013); Sharma et al. (2017). The cited transformation recasts the response

and forcing modes in primitive variables as follows

	 (D,E,F) = C	(E,[) , (2.26)

and

�(D,E,F) = (M−1
B)−1

�(E,[) . (2.27)

Here

C =
1

:2
⊥

©
«
8: GmH −8: I
:2
⊥ 0

8: ImH 8: G

ª®
¬
, (2.28)

and

B =

(
−8: GmH −(:2

G + :2
I) −8: ImH

8: I 0 −8: G

)
, (2.29)

represent the input and output matrices, respectively.

2.3. Space-time resolvent analysis

Here, we present a form of resolvent analysis that is applicable to time-varying systems.

This generalisation is achieved by limiting the assumed directions of homogeneity to the

streamwise and spanwise spatial dimensions. Thus, in analogy to the trajectories presented

in (2.16) we let the solutions take the following form

E′(x, C) = Ê(H, C) exp [8(: GG + : II)], (2.30a)

[′ (x, C) = [̂(H, C) exp [8(: GG + : II)], (2.30b)

f ′(x, C) = f̂ (H, C) exp [8(: GG + : II)]. (2.30c)

Notice the more general dependence of these trajectories on both H and C, allowing the

solutions to adopt any sort of temporal function. Substituting these spatio-temporal solutions

in the governing equations in wall-normal formulation in (2.14)–(2.15), and solving for the

current state [Ẽ(H, C), [̃(H, C)]) provides the following definition of the space-time resolvent

operator Ht (
Ê

[̂

)
= Ht

(
6̂E
6̂[

)
:=

(
H̃EE 0

−H̃[[ (8: ImH* − 8: GmH,)H̃EE H̃[[

) (
6̂E
6̂[

)
, (2.31)

and the modified scalar operators are given by

H̃EE = (DC + Δ̂
−1L>B)

−1, (2.32)

H̃[[ = (DC + LB@)
−1. (2.33)

Here, DC represents a generalised discrete time-differentiation operator, and the subscript in

Ht represents the triad t = {C, : G, : I}. Notice that definitions (2.32) and (2.33) have the

symbol (·̃) to emphasise on the temporal dependence and disambiguate from (2.24) and

(2.25). As before, resolvent analysis proceeds by taking an SVD of the associated resolvent

operator,HC . The leading resolvent forcing and response modes satisfy the same optimisation

problems described in equations 2.5,2.7-2.8, though now the norm is computed over both

space and time, so that

‖ψ(x, C)‖2 =

(∫
C∈ΩC

∫
x∈Ωx

|ψ(x, C) |2 dxdC

)1/2

, (2.34)

where ΩC denotes the temporal domain under consideration.
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While the theory of this generalization of resolvent analysis is straightforward, it does come

with a potential increase in the computational cost. Upon discretization, the size of the matrix

representation of the resolvent operator is increased by a factor of the number of timesteps,

#C , in both the row and column dimensions with respect to the space-only resolvent operator

defined in (2.21). For a case with where one spatial dimension (H) is discretised, this means

that the total size is (2#H#C × 2#H#C ) and each of the block-elements is (#H#C × #H#C ),
where #H and #C are the number of discretisation points in the space and time dimensions,

respectively. Note that the space-only formulation is constituted by a resolvent operator of

total size (2#H × 2#H) and with block-elements of size (#H × #H). This increase is due to

the fact that each of the entries of the operator DC corresponds to a temporal instance of a

given spatial location in the wall-normal axis. For the purposes of this study, however, this

computational cost remains feasible.

Note that in order to disambiguate between the space-only modes and the space-time

modes, the symbol (·̂) will be used to denote the space-only modes in §3.

2.4. Sparse resolvent analysis

The theory presented in §2.1 formulates the finding the leading resolvent modes and

corresponding gain as an optimization problem (e.g. (2.5)) in terms of the spatial ;2 norm of

forcing and response modes (defined in (2.6)). Similarly, the leading resolvent modes for the

space-time resolvent formulation described in §2.3 is formulated using the norms computed

over both the spatial and temporal domains (2.34).

Such optimization problems involving the ;2 norm are ubiquitous across a broad range of

methods, and arise naturally for methods based on the SVD. However, it is possible to modify

such optimization problems such that their solution has different characteristic features.

Here, we introduce a variant of resolvent analysis that seeks to achieve localisation or

sparsity, while also desiring the large energy amplification levels that are obtained in

the standard resolvent formulation. This is achieved by incorporation of the variant of

sparse principal component analysis (PCA) described in Hein & Bühler (2010). Similar

approaches are discussed in Jolliffe et al. (2003); Zou et al. (2006); Sigg & Buhmann (2008);

Journée et al. (2010); Zou & Xue (2018).

Sparsity is promoted through the incorporation of an additional term in the form of the

;1-norm, which produces the following minimization problem

ψ1 = arg min
ψ

(1 − U)‖ψ‖2 + U‖ψ‖1

‖H∗ψ‖2
. (2.35)

Here, the sparsity parameter U ∈ [0, 1] determines the number of nonzero elements in ψ1.

Moreover, the sparsest solution will be retrieved when U = 1; while the case where U = 0

will give the least sparse outcome and will in fact match the result given by (2.5).

Notice that the numerator in (2.35) is a convex function. The solution to this optimisation

problem is achieved by reformulating it as a nonlinear eigenproblem that enables the use of

an inverse power method to find its optimum (Hein & Bühler 2010). In practice, this method

often produces solutions with sharp gradients, where some of the entries change drastically

from zero to nonzero values. In order to produce coherent structures that resemble observable

mechanisms, these solutions are regularised using the resolvent operator while maintaining

sparsity. Here, we refer to the response modes computed on the first step as “raw” modes, and

use a superscript to disambiguate from the regularised or updated modes. The full collection

of steps that produces the sparse leading forcing φ1 and response ψ1 resolvent modes are

described in algorithm 1.

The forcing modes could potentially be updated by substituting the updated response modes
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Algorithm 1 Simplified sparse resolvent analysis

Input: Resolvent operator H and sparsity parameter U

1: Compute raw sparse response modes ψA0F
1

by solving (2.35)

2: Compute corresponding forcing modes via

φ1 =
H∗ψA0F

1

‖H∗ψA0F
1

‖2
(2.36)

3: Compute updated (regularised) response modesψ1 via

ψ1 =
Hφ1

‖Hφ1‖2

(2.37)

4: Compute corresponding singular values via

f1 = ‖Hφ1‖2 (2.38)

Output: Regularised sparse response mode ψ1, sparse forcing mode φ1, singular value

f1.

in (2.36), although in practice there is not a significant difference between the updated and the

first forcing modes. In addition, it is possible to compute higher-order resolvent modes within

this framework using the deflation scheme described in Bühler (2014). According to this,

the components that have already been identified are removed from the optimisation space

before following the steps presented above. Moreover, observe that the method described

here promotes sparsity on the response modes ψ, although exchanging ψ with φ and H
with H∗ would yield sparsity-promotion in the forcing modes. Lastly, the subscript in the

resolvent operator was removed in this section in order to indicate that this methodology

can be applied to both the spatial and space-time resolvent operators. For an explicit and

expanded form of this algorithm describing how the solution to (2.35) is obtained, refer to

appendix A.

3. Results

In this section, we present the application of the proposed framework on four different

systems. After describing numerical details associated with the resolvent calculations in

§3.1, in §3.2 we showcase the implementation of sparse resolvent analysis on a statistically-

stationary turbulent channel flow. Here, we consider conventional resolvent analysis with

a Fourier transform in time, but enable sparsity promotion in the spanwise direction. We

then consider the space-time resolvent operator for this problem in §3.3, and show that the

proposed method can produce temporally-localised modes for a statistically stationary flow.

We next apply sparse and non-sparse space-time resolvent analysis to two non-statistically-

stationary systems, a periodic turbulent Stokes boundary layer in §3.4, and a turbulent channel

flow with sudden lateral pressure gradient in §3.5.

3.1. Numerical methods

The mean velocity profiles used for resolvent analysis are all obtained from direct numerical

simulations (DNS). These simulations use a staggered second-order finite difference scheme

(Orlandi 2000), with a fractional step method (Kim & Moin 1985) and third-order Runge-

Kutta time-advancing scheme (Wray 1990). Further details regarding the use and validations



10 Lopez-Doriga, Ballouz, Bae and Dawson

of these methods, and their application to the specific cases considered here, can be found in

Bae et al. (2018, 2019); Lozano-Durán & Bae (2019).

For resolvent analysis, the wall-normal direction is discretised using a Chebyshev col-

location method. In the cases where the spanwise dimension is explicitly discretised, we

use a Fourier discretisation scheme with periodic boundary conditions along the spanwise

domain. Moreover, if homogeneity is not assumed in the temporal dimension, we adopt

a Fourier discretisation scheme when the system is assumed to be statistically-stationary

or time-periodic (i.e. §3.2–§3.4), and a explicit Euler finite-differentiation scheme in the

temporal dimension with Neumann boundary conditions at the boundaries in §3.5. The

corresponding differentiation operators for both Chebyshev and Fourier discretisations are

defined according to the specifications given in Weideman & Reddy (2000). The number of

collocation points used for each of the examples considered in this work will be indicated

in the corresponding section. In each case, we verify that the numerical resolution gives

converged results, with details of these convergence studies given in appendix B.

In the space-time implementations of the analysis showcased in this paper (i.e. §3.3–§3.5),

no-slip and no-penetration conditions are enforced at H = 0 (lower wall), while free-slip and

no-penetration conditions are enforced at H = ℎ (the channel centerline). The space-time

analysis identifies modes that are sufficiently localised away from the mid-plane using the

chosen set of parameters, allowing us to reduce the size of the numerical domain to the area

below H/ℎ = 1.

3.2. Spatially-sparse resolvent analysis of turbulent channel flow

Here, we apply the sparse resolvent analysis methodology on a fully-developed turbulent

channel flow, where we consider spatial (rather than temporal) sparsity. The mean velocity

profile is obtained from direct numerical simulations at a friction Reynolds number of

Reg = 186, defined as Reg = Dgℎ/a and the friction velocity, expressed as Dg =

√
gF/d. The

shear stress at the wall-boundary is denoted as gF , and ℎ is the channel half-height. Hereafter,

the superscript (·)+ denotes viscous (inner) units. In this reference, the velocities are scaled

by the friction velocity Dg , and the lengthscale is given by a/Dg . In order to showcase the

application of the sparse formulation of resolvent analysis introduced in §2.4, we consider

two configurations, both of which assuming homogeneity in the streamwise direction and the

temporal dimension: a first case where the spanwise dimension is assumed to have an infinite

extent, followed by a second implementation in which the spanwise dimension is limited to

a finite periodic domain.

The first configuration represents a one-dimensional analysis, where the chosen wave-

lengths in the streamwise _+G = 1000 and spanwise _+I = 100 directions correspond to the

average size of the streaks and vortices that arise in the near-wall cycle (Jiménez & Pinelli

1999). The temporal frequency is fixed at l = 17.14, where the temporal scale is normalised

by the friction velocity, Dg , and the half-height of the channel, ℎ. In this application, the

number of collocation points in the wall-normal direction is #H = 201. No-slip and no-

penetration conditions are enforced for the velocity at the upper and lower boundaries.

Results obtained from applying both standard and sparsity-promoting (in the wall-normal

direction) resolvent analysis are shown in figure 1, where we show the amplitude of the

streamwise velocity component of the leading two resolvent response modes. For standard

resolvent analysis, the chosen wavenumbers and frequency produces modes with two peaks,

each centered near one of the two critical layer locations (where* (H) = l/: G). The leading

two singular values are essentially identical, and represent the fact that the two peaks are

separated from each other, and can each represent structures that have an arbitrary phase shift

between them. Mathematically, these modes are basis vectors for a subspace of dimension

Rapids articles must not exceed this page length
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Figure 1: Streamwise components (D) of the first (a,b) and second (c,d) standard and
sparse resolvent response modes computed for a turbulent channel flow with Reg = 186,
_+G = 1000, _+I = 100 and temporal frequency l = 17.14. Note that the standard modes
(black) have been computed using (2.8), while (2.35) produced the raw sparse modes

ψ̂A0F (a,c) from which we extract the adjusted modes ψ̂ (b,d). The streamwise mean flow
* is added to all plots for reference. The black dashed lines denote critical layer locations.

two, and thus an equally valid choice of basis for this subspace would be given by localised

modes with one peak each.

To compare to the results of sparse resolvent analysis, several solutions are computed for

different sparsity parameters U via the optimisation problem posed in (2.35). The obtained

raw sparse resolvent modes are shown in figures 1(a) and 1(c) seem to be highly dependant on

the corresponding value of U, although they are again all located near one of the two critical

layer locations. This dependence on the sparsity parameter subsides after regularizing the

modes following algorithm 1, as shown in figures 1(b) and 1(d). We observe that these

regularized modes each recover one of the two peaks identified by regular resolvent analysis,

indicating that the sparse variant is finding basis elements for the leading resolvent subspace

that are spatially sparse. The sparse singular values (computed via (2.38)) are also consistent

with the standard resolvent case, with f1 being about 1% lower for the sparse case (with

U = 0.1) in comparison with the non-sparse equivalent.

As the regularisation step appears to both remove the dependence on the sparsity parameter,

and recovers the results for regular resolvent analysis for this example, we will exclusively

use this regularised version for the remaining cases.

We now consider the same turbulent channel flow, but instead of assuming a Fourier

decomposition in the spanwise direction, we instead explicitly discretise this dimension,
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applying periodic boundary conditions with a spanwise extent twice the channel height. We

use a Fourier basis in this spanwise dimension, with #I = 96 collocation points (with #H =

201 as before). Figure 2 shows the leading resolvent forcing and response modes obtained

from standard and sparse resolvent analyses, visualised in the H− I plane. Since the system is

homogeneous in the spanwise dimension, the standard resolvent modes (figure 2(a,c)) give

Fourier modes in this direction. The response mode consists of alternating slow- and fast-

moving streamwise streaks, with streamwise vortices located between each streak. These

streamwise streaks and vortices, centered at the critical layer, are consistent with typical

structures observed in the near-wall cycle (Jiménez & Pinelli 1999). The wall-normal profile

of these modes is close to matching those from the one-dimensional analysis shown in

figure 1, where the identified spanwise wavelength for the leading mode is slightly different

from that selected in the one-dimensional analysis shown in figure 1. The configuration

of these streamwise streaks is consistent with the the lift-up mechanism (Landahl 1975,

1980), through which streamwise vortices lead to the formation of streamwise streaks by

transporting slow-moving fluid away from the wall, and vice-versa.

The sparse resolvent modes shown in figure 2(b,d) contain a spatially-localised unit of

the periodic structures identified by standard resolvent in figure 2(a,c). In particular, the

sparse response mode consists of a primary central vortex surrounded by a fast and slow

streak, flanked by lower-amplitude secondary vortices and streaks. Note that while we are

only showing the lower half of the domain, on the upper half the same structure is present for

standard resolvent, but not for the sparse equivalent (again consistent with figure 1). While

not shown here, higher-order sparse resolvent modes consist of repetitions of this localized

structure both on the upper wall, and translated in the spanwise direction (with the spanwise

location of the leading mode being arbitrary). Note also that the relative phase of the forcing

and response modes is consistent between the regular and sparse modes.

Here the localised structure identified by sparse resolvent analysis can be interpreted

as a “minimal” unit corresponding to similar linear energy amplification as standard

resolvent analysis (with very similar singular values). In fact, this minimal unit identified

by sparse resolvent analysis is reminiscent of instantaneous (Hutchins & Marusic 2007;

Jiménez 2018) and conditionally-averaged (Dennis & Nickels 2011) structures and correla-

tions (Sillero et al. 2014) that are observed in a turbulent flow field, suggesting the utility of

this analysis for representing localised features and mechanisms within turbulent flows. In

terms of the energy content of these structures, the first non-sparse singular value is about

1.003 times larger than its sparse counterpart.

3.3. Space-time resolvent analysis of a turbulent channel flow

In this section, we demonstrate the implementation of the non-sparse and sparse space-time

variants of resolvent analysis on the statistically-stationary turbulent channel flow considered

in §3.2. Here, we do not perform a Fourier transform in the temporal dimension, and instead

implement the space-time formulation of resolvent analysis introduced in (2.31). All the

parameters adopted in the analysis conducted in §3.2 are also adopted here (except for the

frequency, which is no longer specified), and time is nondimensionalised by the friction

velocity, Dg , and the half-height of the channel, ℎ.

First, the streamwise (D) and wall-normal velocity (E) components of the resolvent modes

obtained from the non-sparse space-time analysis are shown in figure 3 with a time horizon

gC>C = 20g that spans over 20 cycles of length g = 2c/l = 0.3659, where l = 17.14 is

the same frequency used in §3.2-3.3. The number of collocation points is #H = 101 in the

wall-normal direction and #C = 551 in the temporal dimension.

As expected, we observe that the leading spacetime resolvent mode are Fourier modes in
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Figure 2: Real component of leading response modes ψ̂1 (a-b) and forcing modes φ̂1
(c-d), for standard (a,c) and sparse (b,d) resolvent analysis, applied to turbulent channel
flow at Reg = 186, with a finite periodic domain in the spanwise direction defined by
I/ℎ ∈ {−2, 2} and a frequency l = 17.14. Contours of streamwise velocity are shown,
with arrows indicating the velocity in the spanwise (I) and wall-normal (H) directions.
Green dashed lines indicate critical layer locations. The streamwise wavelength is _+G =

1000.

Figure 3: Real component of space-time leading response ψ1 (a-b) and forcing φ1 (c-d)
modes of the resolvent operator in a turbulent channel flow with Reg = 186, and

_+G = 1000, _+I = 100 for a time horizon gC>C = 20g = 20(2c/l). Subplots (a,c) show the
streamwise velocity component (D), while (b,d) give the wall-normal component (E).

time, with a frequency that matches that used in the previous analyses (i.e. the mode exhibits

twenty periods over the time domain of length 20g).

To further demonstrate that the spacetime variant gives equivalent results to standard

resolvent analysis, in figure 4 we compare the leading 30 singular values from both versions,

where in the standard resolvent analysis we compile the results across all frequencies that are

permissible when using this temporal domain (i.e. l = 2c=/gC>C with = ∈ Z).

We now consider the spatio-temporally sparse variant of this analysis. The total time

horizon is again set to gC>C = 20g, which allows for the potential growth and decay of

temporally-localised modes without the influence of the periodic boundary conditions. #H =
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Figure 4: Leading 30 singular values of the space-time resolvent (black) and singular
values of the space (standard) resolvent computed at l= = =(2c/gC>C ) with

−100 6 = 6 100 sorted in descending order (red) for a turbulent channel flow with
Reg = 186, _+G = 1000, _+I = 100 with a time horizon (for the space-time variant)

gC>C = 20g = 20(2c/l), where l = 17.14.

Figure 5: Real component of space-time sparse leading response ψ1 (a,b) and forcing φ1
(c,d) modes of the resolvent operator in a turbulent channel flow with Reg = 186, and

_+G = 1000, _+I = 100, computed with a sparsity parameter U = 0.001, for a time horizon
gC>C = 20g = 20(2c/l). Horizontal dotted lines in (a-d) indicate the H-location where
each mode component achieves its maximum amplitude. Subplots (e,f ) show contour

levels of the absolute value of leading forcing (red) and response (blue) modes.

101 collocation points are used in the wall-normal direction, and #C = 501 in the time

dimension. Figure 5 contains the streamwise and wall-normal components of the updated

response and forcing modes with a sparsity parameter U = 0.001. Notice how the analysis

identifies structures that are sparse both in the spatial and temporal dimensions. As was

the case for the spanwise channel discussed in §3.2, these modes depict a minimal linear
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Figure 6: Absolute (solid) and real (dashed) components of the temporal evolution of the
sparse modes shown in figure 5(a-d), at the H-locations of maximum amplitude.

amplification unit, in this case formed by a localised version of the modes identified by the

non-sparse space-time analysis in figure 3. Observe that the forcing modes in figure 5(c,d)

precede the response in figure 5(a,b). The phase variation in time (corresponding to the

temporal frequency) and wall-normal location of the modes approximately match those

identified from the leading non-sparse space-time resolvent mode shown in figure 3. The

sparse mode, however, identifies aspects of the physics that cannot be directly observed

without sparsity-promotion (and thus localisation), such as the change in inclination angle

and wall-normal location of the mode components with time. In particular, the inclination

angle of structures tend to lean further backwards in the H − C plane as time increases, which

would correspond to an increased downstream tilt over time in the G − H plane, consistent

with the Orr mechanism (Orr 1907).

We also note that these time-localized resolvent mode components indicate the causal

mechanisms producing energy amplification, with forcing in E proceeding response in E

(figure 5f ) which in turn proceeds the (energetically-dominant) response in D (figure 5e),

consistent with the lift-up mechanism. In terms of the energy content, for a fixed time horizon

of 20g, the leading non-sparse singular value is larger than the leading sparse one by a factor

of 5.60.

To explore the temporal profiles of the components of these sparse space-time modes,

figure 6 shows the cross-sections along the C-axis of the sparse modes in figure 5 at the

locations in H where the amplitude of the signal finds its maximum. The temporal evolution

of the forcing mode components seems to be more localised in these cross-sections, as they

abruptly drop to zero near where the amplitude of the response modes finds its maximum

value. The shape of the streamwise and wall-normal components of the modes (first row

in figure 5) shows an approximately Gaussian envelope with approximately constant phase

gradient, with a phase variation that is approximately uniform across all mode components.

This could potentially suggest a natural choice of wavelet basis functions for a low order

temporally-localised analysis of this flow (Ballouz et al. 2023, 2024). Moreover, the particular

shape of the response modes could enable the implementation of wavepacket pseudomode
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Figure 7: (a) Streamwise mean flow * (H, C) (colourmap) and streamwise turbulence
intensity DA<B (grey dashed) of a turbulent Stokes boundary layer, with levels indicating
{20%, 30%, 50%, 75%, 95%} of its maximum value, over a full oscillating cycle; (b)

time-instances of the turbulent mean at CΩ = c (black) and CΩ = 3c/2 (red).

theory to approximate these response modes (Obrist & Schmid 2010, 2011; Mao & Sherwin

2011; Edstrand et al. 2018; Dawson & McKeon 2019, 2020).

3.4. Space-time resolvent analysis of a turbulent Stokes boundary layer

In this section, we apply non-sparse and sparse space-time resolvent analysis to a turbulent

Stokes boundary layer, with a time-periodic mean velocity field as shown in figure 7). This

flow sits between two plates that oscillate synchronously with a velocity given by

*F (C) = *0 cos (ΩC), (3.1)

with *F denoting the velocity of the oscillating walls and *0 representing a constant. There

is no external pressure gradient, so the flow is entirely driven by the motion of the walls. The

Reynolds number for this flow is defined as a function of the frequency of the oscillations Ω,

such that ReΩ = *0XΩ/a, and XΩ =

√
2a/Ω is a length parameter denoting the boundary layer

thickness. For the ensuing analysis, we choose ReΩ = 1500 to ensure that the flow lies in the

intermittently turbulent regime (Hino et al. 1976; Akhavan et al. 1991; Verzicco & Vittori

1996; Vittori & Verzicco 1998; Costamagna et al. 2003). Note that while there appears to

be little prior work performing linear analyses of this configuration in the turbulent regime,

linear analysis of laminar pulsatile channel flow has been considered using Floquet analysis

(Pier & Schmid 2017) and optimally time-dependent modes (Kern et al. 2021).

The mean velocity profile and the root-mean-square (r.m.s.) of the fluctuating turbulent

velocity components are obtained through direct numerical simulations as described in §3.1.

The size of the domain for the DNS is 6cXΩ × 80XΩ × 3cXΩ (in the streamwise, wall-normal,

and spanwise directions respectively) and contains 64, 385 and 64 grid points in each of the

corresponding dimensions. To collect mean data, the DNS was run for 100 eddy turnover

times after the decay of transient startup effects, where here we define this timescale as XΩ/Dg ,

with XΩ = 0.025ℎ. The time-periodic mean velocity profile is obtained through averaging

in the dimensions of spatial homogeneity (i.e. the streamwise and spanwise directions),

for each phase of wall motion. For resolvent analysis, the size of the numerical domain is

[0, ℎ] × [0, gC>C ] with ℎ = 1 and gC>C being the length of the time horizon.

For performing both sparse and non-sparse space-time resolvent analysis, we consider

wavelengths corresponding to the extent of the DNS computational domain, i.e._G = 6cXΩ ≈
0.471ℎ and _I = 3cXΩ ≈ 0.236ℎ. That is, we look at the largest three-dimensional structure

that the DNS would be capable of resolving. The reason for focusing on such large structures

in G and I is that we expect that they will correspond to space-time resolvent modes that also
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Figure 8: Real component of leading space-time resolvent (a,b) response ψ1 and (c,d)
forcing φ1 modes of the resolvent operator in a turbulent Stokes boundary layer with
_G/ℎ=0.471 and _I/ℎ=0.236 during a full oscillating cycle. The grey dashed lines

represent the (a,c) streamwise and (b,d) wall-normal turbulence intensity, with contours at
{15%,20%30%,40%,60%} and {22%,30%,45%,55%,70%} of the maximum value of

DA<B and EA<B , respectively.

have a large extent in C and H, allowing for the distinction between the sparse and non-sparse

variants to be clearly observed.

For the non-sparse implementation of resolvent analysis, the domain is discretised using

#H = 105 collocation points in the wall-normal axis and #C = 651 collocation points in the

temporal dimension over a time window comprised of one oscillating cycle. The streamwise

and wall-normal velocity components of the leading forcing and response modes obtained

from this analysis are shown in figure 8, along with the corresponding streamwise and wall-

normal turbulence intensity computed from the DNS. Observe that the identified coherent

structures do not correspond to a single temporal Fourier mode. Instead, they are concentrated

over approximately half of the full oscillation period. Although not shown here, the second

leading resolvent mode depicts a coherent structure of almost identical energy content that

is similar to the leading modes in figure 8, with a relative temporal shift of a half-period.

The location of the modes along the H-axis shifts away from the wall as the mean flow

evolves over time. This angle in the H − C plane appears to be similar to that observed for the

turbulence intensities, suggesting that the mode depicts an energy transfer mechanism away

from the wall that is present in the full nonlinear system. These modes are not concentrated in

the near-wall region where the mean shear and turbulence intensity is largest. In this region,

the turbulent energy content is likely dominated by structures at smaller lengthscales than

the wavelengths considered here. We do observe, however, in figure 8(a) that the streamwise

velocity response is amplified as the mode enters a region of higher streamwise turbulence

intensity at (CΩ, H/ℎ) ≈ (c, 0.2).

Additionally, these modes depict structures with a time-varying characteristic frequency,

with the frequency of oscillation decreasing over time as the structures move away from the

wall and ultimately decay. This evolution of the frequency within a single space-time mode

would not be directly captured via harmonic resolvent analysis, where each component mode

is associated with a single temporal frequency (though triadic interactions between different

frequencies could be isolated with this approach).

For the sparse implementation of space-time resolvent analysis at the same wavelengths,

we adopt the same time horizon as in the non-sparse case, and a numerical domain with

#H = 101 collocation points in the wall-normal axis and #C = 631 collocation points in the

temporal dimension, with a sparsity parameter U = 0.001.
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Figure 9: Real component of sparse space-time leading (a,b) response ψ1 and (c,d)
forcing φ1 of the resolvent operator for a turbulent Stokes boundary layer with

_G/ℎ=0.471 and _I/ℎ=0.236, computed with a sparsity parameter U = 0.001, across a full
oscillation cycle. Subplots (e,f ) show contour levels of the absolute value of leading

forcing (red) and response (blue) modes. The grey dashed lines represent the
corresponding streamwise and wall-normal turbulence intensity, with contour levels at
{23%,32%40%,50%,70%} and {35%,45%,60%,75%} of the maximum value of DA<B

and EA<B , respectively. The dotted lines correspond to the location in the H-axis where the
amplitude of the modes finds its maximum value.

The leading sparse resolvent modes are shown in figure 9, again overlaid with contour

levels of the streamwise and wall-normal turbulence intensity. We observe that at these

streamwise and spanwise wavelengths, the structure of the leading resolvent modes differs

substantially between the non-sparse and sparse analyses. In figure 9, the sparse analysis

identifies localised structures for which the streamwise and wall-normal components are

concentrated within one quarter of the total temporal domain, and within a small spatial

region near H/ℎ = 0.2 (note that the vertical range shown in figure 9 is smaller than in

figure 8). Moreover, both forcing mode components precede their corresponding response

modes (shown directly in figure 9(e-f )), with peak response in E preceding that for D, which

was also observed in the sparse modes computed for statistically-stationary channel flow in

§3.3. Comparing the sparse modes with the non-sparse counterparts in figure 8, the sparse

analysis favours structures that are closer to the peak of the turbulence intensity.

Finally, figure 10 shows cross-section of these sparse modes along the temporal axis at the

H-locations where they achieve their maximum amplitude (see the dotted lines indicated in

figure 9). Comparing figures 5 and 10, we observe greater variation in the phase both within

and across each mode component for the time-varying Stokes boundary layer configuration.

For example, the streamwise velocity response in figure 10(a) shows that the rate of phase

variation increases over time. The phase variation in the streamwise component of the

sparse forcing mode is much slower, which figure 9(c) shows is due to the almost horizontal

inclination of this component. As was the case in figure 5, we observe that the forcing mode
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Figure 10: Absolute (solid) and real (dashed) components of the temporal evolution of the
sparse modes shown in figure 9(a-d), at the H-locations of maximum amplitude.

components have envelopes that are less symmetric in time, abruptly decaying to zero at a

given cutoff time.

3.5. Space-time resolvent analysis of a turbulent channel flow with sudden lateral pressure

gradient

The last case considered in this work is a fully-developed turbulent channel flow at Reg = 186

that is subjected to a sudden lateral pressure gradient at C = 0. The spanwise pressure gradient

is related to the fixed streamwise gradient by m?/mI = Π(m?/mG), where here we use

Π = 30. Additional information about this configuration can be found in Moin et al. (1990);

Lozano-Durán et al. (2020). The turbulent mean flow therefore contains both streamwise

* (H, C) and spanwise , (H, C) nonzero components, which evolve over time until the system

reaches its new statistically-stationary state. These velocity components are shown in

figure 11.

To form the resolvent operator, the temporal domain is implicitly nondimensionalised by

the the initial friction velocity Dg,0 at C = 0, and ℎ, and it is determined in two steps to

achieve numerical accuracy. It is first defined as the interval [−0.58, 2.34]ℎ/Dg to extend

the numerical domain before the initial condition to include time prior to the application

of the spanwise pressure gradient. Thus, for C < 0 the base flow is constant, with * (C <

0, H) = * () = 0, H) and , (C < 0, H) = 0, and m?/mI(C < 0) = 0. After a first analysis is

conducted, the time domain is restricted to a smaller temporal window near the observed

temporal location of the leading modes that is large enough to produce unaltered results with a

larger temporal resolution. Note that here we implement a explicit Euler finite-differentiation

scheme in the temporal dimension. Thus, the final numerical domain used in this analysis is

given by [0, ℎ] × [0.4, 2]ℎ/Dg.

As was the case for statistically-stationary channel flow studied in §3.2-3.3, we concentrate

our analysis on streamwise and spanwise wavenumbers corresponding to the typical size of

near-wall streaks. After the pressure gradient is applied, the magnitude and direction of the

mean flow changes, meaning that the wavelengths associated with near-wall streaks is also

expected to change. Assuming that near-wall streaks adjust their size and orientation with



20 Lopez-Doriga, Ballouz, Bae and Dawson

Figure 11: Temporal evolution of the streamwise * (C, H) (black) and spanwise , (C, H)
(red) mean velocity profiles obtained by DNS of a turbulent channel flow at Reg = 186
with sudden lateral pressure gradient at C = 0 with m?/mI = Π(m?/mG) and Π = 30 at

CDg/ℎ ∈ {0, 0.58, 1.17, 1.38, 1.76, 2.34} (Lozano-Durán et al. 2020).

the mean, we can select wavelengths corresponding to the typical size of near-wall streaks at

a certain point in time (Ballouz et al. 2024). Here, we select _+G = 189 and _+G = 1890, which

correspond to the typical length of the near-wall streaks at a time instance CDg/ℎ = 1.38.

For the non-sparse space-time resolvent analysis, the domain is discretised using #H = 132

and #C = 500 collocation points. Leading resolvent mode components for this analysis are

shown in figure 12. We observe that the modes are localised in time, centered near to the

the nominal time (CDg/ℎ = 1.38) where the scale of the modes coincides with near-wall

streaks. The structure of the modes shares some similarities with those observed for both the

non-sparse and sparse analyses of stationary channel flow (figures 3 and 5). In all cases, the

wall-normal response consists of vertically-aligned structures, while the forcing is inclined

upstream in the H − C plane. The D-component of the response appears to incline further

backwards as time progresses in both figures 5(a) and 12(a), though the later does appear

to move towards and move away from the wall as observed in the former. Note that the

D-component plotted in figure 12 no longer entirely corresponds to the streamwise direction,

due to the spanwise pressure gradient.

Figure 12(e-f ) show that the forcing and response mode components are all located over

approximately the same time interval for this case. This is different from the sparse analysis of

statistically-stationary channel flow (see figure 3(e-f )), where the forcing mode components

decayed before their responses did, and the wall-normal forcing and response components

started before the streamwise components. These differences can likely be attributed to the

differences in how localised modes are obtained; for the 3D channel configuration we are

not explicitly promoting sparse modes, but rather the modes are aligning with a region of

time corresponding to a mean flow with maximum linear energy amplification for structures

at the specified spatial scales. This can be further explored by applying the sparse variant to

this configuration.

For the sparse implementation of space-time resolvent analysis, we adopt the same
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Figure 12: Real component of space-time D and E velocity components of the leading (a,b)
response ψ1 and (c,d) forcing φ1 modes of the space-time resolvent operator for a channel

flow with sudden lateral pressure gradient with Reg = 186, and _+G = 189, _+I = 1890.
(e,f ) Contour levels of the absolute value of the leading forcing (red) and response (blue)
modes. The dotted lines correspond to the location in the H-axis where the amplitude of

the modes finds its maximum value. The grey dashed lines represent the boundaries of the
temporal numerical domain.

wavelengths and a sparsity parameter U = 0.005. The domain is discretised using #H = 130

and #C = 500 collocation points. The leading sparse modes are shown in figure 13, where

both the D and E components display a similar structure, but with more temporal localisation,

to those shown for the non-sparse analysis in figure 12.

The sparse analysis thus appears to identify the same mechanism, localised around the same

region in time. Unlike the non-sparse version, here we observe in figure 13(e-f ) differences

in the temporal footprints of each mode component, with the decay in amplitude of the both

components of the forcing preceding the decay of the response.

The cross-sections along the time axis of the modes contained in figures 12 and 13 are

shown in figure 14 in red and black, respectively. The amplitudes of both the non-sparse and

sparse modes adopt qualitatively similar envelopes, with the sparse variant being narrower,

and centered at a slightly later time. We emphasise that unlike the profiles shown in figure 6,

here the time-location of these modes is not arbitrary, and corresponds to a region of time

where the mean profile enables the largest linear amplification. The phase variation is similar

across all mode components, indicating a characteristic frequency maximising amplification.

Here, we thus find that both sparse and non-sparse space-time resolvent appear to identify

the same amplification mechanism, with the addition of the ;1-norm term in the objective

function restricting the sparse modes to a smaller temporal window.

Lastly, to demonstrate the numerical convergence of the results presented in this section,

figure 15 presents the first ten singular values of the non-sparse and sparse with U ∈
{0.005, 0.15} space-time resolvent operators against the leading singular values obtained in

the study described in Ballouz et al. (2024), where the numerical methods utilize a wavelet
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Figure 13: Real component of sparse space-time D and E velocity components of the
leading (a,b) response ψ1 and (c,d) forcing φ1 modes of the space-time resolvent for a

channel flow with sudden lateral pressure gradient with Reg = 186, and _+G = 189,
_+I = 1890 with a sparsity parameter U = 0.005. (e,f ) Contour levels of absolute value of
the leading forcing (red) and response (blue) modes . The dotted lines correspond to the
location in the H-axis where the amplitude of the modes finds its maximum value. The

grey dashed lines represent the boundaries of the temporal numerical domain.

Figure 14: Absolute (solid) and real (dashed) components of the temporal evolution of the
sparse modes shown in figure 12(a-d) (red) and figure 13(a-d) (black), at the H-locations

of maximum amplitude.
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Figure 15: Leading 10 singular values of the nonsparse and sparse (with
U ∈ {0.005, 0.15}) space-time resolvent operator for a channel flow with sudden

laterallateral pressure gradient with Reg = 186, and _+G = 189, _+I = 1890. The reference
values correspond to the analysis described in Ballouz et al. (2024).

transform in time. The corresponding leading modes coincide with figure 12 and figure 13

in the non-sparse and sparse (with U = 0.005) implementation of the space-time analysis,

respectively. First, observe that the singular values of the non-sparse analysis closely match

the reference values. Second, a sparsity parameter of U = 0.15 is sufficient large to obtain

similar amplification levels to these reference values (note that the corresponding modes are

not shown in this paper). This agreement also confirms the convergenceof the sparse analysis.

However, the singular values retrieved from the sparse analysis with U = 0.005, retrieve only

a portion of the reference values. In particular, the leading reference value is larger than the

leading sparse singular value by a factor of 1.459, and we observe that this ratio decreases for

higher-order singular values. The fact that the sparse and non-sparse analyses yield similar

results for this case is likely due to the highly transient nature of the flow, where the leading

resolvent modes are naturally localised even without explicitly promoting sparsity.

4. Discussion and Conclusions

In this work, we have proposed a sparse space-time variant of resolvent analysis that can

identify time-localised coherent structures. These spatio-temporal structures correspond to

the inputs and outputs that optimise an objective function that promotes large linear energy

amplification, while also promoting the localisation in space and time of these structures.

Localisation is achieved through the addition of a sparsity-promoting ;1-norm term to

the standard optimisation problem used for resolvent-type analyses. The new optimisation

problem takes the form of a nonlinear eigenproblem, for which the optimal solution is

achieved through an inverse power method.

We have demonstrated the implementation of this sparse variant of resolvent analysis on

several different configurations, demonstrating that we obtain sparse modes first in the spatial

domain, and also in the spatial and temporal domains when using a generalised space-time

formulation of resolvent analysis. The first case studied was a statistically-stationary turbulent

channel flow, a canonical configuration that has received substantial prior study in the context

of resolvent analysis (and for many other forms of analysis). When using the standard Fourier

transform in time, the proposed sparse resolvent analysis identified spatially-sparse modes, in
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either the wall-normal or wall-normal and spanwise dimensions, depending on the problem

setup. This provides a means for identifying localised spatial structures corresponding to

similar amplification as the non-localised structures identified in standard resolvent analysis.

Next, a space-time generalisation of resolvent analysis was applied to the same channel flow

configuration. Being a statistically-stationary system, each of the space-time modes converged

to a single temporal Fourier mode, in the absence of sparsity-promotion. Therefore, the

space-time resolvent modes are equivalent to the standard resolvent modes compiled across

all frequencies permissible by the prescribed time horizon. The sparsity-promoting variant

of this space-time resolvent analysis yielded structures that displayed localisation in both

the spatial and temporal dimensions. These modes again reflect the fact that linear energy

amplification can arise from forcing that is limited to a localised region in time. These time-

localised structures can exhibit features that cannot be seen in Fourier modes, such as the

inclination angles and wall-normal locations of structures evolving over time. Future work

could quantitatively explore the extent to which these modes predict phenomena present in

turbulent channel flow data.

Beyond statistically-stationary systems, we next explored the application of our proposed

methodology to systems with a time-varying mean. The first such system that was considered

was a time-periodic turbulent Stokes boundary layer. In this case, the non-sparse and sparse

variants identified leading resolvent modes that were qualitatively different, with the sparse

models being significantly more localised in both space and time. Our analysis focused

on relatively large-scale structures by specifying streamwise and spanwise wavelengths

corresponding to the size of the domain used for DNS. While not shown here, we found

that this difference is was less apparent for smaller wavelengths, where even the non-sparse

variant identified structures that were localised in time, such as the case considered in

Ballouz et al. (2024). For the case considered here, the sparse mode components identified

were also localised near the peak in turbulence intensity at the wall-normal location where

they were situated, suggesting that they identify a mechanism relevant to the generation and

amplification of turbulent features at this temporal phase of the system.

The final set of results considered a non-periodic, time-evolving turbulent channel flow

subjected to a sudden lateral pressure gradient. This flow was studied during a temporal

window in which the flow transitions between two statistically-stationary states. It was found

that both the non-sparse and sparse modes showed temporal localisation, presumably due to

the choice of wavelengths permitting largest energy amplification in a certain time window

corresponding to a given orientation of the mean. Overall, we have demonstrated that spatio-

temporally sparse resolvent analysis can identify features that can either be qualitatively

similar or distinct from the non-sparse equivalent.

The focus of this work has been the development and demonstration of this method

across a range of flow configurations. Additional investigations into each of these (and other)

configurations are required to quantify the extent to which these methods can be used to

predict and understand structures and statistics of such turbulent flows, over a wider range

of spatial scales. The numerical methods employed in the present work have required the

explicit formation and decomposition of linear operators discretised in both space and time.

Future work could also investigate timestepping approaches to perform such analyses. Such

methods, which have been applied for resolvent (Martini et al. 2020; Farghadan et al. 2023)

and other linear analyses (Barkley et al. 2008), would likely be particularly computationally-

advantageous for our methodology.
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Appendix A. Notes on the inverse power method for nonlinear eigenproblem used

in sparse resolvent analysis

This appendix contains a detailed description of the inverse power method proposed by

Hein & Bühler (2010) that is employed to solve the constrained optimisation problem posed

by the sparse PCA algorithm, adapted to perform sparse resolvent analysis in §2.4. We start

by considering a general nonlinear eigenproblem of the form

A (f ) − _B(f ) = 0, (A 1)

wheref represents the eigenfunction associated to the eigenvalue_, and A and B are nonlinear

operators. In order for f to be a solution to the nonlinear eigenproblem,f has to be a critical

point of a functional, �. In this problem, the functional � is expressed as

� (f ) =
'(f )

((f )
, (A 2)

where both ( and ' represent convex, non-negative, Lipschitz continuous functionals that

satisfy the positive homogeneity property '(Wf ) = W'(f ) for W > 0. The critical points of

� (f ) are found at the locations f 2 in which ∇� (f 2) = 0. We can write this condition in

terms of ' and ( as

∇� (f 2) =
((f 2)∇'(f 2) − '(f 2)∇((f 2)

(2(f 2)
= 0. (A 3)

Rearranging the terms in (A 3) yields a form that assimilates the eigenproblem in (A 1) as

∇'(f 2) −
'(f 2)

((f 2)
∇((f 2) = 0, (A 4)

where we have adopted A (f 2) = ∇'(f 2), B(f 2) = ∇((f 2) and _ = '(f 2)/((f 2). Note

that in order for this definition to hold, ( must be continuously differentiable. In addition, in

the case where '(f ) and ((f ) represent second-order functionals, (A 4) becomes a linear

eigenproblem.

The nonlinear eigenproblem in (A 4) is solved using an inverse iteration, also referred to

as inverse power method. For a linear operator �, this scheme takes the form Af :+1
= f : ,

which is equivalent to the solution to the optimisation problem

f :+1
= arg min

‖f ‖261

(
1

2
〈f , �u〉 − 〈f ,f :〉

)
. (A 5)

Considering the general eigenproblem presented in (A 1), the iterative scheme utilised in this

work is written as

f :+1
= arg min

‖f ‖261

(
'(f ) − 〈f , B(f :)〉

)
. (A 6)
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According to the form of the eigenproblem shown in (A 4) the corresponding eigenvalue is

computed as _:+1
= '(f :+1)/((f :+1). Note that in our problem, the function � (f ) takes

the form

� (f ) =
(1 − U)‖f ‖2 + U‖f ‖1

‖H∗f ‖2

, (A 7)

for which the optimisation problem in (A 6) is rewritten as the following convex optimization

problem

g:+1
= arg min

‖f ‖261

[
(1 − U)‖f ‖2 + U‖f ‖1 − _: 〈f ,µ:〉

]
, (A 8)

where

µ:
=

Σf :√
〈f : ,Σf :〉

, (A 9)

where for our problem, Σ = HH∗. This optimisation problem has the closed solution

g:+1
8 =

sign(µ:
8
) (_: |µ:

8
| − U)+

B
, (A 10)

with B =

√∑=
8=1 (_

: |µ:
8
| − U)2

+ and 0+ = max(0, 0). Notice that B now represents a scaling

factor and is excluded from the method for simplicity. The algorithm that computes the

optimal solution to the nonlinear eigenproblem in (A 4) using an inverse power method

with the closed solution indicated in (A 10) for sparse resolvent analysis is presented in

algorithm 2.

Algorithm 2 Inverse power method for sparse resolvent analysis

Input: Resolvent operator H , sparsity controlling parameter U, accuracy n

1: Initialization: f 0=random, with ‖f 0‖2 = 1 and _0=� (f :)

2: while |_:+1 − _: |/_: > n do

3: g:+1
8 =sign(µ:

8 ) (_
: |µ:

8 | − U)+

4: f :+1
= g:+1/‖H∗g:+1‖2

5: _:+1
= (1 − U)‖f :+1‖2 + U‖f :+1‖1

6: µ:+1
= Σf :+1/‖H∗f :+1‖2

7: end while

Output: raw sparse resolvent response modesψA0F
= f :+1

Appendix B. Convergence study of space-time resolvent analysis

This appendix contains convergence studies related to the results presented in this paper. In

particular, a sweep was performed in a subset of the parameters #H and #C . The convergence

of the methods was assessed in terms of the energy contained by the leading mode f2
1
, as

well as the sum of the energy
∑=

8 f
2
8 of the first = = 10 modes. Figures 16-17 shows the

convergence of the results for the statistically-stationary channel flow configuration, while

figures 18-19 provides analogous results for the Stokes boundary layer. For the channel flow

with a lateral pressure gradient, convergence was studied through comparison with results

of Ballouz et al. (2024), as discussed in §3.5. Our available computational power (1,500 GB

RAM) provided a threshold in terms of the total grid size # = #H#C for each configuration.
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Figure 16: Evolution of f2
1

(black) and
∑10

8
f2
8

(red) as a function of (a) #H for a constant

total grid size # = #H#C = 5.7 × 104, and (b) as a function of #C for a constant spatial
grid size #H = 81 in the non-sparse implementation of space-time resolvent analysis for a

turbulent channel flow Reg = 186, and _+G = 1000, _+I = 100 for a time horizon
gC>C = 20g = 20(2c/l). Circles indicate resolution used in the rest of the paper.

Figure 17: Evolution of f2
1

(black) and
∑10
8

f2
8

(red) as a function of #H for a constant

total grid size # = #H#C = 5.4 × 104 (a) and (b) as a function of #C for a constant spatial
grid size #H = 101, in the sparse implementation of space-time resolvent analysis for a
turbulent channel flow Reg = 186, and _+G = 1000, _+I = 100 with U = 0.001 for a time

horizon gC>C = 20g = 20(2c/l). Circles indicate resolution used in the rest of the paper.

Note that the computational cost of the sparse formulation of the analysis is slightly higher,

and therefore the maximum # is slightly lower in these cases. In all cases, as indicated by

circles on the plots, we choose the resolution #H and #C such that adding additional resolution

in either dimension has minimal effect on both the leading and the sum of the squares of the

first ten singular values.
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