
ar
X

iv
:2

21
2.

02
74

1v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  6

 D
ec

 2
02

2

A sparsity-promoting resolvent analysis for the identification of

spatiotemporally-localized amplification mechanisms
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This work introduces a variant of resolvent analysis that identifies forcing and response

modes that are sparse in both space and time. This is achieved through the use of a sparse

principal component analysis (PCA) algorithm, which formulates the associated optimization

problem as a nonlinear eigenproblem that can be solved with an inverse power method. We

apply this method to parallel shear flows, both in the case where we assume Fourier modes in

time (as in standard resolvent analysis) and obtain spatial localization, and where we allow for

temporally-sparse modes through the use of a linearized Navier–Stokes operator discretized

in both space and time. Appropriate choice of desired mode sparsity allows for the iden-

tification of structures corresponding to high amplification that are localized in both space

and time. We report on the similarities and differences between these structures and those

from standard methods of analysis. After validating this space-time resolvent analysis on

statistically-stationary channel flow, we next implement the methodology on a time-periodic

Stokes boundary layer, demonstrating the applicability of the approach to non-statistically-

stationary systems.

Nomenclature

G = streamwise coordinate

H, I = wall-normal and spanwise coordinates

ℎ = channel half-height

2 = wave speed

*0 = characteristic (maximum) streamwise velocity of base flow

Dg = friction velocity,
√

gF/d

:G = wavenumber in the streamwise direction

:I = wavenumber in the spanwise direction

_G = wavelength in the streamwise direction

_I = wavelength in the spanwise direction

L = linearized equations

l = temporal frequency

Hl = resolvent operator at temporal frequency l

HC = space-time resolvent operator

f = singular value, resolvent gain

q = state vector

f = forcing vector

u = velocity field (D, E, F)

∗Graduate Research Assistant, MMAE Department
†Graduate Research Assistant, Graduate Aerospace Laboratories, AIAA Student Member.
‡Assistant Professor, Graduate Aerospace Laboratories, AIAA Member.
§Assistant Professor, MMAE Department, AIAA Senior Member.

1

http://arxiv.org/abs/2212.02741v1


? = pressure

U = sparsity parameter, weight of ;1 norm

W = sparsity parameter, fraction of nonzero terms

XΩ = Stokes boundary layer thickness,
√

2a/Ω

d = fluid density

a = fluid kinematic viscosity

gF = Wall shear stress

[ = wall-normal vorticity

k = resolvent response mode

q = resolvent forcing mode

Ω = Stokes boundary layer frequency

R = Real component

'4 = (Outer) Reynolds number, ℎ*0/a

'4g = friction Reynolds number, ℎDg/a

'4Ω = Stokes boundary layer Reynolds number,*0XΩ/a

(·+) = Viscous (inner) units

I. Introduction
The use of Fourier transforms in time, and in directions of spatial homogeneity, are ubiquitous across a range

of analysis methods in fluid mechanics. For example, in the context of canonical wall-bounded parallel shear flows,

asymptotic linear stability and transient growth analysis typically make use of Fourier decomposition in the streamwise

and spanwise directions [1], while resolvent analysis [2] additionally employs a Fourier transform in time. This use of

Fourier decomposition in directions of homogeneity can be well motivated by showing that Fourier modes naturally

arise as the outputs of such analyses. Data-driven analyses such as the proper orthogonal decomposition (POD) also

converge to Fourier modes in direction of spatial homogeneity [3], with temporal Fourier decomposition also emerging

when considering the spectral version of POD [4, 5].

One limitation of such analysis methods is that they can be inefficient or ill-equipped to study structures and

mechanisms that are highly localized in space and/or time. Data driven methods have been recently formulated

to identify localized structures, using either data-driven wavelet-based decomposition [6, 7], or conditional [8] or

windowed [9] space-time POD. However, there has been limited work modifying equation-based decomposition

methods for localized analysis. Note that the time-evolution of spatially localized disturbances have been studied in

the context of instability and transition [10].

The natural emergence of Fourier decompositions in both equation-based and data-driven decompositions can often

be related to the use of inner products (or equivalently, ;2 energy norms) when formulating such methods as optimization

problems. It is possible, however, to modify optimization problems such that structures that are localized (sparse) in

space and/or time are identified instead of Fourier modes. This can be achieved through the addition of an appropriate ;1
norm terms in the relevant optimization problem. This utilizes theory developed in the context of compressed sensing

[11], which allows for sparsity-promoting methods to be solved using convex methods. Such sparsity-promoting

ideas have been utilized across a wide range of applications in the past decade, which in a fluids context include the

identification of sparse reduced-order models [12–14], identification of a sparse set of active dynamic modes that best

represent time-resolved data [15], and in the reconstruction of spectral content from temporally-underresolved data

[16]. In the context of resolvent analysis, recent work by Skene et al. [17] implements gradient-based Riemannian

optimization of ;1-based objective functions to identify spatially-sparse forcing modes. The localized structure of the

identified modes potentially makes them more useful for practical flow control purposes than standard resolvent forcing

and response modes.

The present work formulates a variant of resolvent analysis that promotes sparse and localized modes (rather than

Fourier modes) in both space and time. Resolvent analysis has been successful in modeling a variety of phenomena

emergent in turbulent flows (e.g. [2, 18–27]). The variant developed here is intended to make resolvent-based methods

more amenable for modeling dynamics and processes that are localized in space and time. While we consider

statistically stationary-in-time flows in the present work, we are ultimately motivated by a desire to extend such analysis

to temporally-evolving systems. The recently-developed Harmonic resolvent analysis [28, 29] allows for the study of

the amplification properties of systems with periodic base/mean flows.

The structure of the paper is as follows. In Sec. II, we formulate this sparse resolvent analysis, before presenting
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results applying it to parallel shear flows in Sec. III. In Sec. III.B, we seek and identify modes that are statistically-

stationary and sparse in the wall-normal direction, sparse in the wall-normal and spanwise directions, or sparse in the

wall-normal and time dimensions. In Sec. III.C, we discuss the implementation of this formulation a Stokes boundary

layer, which is a non-stationary time-periodic system for which traditional resolvent analysis is not applicable.

II. Methodology
Here, we briefly describe the different resolvent formulations adopted in this study: Sec. II.A introduces traditional

resolvent analysis, which assumes that the systems are statistically-stationary in the time dimension and homogeneous

in the streamwise and spanwise spatial directions (i.e. assuming Fourier modes for these spatial structures); Sec. II.B

considers homogeneity only in the space dimension and includes a time differential operator; and Sec. II.C presents a

formulation of resolvent analysis that enforces sparsity on the resolvent modes in both temporal and spatial dimensions.

A. Resolvent analysis

We start by considering a dynamical system of the form

¤x + Gx = f , (1)

with x, f ∈ R=, and G ∈ R=×=. Here, G is a linear operator, x represents the state of the system, and the term f

represents an external input, which could come from neglected nonlinear terms. In this subsection, we proceed by

taking a Fourier transform in time, thus considering solutions for both the state of the system and the forcing terms that

are of the form.

x = x̂ exp (−8lC), (2)

f = f̂ exp (−8lC), (3)

with l ∈ C denoting the temporal frequency. Substituting Eqs. (2)-(3) into Eq. (1) gives

(−8lO + G) x̂ = f̂ . (4)

In the case where 8l is not in the spectrum of the operator G, this equation can be recast as

x̂ = (−8lO + G)−1 f̂ := Hl f̂ , (5)

for which an arbitrary external forcing f̂ is mapped to a given state x̂ via the resolvent operator Hl , defined at a given

frequency, l.

In this work, we are interested in identifying cases where a forcing of a small magnitude f̂ produces a greatly

amplified response x̂. This can be achieved through a pseudospectral analysis of the resolvent operator Hl , through

the singular value decomposition (SVD)

Hl =

#
∑

9=1

k 9f9q
∗
9 , (6)

where (·∗) denotes the adjoint. In this decomposition, the singular values are sorted by decreasing energy content,

such that f: ≥ f:+1 ≥ 0 for all :. Additionally, the leading singular value and vectors are solutions to the following

optimization problems

f1 = max
‖q ‖=1

‖Hlq‖ = max
‖k ‖=1

‖H ∗
lk‖, (7)

q1 = arg max
‖q ‖=1

| |Hlq | |, (8)

k1 = f−1
1 Hlq1 = arg max

‖k ‖=1

| |H ∗
lk | |. (9)

Here, we formulate the resolvent operator for the nondimensionalized incompressible Navier-Stokes equations

mu

mC
+ (u · ∇)u = −∇? +

1

'4
Δu, (10)

3



∇ · u = 0, (11)

where u = (D, E, F) is the velocity field, and ? is the pressure. When laminar base flows are considered, these

equations are nondimensionalized based on the channel half-height, ℎ, and the maximum streamwise flow speed, *0.

The Reynolds number is thus '4 = ℎ*0/a, where a is the kinematic viscosity. For turbulent flow, velocity is instead

nondimensionalized using the friction velocity Dg =

√

gF/d, with gF denoting the wall shear stress, and d the fluid

density. In the turbulent case, we thus use the friction Reynolds number '4g = ℎDg/a in Eq.( 10). This system of

equations is expressed in the form of Eqs. (1)-(5) by linearizing about either a laminar equilibrium or turbulent mean

flow.

In this study we consider wall-bounded parallel flows with a unidirectional mean/base flow. This makes it convenient

to formulate Eq. (5) in terms of the wall-normal velocity, E, and vorticity, [ = mD/mI − mF/mG, Assuming Fourier

transforms in the streamwise and spanwise directions with wavenumbers :G and :I respectively, this gives

(

Ê

[̂

)

=

(

−8l + Δ
−1L>B 0

8:I*H −8l + LB@

)−1 (

5̂E

5̂[

)

= Hl

(

5̂E

5̂[

)

, (12)

where *H represents the gradient of the mean streamwise velocity along the wall-normal dimension H, and Δ =

mHH − (:2
G + :2

I ) is the Laplacian operator. The Orr-Sommerfeld (OS) and Squire (SQ) operators are

L>B = 8:G*Δ − 8:G*HH −
1

'4
Δ

2, (13)

LB@ = 8:G* −
1

'4
Δ, (14)

where*HH represents the second derivative of the mean streamwise velocity in the wall-normal direction. Note that the

Fourier-transformed quantities Ê and [̂ for a given set of wavenumbers can be expressed in physical (mean subtracted)

variables by

E(G, H, I, C) = Ê(H) exp [8(:GG + :I I − lC)], (15)

[(G, H, I, C) = [̂(H) exp [8(:GG + :I I − lC)] . (16)

B. Space-time resolvent analysis

We now consider the case without a Fourier transform in the temporal direction. While we restrict our attention

to statistically-stationary flows in the present work, this formulation will ultimately be applicable for flows where the

ensemble-averaged state evolves in time. Much of the description described in Sec. II.A can be similarly applied,

without a Fourier transform in time. In particular, Eq. (1) becomes

(�C + G(C))x = f , (17)

where we introduce �C as a time differentiation operator. Similarly, the equivalent of Eq. (12) is

(

Ê

[̂

)

=

(

m
mC

+ Δ
−1L>B 0

8:I*H
m
mC

+ LB@

)−1 (

5̂E

5̂[

)

= HC

(

5̂E

5̂[

)

. (18)

Note that here the ·̂ notation now refers to a Fourier transform in the G and I−directions only, and that Ê and [̂ now have

explicit time dependence, with the equivalent of Eqs. (15)-(16) being

E(G, H, I, C) = Ê(H, C) exp [8(:GG + :I I)], (19)

[(G, H, I, C) = [̂(H, C) exp [8(:GG + :I I)] . (20)

Note that the resolvent operator described in Eq. (18) will be of a much larger dimension when discretized than Eq. (12),

as time is no longer decoupled. We refer to this formulation as space-time resolvent analysis, though we note that

not taking a Fourier transform in time reduces the direct connection with the resolvent operator associated with a

linear dynamical system. For a system with constant (in time) mean, a singular value decomposition of the space-time

resolvent operator in Eq. (18) should identify the same forcing and response modes as those from Eq. (12) at each

frequency that can be captured by discretization. The following section will describe a variant of resolvent analysis for

which this is no longer the case.
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C. Sparse resolvent analysis

To formulate a variant of resolvent analysis that promotes sparsity in resolvent modes, we utilize a version of sparse

principal component analysis. The approach we follow is described in Ref. [30]. Similar methods are also described

and discussed in Refs. [31–35].

Note that we may seek sparsity in either the forcing or response modes. In general, we find that for the problems

considered in this work, similar results are typically obtained in both cases. We formulate the problem here assuming

that sparsity is desired in the response modes, k 9 . First, we note that the leading resolvent response mode, k1 satisfies

k1 = arg max
k

〈k,HH ∗k〉

‖k‖2
2

= arg max
k

‖H ∗k‖2
2

‖k‖2
2

= arg max
k

‖H ∗k‖2

‖k‖2

. (21)

By inverting these expressions, we equivalently have

k1 = arg min
k

‖k‖2

‖H ∗k‖2

. (22)

To promote sparsity in k1, we replace the numerator on the right hand side of Eq. (22) with a convex function that

includes contributions from both the ;1 and ;2 norms of k, replacing the fraction, giving the sparsity-promoting variant

of Eq. (22) as

k1 = arg min
k

(1 − U)‖k‖2 + U‖k‖1

‖H ∗k‖2

. (23)

Here U ∈ [0, 1] is a parameter than controls the sparsity of k, where standard resolvent analysis is recovered with

U = 0, and U = 1 corresponds to the sparsest nontrivial solution obtainable by this method. Rather than referring to

this parameter explicitly, we will typically refer to a related parameter, W, denoting the relative sparsity of the identified

sparse modes

W(k) =
‖k‖0

length(k)
, (24)

where ‖k‖0 denotes the ;0 (pseudo)norm of k (the number of nonzero entries), and length(k) denotes the total number

of entries in k. The optimization problem given in Eq. (23) is solved by formulating a nonlinear eigenvalue problem

that can be solved using using an inverse power method, according to the methodology described in Ref. [30].

In practice, we find that this method identifies modes that quite abruptly jump from nonzero to zero values. To

counter this, we may pass identified modes through the resolvent operator to obtain more physically-relevant (yet still

sparse) modes. That is, we follow the following steps to perform sparse resolvent analysis:

1) Compute sparse response modes k1 by solving Eq. (23)

2) Compute corresponding forcing modes

q1 =
H ∗k1

‖H ∗k1‖2

(25)

3) Compute updated response modes via

k1 =
Hq1

‖Hq1‖2

(26)

4) Compute corresponding singular values via

f1 = ‖Hq1‖2 (27)

Note in particular that while the ;1 norm is used to promote sparsity, we still normalize the modes and compute the

associated gains (singular values) based on the ;2 norm. To compute additional resolvent modes, a deflation scheme

is used to project out the components already identified, as described in Ref. [36]. We can similarly solve for sparse

forcing modes by exchanging k and q, and H and H ∗ in this analysis.

D. Problem setup and numerical methods

The methodology defined in Secs. II.A-III.C will be applied to study planar flow between two parallel plates, in

several contexts. In Secs. II.A-II.B we first consider pressure-driven flow, either with a parabolic laminar base flow

or turbulent mean. The turbulent mean is computed from direct numerical simulations (DNS) at a friction Reynolds
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number of 186, using code described and validated in previous studies [37–39]. This code utilizes a staggered second-

order finite difference scheme [40], with a fractional step method [41] and third-order Runge-Kutta timestepping [42].

Sec. III.C considers turbulent Stokes boundary layer flow between two oscillating plates, with the time-periodic mean

flow computed from data generated using the same DNS solver.

For resolvent analysis, the spatial domain in the wall-normal direction is discretized using a Chebyshev collocation

method. When the spanwise and time dimensions are explicitly discretized, a Fourier discretization (with periodic

boundary conditions) is used. We use the package described in Ref. [43] to form both the Chebyshev and Fourier

differentiation operators. The number of collocation points used in the spatial and temporal dimensions varies between

the examples considered, and will be noted in each section.

III. Results
Here, we present results for 3 different cases. Sec. III.A considers spatial resolvent modes obtained via both

traditional and sparse resolvent analysis for turbulent channel flow, where we also consider the case where the spanwise

direction is explicitly discretized rather than Fourier-transformed. Sec. III.B considers space-time resolvent analysis

of laminar channel flow. We first show that we recover the temporal Fourier transform when applying a standard

;2 optimization, before showing that temporally-sparse modes are obtained with a modified (;1-based) optimization.

Sec. III.C applies these standard and sparsity-promoting space-time resolvent analysis to a turbulent Stokes boundary

layer, where the mean flow is periodic in time.

A. Spatially-sparse resolvent analysis of turbulent channel flow

In this section, we apply sparse resolvent analysis while using a standard Fourier transform in time. We first

consider channel flow with Fourier transforms additionally applied in the streamwise and spanwise directions, as is

standard for such parallel flows. For this case, we consider turbulent channel flow with friction Reynolds number

'4g = Dgℎ/a = 186, where Dg =

√

gF/d is the friction velocity. To start with, we consider a 1D analysis where

streamwise and spanwise wavenumbers are chosen to give wavelengths _+G = 1000 and _+I = 100, which matches the

typical size of streamwise streaks and vortices associated with the near-wall cycle [44]. Here and throughout, the (·+)

superscript denotes viscous (inner) units, where velocities are nondimensionalized by the friction velocity Dg , and

lengths by a/Dg . The temporal frequency chosen gives a wavespeed in inner units of 2+ = 14.66. Here and throughout,

time is implicitly nondimensionalized by the maximum streamwise flow speed, *0, and channel half-height, ℎ. The

wall-normal direction is discretized using 201 Chebyshev collocation points.

Fig. 1 shows the leading two resolvent modes for these parameters, identified using both standard and sparse

resolvent analysis (showing only the streamwise velocity components). In this case, Due to the symmetry of the

geometry and mean velocity profile about the centerline (H = 0), standard resolvent analysis gives leading modes with

two peaks, each localized near a critical layer. The first two standard resolvent response modes here have almost

identical mode amplitudes, but are orthogonal due to a phase shift between the two peaks. Note that provided that the

two peaks are sufficiently separated, the singular values corresponding to the first two modes will also be very similar.

Sparse resolvent analysis, on the other hand, identifies modes that are localized at only one of these two peaks. Fig. 1(a)

and (c) show the first two sparse resolvent modes identified from Eq. (23) with various values of the sparsity parameter,

W. While these sparse modes are dependent on the choice of W (through the choice of U in Eq. (23), it is observed in

Fig. 1(b) and (d) that this dependence is substantially reduced when adjusting the modes to be more physically realistic

with Eq. (26). Indeed, for all choices of W considered here, we find that each of the sparse resolvent modes identifies one

of the two peaks present in the first two standard resolvent modes. Furthermore, the first two sparse resolvent modes

identified in this manner give a subspace very similar to that obtained using the first two standard resolvent modes. In

other words, in this case each sparse resolvent mode shown in Fig. 1(b) and (d) can be closely approximated using a

linear combination of the first two standard resolvent modes. In this case, the singular values for the first two sparse

resolvent modes are very similar to those for standard resolvent analysis. While these results are perhaps unsurprising,

this example demonstrates that the sparse resolvent analysis method is behaving as expected.

We next consider a case with the same parameters, but with a periodic domain in the spanwise direction, which we

explicitly discretize rather than taking a Fourier transform. The numerical domain [−ℎ, ℎ] × [−2ℎ, 2ℎ] is discretized

using 32 Chebyshev and Fourier modes in the wall-normal and spanwise directions, respectively. Fig. 2 shows

representative leading resolvent forcing and response from applying both standard and sparse resolvent analysis.

Standard resolvent analysis gives modes that span the entire spanwise extent, consisting of alternating streaks of fast-

and slow-moving fluid in the streamwise direction, located near the critical layers. These correlate with wall-normal
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(a) (b)

(c) (d)

Fig. 1 Comparison between leading (a-b) and second (c-d) standard and sparse resolvent response mode

amplitudes computed using (a,c) Eq. (23) and (b,d) Eq. (26). Modes computed for turbulent channel flow with

'4g = 186, _+G ≈ 1000, _+I = 100, and 2+ = 14.66.
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(a) (b)

(c) (d)

Fig. 2 Comparison between leading resolvent modes for (a) standard and (b) sparse resolvent analysis, applied

to turbulent channel flow at '4g = 186, with a periodic domain in the spanwise direction. Contours of streamwise

velocity are shown, with arrows indicating the velocity in the spanwise (I) and wall-normal (H) directions. Green

dashed lines indicate critical layer locations. The streamwise wavelength is _+ = 1000, and wavespeed 2+ = 14.66.

velocity towards and away from the wall, respectively, indicative the presence of a lift-up amplification mechanism

[45, 46]. The wall-normal and spanwise velocity components form streamwise vortices located between streamwise

velocity streaks, as is typical of the near-wall cycle. Sparse resolvent analysis gives a mode with similar characteristics,

though localized in one region of the domain, with a single dominant pair of fast- and slow-moving regions, which

each have a smaller spanwise extent. This indicates that sparse resolvent analysis can be applied to identify spatially-

localized structures in directions of spatial homogeneity. These sparse forcing and response modes can be interpreted

as "minimal unit" structures corresponding to similar amplification as the spanwise-periodic structures identified from

standard resolvent analysis. In this case, the amplification of the leading sparse modes is approximately 95% of that of

the leading standard resolvent modes. While not shown, here suboptimal sparse modes consist of translations of this

structure along each of the critical layers.

B. Space-time resolvent analysis of laminar channel flow

In this section, for laminar channel (Poiseuille) flow, we first perform (standard) resolvent analysis of the space-time

resolvent operator (defined in Eq. (18)) and show results consistent with those from standard space-only resolvent

analysis (defined in Eq. (12)).

We next applying the sparsity-promoting variant on the space-time resolvent operator to find structures that are

localized in both space and time. Here and throughout, time is implicitly nondimensionalized by the maximum

streamwise flow speed,*0, and channel half-height, ℎ. The numerical domain [−ℎ, ℎ] × [0, g) is discretized using 101

and 201 collocation points in the wall-normal and time dimensions, respectively.

Fig. 3 shows the wall-normal velocity (E) and vorticity ([) components of the leading resolvent forcing and response

modes for laminar channel flow, with temporal domain C ∈ [0, g) with g = 100, for a representative set of parameters

:Gℎ = 2, :Iℎ = 1, and outer Reynolds number '4 = ℎ*0/a = 1500. Unlike standard space-only resolvent analysis, we

emphasize that here we do not specify a temporal frequency, but rather identify resolvent modes that are functions of
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both space and time. Here we identify modes that have constant amplitude in time but oscillating phase, consistent with

Fourier modes. The modes shown have vorticity response components localized near the critical layer (determined

by the inferred temporal frequency and streamwise wavenumber). The forcing and response modes tilt in opposite

directions, consistent with amplification through the Orr mechanism [47, 48] (note that the direction of inclination

is opposite to what would be observed if the horizontal axis was G rather than C, as is shown in Fig. 4(a)). The

wall-normal velocity response mode components consist of upright structures extending across the full height of the

domain. Regions with E directed away from the wall corresponds to regions of low [ and vice-versa, consistent with

the lift-up mechanism transporting momentum in the H-direction.

These modes should be identical to those identified using standard resolvent analysis across all permissible fre-

quencies (i.e. l = :2c/g with : ∈ Z). To confirm this, in Fig. 4(b) we compare the leading singular values of the

temporally-localized resolvent operator with the maximal singular values obtained from traditional resolvent analysis

over a range of permissible frequencies. The agreement between the singular values supports the premise that, for a

stationary base/mean flow, space-time resolvent analysis indeed compiles the results of performing standard resolvent

analysis across a range of permissible frequencies.

Fig. 3 Amplitude (top row) and real component (bottom row) of the leading resolvent response (k) and forcing

(q) modes in wall-normal vorticity ([) and velocity (E) of the space-time resolvent operator for channel flow with

'4 = 1500, :G = 2, :I = 1 and a dimensionless time horizon of g = 100.

Fig. 4 (a) Leading response mode in wall-normal vorticity ([) transformed to the physical domain at C = 0; (b)

first 10 singular values f of the space-time resolvent operator for channel flow with the parameters indicated

in Fig. 3 (red), and the leading singular values of the standard resolvent operator with l = :2c/g where

: ∈ {−50, ..., 50} (black).
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We now consider sparse space-time resolvent analysis for the same configuration and parameters. Fig. 5 depicts

the sparse leading resolvent mode that were obtained for W = 0.01, allowing direct comparison with the non-sparse

resolvent modes presented in Fig. 3. These response modes look similar to those shown for standard (non-sparse)

space-time resolvent analysis, except for being localized both in time and space. The vorticity components of the

forcing and response modes are again concentrated in a localized region near the critical layer corresponding to the

frequency of oscillation of the phase of the modes, while the wall-normal velocity components extend over a wider

region of the domain. The forcing modes show a slightly greater degree of spatial localization than the response modes,

particularly for the vorticity component. Note that the forcing and response modes shown in Fig. 5 are computed using

Eqs. (25)-(26), rather than being the direct output of the sparse optimization method. For comparison, we additionally

show the raw output of optimizing Eq. (23) in Fig. 5. Only the vorticity component is shown, since for this choice

of sparsity parameter W, the wall-normal velocity component is zero. Comparison between Figs. 5 and 6 shows how

applying Eqs. (25)-(26) modifies the raw sparse response modes to give structures more closely resembling the leading

standard resolvent modes, at the expense of sparsity. In particular, in this case applying Eqs. (25)-(26) gives a response

mode that spans over a less localized region, as well as nonzero wall-normal velocity components. Note that for both

standard and sparse resolvent analysis, the wall-normal vorticity has a much larger response for these parameters.

Fig. 5 Amplitude (top row) and real component (bottom row) of the leading regularized sparse resolvent

response (k) and forcing (q) modes in wall-normal vorticity ([) and velocity (E) of the spatio-temporal resolvent

operator for channel flow with the parameters indicated in Fig. 3 and a sparsity parameter of W = 0.01.

Fig. 6 Real component of the first 9 = {1, 2, 3} non-regularized (raw) sparse response modes in wall-normal

vorticity ([) of the spatio-temporal resolvent operator for channel flow with the parameters indicated in Fig. 3

and a sparsity parameter of W = 0.01.

The behavior of the time-localized modes is further studied by considering the strucutre of the modes at certain

instances of time. In Fig. 7, we visualize the leading sparse response mode in vorticity along the streamwise axis at

three different locations in time. These show how the mode amplitude grows and then decays over time, while the

streamwise inclination of the modes increases. The time-localization of these structures can be observed more directly
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in Fig. 8, which depicts the cross-sections along the C-axis of the first three sparse response modes in vorticity at the

spatial locations of largest mode amplitude. These cross sections show that the identified localized temporal functions

appear to resemble Gaussian envelopes, with approximately constant phase gradient. This could provide evidence

for a natural wavelet template for performing time-localized resolvent analysis with a prescribed wavelet basis. The

structure of these temporal modes also suggests a connection with similar wavepacket templates that have been shown

to closely approximate spatial resolvent modes [21, 49].

Fig. 7 Real part of the wall-normal vorticity ([) component of the instantaneous leading response mode in the

physical domain at C = {0.69g, 0.75g, 0.83g} (top row) and as a function of space H and time C with C ∈ [0, g)

(bottom row) of the spatiotemporal resolvent operator for channel flow with the parameters indicated in Fig. 3

and a sparsity parameter of W = 0.01. The corresponding time instances are marked with a black dashed line in

the lower subplots.

C. Space-time resolvent analysis of a turbulent Stokes boundary layer

We now consider a system where the mean velocity profile varies in time. In particular, we consider a Stokes

boundary layer configuration, where we again have flow between two parallel plates, but without an imposed pressure

gradient, and where the boundaries move with a velocity

*F (C) = *0 cos(ΩC) (28)

We consider a Reynolds number based on the Stokes boundary layer thickness XΩ =

√

2a/Ω of '4Ω = *0XΩ/a = 1500.

At this Reynolds number, the flow is intermittently turbulent [50–53]. The time-periodic mean velocity profile for this

configuration is shown in Fig. 9.

In this section, we again first consider space-time resolvent analysis with the standard optimization problem, before

considering the sparsity-promoting variant on the observed time-resolved structures, allowing for the identification

of time-localized structures corresponding to large linear amplification. Here and throughout, time is implicitly

nondimensionalized by the characteristic velocity,*0, and channel half-height,ℎ. The numerical domain [−ℎ, ℎ]×[0, g)

is discretized using 121 and 201 collocation points in the wall-normal and time dimensions, respectively.

Fig. 10 shows the wall-normal velocity and vorticity components of the leading resolvent forcing and response modes

for a turbulent Stokes boundary layer, over a time domain that spans over three boundary layer cycles. Throughout this

section we consider streamwise and spanwise wavenumbers :Gℎ = :Iℎ = 3c. Although this system is time-periodic,

the fact that it is not statistically-stationary means that each space-time resolvent mode does not necessarily correspond

to a single Fourier mode in time. Indeed, the amplitude of the leading modes depicted in Fig. 10(a)-(d) is not exactly

constant in time. Comparison between the real components of the velocity and vorticity of the response modes

(Fig. 10(e)-(h)) indicates that wall-normal velocity directed away from (towards) the wall corresponds to positive

(negative) values of wall-normal vorticity, in turn indicative of positive (negative) streamwise velocity fluctuations,

suggesting the presence of the lift-up mechanism transporting momentum away from the side-walls.
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Fig. 8 (a)-(c) Real part of the wall-normal vorticity ([) component of the first three 9 = {1, 2, 3} leading sparse

response modes of the spatio-temporal resolvent operator for channel flow with the parameters indicated in

Fig. 3; (d)-(f) cross-sections along the C-axis of modes (a)-(b) at the spatial locations of maximum mode amplitude,

H0.

Fig. 9 Turbulent mean streamwise velocity profile of a turbulent Stokes boundary layer with '4Ω = 1500, for

two periods of oscillation.

The real components of this forcing and response mode oscillate with a period equal to the mean. To study the

relationship between the mean and leading resolvent modes more directly, we show in Fig. 11(a)-(b) a comparison

between the [-component of the leading resolvent forcing and response mode with the mean velocity profile. We

observe a phase shift of approximately a quarter of a period between the mean and resolvent mode contours, for both

the forcing and response. In contrast, for these parameters there is little phase shift between the forcing and response

mode components, as shown in Fig. 11(c).

Lastly, in order to further investigate the time-evolving structures identified by this analysis, we present the

corresponding physical mode as a function of G and H (by undoing the Fourier transform in the streamwise direction) of

the leading space-time response mode in vorticity along with the instantaneous turbulent mean at three time instances

in Fig. 12. The observed periodicity of the space-time modes manifests as the changing phase of the physical modes

in the vicinity of the side-walls, following the temporal evolution of the turbulent mean. Interestingly, the inclination

of the modes shown in Fig. 12(a)-(c) is in the opposite direction to that which would be expected for a stationary
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Fig. 10 Amplitude (top row) and real component (bottom row) of the leading resolvent response (k) and forcing

(q) modes in wall-normal vorticity ([) and velocity (E) of the spatio-temporal resolvent operator for a turbulent

Stokes boundary layer with '4Ω = 1500, :Gℎ = 3c, and :Iℎ = 3c, for three periods of mean flow oscillation.

mean profile, where the response modes tilt in the same direction as the mean profile (e.g. as consistent with the Orr

mechanism).

Fig. 11 Real component of the leading response (k) (a) and forcing (q) (b) modes in vorticity ([) and contour

levels of the streamwise turbulent mean velocity profile *0; (c) real component of the leading response mode in

vorticity and contour levels of the real component leading forcing mode in vorticity. The parameters considered

here are the same as indicated in Fig. 10. Here solid and dashed lines indicate positive and negative contour

levels, respectively.

We now consider sparse space-time resolvent analysis of the same configuration. Fig. 13 shows the leading sparse

forcing and response resolvent mode components obtained for a sparsity parameter W = 0.01 (in analogy to Fig. 10 for

the non-sparse case). In order to best highlight the sparsity of the observed structures, in this case the time domain

spans six periods of the mean flow. The sparse resolvent method identifies oscillating structures that are localized

both in space and time, though for these parameters the mode components each span several oscillation periods. We

observe as expected that the forcing mode components tend to precede the corresponding response mode components.

In addition, the wall-normal velocity components precede the wall-normal vorticity, again indicating an energy transfer

pathway consistent with the lift-up mechanism.

Fig. 14(a-b) shows the relationship between the [-component of the forcing and response modes with the mean

velocity. Again (c.f. Fig. 11) we observe a quarter-period shift between the resolvent modes and mean. Fig. 14(c)

confirms that the [-component of the forcing and response modes are again in-phase for these parameters. These

findings suggest that the sparsity-promoting method is identifying a time-localized version of the same mechanism that

was identified using the standard optimization method.
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Fig. 12 (a)-(c) Real part of the wall-normal vorticity ([) component of the instantaneous leading response mode

(k) in the physical domain at C = {0.99g, 1.41g, 1.80g}; (d)-(f) the same mode components plotted in space (H)

and time (C), with the parameters indicated in Fig. 10. The time instances shown in (a)-(c) are marked with a

black dashed in (d)-(f). Corresponding instantaneous turbulent mean profiles are shown in (g)-(i).

Fig. 13 Amplitude (top row) and real component (bottom row) of the leading regularized sparse space-time

resolvent response (k) and forcing (q) modes in wall-normal vorticity ([) and velocity (E) for a turbulent Stokes

boundary layer with the parameters indicated in Fig. 10, over a time domain consisting of 6 periods of mean

flow oscillation.
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Fig. 14 Real component of the leading response (a) and forcing (b) modes in vorticity and contour levels of

the turbulent mean velocity profile; (c) real component of the leading response mode in vorticity and contour

levels of the real component leading forcing mode in vorticity. The parameters considered here are the same

as indicated in Fig. 13. Here the positive and negative contour levels are reprented as solid and dashed lines,

respectively.

The temporal evolution of the sparse response mode shown in Fig. 15 also shows similar behavior to that observed

for the non-sparse modes, with a mode inclination angle in the G − H plane that appears to tilt in the opposite direction

to the mean velocity profile at a given instant in time.

Fig. 15 Real part of the wall-normal vorticity ([) component of the instantaneous leading response mode in the

physical domain at C = {1.50g, 3.13g, 3.33g} (top row) and as a function of space H and time C of the spatiotemporal

resolvent operator for a turbulent Stokes boundary layer with the parameters indicated in Fig. 13. The time

instances of interested are marked with a black dashed line over the space-time modes. Instantaneous turbulent

profiles (g)-(i).
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Lastly, the temporal evolution of the sparse response modes at the locations of maximum amplitude H0 are shown

in Fig. 16. In contrast to the statistically-stationary mean case considered in Fig. 8, here we observe more complex

temporal envelopes, which cannot necessarily be closely approximated by a single simple prescribed template function.

Fig. 16 (a)-(c) Real part of the wall-normal vorticity ([) component of the first three 9 = {1, 2, 3} leading

sparse response modes of the spatiotemporal resolvent operator for a turbulent Stokes boundary layer with

the parameters indicated in Fig. 13; (d)-(f) cross-sections along the C-axis of modes (a)-(b) at the locations of

corresponding maximum amplitude, H0.

IV. Discussion and Conclusions
In this work we have described a space-time extension of resolvent analysis, and have developed a variant of the

corresponding optimization problem that can identify forcing and response modes that are sparse, either in space

or both space and time. The method has been applied to several channel flow configurations, showing that it can

identify modes that are sparse in (i) the wall-normal direction, (ii) the wall-normal and spanwise directions, and (iii)

the wall-normal direction and in time. This sparsity-promoting variant incorporates an ;1-penalization term on the

resolvent response modes, giving an optimization problem that can be solved using an inverse-power method applied

to a corresponding nonlinear eigenproblem. When applied to the standard space-only resolvent operator (assuming

a Fourier transform in time), the sparsity-promoting variant identified localized modes with similar structure to their

non-sparse equivalents.

For statistically-stationary systems, we verified that the space-time extension of resolvent analysis recovered a

Fourier decomposition in time. When using the sparse version, time-localized structures were isolated, while again

containing many of the same features as the equivalent standard resolvent modes. These space-time forcing and

response structures can be viewed as an intermediary between transient growth analysis (which considers energy

amplification between two instances in time), and standard resolvent analysis.

The fact that the space-time resolvent formulation uses an operator discretized in both space and time makes it

amenable for the analysis of time-evolving systems. This was explored by considering a turbulent Stokes boundary

layer. This analysis (which focused on relatively small spatial wavelengths) identified forcing and response structures

that oscillate with the same frequency as the mean flow. The sparse resolvent analysis identified modes that were

localized in time, but still extended beyond one period of the boundary layer. For both standard and sparse resolvent

analysis, the wall-normal vorticity components of forcing and response were a quarter a period out of phase from the
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mean. The streamwise inclination of the leading response modes were also observed to be in the opposite direction

to the mean flow at a given instance in time, in contrast to typical behavior found in statistically-stationary systems.

Further research will include a more comprehensive study of the linear amplification properties of the turbulent Stokes

boundary layer over a range of spatial scales, as well as application of the space-time resolvent methodology (both with

and without sparsity promotion) to non-periodic time-varying systems.
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