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Abstract.
This work proposes two algorithmic approaches to extract critical dynamical mechanisms

in wall-bounded turbulence with minimum human bias. In both approaches, multiple types of
coherent structures are spatiotemporally tracked, resulting in a complex multilayer network.
Network motif analysis, i.e., extracting dominant non-random elemental patterns within these
networks, is used to identify the most dominant dynamical mechanisms. Both approaches,
combined with network motif analysis, are used to answer whether the main dynamical
mechanisms of a minimal flow unit (MFU) and a larger unconstrained channel flow, labeled
a full channel (FC), at Re⌧ ≈ 180, are equivalent. The first approach tracks traditional coherent
structures defined as low- and high-speed streaks, ejections, and sweeps. It is found that the
roll-streak pairing, consistent with the current understanding of self-sustaining processes, is the
most significant and simplest dynamical mechanism in both flows. However, the MFU has a
timescale for this mechanism that is approximately 2.83 times slower than that of the FC. In the
second approach, we use semi-Lagrangian wavepackets and define coherent structures from their
energetic streak, roll, and small-scale phase space. This method also shows similar motifs for
both the MFU and FC. It indicates that, on average, the most dominant phase-space motifs are
similar between the two flows, with the significant events taking place approximately 2.21 times
slower in the MFU than in the FC. This value is more consistent with the implied timescale
ratio of only the slow speed streaks taking part in the roll-streak pairing extracted using the
first multi-type spatiotemporal approach, which is approximately 2.17 slower in the MFU than
the FC.

1. Introduction

It has long been hypothesized that wall-bounded turbulence can be decomposed into a set of
coherent structures that coexist and interact [1]. This concept can be interpreted kinematically
by synthesizing the turbulent flow field as a superposition of building block eddies; the attached
eddy model (AEM) adopts this approach for high-Re⌧ flows using a hierarchy of eddies scaling
with distance from the wall [2, 3]. A more comprehensive model would account for the dynamics
of the building block eddies, both in isolation as well as for their interactions. The most
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famous dynamic coherent structure model of wall-bounded turbulence is the roll-streak self-
sustaining process (SSP) [4, 5, 6, 7, 8, 9, 10, 11, 12]. This SSP is primarily extracted from
simulations of minimal flow units (MFU) at low Re⌧ , which isolate a single scale of wall-
bounded turbulence, as well as a single instance of the SSP at a time by enforcing severe
periodicity [4, 5, 6, 12]. These MFU simulations have also been extended to larger scales by
isolating structures in the logarithmic region of the flow where similar dynamical cycles were
observed [7, 8, 9, 10, 11]. Taking the AEM, one can theorize that a “dynamic”-AEM can be
constructed based on the findings from MFUs of the bu↵er and logarithmic regions of the flow by
superposing SSPs at each scale of motion and neglecting strong interscale interactions. However,
recent experimental observations of inner/outer modulation and large-scale streak aggregation
suggest more to the story [13, 14, 15, 16]. Hence, a few questions immediately arise concerning
the current understanding of wall-bounded turbulence: Are the dynamics extracted from MFUs
relevant to wall-bounded turbulent flows in large unbounded domains at the same Re⌧? Or do
interactions between di↵erent instances of SSPs heavily influence each other, perhaps altering
their timescales? Are other, possibly dominant, dynamic cycles suppressed in the artificially
restricted domains of MFUs? Finally, what is the importance of interscale interactions of
di↵erent-sized SSPs at larger Re⌧? To understand the dynamical interactions amongst the
same scales of motion and inter-scale, we need to find a systematic and algorithmic way to
extract and study these dynamics. In this study, we propose such a framework and apply it first
to study whether the dynamics of the MFU exist unaltered in large domain channel simulations,
henceforth referred to as full channels (FC), at Re⌧ = 180, or not.

Recently, coherent structure identification and temporal tracking algorithms have been
developed to understand the basic dynamical properties of select eddy definitions, such as
momentum-carrying structures, velocity streaks, and energy-containing eddies [17, 18, 19, 20].
These algorithms are based on spatial and temporal clustering of grid points that satisfy certain
thresholding and proximity criteria. The result is a directed graph where the nodes represent
the coherent structures, and the edges represent temporal connections between the structures.
Therefore, advanced graph processing tools can extract information about these coherent
structures’ spatiotemporal properties. Extending the clustering and tracking algorithms to track
several definitions of eddies simultaneously, along with the interconnections between eddy types,
results in a higher dimensional graph, where the eddy type acts as the new dimension, called a
multilayered network [21, 22]. We use network motifs and graphlet search algorithms [23, 24] to
analyze and compare dynamically significant patterns extracted from the bu↵er layer MFU and
large domain channel flows.

A network motif of a complex network is a pattern occurring at a significantly higher frequency
than in a random network of the same size [23]. Network motifs have been identified in
various biological networks, such as those responsible for gene expression and neuronal cell
interactions [25]. They have also been identified in larger-scale ecological and engineering
networks [23]. Since our directed multilayer network has time embedded in its construction,
detecting motifs accounts for the most significant dynamical patterns between eddies of various
types directly. Figure 1(a) illustrates the proposed approach. Each node in the network
represents the full spatiotemporal history of a coherent structure, and the edges represent the
interactions between two coherent structures at some point during their evolution. In the context
of the current question, finding the most dominant interaction pattern compared to a set of
random networks helps us isolate the key dynamical mechanism in both the FC and the MFU
and compare their similarity. Applications of network analysis to fluid flow are only recent
phenomena [18, 26, 27, 28, 29, 30, 31, 32, 33, 34], and applications to the study of the dynamics
of coherent structures have not been attempted in fully developed wall-bounded turbulent flows.
The results of this spatiotemporal approach are supplemented with motifs extracted from an
energetic phase-space constructed using semi-Lagrangian wavepackets illustrated in figure 1(b).
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Figure 1: (a) The proposed multi-type spatiotemporal tracking and motif detection
methodology. Di↵erent types of eddies are clustered simultaneously, and the resulting multilayer
network is searched for patterns called network motifs. The lighter structures represent earlier
times in the evolution of a spatiotemporal eddy. Green lines represent the intertype connections
transferred from single-time connections to branches to trees. Orange cross-lines indicate intra-
type branch links that are not considered simultaneously “primary” for tree clustering. (b)
The proposed semi-Lagrangian wavepacket approach where the greyed areas are MFU-sized
boxes, which are allowed to advect and collect quantities for the phase-space-temporal dynamical
analysis. Black lines are the spanwise centroids of low-speed streaks projected onto the wall.
The MFU is shown for comparison.
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The rest of the paper is organized as follows. Section 2 describes the datasets utilized to
perform the analysis. In section 3, the multi-type coherent structure tracking and motif detection
algorithms are described, and the results of their application to the MFU and the FC atRe⌧ = 180
are discussed. In section 4, the semi-Lagrangian wavepackets and phase-space temporal motif
analysis approach is explained, and the results of applying it to the same datasets are discussed.
Finally, conclusions and future work are presented in section 5.

2. Simulation details

Let u⌧ and ⌫ denote the flow’s friction velocity and kinematic viscosity, respectively. The
two flows analyzed are direct numerical simulations (DNS) of an MFU and an FC inside a
channel of half-height �. The friction Reynolds number for both flows is Re⌧ ≡ �u⌧ �⌫ ≈ 180. In
this flow, x, y, and z are the streamwise, wall-normal, and spanwise directions, respectively,
corresponding to their respective mean and fluctuating velocities U and u, V and v, and
W and w. The domain of the MFU has a size of {0.564⇡ × 2 × 0.282⇡}�, and that of
the FC has a size of {8⇡ × 2 × 3⇡}�. The resolution in inner units of both simulations
are {�x

+
,�y

+
min,�y

+
max,�z

+
} = {6.05,0.17,7.52,6.05}, which is consistent with prior DNS

simulations. Flow fields are stored every �t
+
≈ 1 for T+ = 2000 and T

+
= 25000 inner time units

for the FC and MFU, respectively. These correspond to approximately 11��u⌧ and 135��u⌧ ,
respectively.

3. Multi-type spatiotemporal coherent-structure tracking and motif detection

3.1. Multilayer network generation
The multi-type coherent-structure tracking algorithm is a three-step process, schematically
illustrated in figure 1(a):

Step 1: In this work, the eddies considered are the low- and high-speed streaks and wall-
normal streamwise momentum flux eddies, namely ejections and sweeps, interchangeably referred
to as Q2 and Q4, respectively [17, 20]. At each time instant, each of these eddies is defined as
the set of connected points in space, ⌦, satisfying the following inequalities

�(x, y, z) ∶ �uv� > ↵uvu
′
(y)v

′
(y) &

�
������
�
������
�

�
∫⌦ u dV⌦∫⌦ dV⌦

< 0� & � ∫⌦ v dV⌦∫⌦ dV⌦
> 0�� �⇒ Ejections (Q2)

�
∫⌦ u dV⌦∫⌦ dV⌦

> 0� & � ∫⌦ v dV⌦∫⌦ dV⌦
< 0�� �⇒ Sweeps (Q4)

,

(1)

�(x, y, z) ∶

√

u2 +w2 > ↵stru
′
(y) &

�
��
�
��
�

u < 0� �⇒ Slow Streak

u > 0� �⇒ Fast Streak
, (2)

where u
′
(y) and v

′
(y) are the root-mean-squared streamwise and wall-normal velocity

fluctuations extracted from the corresponding simulation, i.e., the MFU and the FC, ↵{uv,str}
are scaling coe�cients for the thresholds, and V⌦ is the physical volume associated with the
set of points, ⌦. The clustering process is known to have a percolation crisis, and we use the
values {↵⌧ ,↵str} = {1.30,1.75}, which maximize the number of clusters identified per timestep on
average. Each region, ⌦, is labeled as a coherent structure at some instant in its evolution. Once
subdivided into these four sets, contiguous time snapshots construct their temporal evolution.

Step 2: The details of the structure tracking in time are described in [18]. In summary,
object volumetric overlap between timesteps is used to construct a graph with edges representing
connections in time and objects at di↵erent time steps representing nodes. While previously this
was done for only a single type of object, this procedure is repeated N

2 times where N is the
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(a)

(b)

Figure 2: (a) Histogram indicating the distribution of how many individual attached eddy
branches are grouped into trees using the simultaneous primary branch interaction metric in
Equation (3). (b) A multilayer network with each node representing the full spatiotemporal
evolution of an attached eddy tree placed at its temporal centroid. The links between the
nodes indicate an interaction or overlap at some point during the lifetime of the two linked
spatiotemporal eddies. Only a subset of the complete network in the FC is shown.

number of eddy types. The graph is first clustered into branches, which are the links between
objects that mutually experience the least relative change from one timestep to the next.

Step 3: The branches are then further partitioned to generate subgraphs or trees, which are
collections of branches that interact in a “primary” way. We define a primary branch connection
using the relative overlap metric from branch i to j of the same eddy type and vice versa, which
is defined as follows

Oi→j =
∫ Vi ∩ Vjdti

∫ Vidti
and Oj→i =

∫ Vj ∩ Vidtj

∫ Vjdtj
, (3)

where the integration is over the lifetime of the source branch and Vi is the volume of a branch at
a given time across its lifetime. The intersecting volume is computed at the same absolute time
for both branches. The branch link j to branch i with the highest overlap metric is considered
the primary branch in the positive or negative time directions. If two branches are each other’s
primary links, they are clustered into a subgraph or tree. This process is applied recursively,
and each resulting tree is subsequently referred to as a spatiotemporal eddy. An illustration of
the partitioning when two branches do not point to each other as primary branch connections
is represented with the crossed orange lines in figure 1(a).

During step 2 and step 3 of the process, the physical connections between eddies of di↵erent
types are transferred from single-time connections at the end of step 1 to connections between
branches and, finally, trees at the end of steps 2 and 3, respectively. This results in a large,
complex, multilayered network that encodes spatiotemporal interactions between eddies of
the same type and those between eddies of di↵erent types. These intertype connections are
represented with green lines in the schematic illustration of figure 1(a).

After the three-step process, many of the spatiotemporal eddies are small structures existing
in the center of the channel, which, if tracked, result in an overly large/complex multilayer
network. To ease the subsequent analysis, we limit ourselves to interactions between attached
eddies that live for a minimal amount of time, i.e., those who, at some point during their lifetime,
had a minimal wall-normal height (on either wall) of y+min < 20 [18, 20], and have lived for longer
than T

+
life = 20. Furthermore, they must have interacted with another attached eddy during their
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Table 1: The average percentage of the domain’s volume occupied by cer-
tain types of eddies that satisfy particular criteria in both the full chan-
nel and minimal flow unit. A ∶ y

+
min < 20. T ∶ T

+
life > 20. I ∶

Interaction with another A−valid eddy. S{F,M}1 ∶ Involved in most significant roll-streak motif.
F

M
2 ∶ Involved in similar motif only presented in MFU. The two values for SM1 and FM

2 eddies
are averages performed over the entire temporal extent of the simulation and only over the
times when constituent eddies in the motifs are alive, respectively.

Minimal Flow Unit Full Channel

Filter Q2 & Q4 Streaks Filter Q2 & Q4 Streaks

A 5.12% 2.55% A 5.19% 2.43%
A & T 4.90% 2.52% A & T 4.52% 2.15%

A & T & I 4.43% 2.31% A & T & I 4.16% 2.10%
A & T & I & SM1 1.09-3.87% 0.72-2.44% A & T & I & SF1 2.04% 1.01%
A & T & I & FM

2 2.56-4.14% 1.10-2.15% — — —

lifetime. The volumes occupied by the ejections, sweeps, slow, and fast streaks that satisfy these
criteria and subsets of them in both the MFU and the FC are presented in table 1. The applied
criteria only restrict the minority of the attached eddies by volume, approximately 11.5−17.5%,
from participating in the subsequent motif analysis. Figure 2(a) showcases the result of the
step 3 partitioning of branches into trees using the overlap metric for attached eddies, where
the size of the trees in terms of branches is exponentially decaying, and no single tree contains
more than O(10) branches. Given this partitioning, figure 2(b) shows a subset of the multilayer
network that emerges due to all the interactions of attached spatiotemporal ejections, sweeps,
and slow and fast streaks in the FC where each dot contains within it the entirety of the detailed
spatiotemporal evolution of each of the spatiotemporal eddies.

3.2. Motif detection
The resulting multilayer network, at the tree level, is fed into an open-source motif detection
code, FAst Network MOtif Detection (FANMOD) [35], which uses the exhaustive enumerate
subgraph (ESU) algorithm to enumerate all isomorphic subgraphs, s, of a certain size in
our multilayer network [36]. The frequency of each isomorphic subgraph s, given by m(s),
is compared with statistics from a set of randomly generated networks to determine over-
representation in the original network, i.e., significant motifs.

In this case, the randomly generated networks are constructed from our original network by
randomly switching edges between nodes in the network while maintaining its size, �G�. The sizes
of the original network for each flow are �G�FC = 31855, and �G�MFU = 1251. Since their criteria
are mutually exclusive, ejections and sweeps cannot form connections, as is the case between fast
and slow streaks. This constraint is reflected in the random networks generated by maintaining
the local colored degree vector of each node during the randomization [37]. This means that, for
example, if a sweep were originally connected to two fast streaks and one slow streak, it would
remain connected to two fast streaks and one slow streak after the randomization. We can,
therefore, interpret the randomization as a reordering in space and time of the spatiotemporal
eddies while maintaining their allowable interactions.

The frequency of each subgraph in the random graph is given by mr(s). The mean and
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variance of mr(s) are computed from an ensemble of random graphs and denoted mr(s) and
V ar(mr(s)), respectively. Enough random graphs were generated so that the mean and the
variance converged. This was done with 100 and 1000 random graphs for the FC and MFU,
respectively. A significance score was determined for each isomorphic subgraph based on the
random mean and standard deviation. Furthermore, to account for shifts in the scores associated
with the di↵erences in the sizes of the networks, a normalization based on the law of large
numbers utilizing �G� is added. The significance score is, therefore,

�W (s) =
m(s) −mr(s)

(V ar(mr(s))�G�)
1�2 . (4)

3.3. Results
The results of the motif analysis indicate that there are no 3-node motifs, i.e., none where
significantly di↵erent than random, and we focus our discussions on 4-node motifs. The
schematics in table 2 illustrate the results for the 4-node motifs. The motifs are labeled
as {S,F}{F,M}# with S or F denoting motifs ordered by significance score and frequency,
respectively, and the superscripts F and M denoting the flow, FC and MFU, respectively.
The left portion of the schematics in the table shows the top six to seven motifs in descending
order of significance score. The two flows share the most significant motifs, where the top six in
the MFU are found in the top seven of the FC. However, besides the most dominant motif, the
order of the other five is shifted around in the MFU with respect to the FC, as denoted by the
two-headed black arrows. The most dominant 4-node motif for both flows is a pairing of a slow
and a fast streak interacting with an ejection and a sweep, consistent with the roll-streak SSP,

labeled from now on as S{F,M}1 . This likely indicates that the roll-streak pairing is, in fact, the
simplest form of spatiotemporal organization exhibited in these single-scale wall-bounded flows.
The right portion of the schematics in the table shows the top six motifs in descending order
of frequency. The two flows share five of the top six between them. However, their orders are
shifted around in a similar manner to the top six most dominant motifs. Furthermore, motif

F
M
2 strongly resembles the structure of S{F,M}1 except for a missing link between slow streaks

and sweeps. This is likely due to the confined domain restricting the emergence of the structures
simultaneously. Whether this confinement leads to some ordering in the emergence and death
of the constituent eddies of this motif is examined further below.

Furthermore, table 2 reports the significance scores and frequency of occurrence of each
motif. Note that while the frequency of the most significant motif in both flows seems to be
low compared to all possible 4-node induced subgraphs in either GFC or GMFU , that does
not mean that the constituent eddies are few or not substantial. In fact, table 1 shows that
approximately 50% of the attached eddies by volume in the FC participate in this motif. For
the MFU, the volume occupied by these eddies averaged over the entire temporal extent of the
simulation indicates that only 25 − 30% of them participate in the motif. However, there are
times when no eddies participating in this motif are present in the simulation domain. Thus, if
we condition the average on the times when the eddies participating in the motif are present,
i.e., alive, the average volume of ejections and sweeps is around 87% of their unconditioned
average volume, and that of streaks is even larger than the unconditioned average volume of
attached streaks throughout the simulation. A plausible explanation is as follows: In the MFU,
on average, only a single instance of an SSP can exist at a time, and once the large-scale streaky
structures break down in what is known as bursting [38], the current tracking procedure sees
no attached structures. While this also happens in the case of the FC, since there is always
at least one instance of this motif active in the domain, conditionally averaging over the times
when a constituent eddy is alive is redundant. However, for the MFU, there are time periods
where we are averaging over zero volume due to the presence of only small scales. Overall, this
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Table 2: The dynamical 4-node motifs detected using the ESU algorithm implemented in
FANMOD in both the FC and the MFU using the aforementioned random network model.
The left portion shows motifs ordered in descending order of significance score, indicating
the strongest non-random events in both domains. The right portion shows motifs ordered
in descending order of frequency. The reported motifs exclude any with a significance score
below �W (s) < 0.05. The top and bottom rows of motif schematics represent those extracted
from the FC and the MFU, respectively. Above and below the motif schematics, the significance
score, �W (s), and frequency percentage, F(s), i.e., the percentage of occurrences in the original
networks with respect to the total number of all 4-node subgraphs present in the MFU and
FC networks, which were 1811927 and 7057, respectively, are presented along with their labels.

The bounding red box indicates that the most non-random dynamical pattern, S{F,M}1 , is the
roll-streak pairing and is consistent amongst both flow domains. The bounding dashed purple

box shows a similar motif to S{F,M}1 , FM
2 , that only emerges in the MFU. → Ejections. →

Sweeps. → Fast streaks. → Slow streaks.

Significance Ordering Frequency Ordering

FC S
F
1 S

F
2 S

F
3 S

F
4 S

F
5 S

F
6 S

F
7 F

F
1 F

F
2 F

F
3 F

F
4 F

F
5 F

F
6

�W (s) 4.71 3.76 3.50 3.47 3.13 3.04 2.56 0.13 0.13 0.13 0.13 0.13 0.13
F(s) 0.26 0.19 0.16 0.14 0.15 0.09 0.09 7.28 7.10 6.10 4.95 3.53 3.36

MFU S
M
1 S

M
2 S

M
3 S

M
4 S

M
5 S

M
6 — F

M
1 F

M
2 F

M
3 F

M
4 F

M
5 F

M
6

�W (s) 1.54 1.30 0.83 0.79 0.73 0.38 — 0.37 0.05 0.37 0.37 0.37 0.37
F(s) 0.72 0.47 0.34 0.35 0.14 0.10 — 15.20 8.86 8.67 3.83 3.49 3.25

implies that in subsequent analyses, we should include the simultaneous tracking of small scales
in the motifs we search for to find the full cycle of the SSP. Finally, it is interesting to note
that all the most frequent yet marginally significant motifs, except for FM

2 , in both the FC
and MFU have an equal significance score in each flow, respectively. This indicates that their
frequencies are linked during the construction of the random networks and that they are most
likely kinematically constrained to one another. We, therefore, focus our dynamical analyses

on the eddies participating in each of the motif instances of S{F,M}1 , albeit including data from
motif FM

2 in the case of the MFU due to its similarity to SM1 .
Table 3 shows the average lifetimes of each motif, T+life, defined as the time from when

the first participating eddy emerges to when the final participating eddy dies, in both the FC

and MFU for motifs S{F,M}1 and FM
2 . Simultaneously, it shows the average advection velocity,

u+adv, of the participating eddies in the streamwise direction. It is observed that T+life is
approximately 2.83 times longer in the MFU compared to its FC counterpart. The advection
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Table 3: The average lifetime in inner units, T+life, of the instances of the most significant

motifs in each of the two flows, S{F,M}1 , along with the average advection velocity in inner units,
u+adv, of the constituent eddies taking part in these significant motifs. In the case of the MFU,
the eddies taking part in FM

2 are also included in these averages due to the similarity of the
motif and the lack of samples.

T+life
Motif Identifier Minimal Flow Unit Full Channel

S
F,M
1 601 212

u+adv
Eddy Type Minimal Flow Unit Full Channel

Ejections 4.50 14.07
Sweeps 11.01 14.30

Fast Streaks 9.28 11.86
Slow Streaks 6.00 13.00

Figure 3: PDF of the lifetime of the roll-streak motif instances, SF1 , extracted from the FC.
The two vertical dashed lines are placed at ��u⌧ and 2��u⌧ , respectively.

velocities of the constituent eddies of these motifs, u+adv, range from 1.3 to 3.1 times slower in the
MFU compared to its FC counterpart, with the primary reduction present in the ejections and
the slow streaks associated with them. This indicates that while the main dynamical mechanism
in both flows is the same, they di↵er in timescales substantially. In fact, it will be shown that
the reduction in the speed of slow streaks in the MFU of approximately 2.17 times compared
to those in the FC, is consistent with phase-space motifs extracted using the semi-Lagrangian
wavepacket basis analysis to come, which employs the presence of slow streaks as a conditioning
variable to determine the advection velocity of the wavepackets. Figure 3 shows the probability
density function (PDF) of T+life for the SF1 motif, highlighting that the most probable instances
of this motif happen over a single eddy turnover timescale, ��u⌧ , with a majority (> 95%) not
lasting longer than two eddy turnover times.
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Table 4: The percentage of time that ejections, sweeps, fast streaks, and slow streaks emerge
and die in a particular order for motifs SF1 for the FC, and SM1 and FM

2 for the MFU.

FC Emergence(%) Death(%)

Eddy Type 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Ejections 14.2 20.7 24.5 40.6 35.1 27.2 21.8 15.9
Sweeps 28.8 25.3 21.6 24.3 32.8 23.2 21.9 22.1

Fast Streaks 37.6 26.1 22.1 14.2 11.4 20.1 28.8 39.7
Slow Streaks 19.4 31.8 27.9 20.9 20.7 29.5 27.5 22.3

MFU Emergence(%) Death(%)

Eddy Type 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Ejections 49.3 24.7 17.9 8.1 9.6 15.8 17.9 56.7
Sweeps 13.0 18.9 29.2 38.9 42.9 27.5 19.4 10.2

Fast Streaks 25.3 29.6 35.2 9.9 15.2 38.3 28.3 18.2
Slow Streaks 12.4 26.8 17.8 43.0 32.3 18.3 34.5 14.9

Furthermore, we note that the motifs presented in table 2, and in particular S{F,M}1 , are not
partitioned into their 2× 4! possible emergence/death orderings. That is because no su�ciently
prominent ordering was found in the FC. The emergence ordering that occurred the most, 9.91%
of the time, was fast streak → sweep → slow streak → ejection. The death order that occurred
the most, 8.53% of the time, was ejection → sweep → slow streak → fast streak. Therefore, we
comment on the ordering trends for each individual eddy type, regardless of which permutation
this ordering belongs to. Table 4 reports these statistics. Overall, in the FC, ejections are more
likely to emerge last and die first, sweeps are more likely to emerge at any order and die at any
order, albeit with a slightly higher tendency to die first similar to the ejections. On the other
hand, fast streaks are more likely to emerge first and die last, whereas slow streaks are slightly
more likely to emerge and die in the middle ordering of the motif. It is apparent that the average
emergence and death orderings for the fast streaks and the ejections are inverted with respect
to each other.

In the MFU, the emergence and death orderings of the ejections are inverted with respect to
those of the FC, where they now appear first and die last. This indicates their longer timescales,
consistent with their slower advection velocities. Sweeps, however, tend to appear last and die
first. Fast streaks are approximately equally likely to appear first, second, or third and die
second or third. Finally, slow streaks appear last, with the sweeps, and die either first or third.
These di↵erences between the two flows are probably due to the confinement e↵ects of periodic
boundary conditions, which the MFU is subject to.

Finally, streaks, being larger coherent structures than ejections and sweeps, are associated
with multiple ejections and sweeps events during their lifetime. This was verified
spatiotemporally by examining their type-dependent degree distribution, which is not shown
here for brevity. As such, it is possible that a clearer picture of order would appear if, rather
than individual motif instances, clusters of individual motif instances are examined [39].
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4. Semi-Lagrangian wavepackets and phase-space temporal motifs

4.1. Defining the size of the semi-Lagrangian wavepackets
In addition to coherent structures, integral quantities of the flow also provide insight into the
flow dynamics. While we can collect statistics on integral quantities directly in the MFU,
we require an equally sized domain of integration in the FC to make meaningful comparisons
between the two flows. To do so, we utilize semi-Lagrangian wavepackets in the FC to collect
statistics on these integral quantities. These wavepackets will be advected downstream following
an advection speed to track the relevant structures. To minimize the e↵ect of shearing, we choose
the domain to have y

+
≤ 40, as the structures in this region are known to advect at a similar

advection velocity [18]. In the wall-parallel directions, the wavepackets, and hence the domain
of integration, are sized to match the extents of the MFU. Therefore, we consider wavepackets
of size (L+x, L+y , L+z ) = (320.5,40,160.2). As the FC domain is considerably larger than the MFU,
we can track many wavepackets simultaneously in each flow field, as seen in figure 1(b).

4.2. Production–dissipation trajectories and advection speed
We first consider trajectories of production and dissipation,

�P� = −
1

Ly
�

Ly

0
�uv�

@U

@y
dy, �"� =

1

Ly
�

Ly

0
2⌫�SijSij�dy, (5)

in the minimal and full channels, where Sij is the rate-of-strain tensor, and �⋅� indicates averages
in the streamwise and spanwise directions in the domain of integration.

The production and dissipation are calculated at each timestep for the MFU and the di↵erent
instances of wavepackets in the FC. The joint PDF of those two quantities is shown in figure
4(a,b) for the two cases. The PDF is compiled as a histogram over 50× 50 bins, and the arrows
represent the mean evolution velocity of all the states within a particular bin. These results are
consistent with those observed in [38]. We also observe that the mean evolution velocities of the
MFU and FC are similar; however, the PDF of the FC has a larger spread of production and
dissipation values than the MFU, indicating a much more intense production and dissipation
events in the FC.

The production-dissipation space is then divided into quadrants following [38], with the origin
at the mean production and dissipation, and the axes determined by the principal axes of the
PDF. Although the FC has di↵erent mean production-dissipation values and principal axes
compared to the MFU, the results were not sensitive to the choice of the mean values and
principal axes, so the quadrants based on the MFU were used for consistency.

The probability of moving from one quadrant to another, referred to as the transition
probability, was determined following the method of [27] and is shown in figure 4(c,d). The
transition probabilities only consider the relative probability of moving to di↵erent quadrants
and do not consider the probability of staying in the same quadrant. Interestingly, figure 4(c,d)
show a high probability of moving from I to III and from IV to II, whereas (a,b) do not
show arrows pointing in those directions. This is not necessarily a contradiction because figure
4(c,d) consider only the probability of moving from one quadrant to the other, while figure
4(a,b) also consider the speed of evolution of the state. To quantify the error between transition
probabilities in the MFU and FC, the transition probabilities are assembled into a vector, and
the error is defined as the norm of the di↵erence in the probability vectors between the MFU
and FC.

It was noted that the choice of advection speed has a significant e↵ect on the calculated
quantities for the full channel. To determine the best advection method, we compare the
production–dissipation plot for the MFU and FC using di↵erent advection methods and compare
the transition probabilities. The advection velocity that minimized error was the average velocity
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(a) (b)

(c) (d)

Figure 4: Production-dissipation of the (a) MFU and (b) FC. Contours are PDF at 10%, 40%,
and 70% of occurrences, and arrows show the mean trajectory computed by taking averages over
50 × 50 bins. Perpendicular lines show quadrant divisions. (c) Relative transition probability
between quadrants for the (c) MFU and (d) FC. Horizontal entries are the initial quadrant, and
vertical entries are the next quadrant.

of only the regions of the flow contained in low-speed streaks, defined as

{(x, y, z) ∶

√

u2 +w2 > ↵u⌧ & u < 0}, (6)

at y+ = 40, with ↵ = 3.4 [20]. Other definitions of advection velocities were considered, including
average velocity over the whole box, average velocity at several y-locations, and average velocity
conditioned to negative u-fluctuations, but all had higher errors in the production-dissipation
cycle. Interestingly, [18] shows that these structures advect with the mean velocity at y+ = 40.
However, in the case of production-dissipation cycles, this velocity resulted in higher error than
the velocity conditioned to streaks at y

+
= 40. For the remainder of the section, we use the

definition given by equation (6). This leads to an average advection velocity in the streamwise
direction of 10.7u⌧ which is similar, but not exactly equal to, the advection velocity of slow
streaks extracted in the FC using coherent structure tracking as presented in table 3. Note that
the advection velocity reported in table 3 is of the volumetric centroid of the streak, i.e., its
group velocity, rather than the average of the velocity field occupied by the region of the slow
streak only at y+ = 40.

4.3. Temporal motif of energy contained in streak, roll, and small scales
Additionally, we track energy in eddies related to the self-sustaining process. The magnitude
of the streaks is defined by the magnitude of the streamwise velocity captured in the (kx, kz) ≡
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(k
∗
xLx�(2⇡), k

∗
zLz�(2⇡)) = (0,1) mode of the MFU domain,

�û0,1� =
1

Ly
�

Ly

0
(û(kx = 0, kz = 1)

2
)
1�2 dy, (7)

where k
∗
x and k

∗
z are the dimensional wavenumbers. Similarly, the magnitude of the rolls is

defined by the wall-normal and spanwise velocity magnitude of the (kx, kz) = (0,1) mode of the
MFU domain,

�r̂� =
1

Ly
�

Ly

0
�v̂(kx = 0, kz = 1)

2
+ ŵ(kx = 0, kz = 1)

2
�
1�2

dy. (8)

Finally, the magnitude of the small scales is defined as the sum of all velocity magnitude
contained in smaller scales,

�ŝ� =
1

Ly
�

Ly

0

�

�
�(kx,kz)≠(0,0),(0,±1)

û(kx, kz)
2
+ v̂(kx, kz)

2
+ ŵ(kx, kz)

2�

�

1�2
dy. (9)

The definitions are consistent with the definition of a streak and roll in an MFU, where a single
pair of infinitely long low- and high-speed streaks are present.

The magnitude of streaks, rolls, and small scales are analyzed similarly to production and
dissipation. Distribution of the quantities and average trajectories are shown in figure 5(a,b).
Since three quantities were considered, the phase space was divided into eight octants, with the
origin at the mean value of all three for the MFU. Principal axes of the data were identified, but
they were very closely aligned with the Cartesian axes, so Cartesian axes were used to divide
the space into octants, as shown in figure 5(a,b). The octants were named with a 3-digit binary
key, with 0 for below-average magnitude and 1 for above-average magnitude. The order of
entries is (streaks, rolls, small scales), so for example, octant (0,1,1) represents low magnitude
contained in streaks, high magnitude contained in rolls, and high magnitude contained in small
scales. Transition probabilities were calculated between the octants, shown in 5(c,d). Generally,
transition probabilities in the MFU and FC have many similarities. The MFU has a larger spread
of probability values, and it has more asymmetry in the direction of movement between octants.
For example, (0,1,0) → (0,0,0) has a significantly higher probability than (0,0,0) → (0,1,0),
but in the FC, both directions have a similar probability.

We then form a graph using the trajectories. Each time the trajectory enters a new octant,
it is defined as an event. The PDF of the duration of single events is shown in 6(a). Events in
the MFU had longer durations than the FC, with the average duration of an MFU event being
2.21 times as long as the average FC event. This value is close to the ratio of lifetimes of the
spatiotemporal motifs reported in table 3 of 2.83 and is even closer to the ratio of timescales
implied by the advection velocities of the slow streaks between the two flows of approximately
2.17. The trajectory can be recast as a series of events, which then form the graph, where each
event is a node and the transition from one event to the next event is an edge between the two
nodes. Some events occurred for short durations, especially in the FC, so events lasting �t

+
≤ 5

were removed, and the trajectory was reassembled. This corresponds to the region of figure 6(a)
where the duration of events in the FC started to plateau. It was found that the motif results
were not sensitive to a cuto↵ value of �t

+
= 10. The resulting graph sizes were 17,952 events for

the MFU and 90,579 events for the FC.
The graphs were analyzed for motifs following the method of [23]. Because each node in

the graph had one incoming and one outgoing connection, the method could be simplified and
was much less computationally expensive than the method described in section 3. Due to the
restricted nature of the trajectories, there were 8n possible isomorphic subgraphs of n nodes.
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(a) (b)

(c) (d)

Figure 5: Magnitude of the streak, roll, and small scales for the (a) MFU and (b) FC. Contours
are at 10% and 50% of occurrences, and arrows show the mean trajectory. Black lines show
octant divisions. Relative transition probability between octants for the (c) MFU and (d) FC.
Horizontal entries are the initial octant, and vertical entries are the next octant.

(a) (b) (c)

Figure 6: (a) PDF of duration of single events for the MFU (blue) and FC (red). The vertical
line at �t

+
= 5 indicates the filter cuto↵. (b) PDF of duration of two-event subgraphs for the

MFU (blue) and FC (red). Solid lines represent all two-event subgraphs, dashed lines represent
the (1,1,0) → (1,1,1) motif, and dot-dashed lines represent the (1,0,0) → (1,0,1) motif. (c)
PDF of duration of three-node subgraphs for the MFU (blue) and FC (red). Solid lines represent
all three-event subgraphs, dashed lines represent the (0,0,1) → (1,0,1) → (1,0,0) motif, and
dot-dashed lines represent the (0,0,0)→ (1,0,0)→ (1,1,0) motif.
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To analyze the trajectory for n-node motifs, the trajectory was broken down into sequences of
n event-induced subgraphs, each classified as one of the 8n isomorphic subgraphs. The number
of times each isomorphic subgraph occurred was then tabulated. The significance of each of the
induced subgraphs were computed following equation 4.

The first five 2-node and 3-node subgraphs with the highest significance are reported in tables
5 and 6. Generally, motifs in the MFU had a higher significance�W (s) compared to the FC. This
was expected since the MFU is more dynamically restricted, so the dynamics were frequently
repeated.

When considering 2-node motifs, all identified motifs in the MFU, and three of the top five
motifs in the FC, involve changing energy in the small scales. subgraphs (1,1,0)→ (1,1,1) and
(1,0,0)→ (1,0,1) were among the five most significant motifs in both the MFU and FC. These
motifs represent physical phenomena, with the flow initially containing high energy in large-scale
structures and moving to a state with energy in both large and small-scale structures, reflective
of the energy cascade.

The 2-node motifs provide insight into the directionality of the trajectories. For example,
in the MFU, (0,0,0) → (0,0,1) and (0,0,1) → (0,0,0) have very similar significance values,
which suggests that both directions have similar importance to the dynamics. However,
(0,1,1)→ (0,1,0) has much higher significance than (0,1,0)→ (0,1,1), with significance scores
�W(0,1,1)→(0,1,0) = 0.3276 and�W(0,1,0)→(0,1,1) = 0.0236. This matches the physical understanding of
the SSP because (0,1,1)→ (0,1,0) reflects the step in the SSP where streamwise rolls are formed
from small-scale structures by a nonlinear process. (0,1,0) → (0,1,1) is not understood as a
part of the SSP, so it has a lower significance. Interestingly, there are variations in directionality
between the MFU and FC. For example, in the FC, (1,0,0) → (1,0,1) and (1,0,1) → (1,0,0)
are similar, with

�W(1,0,0)→(1,0,1)
�W(1,0,1)→(1,0,0)

= 1.95.

In the MFU, (1,0,0)→ (1,0,1) is much more significant than (1,0,1)→ (1,0,0), with

�W(1,1,0)→(1,1,1)
�W(1,1,1)→(1,1,0)

= 4.54.

When considering the ratios of the number of occurrences, rather than the significance, similar
values are found. This suggests that the directionality of the movement between these octants
is more significant in the MFU than the FC.

When considering 3-node motifs, several very rare subgraphs had high significance because
they were also very rare in the randomly generated networks. Therefore, we did not report
subgraphs that occurred fewer than 40 times. These rare subgraphs tended to contain diagonal
movements or back-and-forth movements between octants. The five subgraphs with the highest
significance meeting the occurrence threshold are reported in table 6. Again, there is strong
similarity between the MFU and FC, and the MFU tended to have higher significance values.

Motifs (0,0,1) → (1,0,1) → (1,0,0) and (0,0,0) → (1,0,0) → (1,1,0) were among the
five most significant motifs in both the MFU and FC. While most subgraphs had similar
significance rankings between the MFU and FC, there were a few that were very di↵erent.
For example, (0,0,0) → (0,0,1) → (1,0,1) had the third highest significance in the MFU, with
�W(0,0,0)→(0,0,1)→(1,0,1) = 0.0410. However in the FC, (0,0,0) → (0,0,1) → (1,0,1) was the 349th

most significant subgraph, with a negative significance value of �W(0,0,0)→(0,0,1)→(1,0,1) = −.0013.
This suggests that there are dynamical patterns that are very significant to the MFU but not
the FC. This is similar to the re-ordering of the most significant, as well as most common, yet
dominant, spatiotemporal motifs in table 2. However, in general, the similarities between the
motifs indicate that there is significant dynamical similarity between the MFU and FC.
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Table 5: Five most significant 2-node motifs. Bold-face motifs are common between the MFU
and FC. �W (s) is the significance score, and Occ., or occurrence, is the number of times the
subgraph occurs in the real trajectory.

Minimal Flow Unit Full Channel

s �W (s) Occ. s �W (s) Occ.

(1,1,0)→ (1,1,1) 0.370 1669 (1,1,0)→ (1,1,1) 0.326 2664
(0,1,1)→ (0,1,0) 0.328 816 (1,1,0)→ (1,0,0) 0.244 1181
(0,0,0)→ (0,0,1) 0.297 1109 (1,1,1)→ (1,1,0) 0.229 2024
(0,0,1)→ (0,1,1) 0.290 1141 (1,0,0)→ (1,0,1) 0.191 526(1,0,0)→ (1,0,1) 0.279 610 (1,1,1)→ (1,0,1) 0.178 888

The duration of significant motifs was compared to the duration of all subgraphs taken
together, and the results are shown in figure 6(b,c). Duration was determined by summing
the duration of the events making up the subgraph. In particular, motifs that were among the
top five most significant in both the MFU and FC were considered. For two node motifs,
this was (1,1,0) → (1,1,1) and (1,0,0) → (1,0,1), and for three node motifs, this was
(0,0,1) → (1,0,1) → (1,0,0) and (0,0,0) → (1,0,0) → (1,1,0). The FC tended to have faster
times than the MFU, and this was seen in both the duration of all events, and the duration of
individual subgraphs. Even though the same subgraphs were occurring with similar significance
values in the MFU and FC, they tended to have shorter durations in the FC. Further, the
durations of the significant subgraphs did not scale proportionally between the MFU and FC.
For example, (0,0,1)→ (1,0,1)→ (1,0,0) was generally slower than the background turbulence
(represented by the solid lines in figure 6) in the FC, but faster than the background turbulence
in the MFU.

Table 6: Five most significant 3-node motifs, excluding those with fewer than 12 occurrences.
Bold-face motifs are common between the MFU and FC. �W (s) is the significance score, and
Occ., or occurrence, is the number of times the subgraph occurs in the real trajectory.

Minimal Flow Unit Full Channel

s �W (s) Occ. s �W (s) Occ.

(0,0,1)→ (1,0,1)→ (1,0,0) 0.0466 79 (0,1,1)→ (1,1,1)→ (1,1,0) 0.0178 910
(0,1,0)→ (1,1,0)→ (1,0,0) 0.0432 283 (0,0,0)→ (1,0,0)→ (1,1,0) 0.0167 282
(0,0,0)→ (0,0,1)→ (1,0,1) 0.0410 138 (1,0,1)→ (1,1,1)→ (1,0,1) 0.0156 127
(1,1,1)→ (1,1,0)→ (0,1,0) 0.0305 89 (0,0,1)→ (1,0,1)→ (1,0,0) 0.0153 106
(0,0,0)→ (1,0,0)→ (1,1,0) 0.0296 261 (0,0,1)→ (1,0,1)→ (1,1,1) 0.0132 206

5. Conclusions

Interpreting wall-bounded turbulence as a collection of interacting coherent structures is a long-
standing paradigm. However, it needs a consistent framework or an algorithmic approach to
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extract and analyze important dynamical events. In this work, we attempt to do so by employing
coherent-structure tracking, semi-Lagrangian wavepackets, and analysis techniques from network
science and graph theory. As a proof of concept, we had two aims. First, to extract the signature
of the self-sustaining process algorithmically. Second, to analyze the dynamics of the extracted
self-sustaining process in both a minimal flow unit and a large unrestricted domain to understand
how they di↵er.

To do so, we first extended the coherent structure tracking algorithms of [18] to allow for
simultaneously tracking multiple sets of eddies. In this study, we limited ourselves to tracking
attached ejections, sweeps, and slow and fast streaks simultaneously. The spatiotemporal
interactions between these eddies are encoded into a complex multilayer network, which is then
searched for significantly non-random patterns given an appropriate model for a random network,
referred to as network motifs [23]. This analysis extracted the roll-streak pairing as the most
significant and perhaps simplest non-random dynamical pattern in both flows, satisfying the first
goal. However, it was detected that other significant, as well as frequent, yet dominant patterns
were ordered di↵erently between the two flows. This indicates that while the most prominent
dynamical mechanism is the same between the MFU and the FC, there are others that are
substantially di↵erent in both frequency and significance between the two flows. Furthermore,

even for the most significant dynamical pattern, S{F,M}1 , the average timescale was 2.83 longer
in the MFU than the FC.

We simultaneously employed semi-Lagrangian wavepackets to analyze the phase-space
dynamics of entire MFU-sized regions advecting within the FC, and compared them to those of
the MFU. Within the octant space defined by streak, roll, and small-scale magnitude, graphs
were constructed from the sequence of transition events from one octant to the next. Overall,
it was found that both the 2-node and 3-node motifs were mostly similar between the MFU
and the FC, with 3-node motifs representing transitions from one scale to another. However, a
few key di↵erences were found. First, the significance scores, �W (s), were higher for the MFU
compared to FC, presumably due to the restricted dynamics of the MFU. Second, the average
timescales of each motif were once again faster in the FC compared to MFU, with the average
duration of an MFU event being 2.21 slower than that of an FC event, consistent with the motif
lifetimes extracted using spatiotemporal tracking, and in particular with the implied ratio of
timescales for the slow speed streaks of 2.17.

Overall, an algorithmic multi-eddy-type spatiotemporal tracking approach to detecting key
dynamical mechanisms in wall-bounded turbulence was proposed, developed, and tested on a
control experiment. It was found that the roll-streak SSP is the lowest form of spatiotemporal
organization, and that its timescale in the MFU is substantially slower compared to its
unrestricted counterpart. This key finding was corroborated with a semi-Lagrangian wavepacket
approach combined with temporal motif extraction in phase space. In the future, we aim to
extend this approach to detect key interscale dynamics at higher Re⌧ , and extract higher-order
mechanisms by comparing to more complex random network models that constrain more than
just the colored-degree distribution.
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