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In this work, we study the effectiveness of the time-localised principal resolvent forcing
mode at actuating the near wall cycle of turbulence. This mode is restricted to a wavelet
pulse and computed from a singular value decomposition of the windowed wavelet-based
resolvent operator (Ballouz et al. 2024b, J. Fluid Mech. vol. 999, A53) such that it
produces the largest amplification via the linearised Navier–Stokes equations. We then
inject this time-localised mode into the turbulent minimal flow unit at different intensities,
and measure the deviation of the system’s response from the optimal resolvent response
mode. Using the most energetic spatial wavenumbers for the minimal flow unit – i.e.
constant in the streamwise direction and once-periodic in the spanwise direction – the
forcing mode takes the shape of streamwise rolls and produces a response mode in the
form of streamwise streaks that transiently grow and decay. Though other works such as
Bae et al. (2021 J. Fluid Mech. vol. 914, A3) demonstrate the importance of principal
resolvent forcing modes to buffer layer turbulence, none instantaneously track their time-
dependent interaction with the turbulence, which is made possible by their formulation
in a wavelet basis. For initial times and close to the wall, the turbulent minimal flow
unit matches the principal response mode well, but due to nonlinear effects, the response
across all forcing intensities decays prematurely with a higher forcing intensity leading
to faster energy decay. Nevertheless, the principal resolvent forcing mode does lead to
significant energy amplification and is more effective than a randomly generated forcing
structure and the second suboptimal resolvent forcing mode at amplifying the near-wall
streaks. We compute the nonlinear energy transfer to secondary modes and observe that
the breakdown of the actuated mode proceeds similarly across all forcing intensities: in the
near-wall region, the induced streak forks into a structure twice-periodic in the spanwise
direction; in the outer region, the streak breaks up into a structure that is once-periodic in
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the streamwise direction. In both regions, spanwise oscillations account for the dominant
share of nonlinear energy transfer.

Key words: Navier–Stokes equations, turbulence control, turbulence simulation

1. Introduction
Near-wall turbulence is organised into streamwise rolls, and alternating low- and high-
speed streamwise streaks (Klebanoff, Tidstrom & Sargent 1962; Kline et al. 1967;
Blackwelder & Eckelmann 1979; Smith & Metzler 1983; Johansson, Her & Haritonidis
1987). These coherent structures are well-documented and their characterisation is the
subject of multiple works (Bakewell Jr. & Lumley 1967; Landahl 1980; Butler & Farrell
1993; Chernyshenko & Baig 2005; Del Alamo & Jiménez 2006). Additionally, many
studies point to a quasiperiodic cycle, wherein the streamwise streaks are amplified by
streamwise vortices, meander then break down, which subsequently regenerates new
quasistreamwise vortices (Kim, Kline & Reynolds 1971; Robinson 1991; Hamilton, Kim
& Waleffe 1995; Waleffe 1997; Panton 2001; Adrian 2007; Smits, McKeon & Marusic
2011; Jiménez 2018). The cycle, also known as the self-sustaining process, can be more
clearly observed in a minimal flow unit (Jiménez & Moin 1991), where the domain is
artificially restricted in the streamwise and spanwise directions in order to exclude the
dynamics of the outer region of the channel. Recent methods based on graph-theoretic
approaches (Elnahhas et al. 2024) have provided new evidence of the self-sustaining
process and revealed consistent patterns of energy exchange between rolls and streaks in
both the minimal flow unit and larger channels.

Although nonlinear mechanisms play a role in the self-sustaining process, much
attention has been given to linear mechanisms and instabilities as the drivers of this
process (Panton 2001; Jiménez 2013; Lozano-Durán et al. 2021). One example is the Orr
mechanism (Orr 1907; Jiménez 2013), in which the mean shear near the wall tilts velocity
perturbations forward in the streamwise direction and stretches vertical scales, intensifying
the wall-normal velocity perturbations. Another example is lift-up (Hwang & Cossu 2010),
which occurs when wall-normal velocity perturbations transport slow-moving fluid near
the wall away into the faster flow field farther away from the wall. Works such as Del
Alamo & Jiménez (2006) and Pujals et al. (2009) show that, even after removing the
nonlinear term from the perturbation equations, linear transient growth via the mean shear
generates the dominant (streaky) structures in wall-bounded turbulence. The linearised
system additionally accounts for much of the energy spectra and reproduces the self-
similar profile in the logarithmic region. Similarly, Lozano-Durán et al. (2021) show
through numerical experiments that the minimal flow unit can sustain turbulence without
the nonlinear feedback between the velocity fluctuations and the mean velocity profile,
except when the Orr mechanism or push-over (momentum transfer from the spanwise
mean shear into the streamwise velocity perturbation) are suppressed. The authors thus
argue for linear transient growth as a prominent mechanism for transferring energy from
the mean flow to turbulent fluctuations. In addition to the traditional near-wall streaks,
smaller scales in the minimal channel are also capable of significant transient growth
via purely linear mechanisms (Markeviciute & Kerswell 2024). This is shown using a
linearisation of the Navier–Stokes equations about a base flow composed of the mean
turbulent channel flow profile with an added near-wall streak. The transient growth of the
small scales is found to be especially driven by spanwise gradients, further underlining
the ability of the linear push-over mechanism to amplify perturbations. In this work, using
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methods from Cho, Hwang & Choi (2018), Symon, Illingworth & Marusic (2021) and
Ding, Chung & Illingworth (2025), we lend special attention to the role of the spanwise
self-advection term in transferring energy across scales.

The linear amplification process linking streamwise vortices and streamwise streaks
has also been fruitfully studied through the lens of resolvent analysis (McKeon &
Sharma 2010; Moarref et al. 2013; McKeon 2017). In resolvent analysis, the Navier–
Stokes equations are reframed as a linear dynamical system for the velocity fluctuations;
the nonlinear terms, along with other exogenous inputs to the system, are represented
by an external forcing term acting on this system. The goal is then to solve for the
spatial structure of the (nonlinear) forcing that generates the response (velocity) with the
largest linear energy amplification. Resolvent analysis is traditionally applied to systems
exhibiting spatial and temporal homogeneity. The linearised Navier–Stokes equations
are first Fourier-transformed in time and the homogeneous spatial directions prior to
resolvent analysis, which thus reveals the linear amplification properties of individual
wavenumbers and frequencies. In the context of wall-bounded turbulent flows, the
equations are Fourier-transformed in the streamwise and spanwise directions and time,
and the targeted length scales are the traditional streamwise and spanwise streak spacings
in the buffer layer (McKeon & Sharma 2010; Moarref et al. 2013; McKeon 2017; Bae,
Lozano-Durán & McKeon 2021). Despite using a linearisation of the equations of motion,
traditional resolvent analysis identifies streamwise rolls as the most perturbing structures
and streamwise streaks as the most amplified structures. Resolvent analysis thus provides
a partial explanation for why rolls and streaks are observed in the turbulent channel,
though the linearly obtained modes fail to reproduce second-order turbulent statistics with
quantitative accuracy, especially for higher Reynolds numbers. Indeed, resolvent analysis
ignores the feedback of the output modes into the nonlinear forcing term. One way to
reincorporate this effect into resolvent models is through the inclusion of a linear eddy
viscosity model in the linearised equations of motion (Morra et al. 2019, 2021; Symon
et al. 2023). Another useful correction includes weighting the resolvent operator with the
statistical properties of the nonlinear fluctuation terms (Zare, Jovanović & Georgiou 2017;
Morra et al. 2019, 2021); the forcing terms, which are considered uncorrelated (‘white’)
across space and time in the traditional formulation of resolvent analysis, are reweighted
to reflect the observed coherence of the nonlinear terms in the turbulent system.

Beyond simply using resolvent analysis as a way to study the self-sustaining process,
resolvent modes have been used as a tractable way of tackling the control of turbulent
flows. The resolvent response modes are often used as models for the fully turbulent flow.
These modes can be cheaply computed for a variety of wavenumbers and frequencies
to identify the structures that undergo the largest kinetic energy amplification under the
linearised dynamics and are thus expected to figure prominently in the turbulent flow.
In Toedtli, Luhar & McKeon (2019), resolvent modes were used to model the response
of turbulent channel flow at Reτ ≈ 180 to a varying-phase opposition control. Though the
Reynolds stresses of the model did not accurately capture the profile from direct numerical
simulations (DNS), the change in the profiles and drag were well represented by the
resolvent model. This suggests that the cheap computation of resolvent modes can be used
in lieu of DNS to identify forcing frequencies and length scales that can enact desirable
changes in the turbulent flow. Liu et al. (2021) have also applied this framework to reduce
pressure fluctuations along a cavity in supersonic flow (Re = 10 000, computed using the
cavity depth and the free stream velocity). In Yeh & Taira (2019), resolvent analysis of a
flow over an aerofoil (Re = 23 000, based on chord length) is also used to identify a forcing
frequency and length scale that enhance momentum mixing and reduce flow separation.
A similar framework is used in Lin, Tsai & Tsai (2023) for a plunging cylinder (Re = 500,
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based on cylinder diameter) to reduce lift fluctuations. The assumption underpinning the
above approach is that resolvent forcing modes, though only optimal for the linearised
equations, are nevertheless efficient at actuating the fully coupled system.

In Bae et al. (2021), linearly identified resolvent modes were indeed found to play a role
in the transfer of energy to coherent near-wall turbulent perturbations, even within a fully
nonlinear turbulent flow at Reτ = 186, lending credibility to the assumption underpinning
the works of Yeh & Taira (2019), Liu et al. (2021) and Lin et al. (2023). Via a modified
simulation in which the contribution of the leading resolvent forcing mode is subtracted
from the nonlinear term at every time step, the streak-regeneration process is interrupted
and buffer layer turbulence in the minimal flow unit is greatly suppressed.

Resolvent forcing and response modes have shown promise in emulating the behaviour
of turbulent flows under forcing, and this is linked to the role the forcing modes themselves
play in amplifying near-wall turbulence in simulated flows. In a more physical scenario,
however, the flow would only be forced intermittently, either by spontaneous events
arising in the unforced flow or by externally imposed actuation. It would be valuable to
study how a turbulent flow instantaneously reacts to such forcing, but since the flow in
Bae et al. (2021) is altered at each time step, its time-dependent reaction is difficult to
measure. We thus emphasise the importance of computing optimal time-localised forcing
modes and transient response mode. Traditional formulations of resolvent analysis – in
which the linearised equations of motion are Fourier-transformed in time, or Laplace-
transformed in time and the real part of the Laplace variable is taken to zero to allow
transients to decay – are incapable of representing such scenarios. The resulting resolvent
modes are Fourier modes in time that lack transient growth information. In this work,
we use a version of resolvent analysis formulated in a wavelet basis (Ballouz et al.
2023, 2024a,b). The individual wavelets can capture information localised in a particular
time interval. Additionally, in contrast to the Laplace transform which prescribes the
same decay rate for the forcing and response modes, wavelet-based resolvent analysis,
particularly its windowed version, allows one to compute optimal forcing and response
modes that are separated in time or frequency, e.g. optimal pulse-like forcing modes
and their corresponding transient response trajectories that can extend over the entire
time domain. A discretised and wavelet-transform signal in time is a concatenation of
increasingly subsampled signals, each discretised over time shift. By windowing for a
particular element of the transform in either the response or the forcing, the user can easily
select the degree to which the original signal is subsampled, which roughly determines the
frequency range (scale), as well as the interval in time (shift) in which the user wishes to
constrain the forcing or response. More on this topic can be found in § 2.2.

We note that maximally growing transient trajectories for the linearised Navier–Stokes
equations have long been computed under the optimal transient growth framework, and
used to study turbulent flows (Butler & Farrell 1993; Schmid, Henningson & Jankowski
2002; Pujals et al. 2009; Jiménez 2013; Encinar & Jiménez 2020). This framework finds
the optimal initial condition that leads to a maximally energetic state at a chosen final time.
While optimal transient growth has also been successful at producing rolls and streaks
as the optimal perturbation and response structures, respectively, important differences
exist between this method and wavelet-based resolvent analysis. Optimal transient growth
is sensitive to the choice of final time. More importantly, as is expounded in § 2.2,
optimal transient growth and wavelet-based resolvent analysis use different measures of
optimality: the former maximises the kinetic energy ratio between the initial condition
and the solution at the chosen terminal time, while the latter maximises the integrated
kinetic energy of the response over the entire time domain. Maximising the integrated
kinetic energy may better capture structures that tend to persist in time, rather than spike
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and decay rapidly. Moreover, wavelet-based resolvent analysis can identify optimal forcing
terms arising at various points of the time domain, and not just its origin. For example,
when applied to turbulent oscillating Stokes flows (Ballouz et al. 2024a), the computed
forcing and response modes coincide with the times in the cycle when the streamwise
root-mean-square velocity peaks. The forcing modes usually precede the response modes.
Another version of this spatiotemporal resolvent analysis computes time-sparse modes
and similarly yields time-localised optimal forcing modes that precede their transiently
varying responses (López-Doriga et al. 2023, 2024). Both of these results suggest that
time-localised resolvent analysis correctly extracts cause-and-effect relations between the
computed modes.

The transient growth of any structure within a fully turbulent flow is modulated by
the myriad nonlinear interactions not considered when using methods that rely on the
linearised equations of motion. Therefore, with the objective of controlling near-wall
turbulence in mind, we wish to determine whether significant transient growth can be
achieved in a turbulent flow via the injection of a resolvent forcing mode into the
simulation of a turbulent flow. The transient resolvent response mode corresponding to
the injected forcing will allow us to measure the instantaneous discrepancy between the
actuated turbulent and linearised flows, and probe the efficacy of the resolvent forcing
modes at actuating nonlinear flows. We aim to identify the time scales during which the
turbulent system responds similarly to the optimal linear response mode and beyond which
nonlinear effects distort the effect of the resolvent forcing mode. We study the mechanisms
that erode the effects of the injected mode, especially the nonlinear interactions that
transfer energy from the actuated scale to secondary ones and force the turbulent flow
to deviate from the optimal linear response. The system we use is the minimal flow unit at
Reτ = 186.

This paper is organised as follows. In § 2.1, we compute the base flow for the minimal
flow unit at Reτ = 186, which we use in § 2.2 to formulate the resolvent operator in a time-
localised wavelet basis. We compute resolvent modes as in Ballouz et al. (2024b), making
sure to constrain the forcing to a wavelet-shaped pulse. This yields a forcing mode in the
shape of streamwise rolls that is compactly supported in time, in addition to an optimal
streak-like response that grows transiently before decaying. The justification for the choice
of spatial wavenumbers and wavelets is given in § 2.3. We then solve the fully nonlinear
forced Navier–Stokes equations for the minimal flow unit at Reτ = 186, using the time-
localised wavelet-based resolvent forcing mode as our forcing term. This step is detailed
in § 2.4. We track the evolution of this resolvent forcing mode as it generates and amplifies
streamwise streaks, and compute relevant turbulent statistics, which we present in § 3.
In § 4, we focus on the nonlinear energy transfer from the induced streak to secondary
modes. Concluding remarks are given in § 5.

2. Methods
In this work, we consider the flow in the minimal flow unit of size L1 × L2 × L3 =
1.72δ × 2δ × 0.86δ, where δ is the channel half-height, and x1, x2 and x3 are the
streamwise, wall-normal and spanwise directions, respectively. We denote the velocity
fluctuation field by u = [u1, u2, u3]T, where u1, u2 and u3 are the streamwise, wall-
normal and spanwise components, respectively. The system is characterised by the friction
Reynolds number Reτ = δuτ /ν ≈ 186, where uτ is the friction velocity, and ν is the
kinematic viscosity. The flow is periodic in the streamwise and spanwise directions, and
the no-slip and no-penetration conditions hold at the walls of the channel.
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2.1. Base flow
For the DNS in this work, we discretise the streamwise and spanwise directions uniformly
using N1 = N3 = 32 grid points, which results in streamwise and spanwise grid spacings
of �x+

1 ≈ 10 and �x+
3 ≈ 5. In the wall-normal direction, the grid is of size N2 = 128

and stretched according to a hyperbolic tangent distribution, which results in a wall-
normal spacing of min(�x+

2 )≈ 0.17 near the wall and max(�x+
2 )≈ 7.6 at the centreline.

Here, the superscript + denotes wall units normalised with uτ and ν. We discretise the
incompressible Navier–Stokes equations with a staggered, second-order accurate, central
finite difference method in space (Orlandi 2000), and a fractional step method is used to
compute pressure (Kim & Moin 1985). Time-advancement is performed with an explicit
third-order-accurate Runge–Kutta method (Wray 1990). The DNS code has been validated
in previous studies of turbulent channel flows (Lozano-Durán & Bae 2016; Bae et al. 2018,
2019). Using this discretisation, we obtain a mean streamwise velocity profile U1(x2) by
averaging DNS results of the unforced system in the homogeneous directions and time.
This mean profile is used in the subsequent sections.

2.2. Spatiotemporal resolvent modes
In this section , we describe how we compute the time-localised resolvent forcing modes
and their corresponding transient responses for the minimal flow unit (Ballouz et al.
2024a,b). We first formulate the incompressible Navier–Stokes equations for the velocity
fluctuations about a mean turbulent flow field U = (U1,U2,U3),

∂ui

∂t
+ Uj

∂ui

∂xj
+ uj

∂Ui

∂xj
= − ∂p

∂xi
+ 1

Re

∂2ui

∂xj∂xj
+ fi ,

∂ui

∂xi
= 0. (2.1)

Here p represents the pressure fluctuation, and fi the nonlinear term in the xi -momentum
equation. The base flow is obtained from § 2.1, and satisfies U2 = U3 = 0 while the mean
streamwise component U1 is constant in time. Equation (2.1) is Fourier-transformed in the
x1 and x3 directions and discretised in x2 and time. The time domain [0, T ] is periodic –
i.e. when constructing the resolvent operator for the discretised system, periodic boundary
conditions are used for the temporal derivative matrix; this is further discussed below –
and we choose T = 22 δ/uτ , which is long enough to allow the resolvent modes to decay
to zero. The discretisation in time is uniform, with a grid size of Nt = 128 corresponding
to a spacing of � t ≈ 0.17 δ/uτ . The wall-normal discretisation is the same as in the DNS
(§ 2.1).

The discretised equations are further wavelet-transformed in time by premultiplying
them by a discrete wavelet transform operator W. For an arbitrary square-integrable
function g(t), the wavelet expansion on a dyadic time grid of size Nt – the grid is uniform
and Nt is a power of two – is defined as

g(t)=
L∑
�=1

Nt/2�−1∑
m=0

1√
2�

g̃(w)(�,m)η

(
t

2�
− m

)
+

Nt/2L−1∑
m=0

1√
2L

g̃(s)(m)ζ

(
t

2L
− m

)
,

(2.2)
where η(t) and ζ(t) denote the wavelet and scaling functions, respectively (Mallat 1999;
Najmi 2012), and L satisfies 2L � Nt and represents the largest scale captured by the
wavelet expansion. The dilations and shifts of η(t) act as high-pass filters and coefficients
g̃(w)(�,m) capture the high-frequency information of g(t); while ζ(t) acts as a low-pass
filter and coefficients g̃(s)(m) capture the remaining low-frequency information of the
function. The matrix W approximates this wavelet expansion: given g – the discretisation
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of g(t) in time – its wavelet transform g̃ is computed as

g̃ :=
[

g̃(s)

g̃(w)

]
= Wg, (2.3)

where the elements of g̃(s) and g̃(w) are, respectively, g̃(w)(�,m) and g̃(s)(m) for all �
and m. The matrix W is of size Nt × Nt , and the transform g̃ is of size Nt . The projection
onto η(t/2� − m) or ζ(t/2L − m) roughly captures a portion of the frequency content of
g determined by �, centred in a time interval determined by m. Larger � corresponds to
a narrower band of frequencies closer to zero, while larger m corresponds to later times.
Each of η and ζ capture different portions of the frequency spectrum.

The choice of wavelet-scaling-function pair is not unique and determines the properties
of the transform operator W. In this work, we use a single-level Daubechies-8 wavelet
transform (Daubechies 1992). The Daubechies wavelets and their corresponding scaling
functions are compactly supported in time and form an orthonormal basis, resulting
in a sparse banded and unitary operator W (Mallat 1999; Najmi 2012; Ballouz
et al. 2024b).

For a given streamwise and spanwise wavenumber pair (2πk1/L1, 2πk3/L3), where
k1, k3 ∈Z, we obtain the following discretised and transformed equations:

D̃t ũi + Ũ jD̃ j ũi + d̃Ui j ũ j = −D̃i p̃ + 1
Re

D̃2
jj ũi + f̃i , D̃i ũi = 0. (2.4)

Here, ũi , p̃i and f̃i denote the discretised and transformed velocity, pressure and forcing,
respectively. These transformed quantities are functions of wall-normal position x2,
and the wavelet scale and shift parameters � and m, which, respectively, represent the
time interval and frequency support of the wavelet mode (Ballouz et al. 2024b). The
transformed spatial derivative operators are defined as follows: D̃1 = ik̆1I, where I is
the identity matrix of size (N2 Nt )× (N2 Nt ), D̃2 = D2, which denotes a block diagonal
second-order-accurate central finite difference operator on the staggered x2 grid, D̃3 =
ik̆3I and D̃2

j j = −k̆2
1I + D2

2 − k̆2
3I, where D2

2 denotes a second-order-accurate second-
order finite difference operator on the staggered x2 grid. The wavenumbers k̆i are the
modified wavenumbers for the discretisation scheme used in the DNS, and are defined
as k̆1 := 2δsin(δ�x1πk1/L1)/�x1 and k̆3 := 2δsin(δ�x3πk3/L3)/�x3. Here, the use of
the modified wavenumbers ensures that the modes satisfy the conservation laws – namely
continuity – on the simulation grid and for the discretisation scheme used in the DNS; this
is particularly important for the forcing modes, which will be injected into the DNS of the
minimal flow unit.

The modified time derivative operator is defined as D̃t = WDtW−1, where W now
denotes the discrete wavelet transform in time for the (Nt N2 × Nt N2)-dimensional
system (i.e. the transform defined previously for a one-dimensional discrete time signal,
premultiplying the (N2 × N2)-dimensional identity matrix I via a Kronecker product),
and Dt is a second-order-accurate central finite difference matrix in time. Though not
shown, using a fourth-order-accurate finite difference operator does not strongly affect the
resolvent modes. We also define the mean flow term Ũ j := WU jW−1 and the mean shear
term d̃Ui j := WdUi jW−1, where U j and dUi j are diagonal matrices with diagonal terms
corresponding to U j and dUi/dxj at each x2 and time grid point, respectively.
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We can rearrange (2.4) as⎡⎢⎢⎢⎣
ũ1(x2, �,m)

ũ2(x2, �,m)

ũ3(x2, �,m)

p̃(x2, �,m)

⎤⎥⎥⎥⎦= H̃(k1,k3)

⎡⎢⎢⎢⎣
f̃1(x2, �,m)

f̃2(x2, �,m)

f̃3(x2, �,m)

0

⎤⎥⎥⎥⎦ , (2.5)

where the linear operator H̃(k1,k3) is the resolvent operator in this formulation. The
superscript (k1, k3) indicates the choice of Fourier parameters for the transformation
of (2.1), and the functional dependence on x2, � and m denotes the discretisation of (2.1)
over these quantities. Since we use the same x2 grid as the DNS that produced the mean
flow and shear profiles, and taking Nt as the temporal resolution, we note that H̃(k1,k3)

is a (4N2 Nt )× (4N2 Nt ) matrix. This formulation of the resolvent operator targets all
the Fourier frequencies resolved by the temporal grid, rather than one as in traditional
resolvent analysis.

We introduce the additional step of constraining the forcing along a wavelet-shaped
pulse of any desired scale � and shift m using a temporal windowing matrix B (Jeun,
Nichols & Jovanović 2016; Kojima et al. 2020; Ballouz et al. 2023, 2024a). Typically, the
unconstrained resolvent modes for channel flow are Fourier modes in time centred at a
chosen critical layer (McKeon & Sharma 2010; Bae et al. 2021; Ballouz et al. 2024b). In
order to compute an optimal transiently growing response trajectory, we must constrain
the forcing in time. The windowing matrix B takes the form

B = diag
(
1(�= �d)1(m = md)

)
, (2.6)

so that we are restricting the forcing to a wavelet or scaling function, centred at a desired
time and frequency determined by �d and md , respectively. For a discussion on the choice
of �d and md , see § 2.3. We then take the singular value decomposition of the combined
operator

H̃(k1,k3)B =
∑

j

σ j ψ̃ j (x2, �,m)φ̃
H
j (x2, �,m), (2.7)

where (·)H denotes the conjugate transpose. We index the singular values {σi }∞i=1 such that
σ1 � σ2 � . . .� 0. The right and left singular vectors {φ̃ j }∞j=1 and {ψ̃ j }∞j=1, respectively,
define orthonormal bases for the spaces containing the nonlinear term (forcing) and the
velocity and pressure fluctuations (response). For the singular value decomposition, we
choose the inner product to be the seminorm representing action – or time-integrated
energy – which we define for an arbitrary vector b̃ = [b̃1, b̃2, b̃3, b̃p]T to be

‖b̃‖2 = uτ
δ

1
L1(2δ)L3

∫ L1

0

∫ 2δ

0

∫ L3

0

∫ T

0

(|b1|2 + |b2|2 + |b3|2
)

dt dx3 dx2 dx1, (2.8)

where b = [b1, b2, b3, bp]T is the inverse wavelet- and Fourier-transform of b̃ (Ballouz
et al. 2024b). The kinetic energy amplification factor is given by the square of the singular
values. The forcing modes are therefore ordered decreasingly according to the integrated
kinetic energy amplification they undergo when acted on by H̃(k1,k3)B, and the response
modes are the corresponding amplified coherent structures arising from this action.
Thus, φ̃1 = [φ̃1,1, φ̃1,2, φ̃1,3, 0]T generates the largest linear energy amplification via the
windowed resolvent operator, and σ1ψ̃1 = σ1[ψ̃1,1, ψ̃1,2, ψ̃1,3, ψ̃1,p]T is the optimally
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amplified transient velocity and pressure fluctuation resulting from the application of φ̃1
on the linearised system. Here, ψ̃ j,i and φ̃ j,i correspond to the i th velocity component, and
ψ̃ j,p and φ̃ j,p refer to the pressure component. For all j , φ j , the inverse transform of φ̃ j ,
is shaped in time according to the wavelet or scaling function chosen by B. As described
in Moarref et al. (2013), the resolvent modes for certain Fourier parameters occur in
equivalent pairs of equal singular values due to the symmetry of the channel geometry.
The pairs of singular modes each form a singular plane, and for the numerical experiments
in § 2.4, we linearly combine the two equivalent forcing modes (e.g. φ̃1 and φ̃2) to form a
forcing vector in the singular plane that acts primarily on the bottom-half of the channel.
Thus, upon injecting this mode into the DNS of the forced Navier–Stokes equations, only
the bottom of half of the channel is subject to the forcing, allowing us to use the unforced
top-half as a benchmark for comparison (Bae et al. 2021). Henceforth, φ̃1 refers to the
linear combination of the first two equivalent forcing modes that concentrates the forcing
in the bottom-half of the channel, renormalised to satisfy ‖φ̃1‖ = 1, and ψ̃1 denotes the
corresponding response mode. The modes φ̃3 and ψ̃3 are defined similarly with regards
to the third and fourth resolvent forcing and response modes. We use ψ̆i and φ̆i to denote
the inverse wavelet transforms in time of ψ̃i and φ̃i , or equivalently, the spatial Fourier
transforms of ψi and φi , respectively.

2.3. Choice of spatial and temporal scales
The minimal flow unit allows us to isolate one buffer layer streak. This streak appears to
stretch the entire streamwise length of the unit, which is only large enough to contain one
low- and high-speed streak pair in the spanwise direction. We thus choose to target the
Fourier mode given by the streamwise and spanwise wavenumbers of k1 = 0 and k3 = 1,
respectively. These length scales also correspond to a peak in the spectral energy content
for the minimal flow unit (Bae et al. 2021).

Traditional resolvent analysis in which the Navier–Stokes equations are Fourier-
transformed in time reveals that a temporal frequency of ω= 0 produces the modes with
the largest kinetic energy amplification for the minimal flow unit at Reτ = 186 (Bae
et al. 2021). To target this frequency, we constrain the forcing term to a Daubechies-8
scaling function of arbitrary shift m by using B to select the corresponding elements
of f̃. The scaling function is shown in figure 1(a), and its Fourier spectrum, shown
in figure 1(b), indeed encompasses the target frequency. Since the scaling function is
compactly supported in time, wavelet-based resolvent analysis will not be able to target
ω= 0 uniquely but will capture a wide range of frequencies: a trade-off exists between
time and frequency localisation, and the more precision we require in one domain, the less
we preserve in the other (Mallat 1999; Najmi 2012). We note that the simulations detailed
in § 2.4 resolve temporal wavenumbers up to ωδ/uτ ≈ 55 000. The scaling function
satisfies (

∫ +∞
−∞ |ζ(t)|2dt) uτ /δ = 1.

The obtained resolvent modes are shown in figure 2. Notably, the response modes exhibit
transient energy growth and decay as seen in figure 2(a,b). The inverse transforms of the
modes are shown in figure 2(c,d). The modes share many similarities with the Fourier-
based modes computed for ω= 0 in Bae et al. (2021): the optimal transient nonlinear
forcing mode appears in the shape of streamwise rolls, and the optimal velocity fluctuation
response appears as predominantly streamwise streaks with alternating signs of the same
magnitude. This supports the extensively examined claim that streamwise streaks can be
linearly generated by a linear lift-up mechanism, whereby slower moving fluid close to
the wall is swept upwards into the faster moving mean flow farther away from the wall.
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Figure 1. Daubechies-8 scaling function ζ in time (a) and frequency (b) domain.

The streak-shaped response mode grows in intensity before fading, showcasing the
transient growth that is characteristic of non-normal systems.

2.4. Forced DNS
The time-localised resolvent forcing mode obtained in the previous section maximises the
action for the minimal flow unit under the linearised Navier–Stokes equations. The aim of
the work is to study the effect of the forcing mode on the fully nonlinear minimal flow unit.
To that end, we aim to inject the time-localised resolvent forcing mode into a DNS of the
minimal flow unit. The forcing mode will be introduced into an already turbulent state of
the minimal flow unit. The turbulent initial condition will contain energy at varying scales,
triggering cross-scale interactions that will interfere with the linearly driven transient
growth of the injected mode. We inject the forcing at different magnitudes, all small
relative to the energy of the initial condition. We expect the produced energy amplification
to vary nonlinearly across the different cases. To characterise how the turbulent system
reacts to actuation of varying strength, we aim to track the ensemble-averaged transient
response, and measure the energy growth of the targeted mode along with the nonlinear
energy transfer to secondary scales. The optimal resolvent response mode will serve as a
benchmark for the achievable energy amplification caused by the injected mode. Below
we present the numerical details of the DNS.

To initialise the ensemble of the forced simulations, we first perform a DNS of the non-
actuated minimal flow unit, fixing the mean profile to be U = (U1(x2), 0, 0) (§ 2.1), which
is used to calculate the resolvent modes. Snapshots from this simulation will serve as
the initial conditions to the forced simulations. Freezing the mean profile ensures that
the DNS mean profile matches the one used to compute the resolvent modes for all
time. We do this by initialising the flow to have the desired mean streamwise profile of
U1, then by removing the steady-state contribution of the right-hand side of the Navier–
Stokes equations. The initial snapshots from the fixed-mean simulation are separated by
1 �� tuτ /δ � 5.2, which reduces the correlation between the snapshots. The ensemble
sizes range from 1000 to 4000, in order to ensure statistical convergence. Doubling the
time between initial snapshots – equivalently, averaging over half the available time series
data – led to streamwise energy fields that only differed by at most 0.5–1.3 % at any given
wall-normal location and time. For each initial condition, we also obtain a corresponding
unforced fixed-mean time series. We denote the velocity fluctuations for the unforced
simulations by u0(x1, x2, x3, t).
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Figure 2. (a) Magnitudes of the (i) wall-normal component of the principal forcing mode and the (ii)
streamwise component of the principal response mode. (b) Integrated energy of the principal forcing (red)
and response (black) modes. (c) Principal forcing mode shown at peak amplitude (tuτ /δ ≈ 0.40). (d) Principal
response modes at peak amplitude (tuτ /δ ≈ 2.41). In (c) and (d), the contours represent the streamwise
magnitude; the arrows, which show the direction of the cross-flow components, are coloured according to
their magnitudes

√|φ1,2|2 + |φ1,3|2 in (c), or
√|ψ1,2|2 + |ψ1,3|2 in (d).

Before injecting the forcing mode into the DNS of the minimal flow unit, the mode is
normalised so that ‖φ̃1‖2 = 1 and scaled by a complex constant κ with magnitude

|κ| := γ

(
δ

u3
τ

1
L1(2δ)L3

∫ +∞

−∞

∫ L1

0

∫ 2δ

0

∫ L3

0

∣∣∣∣∂u0

∂t

∣∣∣∣2
t=0

ζ(t)2dx3 dx2 dx1 dt

)1/2

, (2.9)

where γ ∈ {1 %, 2 %, 5 %, 10 %} such that the resolvent forcing mode is increasing
the initial energy of the right-hand side by γ %. Thus, |κ|2 determines the integrated
energy injected into the system by the forcing. Using ∠· to denote the phase, we
choose

∠κ =∠
∫ 2

0

∫ +∞

0
∂t û

(0,1)
0 φ̆1

∗
dtdx2, (2.10)

so that the forcing mode is in phase with the right-hand side of the unforced
flow field. In the limiting case where the nonlinear interactions are negligible, this
provision ensures that the added forcing maximally increases the energy of the target
(0, 1)-mode.
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The forced DNS is the solution to the full incompressible Navier–Stokes equations with
the additional right-hand side forcing terms as follows:

∂ui

∂t
+ uj

∂ui

∂xj
+ Uj

∂ui

∂xj
+ uj

∂Ui

∂xj
= − ∂p

∂xi
+ 1

Re

∂2ui

∂xj∂xj

+ 2Re
(
κφ̆1,i (x2, t)e

i 2πx3
L3

)
+Fi , (2.11)

∂ui

∂xi
= 0. (2.12)

The term F = (F1, 0, 0) enforces the condition that the mean streamwise profile of the
forced simulation stay fixed and equal to U1 (§ 2.1) as in the unforced simulation, i.e. F
removes the steady-state (k1 = 0, k3 = 0) contribution of the right-hand side of the Navier–
Stokes equations. We remind the reader that u(x1, x2, x3, 0)= u0(x1, x2, x3, 0) for each
ensemble member, where u0 is obtained from the unforced DNS. We run the forced DNS
for a total time of T = 5.69 δ/uτ . To test the optimality of φ1 at forcing the turbulent
channel, we repeat the case for γ = 5 % using φ3 and a forcing term with a randomly
generated spatial component φrand = φ̂rand(x2)ζ(t), which we normalise and scale the
same way (‖φrand‖2 = 1).

3. Results and discussion

In this section, the notation (̂·)(k1,k3) denotes the Fourier transform in the streamwise
and spanwise directions corresponding to the streamwise and spanwise wavenumbers
2πk1/L1 and 2πk3/L3, respectively. We define the deviation operator Δ as the difference
between the forced and unforced simulations, e.g.�û(0,1)1 = û(0,1)1 − û(0,1)0,1 . We denote the
ensemble average by (·).

3.1. Transient energy growth and decay of streaks in the forced DNS
We define the instantaneous streak energy as

Ê (0,1)1 (t)=
[

|û(0,1)1 |2
2

]
, (3.1)

where [·] := ∫ 2δ
0 (·)dx2/(2δ) denotes the wall-normal average. Figure 3(a) shows the streak

energy contained in the (0, 1)-mode as a function of time, for different resolvent-forcing
amplitudes. For all cases, the energies grow and peak before decaying and reverting
back to non-forced levels. We observe that the peak energy deviation �Ê (0,1)1 scales
subquadratically with the forcing amplitudes and is proportional to |γ |1.44 (figure 3b).
For a linear system, the energy peaks would scale quadratically, which indicates that the
nonlinearities cause the energy to start decaying before it can reach the peak allowed by
optimal linear growth. The stronger the forcing, the faster the streak energy’s growth rate
and the faster its decay. The peak times, tpeak , defined as the times at which the energies
reach their maxima, decrease slightly with forcing amplitude, but are relatively constant
compared with the decay times, � tdecay, which we define as the time it takes for the
energy to reduce from the peak to 10 % of its peak (figure 3c,d). Indeed, the differences
in decay rate are more dramatic across the different forcing amplitude cases, and scale as
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Figure 3. (a) Average streak energy as a function of time; the cases plotted are γ = 1 % (black ◦), γ = 2 %
(cyan •), γ = 5 % (purple ×) and γ = 10 % (red ∗). (b) Streak energy peaks, (c) peak times and (d) decay
times as a function of γ . The dashed line represents the trends (b) 80.48|γ |1.44, and (d) |γ |−0.65.

� tdecay ∼ |γ |−0.65. We note that all fully coupled simulations decay significantly faster
(� tdecay ≈ 1δ/uτ ) than the linear response (� tdecay ≈ 15δ/uτ ).

To measure the proportion of the linearly amplified energy captured by the
forced simulations, we compute an ensemble-averaged forcing efficiency, or effective
amplification, which we define to be

σeff =
(

1
uτ δ

∫ T

0

�Ê (0,1)(t)

|κ|2/2 dt

)1/2

. (3.2)

This is analogous to σ1 = max
f̃
‖H̃(0,1)

Bf̃ ‖2/‖f̃ ‖2, where the numerator reflects the
energy contained in the velocity perturbation field, and the denominator corresponds to
the forcing amplitude. The computed σeff is shown in figure 4. The forcing efficiencies
decrease with the intensity of the forcing, and all effective amplifications are lower
than σ1 = 11.54, indicating that, across forcing amplitudes, the resolvent response mode
overpredicts the response of the system to the injected forcing, even for the low-amplitude
cases. We expect the agreement to be improved when (2.1) are augmented by an eddy
viscosity model (Zare et al. 2017; Symon et al. 2023). Regarding the trend of σ1 with
forcing amplitude, we see that for smaller resolvent forcing amplitudes, more of the
forcing energy is linearly converted into streak energy. For higher values of γ , nonlinear
interactions that scale superlinearly curtail the growth of the response mode – the
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Figure 4. Effective amplification σeff (solid) and σ1 (dashed).

integrated action of which scales linearly with γ in the linearised setting – and hinder
the effectiveness of the resolvent forcing mode.

3.2. Comparison of velocity deviations with linear response
To visualise the alignment of the velocity fluctuation fields with the linear response mode
across all wall normal heights, we plot the contours of |�û(0,1)/κ|/uτ , i.e. the magnitude
of the û(0,1)1 deviations normalised by the forcing coefficient κ , along with the contours
of the linear resolvent response modes (figure 5). We note that �û(0,1) is divided by the
complex value of κ prior to ensemble averaging so as to align the phases of the forcing
(§ 2.4) across the ensemble members. At earlier times (t < 0.7δ/uτ ), the responses for
both the γ = 1 % and γ = 10 % cases are very similar to the linear mode. The strongly
forced case, however, quickly reverts to the unforced channel flow statistics beyond an eddy
turnover time unit. In contrast, the lightly forced case of γ = 1 % exhibits a longer-lasting
velocity deviation, especially in the near wall region (x+

2 < 15). To more closely investigate
how the agreement of the forced simulations and the optimal linear response varies with
x+

2 , we show �û(0,1)1 at two wall-normal heights, along with the linear response at those
heights (figure 6). At both wall-normal locations, the initial growth rates are similar to the
linear case for all γ , and we obtain good collapse prior to t ≈ 0.7δ/uτ . However, increasing
the forcing amplitude causes the κ-normalised velocity deviation to decay earlier and at
a smaller amplitude for both wall-normal heights shown in figure 6. For a fixed forcing
amplitude, we note that �û(0,1) diverges from the optimal linear response around the
same time at both wall-normal locations plotted in figure 6, but the agreement between
the forced simulations and the optimal linear response turns out better in the near-wall
region. As x+

2 moves closer to the wall, the growth rate due to linear mechanisms increases,
and�û(0,1)1 manages to recover more of the linearly amplified energy before decaying due
to nonlinear effects.

3.3. Optimality of resolvent forcing
We compare the results of forcing using the principal resolvent forcing mode φ1, the first
suboptimal mode φ3 and the random mode φrand, using γ = 5 %. We see that the streak
energy grows to higher peak when the minimal flow unit is forced by φ1 than when forced
by φ3 (figure 7). In both cases, the minimal flow unit is much more responsive compared
with the case with random forcing. This suggests that resolvent analysis identifies a forcing
structure to which the minimal flow unit is indeed sensitive, even when governed by
the fully nonlinear Navier–Stokes equations. The advantage of the optimal forcing mode,
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Figure 5. Average deviation in the streamwise velocity of the (0, 1)-Fourier mode, |�û(0,1)/κ|/uτ , for the
(a) γ = 1 % and (b) γ = 10 % cases. The contours correspond to 7 %, 15 %, 25 %, 75 % and 90 % of the
maximum value of σ1ψ1. The lines represent the forced DNS case (blue), and the resolvent response (red).
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Figure 6. Average deviation in the streamwise velocity of the (0, 1)-Fourier mode at x+
2 ≈ 16 (a) and x+

2 ≈ 39
(b). The cases plotted are γ = 1 % (black ◦), γ = 2 % (cyan •), γ = 5 % (purple ×), γ = 10 % (red ∗), and the
linear response mode σ1ψ1 (black, dashed).

1

0.6

0.8

1.0

1.2

1.4

1.6

2 3 4 5

tuτ/δ
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Figure 7. Average streak energy for cases forced by φ1 (red ∗), φ3 (cyan •) and φrand (dashed black).
The unforced case is shown in black.
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Figure 8. Integrated streamwise spectral energy content [|û1
(k1,k3)|2]/(2u2

τ ) for γ = 2 % (a–c) and γ = 10 %
(d–f ). The spectra shown are at times t = 0 (a,d), t = 0.6δ/uτ (b,e) and t = 1.2δ/uτ (c,f ). The energy contained
in the (0, 0), (0, 1) and (0,−1)-modes (black) are excluded for clarity.

however, is significantly reduced. The effective amplifications, σeff in DNS forced by φ1
and φ3 differ only by a factor of 1.03, whereas σ1/σ3 = 2.16. Nonlinear effects quickly
clip the transient growth of the induced streak and drain energy from the actuated mode
before the differences between the responses to φ1 and φ3 can deepen.

We remind the reader that the mean profile is fixed by an additional forcing F which
removes the (0, 0) contribution to ∂u/∂t at every time step. Freezing the mean replenishes
the energy in the (k1, k3)= (0, 0) mode and preserves the energy transfer mechanism
to the resolvent response mode. In other words, allowing the mean profile to vary may
reduce the effectiveness of the forcing mode, since the mode is only optimal for the mean
profile without forcing. This is observed in Bae et al. (2021): subtracting the contribution
of the resolvent forcing mode from the nonlinear term succeeds at reducing the turbulent
kinetic energy initially, but this effect fades after tuτ /δ ≈ 12 as the mean flow is modified.
However, our injected forcing has a short extent in time (tuτ /δ ≈ 1.5), and we do not
expect the initial linearly driven growth of the induced response mode to change much
whether we fix the mean profile or not. Though not shown, the streak energy profile
obtained for γ = 5 % and an unfixed mean velocity is indeed very close to the what is
shown in figure 3(a).

3.4. Spectra
We compute the x2-integrated streamwise and spanwise spectra for γ = 2 % and γ = 10 %,
at the initial time, right before the peak in streak energy (t = 0.6δ/uτ ) and during the
streak energy decay (t = 1.2 δ/uτ ). The results are shown figure 8. Though not plotted,
we note that the (0,±1)-mode is the most dominant one across all times, accounting

1016 A19-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
38

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10381


Journal of Fluid Mechanics

for 30−70 % of the total turbulent energy over the entire simulated time horizon. For
all forcing amplitudes – though only the γ = 2 % and γ = 10 % cases are shown, the
behaviour of the non-actuated modes is similar for all γ : the energy of the non-actuated
modes grows during the decay of the (0, 1)-mode, with the (0,±2) and (±1,±1)-modes
growing most significantly, which highlights their key role in exchanging energy with the
actuated (0, 1)-mode. The share of total turbulent energy accounted for by the (0,±2)
and (±1,±1)-modes is roughly constant across all forcing amplitudes, amounting to
approximately 9−10 % and 7−8 % at their peaks, respectively. Some differences do exist
across forcing amplitudes: the transient behaviour of the (0,±2)-mode appears more
sensitive to the value γ . For the lightly forced case, the energy of the (0,±2)-mode
continues to grow beyond tpeak , while for the strongly forced case, the energy of the
mode peaks soon after the peak in streak energy before decaying rapidly and ceding to the
(±1,±1)-mode. This suggests that the (0,±2)-mode tends to grow faster and peak earlier
as the forcing amplitude increases. The particular sensitivity of the integrated energy of
the (0,±2)-mode to forcing amplitude can be partially explained by the fact that it is fed
by the dyadic interaction involving the self-interaction of the actuated (0,±1)-mode. The
nonlinear energy transfer from the (0,±1)-mode to secondary scales is discussed in more
detail in the next section.

The instantaneous growth and decay of the two preferred secondary modes, the (0,±2)-
and (±1,±1)-modes, at different wall-normal locations can be seen in figure 9(a,b).
Closer to the wall, the energy of the (0,±2)-mode first decreases during the growth of
the (0,±1)-mode, then exhibits two peaks for the larger amplitude cases, one coinciding
with the peak of the (0,±1)-mode, and one much later at around tuτ /δ ≈ 3, as the
energy of the mode reverts back to its initial state. The first peak, which is only visible
for the higher amplitude cases, occurs earlier as γ increases, while the later peak occurs
roughly at the same time across forcing amplitudes. The behaviour of the (±1,±1)-mode
is simpler and its energy peaks earlier as the forcing amplitude increases. Farther away
from the wall, the energy peaks of both the (0,±2)- and (±1,±1)-modes depend little
on γ and occur roughly at the same time for all forcing amplitudes, at tuτ /δ ≈ 0.8 and
tuτ /δ ≈ 1, respectively. Thus, the energy of the (0,±2)- and (±1,±1)-modes is similarly
influenced by x2 and γ : while the forcing magnitude γ affects the growth time scale of
the secondary modes, causing their energy to peak earlier as it increases, the wall-normal
location modulates the sensitivity of these modes to γ .

To better visualise the cross-scale energy transport time scales, we plot the streamwise
energy peak times for the (0,±1)-mode and the smaller scales as a function of x+

2 and
for different forcing amplitudes (figure 9c). Across all wall-normal heights, increasing
the forcing amplitude causes the energy of both the (0,±1)-mode and the smaller scales
to peak earlier. For all forcing amplitudes, the peak times for the (0,±1)-mode and the
smaller scales vary inversely with x+

2 . For the (0,±1)-mode, they are roughly constant
with x+

2 in the near-wall region, increase slightly in the buffer layer as we move farther
away from the wall, and plateau in the outer region of the flow. For the non-actuated
modes, the peak times are also constant in the near-wall region, but decrease dramatically
within the buffer layer as x+

2 increases, before levelling off in the outer region. The growth
of the smaller scales is thus more sensitive to both forcing amplitude and distance to the
wall than the actuated (0,±1)-mode.

We define the time scale for cross-scale energy transport, � ttrans, as the time delay
between the energy peaks of the (0,±1)-modes and the smaller scales; its dependence
on x+

2 is mostly determined by the energy peak time for the smaller scales (figure 9d).
While the results are generally consistent with the established understanding of the energy
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Figure 9. Streamwise spectral energy content at (a) x+
2 ≈ 16 and (b) x+

2 ≈ 39 for the (0,±2)–Fourier mode
(dotted lines) and the (±1,±1)–Fourier mode (dashed lines). (c) Energy peak times for the (0,±1)-mode
(solid) and the smaller scales (dashed) cases. (d) Time scale for the cross-scale energy transport. Colours
indicate γ = 2 % (blue), γ ≈ 5 % (purple) and γ = 10 % (red). The vertical lines in (a) and (b) represent the
local peaks of |û(0,1)1 |. The horizontal black lines in (c) and (d) represent x+

2 = 15 and x+
2 = 40, which delineate

the buffer layer.

cascade from larger to smaller scales, the trend of � ttrans probes additional aspects of
the energy transfer, mainly how the rate of the energy transfer to the secondary scales
varies with the forcing amplitude and wall-normal height. Interestingly, though a larger
forcing amplitude accelerates the energy transport from the (0,±1)-mode to smaller scales
for all wall normal heights, the sensitivity of � ttrans to forcing amplitude decreases as
we move farther away from the wall. Indeed, in the outer regions of the flow, � ttrans
converges to a value of approximately 0.18 δ/uτ for high forcing amplitude. The plots
in figure 9(c,d) indicate two cross-scale energy transfer mechanisms: one for the near-
wall region (x+

2 ≤ 25) which is highly dependent on γ , and one for the outer (x+
2 ≥ 25)

region which is less dependent on γ . The outer region is already highly nonlinear, which
allows for a rapid energy cascade from the actuated mode to smaller scales. Perturbing this
region seems to have little effect on the time scale of this cross-scale energy transfer. Near
the wall, linear mechanisms dominate; the (0,±1)-mode, growing significantly under the
action of the resolvent forcing term, greatly enhances the nonlinear interactions involving
the mode and markedly changes the underlying energy transfer to secondary scales, which
may explain the heightened sensitivity of � ttrans to γ in the near-wall region.
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4. Nonlinear energy transfer
The energy content of the secondary modes (figures 8 and 9) are the result of nonlinear
interactions amongst all length scales. We wish to disentangle these interactions and focus
on the nonlinear energy transfer that specifically drain energy from the actuated (0, 1)-
mode. As in Symon et al. (2021) and Ding et al. (2025), we represent the nonlinear energy
transfer from a mode (k1, k3) using the following term:

N̂ (k1, k3)= −û(−k1,−k3)
i

̂∂ui uj

∂xj

(k1,k3)

. (4.1)

We note that (·)(−k1,−k3) refers to the complex conjugate of (·)(k1,k3). The term N̂ (k1, k3)
satisfies ∫ 2δ

0

∑
k1

∑
k3

N̂ (k1, k3)dy = −
∫ 2δ

0

̂
ui
∂ui uj

∂xj

(0,0)

= 1
L1L3

∫ 2δ

0

∫ L3

0

∫ L1

0
ui
∂ui uj

∂xj
dx1dx3dx2

= 0, (4.2)

due to continuity and the no-penetration boundary conditions at the walls. This reflects
the fact that the nonlinear transfer (NLT) in channel flow does not add or remove energy
from the system but simply redistributes it between scales (Tennekes & Lumley 1972; Pope
2000). We can express N̂ (k1, k3) as a sum of contributions from interacting scales,

N̂ (k1, k3) = −
∑

s1

∑
s3

û(−k1,−k3)
i

∂̂ui

∂xj

(s1,s3)

û(k1−s1,k3−s3)
j . (4.3)

We refer to an individual contribution to the sum as M̂ (k1,k3)(s1, s3), defined as follows:

M̂ (k1,k3)(s1, s3)= −2Re

{
û(−k1,−k3)

i
∂̂ui

∂xj

(s1,s3)

û(k1−s1,k3−s3)
j

}
. (4.4)

The term M̂ (k1,k3)(s1, s3) represents the energy transfer from the (k1, k3)-mode to the
(s1, s3)-mode and satisfies the following properties:∫ 2δ

0
M̂ (k1,k3)(s1, s3)dx2 = −

∫ 2δ

0
M̂ (s1,s3)(k1, k3)dx2, (4.5)∫ 2δ

0
M̂ (k1,k3)(k1, k3)dx2 = 0. (4.6)

These properties are also a consequence of the incompressibility condition and the

boundary conditions. For example, to obtain (4.5), consider û(−k1,−k3)
i

̂∂ui/∂xj
(s1,s3)

û(k1−s1,k3−s3)
j and û(s1,s3)

i
̂∂ui/∂xj

(−k1,−k3)
û(k1−s1,k3−s3)

j which, along with their conju-

gates, constitute the quantities M̂ (k1,k3)(s1, s3) and M̂ (s1,s3)(k1, k3), respectively. These
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terms satisfy the following:∫ 2δ

0

(
û(−k1,−k3)

i
∂̂ui

∂xj

(s1,s3)

û(k1−s1,k3−s3)
j + û(s1,s3)

i
∂̂ui

∂xj

(−k1,−k3)

û(k1−s1,k3−s3)
j

)
dx2

=
∫ 2δ

0
i(s1 − k1)û

(−k1,−k3)
i û(s1,s3)

i û(k1−s1,k3−s3)
1

+ ∂

∂x2

(
û(−k1,−k3)

i û(s1,s3)
i

)
û(k1−s1,k3−s3)

2

+ i(s3 − k3)û
(−k1,−k3)
i û(s1,s3)

i û(k1−s1,k3−s3)
3 dx2

= −
∫ 2δ

0
û(−k1,−k3)

i û(s1,s3)
i

(
i(k1 − s1)û

(k1−s1,k3−s3)
1

)
+ û(−k1,−k3)

i û(s1,s3)
i

(
∂

∂x2
û(k1−s1,k3−s3)

2

)
+ û(−k1,−k3)

i û(s1,s3)
i

(
i(k3 − s3)û

(k1−s1,k3−s3)
3

)
dx2

= 0. (4.7)

Note, i = √−1 and (·)i denotes a spatial direction. To obtain the wall-normal derivative
term in the second equality, we integrate by parts and apply the no-penetration boundary
condition; we enforce continuity for û(k1−s1,k3−s3)

j to obtain the final result. Equation (4.5)
implies that the scale-to-scale energy transfer is conservative; (4.6), a consequence
of (4.5), implies that it purely captures the energy transferred from one scale to a different
scale and excludes self-interactions. We finally define �M̂ (k1,k3) as M̂ (k1,k3) − M̂ (k1,k3)

0 ,
where M̂ (k1,k3)

0 is defined as (4.4) using the unforced velocity field u0.

4.1. Interacting modes
Figure 10 shows the total NLT from the (k1, k3)= (0, 1) mode integrated over the wall-
normal direction. The integrated transfer is negative and confirms that nonlinear effects
are indeed draining energy from the actuated scale. The trends in the plot echo the
results in figure 3(a): the larger the forcing term, the larger the integrated transfer to
unforced scales. The total energy transfer tends to peak during the decay of the streak,
approximately 0.06−0.09 δ/uτ later than the streak energy. Considering the total energy
transfer normalised by forcing magnitude |κ|2, we see that the plots collapse for all values
of γ , for tuτ /δ < 0.8. The initial growth rate is the same across all forcing intensities
and its magnitude scales with |γ |2. The energy transfer mechanism at early times thus
seems to be similar for all cases, regardless of forcing magnitude. The larger the forcing,
however, the earlier the energy transfer reaches its maximum and starts its decay. At later
times, additional multiscale effects, more prominent for the strongly forced cases, likely
take over and help drain energy more efficiently from the (0, 1)-mode.

In figure 11, we plot the streamwise–spanwise spectra for M̂ (0,1)(s1, s3) at different
times. Only wavenumbers corresponding to s1, s3 ∈ [−4, 4] are shown for clarity; the
remaining wavenumbers interact negligibly with the (0, 1)-mode. We observe that
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Figure 10. (a) Integrated nonlinear energy transfer from the (0, 1)-mode to the non-forced modes;
(b) integrated nonlinear energy transport from the (0, 1)-mode normalised by the forcing magnitude |κ|2. The
cases plotted are γ = 1 % (black ◦), 2 % (cyan •), 5 % (purple ×) and 10 % (red ∗).
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Figure 11. Nonlinear energy transfer �M̂ (0,1)(s1, s3) for γ = 2 % (a–c) and γ = 10 % (d–f ), at tuτ /δ = 0.35
(a,d), 0.74 (b,e), 2 (c,f ).

M̂ (0,1)(s1, s3)≈ M̂ (0,1)(−s1, s3). Since the target mode extends the entire length of the
channel, the streamwise phase of the interacting modes matters little once the results are
averaged over the ensemble of simulations. The figure reveals that the nonlinear energy
transfer is dominated by energy transfer to the (0, 2)- and (1, 1)-modes. This pattern is
consistent across forcing intensities, though only the cases for γ = 2 % and γ = 10 % are
shown. The qualitatively similar results across forcing magnitudes highlight the privileged
role of the (0, 2)- and (1, 1)-modes at exchanging energy with the actuated mode. Since
the transfer to the (0, 2)-mode results from the self-interaction of the actuated mode, the
importance of this particular scale is not surprising. Figure 12 shows the x2-integrated
energy transferred to the (1, 1)- and (0, 2)-modes only. As in figure 10(b), the initial
growth rate of the magnitude-normalised quantities across forcing amplitudes, with the
plot for γ = 10 % peaking and starting its decay earlier than for γ = 2 %. Another notable

1016 A19-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
38

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10381


E. Ballouz, S.T.M. Dawson and H.J. Bae

1 2 3 4 5

tuτ/δ
1 2 3 4 5

tuτ/δ

–10

–8

–6

–4

–2

0

(a)

(M̂
 (

0
,1

) )
δ/
u τ3

0.5

0

–0.5

–1.0

–1.5

–2.0

(M̂
 (

0
,1

) /
κ

2
)δ
/
u τ3

(b)

Figure 12. (a) Integrated nonlinear energy transfer from the (0, 1)-mode to the (0, 2)-mode (· · ·) and the
(1, 1)-mode (− −); (b) integrated nonlinear energy transfer from the (0, 1)-mode normalised by the forcing
magnitude |κ|2. The cases plotted are 2 % (cyan) and 10 % (red).
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Figure 13. (a) Total nonlinear energy transfer from the (0, 1)-mode, i.e.
∑
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∑
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�M̂ (0,1)(s1, s3)δ/u3

τ . The

cases plotted are for (a) γ = 2 % and (b) γ = 10 %. The black lines are contours of |û(0,1)1 |2/2 and represent
10 %, 25 %, 50 %, 75 % and 90 % of the maximum value across x2 and t .

observation is that, across forcing amplitudes, the energy transfer to the (0, 2)-mode occurs
at a faster time scale than the transfer to the (1, 1)-mode.

In figure 13, we study the spatial distribution of the nonlinear energy transfer term
M̂ (0,1). We observe that, for γ = 2 % and γ = 10 %, the additional NLT to other scales
due to the induced streak is centred on two wall-normal locations, x+

2 ≈ 16 located in the
buffer layer, and x+

2 ≈ 75 located in the outer region. This is consistent across all forcing
magnitudes. The presence of two hubs of energy transfer echo the results in figure 9(d),
which similarly shows two distinct regions each characterised by a time scale of energy
transfer from the (0, 1)-mode to smaller scales.

In figure 14, we plot the nonlinear energy transfer to the (0, 2)- and (1, 1)-modes, for
γ = 2 % and γ = 10 %. The figure reveals that the transfer to the (0, 2)-mode accounts for
the transfer at x+

2 ≤ 25, while the transfer to the (1, 1)-mode accounts for the transfer at
x+

2 > 25. In the buffer layer, the forced (0, 1)-mode thus tends to transfer its energy to a
mode that is twice periodic in the spanwise direction; the induced streak splits into two
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Figure 14. (a,b) �M̂ (0,1)(0, 2)δ/u3
τ and (c,d) �M̂ (0,1)(1, 1)δ/u3

τ in the t − x2 plane. The cases plotted

are for (a,c) γ = 2 % and (b,d) γ = 10 %. The black lines are contours of |û(0,1)1 |2/2 and represent
10 %, 25 %, 50 %, 75 % and 90 % of the maximum value across x2 and t .

branches, which can be seen in figure 15(a,b). In the outer region, the nonlinear energy
transfer favours the (1, 1)-mode, suggesting that the induced streak breaks up along the
streamwise direction. This is seen in figure 15(c,d), which show the streak meandering but
not splitting into two branches as for x+

2 = 16. We note that the transfer from the (0, 1)-
mode to the (0, 2)-mode is due to the self-interaction of the actuated mode, and the term
û(0,−1) is squared in the expression for M̂ (0,1)(0, 2) (4.4). This along with the fact that
the energy transfer to the (0, 2)-mode is predominant in the near-wall region explains the
increased sensitivity of the energy transfer time scale� ttrans to γ for x+

2 ≤ 25 (figure 9d).
More specifically, a higher value of γ disproportionately intensifies the transfer of energy
to the (0, 2)-mode, causing the NLT of energy near the wall to occur earlier – closer to the
focus of M̂ (0,1)(0, 2) – and decreasing � ttrans.

4.2. Mechanism of nonlinear energy transfer
To shed light on the mechanism of this nonlinear energy transfer, we split the NLT
M̂ (0,1)(s1, s3) into the terms that, respectively, reflect the contributions of the streamwise,
spanwise and wall-normal nonlinear advection. Specifically, in order to study the nonlinear
energy transfer from a mode (k1, k3) due to streamwise nonlinear advection – henceforth
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Figure 15. Ensemble-averaged streamwise velocity deviation �u1 for (a,c) γ = 2 % and (b,d) γ = 10 %.
The results are for x1 = 0 and two wall-normal heights: (a,b) x+

2 = 16 and (c,d) x+
2 = 75. Before ensemble

averaging, the (0, 1)-mode for each ensemble member is multiplied by e−i∠κ to ensure their phase alignment.

referred to as NLT1 (x1), we define M̂ (k1,k3)
1 (s1, s3) as

M̂ (k1,k3)
1 (s1, s3) := −2Re

{
û(−k1,−k3)

i
∂̂ui

∂x1

(s1,s3)

û(k1−s1,k3−s3)
1

}
. (4.8)

We similarly define M̂2 and M̂3 to study NLT2 and NLT3, the nonlinear energy transfer
due to wall-normal and spanwise gradients self-advection, respectively.

Figure 16 shows that the energy transfer due to the coupling with the spanwise velocity
component dominates the total energy transfer to other scales, even before the growth
of the injected mode and after the mode completely decays for tuτ /δ > 2. During the
growth of the injected mode, the NLT3 term grows significantly more than the transfer
due to self-advection in the streamwise and wall-normal directions. This demonstrates the
unique role of NLT3 in transferring energy to secondary scales and restoring the system
to its unforced state. This behaviour is consistent across forcing amplitudes, though only
γ = 2 % and γ = 10 % are shown. The dominance of the NLT3 contributions also holds
for the (0, 2)- and (1, 1)-modes individually (figure 16c,d). We do note that the NLT2
is relatively important for the (0, 2)-mode. The induced streak thus tends to shed its
energy to secondary modes via spanwise self-advection. We note that these results match
those found in Markeviciute & Kerswell (2024), which computes a streak structure via
optimal transient growth analysis then studies the growth of secondary instabilities added
to the streak. Authors find that suppressing the pushover mechanism, i.e. the spanwise
advection of the secondary perturbation due to the streak, prevents the growth of these
secondary instabilities. Thus, both this work and Markeviciute & Kerswell (2024) agree
that coupling via spanwise gradients dominate the interaction between the streak and
secondary modes.

Additionally, by considering the wall-normal variations (figure 17), we see that spanwise
self-advection is the primary pathway across all wall-normal heights by which the forced
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Figure 16. Nonlinear energy transfer from the (0, 1)-mode to unforced modes, broken down by streamwise
(blue −•), wall-normal (green −�) and spanwise (red −�) contributions. The cases plotted are (a,c) γ = 2 %
and (b,d) γ = 10 %. Panels (a) and (b) represent the contributions to the total nonlinear energy transport from
the (0, 1)-mode, with the black line representing the sum of the contributions; panels (c) and (d) represent the
transfer to the (0, 2)- and (1, 1)-modes, denoted by (· · · ) and (− −), respectively.

(0, 1)-mode sheds its energy. This is consistent across all forcing magnitudes, though only
the cases for γ = 2 % and γ = 10 % are shown. For the lightly forced case γ = 2 %, we
do note a significant NLT2 contribution at x+

2 ≈ 18 (figure 17a), but as γ increases, the
NLT2 contribution is quickly overtaken by the NLT3. The NLT3 term thus has a stronger
dependence on γ than the NLT2 term, especially close to the wall; this suggests its key
role in the nonlinear interactions which grow rapidly with γ . The growth of secondary
instabilities due to push-over occurs locally at both foci of nonlinear energy transfer, and
both the (1, 1)- and (0, 2)-modes benefit from this energy transfer mechanism.

4.3. Quasilinear approximation
In this section, we seek to determine whether the instantaneous behaviours of the nonlinear
energy transfer can be simply modelled by the interactions of the principal response mode
with the ‘background’ turbulence – that is, the turbulence frozen in its state at t = 0. By
neglecting subsequent nonlinear feedback, the velocity field after the injection of the mode
can be represented as uψ := u0 + κσ1ψ1exp(i2π/L3)+ κ∗σ1ψ1

∗exp(−i2π/L3). Using
this field, we define the following nonlinear energy transfer term for the quasilinear field
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Figure 17. Nonlinear energy transfer from the (0, 1)-mode split by NLT2 and NLT3 contributions: (a,b)

�M̂ (0,1)
2 δ/u3

τ and (c,d) �M̂ (0,1)
3 δ/u3

τ . The cases shown are for (a,c) γ = 2 % and (b,d) γ = 10 %. The black

lines are contours of |û(0,1)1 |2/2 and represent 10 %, 25 %, 50 %, 75 % and 90 % of the maximum value across
x2 and t .

analogously to (4.4):

M̃ (k1,k3)(s1, s3) := −2Re

⎧⎪⎨⎪⎩û(−k1,−k3)
ψ,i

̂
∂u(s1,s3)

ψ,i

∂xj
û(k1−s1,k3−s3)
ψ, j

⎫⎪⎬⎪⎭ , (4.9)

where uψ,i is the i th component of uψ . This term captures the nonlinear energy transfer
from the (k1, k3)-mode to the (s1, s3)-mode due to interactions of the injected mode with
the background turbulence and ignoring the self-interactions of uψ at every time step. We
can thus view the term M̃ (k1,k3) as a quasilinear model of the nonlinear energy transfer.
We define the quantities representing the NLT1, NLT2 and NLT3 contributions for the uψ
field as

M̃ (k1,k3)
1 (s1, s3) := −2Re

⎧⎨⎩û(−k1,−k3)
ψ,i

∂̂uψ,i
∂x1

(s1,s3)

û(k1−s1,k3−s3)
ψ,1

⎫⎬⎭ . (4.10)

We call these terms QLT1, QLT2 and QLT3 (‘quasilinear transfer, xi ’), respectively, to
distinguish them from NLT1, NLT2 and NLT3. Figure 18 shows the quasilinear estimates
for the nonlinear energy transfer to the (0, 2)- and (1, 1)-modes, normalised by forcing
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Figure 18. Quasilinear approximation M̃ (0,1) for the nonlinear energy transfer from the (0, 1)-mode,
normalised by the forcing magnitude |κ|2. Panels (a) and (b) correspond to the transfer to the (0, 2)-mode,
and panels (c) and (d) correspond to the transfer to the (1, 1)-mode. The cases plotted are for (a,c) γ = 2 % and
(b,d) γ = 10 %. The black lines represent contours of M̂ (0,1) and correspond to 10 %, 25 %, 50 %, 75 % and
90 % of the minimum (most negative) value (–), or 10 %, 25 %, 50 %, 75 % and 90 % of the maximum (most
positive) value (− −).

amplitude. For the lightly forced case of γ = 2 %, the quasilinear model predicts the
regions of energy loss to the (0, 2)- and (1, 1)-modes well, especially for t < 1δ/uτ
(figure 18a,c). For γ = 10 %, the quasilinear interactions fail to predict the region of energy
transfer to the (0, 2)-mode, but perform better for the (1, 1)-mode (figure 18b,d).

In an attempt to test whether the quasilinear model can predict the general NLTi trends
observed in the previous section – mainly the dominance of the NLT3 contributions –
we plot the QLT1, QLT2 and QLT3 quantities in figure 19. We see that the quasilinear
estimates for the transfer to mode (0, 2) can roughly predict a strongly negative QLT3
component for the lightly forced system at early times, but fail to do so for later times.
For large forcing amplitudes, the quasilinear mode performs poorly for all times, and
even reverses the observed trends for the QLT2 and QLT3 components of the NLT. The
quasilinear model indirectly assumes that the growth of the secondary modes interacting
with the injected streak is slow enough so that the dominant nonlinear interactions remain
due to the ‘background’ unperturbed field. The failure of the quasilinear model to explain
the trends of the (0, 2)-mode suggests that the assumption of slow growth cannot be
applied to this mode. Thus, in the near-wall region where streak splitting occurs, we
suspect that transient growth mechanisms are key to explaining the behaviour mode (0, 2).

1016 A19-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
38

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10381


E. Ballouz, S.T.M. Dawson and H.J. Bae

1
–12 000

–10 000

–8000

–6000

–4000

–2000

2000

0

2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5
–8000

–6000

–4000

–2000

0

2000

4000

8000

6000

–8000

–6000

–4000

–2000

0

2000

4000

8000

6000

–10 000

–8000

–6000

–4000

–2000

2000

0

(d )

tuτ/δ tuτ/δ

tuτ/δ tuτ/δ

(M∼
 j(0

,1
) (

1
, 
1
)/

|κ|
2
)δ
/
u τ3

(M∼
 j(0

,1
) (

1
, 
1
)/

|κ|
2
)δ
/
u τ3

(M∼
 j(0

,1
) (

0
, 
2
)/

|κ|
2
)δ
/
u τ3

(M∼
 j(0

,1
) (

0
, 
2
)/

|κ|
2
)δ
/
u τ3

(a) (b)

(c)

Figure 19. Nonlinear energy transport from the (0, 1)-mode to the (a,b) (0, 2)-mode and the (c,d) (1, 1)-mode,
broken down by streamwise (blue −•), wall-normal (green −�) and spanwise (red −�) contributions, and
normalised by forcing magnitude. The solid lines correspond to the nonlinear energy transfer in the quasilinear

model [M̃ (0,1)/|κ|2], while the dashed or dotted lines correspond to [M̂ (0,1)/|κ|2], the results from DNS (also
shown in figure 16). The cases plotted are (a,c) γ = 2 % and (b,d) γ = 10 %.

One such mechanism is linearly driven transient algebraic growth, which is responsible for
amplifying the injected resolvent mode at early times. In contrast, the quasilinear estimates
for the transfer to mode (1, 1) qualitatively match the behaviour of the DNS and reveal a
strongly negative QLT3 contribution and a weakly positive QLT2 contribution. Outside
the buffer layer, the instantaneous nonlinear interactions between the target (0, 1)-mode
and the background turbulence can qualitatively explain the streak breakup. For better
quantitative accuracy, we suspect that transient growth effects are also important in the
outer region.

In addition to studying the interaction of the transiently growing (0, 1)-mode with
the background turbulence, we consider the linear optimal growth of the (0, 2)- and
(1, 1)-modes. We repeat the wavelet-based resolvent analysis described in § 2.2 but with
spatial parameters (k1, k3)= (0, 2) and (k1, k3)= (1, 1). We use the same spatial grid
and choose T = 44δ/uτ to allow the modes ample time to decay to zero, which occurs
at tuτ /δ ≈ 20. The size of the temporal grid is chosen to be Nt = 880. Despite the
fact that resolvent analysis captures a purely linear process, the x2 location preferred by
the principal resolvent response for (k1, k3)= (0, 2) and (k1, k3)= (1, 1) coincide with
the foci of nonlinear interaction between the (0, 1)-mode, and the (0, 2)- and (1, 1)-
modes, respectively (figure 20). The resolvent modes, which capture the maximal linear
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Figure 20. Magnitude of the streamwise component of the principal resolvent response modes for
(a) (k1, k3)= (0, 2) and (b) (k1, k3)= (1, 1). The modes are normalised so that their action pseudonorm is
unity. The horizontal lines represent the peak location of (a) M̂ (0,1)(0, 2) and (b) M̂ (0,1)(1, 1) for γ = 2 %
(blue) and γ = 10 % (red).

growth of the two scales considered, accurately predict the locations of energy exchange
with the actuated mode, and thus, transient growth via linear mechanisms can dictate
the spatial structure of the nonlinear energy cascade. Moreover, we observe that the
principal resolvent response mode for (k1, k3)= (0, 2) grows faster than the mode for
(k1, k3)= (1, 1), peaking earlier, which may explain the earlier peaks of M̂ (0,1)(0, 2)
compared with M̂ (0,1)(1, 1) (figure 12).

The results in figure 20 support works such as Huang et al. (2023), which studies the
efficacy of individual dyadic interactions at exciting an energetic scale in the channel.
The influence of individual dyadic contributions to the nonlinear term of the Navier–
Stokes equations is measured via the projection of the contributions onto the principal
resolvent forcing mode for the scale of interest, and dyadic interactions highly aligned
with the forcing mode are deemed important contributors to turbulence. The underpinning
assumption is that the response mode corresponding to the forcing mode indeed capture
the behaviour of turbulence in the channel, which figure 20 suggests is true, even for
secondary scales like the (0, 2)- and (1, 1)-modes. Figure 20 also helps explain the success
of restricted nonlinear models at replicating turbulent statistics (Thomas et al. 2014;
Farrell, Gayme & Ioannou 2017; Gayme & Minnick 2019). In restricted nonlinear models,
the mean profile is governed by a modified version of the fully nonlinear Navier–Stokes
equations where only a reduced subset of fluctuation scales contributes to the nonlinear
advection terms, while the fluctuations obey the linearised Navier–Stokes equations about
the mean profile. The location of the modes in figure 20 indeed suggest that linear
mechanisms are enough to at least predict the correct spatial distribution of the nonlinear
energy transfer to the two most important secondary modes involved in the energy cascade
in this experiment.

5. Conclusions
In this work, we study the growth of time-localised resolvent modes in the minimal
flow unit at Reτ ≈ 186. We formulated resolvent analysis in a wavelet-basis in time that
endows the resolvent modes with transient information, and obtained a linearly optimal
time-localised forcing mode and its corresponding transient response mode.

1016 A19-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
38

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10381


E. Ballouz, S.T.M. Dawson and H.J. Bae

Resolvent analysis ignores the feedback between the velocity fluctuations and the
nonlinear terms; we thus tested the optimality of the resolvent forcing within a DNS of
a minimal flow unit by numerically injecting the principal resolvent forcing mode into the
flow at varying amplitudes. This allowed us to investigate the interactions between the
transiently growing linear response mode and the nonlinear effects of the turbulent flow.
We compared the resulting flow with one forced by the first suboptimal forcing mode and
another forced by a spatially random forcing. The principal resolvent forcing produces a
larger transient energy growth than the suboptimal mode, but the energy amplification
is notably lower in both cases compared with the linearised case. Both systems were
significantly more amplified than the random forcing case. In all cases, despite the fact that
the injected forcing term is small compared with the initial nonlinearities, the amplification
of the velocity perturbation due to linear mechanisms is significant enough that the
simulated fields track the optimal linear response for a short time.

The nonlinearities of turbulence interrupt the initial algebraic energy growth driven
by the linear dynamics of the flow. This is seen in all cases forced by the principal
resolvent mode, and the amplitude of the resolvent forcing affects how closely the turbulent
trajectory behaves like the optimal resolvent response mode. Across all forcing amplitudes,
the initial growth phase is similar, and the systems peak at roughly the same time, but,
the higher the forcing amplitude, the faster the decay of the system back to the unforced
turbulent system. The more intense turbulence in the high-amplitude-forcing cases is more
effective at damping the effects of the initial forcing. We observe that the induced velocity
perturbation field for the actuated Fourier mode matches the resolvent mode better, both in
magnitude and spatiotemporal structure, within the near-wall region, where viscous effects
are more prominent. During the decay of the streak decays, the spectral energy content of
the simulations becomes increasingly multiscale due to a transfer of energy to the non-
forced spatial scales. This cross-scale energy transfer is more prominent and occurs faster
for the high-amplitude-forcing cases.

Nonlinear effects lead to streak breakdown, and by considering the nonlinear energy
transfer from the induced streak to the non-actuated modes, two secondary modes are
found to play a dominant role in draining the streak of its energy and curtailing its growth.
The first mode, constant in the streamwise direction and twice periodic in the spanwise
direction, corresponds to a splitting of the streak into two branches and dominates the
energy transfer in the near-wall region, including the buffer layer. The second, once
periodic in the streamwise and spanwise directions, corresponds to a streamwise breakup
of the streak and dominates the energy transfer in the outer region. The branching mode
receives energy from the actuated mode via the self-interaction of the injected streak,
which explains the particular sensitivity of the near-wall region to forcing amplitude.
Though a larger forcing amplitude accelerates the energy transfer from the actuated mode
to smaller scales across all wall-normal heights, this effect is indeed more prominent in
near the wall than in the outer region.

The streak interacts with these secondary modes mostly through an NLT3-type energy
transfer, i.e. via the spanwise nonlinear self-advection term. We model the predicted
nonlinear energy transfer by computing the interaction of the injected streak with
the background turbulence of the initial conditions used, and find that these one-way
interactions generally predict the trends for the streak breakup that dominates in the
outer region. This crude model cannot, however, predict the dominance of the NLT3
contribution that occurs during the streak splitting near the wall. We postulate that in
the near-wall region and the buffer layer, transient growth phenomena are necessary to
explain the behaviour of the (0, 2)-mode. We compute the transiently growing principal
resolvent modes for the two preferred secondary scales, and find that they are located
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exactly at the foci of nonlinear energy exchange with the actuated scale. The structures
found using resolvent analysis predict the x2 distribution of the nonlinear energy transfer
to the (0, 2)- and (1, 1)-modes in the nonlinear DNS, further proving that resolvent modes
can be informative of turbulent flows despite using the linearised equations of motion.

Testing the effectiveness of the principal resolvent forcing mode reveals valuable
insights on the stability of the streak, the mechanism by which it sheds energy, and the
sensitivity of this nonlinear energy transfer mechanism to forcing amplitude. To find
structures more effective than the resolvent forcing mode at actuating the minimal flow
unit, one could use nonlinear optimisation techniques (Kerswell 2018; Heide & Hemati
2023). These broadly aim to maximise the growth of kinetic energy within a user-defined
time window, and enforce the satisfaction of the (nonlinear) Navier–Stokes equations as an
optimisation constraint. Nevertheless, an important advantage of wavelet-based resolvent
analysis is its computational efficiency and tractability.
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