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Abstract

Most turbulent flows cannot be calculated by direct numerical simulation (DNS) of the

Navier-Stokes equations because the range of scales of motions is so large that the com-

putational cost becomes prohibitive. In large-eddy simulation (LES), only the large eddies

are resolved and the effect of the small scales on the larger ones is modeled through a

subgrid-scale (SGS) model. Given that accurate representation and prediction of turbu-

lence is needed in many engineering and scientific applications, development of accurate yet

computationally efficient SGS models is an important task. Additionally, wall models are

necessary to overcome the prohibitive near-wall resolution requirements for the large scales

in high-Reynolds-number turbulent flows.

This study investigates a new SGS model, the anisotropic minimum-dissipation (AMD)

model, which is constructed to provide the minimum eddy viscosity required to avoid en-

ergy pile-up in the smallest resolved scales. The AMD model is successfully applied in

simulations of decaying grid turbulence for isotropic grids, and temporal mixing layer and

turbulent channel flow for anisotropic grids. This model is more cost-effective than the dy-

namic Smagorinsky model (DSM) and appropriately switches off in laminar and transitional

flows. The formulation of the AMD model is extended to the transport equation for scalar

concentration to model the subfilter scalar flux. The performance of the model is tested

in the simulation of high-Reynolds-number rough-wall boundary-layer flow with a constant

and uniform surface scalar flux. The simulation results obtained from the scalar model show

good agreement with well-established empirical correlations and theoretical predictions of

the resolved flow statistics.
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The accuracy of the SGS models is tested by studying the convergence properties in the

outer region of a channel flow at moderate to high Reynolds numbers. As LES requires

scale separation of the resolved and subgrid scales, the convergence study must be con-

ducted in high-Reynolds-number flows. However, the analysis shows that the errors from

the near-wall region are dominant for SGS models in usual LES grid resolutions, where the

grid is not refined in the wall-parallel directions. For evaluation of SGS models, in order

to overcome the grid requirements imposed by the near-wall turbulent eddies as well as

the errors accumulated near the wall, a possible solution is to isolate the outer region of

wall-bounded flows. This is made possible by one of two ways: suppressing the near-wall

dynamics through a modified wall, or supplying the correct mean stress at the wall with a

wall model. Theoretical analysis of the error scaling of SGS models for the mean velocity

profile, turbulence intensities, and energy spectra is performed. The numerical convergence

studies of the DSM and AMD models show that both models are first-order accurate in

terms of the mean velocity profile, which is consistent with the theoretical assessments.

Lastly, a new dynamic wall model based on the slip boundary condition is proposed. The

use of the slip boundary condition for wall-modeled LES is motivated through theoretical

analysis and a priori study of DNS data. The effect of the slip boundary condition on

the one-point statistics of the flow is investigated in LES of turbulent channel and flat-

plate turbulent boundary layer. The slip boundary condition provides a framework to

compensate for the deficit or excess of mean momentum at the wall. The requirements

for the slip lengths to be used in conjunction with wall models are discussed, and the

equation that connects the slip boundary condition with the stress at the wall is derived. A

dynamic procedure based on the invariance of wall stress under test filtering is formulated

for the slip condition, providing a dynamic slip wall model free of any a priori specified

coefficients. The performance of the proposed dynamic wall model is tested in a series of LES

of turbulent channel flow at varying Reynolds numbers, non-equilibrium three-dimensional

transient channel flow, and zero-pressure-gradient flat-plate turbulent boundary layer. The

results show that the dynamic wall model is able to accurately predict mean and turbulence

intensities for various flow configurations, Reynolds numbers, and grid resolutions.
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Nomenclature

Acronyms

AMD Anisotropic minimum-dissipation
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(·)+ Variable in wall-units, normalized using uτ and ν

(̄·) Grid resolved values of (·)

(̂·) Fourier transformed values of (·)

〈(·)〉 Average value of (·) in homogeneous spatial directions and, if flow is stationary,

in time

〈(·)〉t Average value of (·) in time

〈(·)〉w Average value of (·) along the wall

R[(·)] Real part of (·)

F−1(·) Inverse Fourier transformed values of (·)
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(̃·) Explicit or test filtered values of (·)

∂s(·)/∂xi Scaled differentiation operator on (·) in the xi direction

Greek symbols

αf Turbulence intensity error scaling exponent for grid resolution

αm Mean velocity profile error scaling exponent for grid resolution

αs Kinetic energy spectra error scaling exponent for grid resolution

β Power law constant

γ Heat capacity ratio

γf Turbulence intensity error scaling exponent for Reynolds number

γm Mean velocity profile error scaling exponent for Reynolds number

γs Kinetic energy spectra error scaling exponent for Reynolds number

δ Boundary layer thickness or channel half height

∆ Grid size

∆̃ Second moment of the filter operator

∆i Grid size along the xi direction

∆̃i Second moment of the filter operator along the xi direction

δij Kronecker delta

∆R Ratio of test filter size to grid filter size

∆t Time step

ǫ Error
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ε Dissipation rate

ετ Subfilter dissipation rate

εSGS Subgrid-scale dissipation rate

η Kolmogorov scale

θ Momentum thickness

θ0 Momentum thickness at inlet

θavg Average momentum thickness

κ von Kármán constant

λi Wavelength in the xi direction

ν Kinematic viscosity

νe Eddy viscosity

Π Pressure diffusion

ρ Fluid density

ς Subgrid-scale activity parameter

τw Wall shear stress

τij Exact subgrid-scale stress tensor

τSGS
ij Modeled subgrid-scale stress tensor

φ Scalar concentration

φ∗ Surface potential scalar

Φφ Averaged scalar concentration gradient
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ΦM Averaged streamwise velocity gradient

Ω∆ Box filter domain

Roman symbols

Ai, Bi Logarithmic law constants for u′2i for turbulent channel flow

B Intercept constant for the logarithmic law

C Anisotropic minimum-dissipation model constant

C∆ Poincaré constant

C̃∆ Modified Poincaré constant

Cf Friction coefficient

Ci Anisotropic minimum-dissipation model constant in the xi direction

Cs Smagorinsky coefficient

D Scalar diffusivity

De Eddy diffusivity

Eφ Spectral density of the scalar concentration

Ei Spectral density of the velocity ui

EK Spectral density of the turbulent kinetic energy

G Isotropic velocity gradient

H Wall-normal height of the computational domain for high-Reynolds-number

boundary layer flow

II Second invariant of the rate-of-strain tensor

III Third invariant of the rate-of-strain tensor

xiii



k, ki Wavenumber

k̃, k̃i Modified wavenumber

K Turbulent kinetic energy

Kres Ratio of resolved turbulent kinetic energy

kp (k21 + k23)
1/2

l, li Slip lengths

l̃ Slip length at test filter level

Lε Integral length-scale

Lλ Taylor micro-scale

Li Length of computational domain in the xi direction

Ls Shear length-scale

M Mesh size for the decaying isotropic turbulence experiment by Comte-Bellot

and Corrsin

M
(m)
G The m-th moment of the filter kernel G

Ma Mach number

n Wall-normal direction

N Number of grid points

Ni Number of grid points in the xi direction

p Pressure field

Q Mass flux

Q∗ Surface scalar flux
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qi Subgrid scalar flux

Rij Reynolds stress tensor

Re Reynolds number

Reθ Reynolds number based on momentum thickness

Reτ Reynolds number based on friction velocity

Reb Reynolds number based on bulk velocity

Sij Rate-of-strain tensor

Sce Subgrid Schmidt number

t Time

tc Characteristic time

Tij Subgrid-scale stress at test filter level

u Velocity vector

U0 Mean velocity for the decaying isotropic turbulence experiment by Comte-

Bellot and Corrsin

uτ ,u∗ Friction velocity

ub Bulk velocity

ui Velocity component in the xi direction

U∞ Free-stream streamwise convective velocity

V Volume of computational domain

vi Slip velocities

xi Position vector
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xo Aerodynamics surface roughness

xref Reference downstream plan for inlet recycling scheme

Other symbols

D Viscous diffusion

Dτ Subfilter turbulent transport

DSGS Subgrid turbulent transport

Ef , Ef,i Error in the turbulence intensities

EK,l Local error in the turbulent kinetic energy

Em Error in the mean velocity profile

Em,l Local error in the mean velocity profile

Es Error in the kinetic energy spectra

G,G∗ Filter kernel

P Production rate of the turbulent kinetic energy

T Turbulent transport

T k
ij Wall stress tensor at different filter levels
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Chapter 1

Introduction

Wall-bounded turbulence is ubiquitous in both scientific research and industrial applica-

tions. The presence of a wall introduces additional length scales that impart further com-

plexity to turbulent motions that already exhibit a large range of scales and non-linear dy-

namics. This produces further challenges in the fundamental understanding and modeling

of wall-bounded turbulence, which has been the subject of many reviews and monographs

for decades [64, 158, 160, 131, 125, 112, 51].

Prediction of turbulent flows based on first principles can be accomplished by using direct

numerical simulation (DNS), in which the Navier-Stokes equations are solved numerically

on a grid that resolves the smallest dissipative eddies. DNS has no modeling assumptions

other than the commonly accepted continuum hypothesis and the constitutive equations

or the viscous stress tensor. However, for simulations of practical flows at high Reynolds

numbers, the grid resolution required to resolve the large scale-separation is excessive for

current state-of-the-art computers, even without the additional complexity of a wall [132].

As a result, large-eddy simulation (LES) has emerged as a viable high-fidelity tool for

computational fluid dynamics. In LES, the large eddies containing most of the turbulent

energy are directly resolved while the effect of the small scales on the larger ones is modeled

through a subgrid-scale (SGS) model. Hence, the approach enables a reduction of the

computational cost by several orders of magnitude when compared with DNS [25, 26].

1
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Accurate predictions of the statistical quantities of interest require development of accurate

yet computationally efficient SGS models. Moreover, for LES to be used as a predictive tool,

the parameters involved in the SGS model should not rely on a priori tunable coefficients.

In SGS modeling, this has been addressed with the use of the dynamic procedure [42, 106].

Although the use of SGS models improves the computational efficiency in the outer

region, in the near-wall region, the energy-containing eddies become small compared to the

physical dimensions of the flow device, causing the near-wall grid requirement to become

computationally prohibitive [25, 147, 26]. In wall-resolved LES, where the grid must be

refined in all spatial directions, over 90% of the grid points are used to capture an inner-

layer whose thickness is less than 10% of the boundary layer [120]. Additionally, commonly

used SGS models are not equipped to represent the stress producing near-wall structures and

are known to be deficient in the near-wall region [54]. This calls for reduced order modeling

of the near-wall region. Wall modeling is intended to relax the near-wall grid requirements

and to compensate for the shortcomings of SGS models in the near-wall region by supplying

accurate predictions of the wall stress.

There have been many wall-modeling attempts in LES, starting with the channel flow

simulations by Deardorff [34]. Schumann [139] used an algebraic relation between the wall

shear stress and the LES velocity based on the law-of-the-wall. Piomelli et al. [123] modified

the model by taking into account the inclination angle of vortical structures in the near-

wall region. Balaras et al. [10] modeled the near-wall region by the thin boundary layer

equations (TBLE). The wall-model, in this case, is no longer a simple algebraic relation,

and the wall stress is obtained by solving simplified Navier-Stokes equations defined on an

embedded layer in the vicinity of the wall. Typically, the TBLE is solved with a Reynolds-

averaged Navier-Stokes (RANS) mixing-length model [10, 19, 171, 29, 61, 113]. Other

methods for wall-modeling include the detached-eddy simulation (DES) [149] and hybrid

LES/RANS variants that combine RANS and LES equations with the interface enforced

implicitly through a change in the turbulence model. However, an important limitation of

the models above is that they depend on pre-computed parameters from the RANS model

and/or assume explicitly or implicitly a particular law for the mean velocity profile close to
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the wall. The shortcomings of current models call for development of new dynamic models

that do not depend on a priori tunable parameters.

In addition, an important aspect of developing models is to assess their performance.

In particular, due to the intimate relationship between the grid resolution and the LES

equations, it is necessary to characterize the errors as a function of grid resolution and

Reynolds number. There have been efforts to assess the accuracy of SGS models in numerical

studies of isotropic turbulence [32, 94, 97], rotating homogeneous turbulence [65], and spatial

or temporal mixing layers [167, 168], as well as low-Reynolds-number plane channel flows

[122, 42, 28]. However, due to the grid resolution requirement of the near-wall region, there

is limited literature on the effectiveness of SGS models in high-Reynolds-number turbulent

boundary layers. Developing benchmark cases where the errors of SGS models can be

quantified for high-Reynolds-number turbulent boundary layers without the prohibitive

near-wall grid resolution is necessary to evaluate the SGS model separately from the errors

due to the missing structures near the wall.

The following three chapters explore the above topics. In Chapter 2, a new SGS model

based on the minimum dissipation requirement of the smallest resolved scales is introduced.

These models are accurate, computationally efficient, and are evaluated locally without the

necessity of ad hoc measures for stability. Chapter 3 provides two novel benchmark cases

to test the performance of SGS models without error contamination from the unresolved

turbulence near the walls. This allows for assessment of SGS models in high-Reynolds-

number wall-bounded flows in the outer region without the grid resolution requirement of

typical wall-bounded flow simulations. In Chapter 4, a new dynamic wall model free of

a priori tunable parameters based on the invariance of wall stress under test filtering is

introduced. Additional motivation and survey of prior studies for each of these objectives

is provided at the beginning of each chapter and intermediate summaries will be given at

the end of the chapters. Finally, in Chapter 5, concluding remarks are given.
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1.1 Accomplishments

Key contributions of the present study are listed below.

• Developed the minimum-dissipation SGS model and extended the model to anisotropic

grids. (Collaboration with W. Rozema and R. W. C. P. Verstappen)

• Provided theoretical framework to estimate the discrete Poincaré constant for different

numerical discretizations.

• Extended anisotropic minimum-dissipation SGS model to the scalar transport equa-

tion.

• Developed two benchmark cases to study the error convergence of SGS models in LES

of wall-bounded flows without the limitation of the wall.

• Demonstrated the error scaling in the mean velocity profile, turbulence intensities, and

energy spectra in the outer region of wall-bounded flows for the dynamic Smagorinsky

model and anisotropic minimum-dissipation model

• Provided a relevant physical length-scale to collapse the SGS model errors

• Motivated the use of the slip boundary condition with transpiration for wall-modeled

LES through theoretical and empirical methods.

• Provided a physical explanation of the well-known streamwise turbulence intensity

over-prediction in coarse LES and demonstrated the alleviation of the problem using

the slip boundary condition.

• Provided a framework to develop dynamic wall models using the balance of wall stress

tensors at different grid- and test-filter levels.

• Developed a dynamic slip wall model for equilibrium and non-equilibrium canonical

flows.



Chapter 2

Minimum dissipation subgrid-scale

models∗

2.1 Motivation

The LES equations are formally derived by applying a low-pass spatial filter to the Navier-

Stokes equations [76]. The filtered incompressible Navier-Stokes equations can be written

as
∂ũi
∂t

+
∂ũiũj
∂xj

= −1

ρ

∂p̃

∂xi
+ ν

∂2ũi
∂xj∂xj

− ∂τij
∂xj

,
∂ũi
∂xi

= 0, (2.1)

where ui are the velocity components, ρ is the fluid density, ν is the kinematic viscosity, and

p is the pressure. The filter operator, denoted by (̃·), is assumed to commute with the spatial

differentiation operator, and τij = ũiuj − ũiũj is the subgrid-scale (SGS) stress tensor. The

SGS stress tensor represents the effect of the unresolved scales on the resolved eddies. The

objective of LES modeling is to approximate τij by τSGS
ij in terms of the resolved velocity

field ūi, which is obtained by solving the LES equations

∂ūi
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

−
∂τSGS

ij

∂xj
,

∂ūi
∂xi

= 0, (2.2)

∗Part of the contents of this chapter have been published in Physics of Fluids, volume 27, 085107 (2015)
with coauthors Wybe Rozema, Parviz Moin, and Roel Verstappen [135] and in Physical Review Fluids,
volume 1, 041701(R) (2016) with coauthors Mahdi Abkar and Parviz Moin [1].
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where (̄·) denotes resolved LES quantities. This approximation of ūi is due to the fact that

an LES model is not exact, and the solution of the LES equations (2.2) are not identical

to the solutions to the filtered Navier-Stokes equations (2.1); however, we expect ũi ≈ ūi

for an accurate model. By modeling the SGS scale terms with the resolved field, the grid

requirements to solve the governing equations are reduced significantly. As accurate predic-

tion of turbulence statistics is important in many scientific and engineering applications, the

development of accurate yet computationally efficient SGS models for LES is an important

task in turbulence research.

Eddy-viscosity SGS models, where the effect of the unresolved eddies is incorporated

by locally increasing the viscosity through an eddy viscosity νe, are popular since they

are robust in practice and principally respect the dissipative character of turbulence. A

classical eddy-viscosity model is the Smagorinsky model [146], where the eddy viscosity

is given by the Smagorinsky coefficient. With the theoretically estimated Smagorinsky

coefficient, the model gives satisfactory results in simulations of decaying homogeneous

isotropic turbulence [87, 91, 5]. However, the Smagorinsky model inappropriately produces

non-zero eddy dissipation for laminar and transitional flows [104, 121, 166]. This causes

erroneous predictions of the shear stress at solid walls and delays transition to turbulence.

In simulations of specific laminar or transitional flows, acceptable results can sometimes

be obtained by decreasing the Smagorinsky coefficient [35, 165], but no single value of

the Smagorinsky coefficient gives satisfactory results for general laminar, transitional, and

turbulent flow. Therefore, the Smagorinsky model often fails in LES of practical flows.

The Smagorinsky model can be improved by computing the value of the Smagorinsky

coefficient with the dynamic procedure [42, 77]. The dynamic procedure determines the

Smagorinsky coefficient dynamically by comparing the eddy dissipation at two filter lev-

els. The dynamic Smagorinsky model (DSM) gives the correct level of eddy dissipation,

and appropriately switches off for laminar and transitional flow [119, 92]. However, the

DSM requires increased computational complexity compared to the Smagorinsky model

and needs averaging in homogeneous directions and clipping of negative values to zero to

attain numerical stability.
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The eddy viscosity model can also be improved by modifying the functional dependence

of the eddy viscosity on the LES solution. For example, the WALE model is designed to

switch off at a desired rate near solid walls, and the Vreman model takes a fundamental

approach to appropriately switch off for laminar flow. The analysis by Vreman locally char-

acterizes a flow algebraically by the resolved velocity gradient tensor and rigorously derives

the classification of flows for which the exact SGS tensor gives no turbulence dissipation.

The eddy viscosity is then set to a function of the LES solution which vanishes for these

flows. The resulting Vreman model show similar performance to DSM in simulations of a

temporal mixing layer and turbulent channel flow. However, the WALE and Vreman models

still gives eddy dissipation for solid body rotation. Additionally, they share the drawback

that the model constant must be adapted to the mesh refinement so that the proper amount

of energy is drained from the resolved scales.

This chapter introduces a new eddy-viscosity SGS model first introduced in Verstappen

et al. [163] and improved in Rozema et al. [136], which gives the minimum eddy dissipation

required to remove energy pile-up in the smallest resolved scales of the LES solution. The

MD model appropriately switches off for laminar and transitional flow, has low computa-

tional complexity, and it is proportional to the exact SGS tensor on isotropic grids. The

model produces good results on isotropic grids for various flow configurations. However,

it is also demonstrated that on anisotropic grids the MD model is not proportional to the

exact SGS tensor and that its results are primarily determined by an approximated length

scale for the grid size. A correction for anisotropic grids is presented in the form of the

anisotropic minimum-dissipation (AMD) model. A new method to numerically estimate

the discrete Poincaré constant for the MD and AMD model is introduced. The MD and

AMD models are applied to simulation of decaying isotropic turbulence, temporal mixing

layer, and turbulent channel flow. Finally, an extension of the AMD model to the scalar

transport equation with applications to the atmospheric boundary layer is proposed.
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2.2 Minimum-dissipation subgrid-scale models

2.2.1 Formulation

Let us consider the continuous solution of the LES equations (2.2), ūi, and define the box

filtered LES velocity field with domain Ω∆ as

˜̄ui =
1

|Ω∆|

∫

Ω∆

ūi dΩ∆, (2.3)

where the filter size of both the box filter and the underlying filter operator associated with

the LES equations is ∆. Then, the subfilter scales of the LES solution corresponding to the

filter box Ω∆ are given by the residual field (ūi − ˜̄ui), and the SGS model must keep them

from becoming dynamically significant. The evolution equation of the LES subfilter energy,

(ūi − ˜̄ui)(ūi − ˜̄ui)/2, cannot be expressed exclusively in terms of the resolved LES solution,

and thus it is impossible to directly derive a practical SGS model from the evolution of the

LES subfilter energy. However, if the subfilter scales are assumed to be periodic on the filter

box Ω∆, an upper bound for the LES subfilter energy can be obtained from the Poincaré

inequality [162, 164]

∫

Ω∆

1

2
(ūi − ˜̄ui)(ūi − ˜̄ui) dΩ∆ ≤ C∆

∫

Ω∆

1

2

∂ūi
∂xj

∂ūi
∂xj

dΩ∆, (2.4)

where the Poincaré constant C∆ is equal to the inverse of the smallest non-zero eigenvalue

of the negative Laplace operator −∇2 for a smooth, bounded domain Ω∆. The equality

sign holds if ūi is fully aligned with the eigenfunction of −∇2 associated with the smallest

non-zero eigenvalue. The Poincaré inequality suggests that the subfilter energy of the LES

solution can be confined by imposing an upper bound on the velocity gradient energy,

(∂ūi/∂xj) (∂ūi/∂xj) /2.

The evolution of the velocity gradient energy density can be expressed as

∂

∂t

(
1

2

∂ūi
∂xj

∂ūi
∂xj

)
= − ∂ūi

∂xk

∂ūj
∂xk

S̄ij − 2ν
∂S̄ij

∂xk

∂S̄ij

∂xk
− 2

∂S̄ij

∂xk

∂νeS̄ij

∂xk
+

∂fi
∂xi

, (2.5)
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where the right-hand-side terms are the production, viscous dissipation, SGS dissipation,

and flux of velocity gradient energy, respectively [162], S̄ij is the resolved rate-of-strain

tensor, and τSGS
ij − 1/3δijτ

SGS
kk = −2νeS̄ij with δij being the Kronecker delta. Upon spatial

integration of Eq. (2.5) over the filter box Ω∆, the divergence ∂fi/∂xi leads to boundary

terms. Boundary terms express transport of velocity gradient energy instead of production

or dissipation, and are ignored in the derivation of the minimum-dissipation model. For

the LES subfilter scales to stay bounded at the natural rate of dissipation given by ν, the

production term must be balanced by the SGS dissipation term. Approximating the eddy

viscosity to be constant over the filter box and ignoring boundary terms, this constraint

can be rewritten as

∫

Ω∆

− ∂ūi
∂xk

∂ūj
∂xk

S̄ij dΩ∆ = 2νe

∫

Ω∆

∂S̄ij

∂xk

∂S̄ij

∂xk
dΩ∆. (2.6)

or equivalently, ∫

Ω∆

−4

3
S̄ij S̄jkS̄ki dΩ∆ = 2νe

∫

Ω∆

∂S̄ij

∂xk

∂S̄ij

∂xk
dΩ∆. (2.7)

The SGS dissipation term is bounded by the Poincaré inequality

∫

Ω∆

S̄ijS̄ij dΩ∆ ≤ C∆

∫

Ω∆

∂S̄ij

∂xk

∂S̄ij

∂xk
dΩ∆. (2.8)

Thus, an eddy-viscosity model gives sufficient eddy dissipation to cancel the production of

velocity gradient energy if the inequality

4

∫

Ω∆

III(ū) dΩ∆ ≤ 4
νe
C∆

∫

Ω∆

II(ū) dΩ∆ (2.9)

holds, where II(ū) = 1/2(S̄ij S̄ij) and III(ū) = −1/3(S̄ij S̄jkS̄ki) are the second and third

invariants of the resolved rate-of-strain tensor, respectively. The minimum eddy dissipation

that satisfies this condition is

νe = C∆

max
{∫

Ω∆
III(ū) dΩ∆, 0

}

∫
Ω∆

II(ū) dΩ∆
. (2.10)
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Using an approximation of the integrals given by the mid-point rule and a numerical ap-

proximation of the Poincaré constant C∆ = C∆2, the MD model [136, 134] is given as

νe = C∆2max {III(ū), 0}
II(ū)

, (2.11)

where C is a model constant and ∆ is the LES filter size or grid resolution.

The MD model has desirable practical and theoretical properties. The third invariant

of the rate-of-strain tensor vanishes in flows that are laminar or 2-dimensional [166]. Thus,

the MD model is proportional to the exact SGS tensor and gives zero SGS dissipation

for these flows. The model also switches off for two-dimensional flow [162, 108]. Also,

the computational complexity of the model is low. Compared to the constant-coefficient

Smagorinsky model, the MD model needs only additional computation of the third invariant

of a tensor which is readily available. Moreover, the eddy viscosity is evaluated locally

without the need for averaging in homogeneous directions. Finally, the production term in

Eq. (2.5) is proportional to the dissipation of the leading-order term of a Taylor expansion

of the exact SGS tensor on isotropic grids [165, 166]. This dissipation is proportional to

III(ū), and thus on isotropic grids, the MD model is consistent with the eddy dissipation

of the exact SGS tensor.

2.2.2 A correction for anisotropic grids

The derivation of the MD model applies the box filter to the LES solution, and confines

the energy of LES subfilter scales by application of the Poincaré inequality. This gives a

model constant C∆ which depends on the size of the filter box ∆. On isotropic grids, the

LES filter size ∆ of the MD model is set equal to the grid spacing

∆ = ∆1 = ∆2 = ∆3, (2.12)

where ∆i denotes the grid spacing in the three spatial directions. However, on anisotropic

grids, the MD model requires approximation of the filter size ∆. In the literature, the filter
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size has been set according to a numerical counterpart of the Poincaré constant [162]

3

∆2
=

1

∆2
1

+
1

∆2
2

+
1

∆2
3

. (2.13)

However, for grid cells with a large aspect ratio, this filter size approximation is dominated

by the grid spacing in the finest grid direction. A more conventional approximation of the

filter size on anisotropic grids is given by the cube root of the cell volume [34]

∆ = (∆1∆2∆3)
1/3 . (2.14)

On anisotropic grids the above approximations give different filter sizes. It will be demon-

strated in Section 2.3 that on anisotropic grids the results of the MD model are primarily

determined by the form of the approximation of the filter size and that neither approxima-

tion gives satisfactory results.

Moreover, whereas the MD model is proportional to the exact SGS stress tensor on

isotropic grids, this desirable property does not hold for anisotropic grids. This motivates

the derivation of an MD model which does not require an approximation of the filter size

and is consistent with the exact SGS tensor on both isotropic and anisotropic grids.

Rozema et al. [136], Rozema [134] showed that the dependence of the model constant

on the size of the filter box can be sidestepped by using a modified Poincaré inequality.

For simplicity, it is assumed that the filter box Ω∆ is rectangular with dimensions ∆i. The

energy of the subfilter scales can then be confined using a modified Poincaré inequality

∫

Ω∆

1

2
(ūi − ˜̄ui)(ūi − ˜̄ui) dΩ∆ ≤

∫

Ω∆

1

2
C
∂sūi
∂xj

∂sūi
∂xj

dΩ∆, (2.15)

where ∂s/∂xj = ∆j∂/∂xj (repeated indices do not imply summation) is the scaled gradient

operator. The model constant C is now equal to the inverse of the smallest non-zero

eigenvalue of −(∂s/∂xj)(∂s/∂xj) integrated over the filter box Ω∆, which is independent of

the size of the filter box. Thus, whereas the Poincaré inequality in Eq. (2.4) incorporates

the dependence on the size of the filter box in the Poincaré constant C∆, the modified
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Poincaré inequality incorporates the dependence on the size of the filter box by scaling the

velocity gradient.

The modified Poincaré inequality demonstrates that the subfilter energy can be confined

by imposing a bound on the scaled velocity gradient energy. If the eddy viscosity and the

filter sizes are assumed to be constant on the filter box Ω∆, then the equivalent derivation

as the MD model gives

νe =
max

{∫
Ω∆

−C(∂sūi/∂xk)(∂sūj/∂xk)S̄ij dΩ∆, 0
}

∫
Ω∆

(∂ūm/∂xl) (∂ūm/∂xl) dΩ∆
. (2.16)

In practical applications of this model, the integrals over the filter box are approximated as

νe =
max

{
−C(∂sūi/∂xk)(∂sūj/∂xk)S̄ij , 0

}

(∂ūm/∂xl) (∂ūm/∂xl)
. (2.17)

The AMD model is consistent with the exact SGS stress tensor on anisotropic grids.

Taylor expansion of the SGS tensor gives [32]

τij = uiuj − ūiūj =
1

12

∂sūi
∂xk

∂sūj
∂xk

+O(∆4). (2.18)

Thus, the eddy dissipation of the exact SGS stress tensor is

−τijS̄ij = − 1

12

∂sūi
∂xk

∂sūj
∂xk

S̄ij +O(∆4). (2.19)

The leading-order term of this expansion is proportional to the term in the numerator of

the eddy viscosity of the AMD model. This demonstrates consistency of the AMD model

with the exact SGS dissipation for anisotropic grids. The leading-order term of the Taylor

expansion of the exact SGS tensor is also known as the gradient model [165]. Thus, the

AMD model gives zero eddy dissipation if the gradient model gives zero eddy dissipation.

Consistency with the gradient model is a desirable property, as a priori tests show that

the gradient model has good correlation with the exact SGS tensor [32]. Also, the analysis

by Vreman restricted to separable filters shows that the gradient model gives zero SGS
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dissipation when the exact SGS stress tensor is zero [166]. This confirms that the AMD

model switches off for flows with vanishing SGS dissipation. It is important to remark

that the AMD model is only proportional to the gradient model and is not identical to

it. Indeed, the gradient model is known to produce inadequate dissipation while the AMD

model provides better predictions as shown in section 2.3. The AMD model also switches

off for two-dimensional flow on anisotropic grids unlike the Vreman model and has low

computational complexity compared to the DSM.

2.2.3 The discrete Poincaré constant

Application of the MD and AMD models in a practical LES requires setting of the model

constant C. Payne and Weinberger [115] have derived the Poincaré constant C∆ = (∆/π)2

for a convex box of diameter ∆, which yields C = 1/π2 for the continuous equations.

However, the coefficient of an SGS model should depend on the numerical method and on

the nature of the turbulence at the cut-off of the LES filter [93].

The difference in the Poincaré constant for different numerical methods can be explained

in terms of the discrete differentiation operator. The Poincaré inequality can be written as

∫

Ω∆

1

2
(ūi − ˜̄ui)(ūi − ˜̄ui) dΩ∆ ≤ C∆

∫

Ω∆

1

2

∂ūi
∂xj

∂ūi
∂xj

dΩ∆

= C∆

∫

Ω∆

1

2
F−1(ikj ˆ̄ui)F−1(ikj ˆ̄ui) dΩ∆, (2.20)

where (̂·) is the Fourier transformation, F−1 is the inverse transformation, kj are the

wavenumbers and i2 = −1. The application of the discrete differentiation operator on

the Poincaré inequality then requires a discrete Poincaré constant C̃∆ such that

C∆

∫

Ω∆

1

2
F−1(ikj ˆ̄ui)F−1(ikj ˆ̄ui) dΩ∆ ≈ C̃∆

∫

Ω∆

1

2
F−1(ik̃j ˆ̄ui)F−1(ik̃j ˆ̄ui) dΩ∆, (2.21)

since the wavenumbers are replaced by the modified wavenumbers k̃j . Assuming the flow is
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isotropic and in the inertial range, that is E(k) ∝ k−5/3,

C̃∆ ≈ C∆

∫∞
0 k2E(k)dk
∫∞
0 k̃2E(k)dk

. (2.22)

This yields C̃∆ = 0.28∆2 for the second-order central finite difference, and C̃∆ = 0.19∆2

for the fourth-order central finite difference. Note that even for finite difference schemes on

staggered grids, the evaluation of the derivative term ∂ūi/∂xj on the right-hand-side of Eq.

(2.20), where the discrete Poincaré constant is derived, must be at the locations of the ūi

term, and the improvement of the modified wavenumber does not take effect in this case.

The constant C can also be computed empirically by varying its value to obtain sat-

isfactory results for the simulation of decaying isotropic turbulence in terms of decay rate

[136]. For the MD model, this results in C = 0.33 for second-order finite difference methods

and C = 0.24 for fourth-order finite difference methods. For the AMD model, this results

in C = 0.30 for second-order finite difference methods and C = 0.21 for fourth-order finite

difference methods. In both cases, the values are in fair agreement with the theoretical

values given above.

2.3 Performance of minimum-dissipation models

To validate the proposed MD and AMD models, simulations are performed of decaying

isotropic turbulence, a temporal mixing layer, and turbulent channel flow. The simulations

have been performed with two numerical methods: 1) second- and fourth-order central dis-

cretization of the compressible Navier-Stokes equations on a collocated computational grid

[66, 135] with a low-storage fourth-order Runge-Kutta time-advancing scheme [134], and

2) a staggered second-order finite difference method [110] with fractional-stepping [62] for

the incompressible Navier-Stokes equations with a third-order Runge-Kutta time-advancing

scheme [176]. In both cases, the eddy viscosity of the SGS model is computed at the cell

centers with the same numerical method as the governing equations.
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2.3.1 Decaying isotropic turbulence

To assess the MD and AMD models, simulations of the decaying isotropic turbulence exper-

iment by Comte-Bellot and Corrsin are performed [33]. In these experiments, turbulence

is generated by a mesh with size M = 5.08 cm in a flow of mean velocity U0 = 1000 cm/s.

Energy spectra of the decaying turbulence are recorded at three stations 42M , 98M , and

171M downstream of the mesh. The simulations are simplified by considering the flow

inside a cube of length 11M which moves along with the mean flow and passes the physical

mesh at t = 0 s. Thus, the turbulence in the cube is expected to match the measured

energy spectra at t = 42M/U0, t = 98M/U0, and t = 171M/U0, with corresponding

Reλ = 〈u21〉1/2Lλ/ν = 71.6, 65.3, and 60.7 respectively, where Lλ is the Taylor micro-scale.

The simulations are performed with both the collocated method for compressible flow

and the staggered method for incompressible flow. To assess the influence of the numerical

discretization, both second-order and fourth-order accuracy were used for the collocated

method. Simulations are performed with the DSM [77], the MD model (Eq. 2.11), and

the AMD model (Eq. 2.17). The DSM is implemented with a box filter as the test filter

with averaging in the homogeneous directions. The computational grid is isotropic with

64 cells in each direction. The Reynolds number based on the size of the computational

domain is Re = 10, 129, and the time step size is set to ∆t = 1.59× 10−3M/U0. The initial

condition is generated by fitting a velocity field with randomized phases to the energy

spectrum measured at the first station. The random phases are adjusted by performing a

preliminary simulation from t = 0 s to t = 42M/U0 and rescaling the adjusted velocity field

to the energy spectrum measured at the first station [58]. The resulting field is used as the

initial condition for the simulations.

Figure 2.1 shows the total energy K and energy spectra EK(k) obtained with the stag-

gered second-order accurate simulation method with the DSM, the MD model, and the

AMD model, where the energy is non-dimensionalized by the total energy at the first mea-

surement station, and k is the wavenumber nondimensionalized by the length of the cube,

11M . The data points in the energy decay plot shown in Figure 2.1(a) have been obtained
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Figure 2.1: (a) Resolved kinetic energy up to the cut-off wavenumber and the (b) energy
spectra at the three measurement stations obtained with the second-order accurate simu-
lation method with the DSM ( ), the MD model ( ), and the AMD model ( ).
Experimental data ( ) plotted for comparison. Cut-off wavenumber given by the grid res-
olution ( ).

by fitting the measured energy spectrum to the computational grid and computing the to-

tal kinetic energy, effectively only accounting for the energy of the resolved scales of the

LES. The energy dissipation obtained with the MD and AMD models accurately agrees

with the energy decay from the experiment, whereas the energy decays more rapidly with

DSM. Energy spectra obtained with the MD and AMD model are also accurate, as seen

in Figure 2.1(b). The energy spectra obtained with the MD and AMD models differ from

energy spectra obtained with the DSM at wave numbers near the grid cut-off, where the

spectra given by the DSM is shown to be too dissipative. Although not shown, box-filtering

the experimental spectra with filter size equivalent to the grid resolution provides better

agreement with DSM results. However, in applications of LES, an SGS model that is able

to produce the unfiltered results up to grid cut-off is more advantageous as quantities of

practical interest are based on unfiltered statistics.

The experiment is repeated using a collocated method for both second order (not shown)

and fourth-order accurate methods (shown in Figure 2.2). The energy decay obtained with
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Figure 2.2: (a) Resolved kinetic energy up to the cut-off wavenumber and the (b) energy
spectra at the three measurement stations obtained with the fourth-order accurate simu-
lation method with the DSM ( ), the MD model ( ), and the AMD model ( ).
Experimental data ( ) plotted for comparison. Cut-off wavenumber given by the grid res-
olution ( ).

the MD model and the AMDmodel closely match the experiment in all cases. The computed

energy spectra demonstrate that both the MD and AMD models appropriately capture the

turbulent energy. In summary, the proposed MD and AMD models have produced accurate

simulations of decaying grid turbulence with different orders of accuracy of the spatial

discretization, and with the coefficient C estimated as in Section 2.2.3.

2.3.2 Temporal mixing layer

To assess the applicability of MD and AMDmodels to transitional flow and anisotropic grids,

simulations of a temporal mixing layer are performed. A temporal mixing layer consists of

two streams with opposite flow velocities. A Kelvin-Helmholtz instability originates at the

interface of the two streams, and eventually causes transition to turbulence. The temporal

mixing layer is expected to be self-similar in the turbulent regime [133, 46].

The temporal mixing layer studied in this chapter is similar to the weakly compressible

mixing layer at a high Reynolds number studied by Vreman [166]. The coordinate x1 is
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aligned with the streamwise direction, the coordinate x2 with the direction normal to the

mixing layer, and the coordinate x3 with the spanwise direction. All the quantities are

nondimensionalized by half the initial vorticity thickness of the mixing layer, the far-field

streamwise velocity, and the free-stream temperature and pressure. The initial dimension-

less velocity field is given by a hyperbolic tangent

u1 = tanh (x2) , u2 = 0, u3 = 0, (2.23)

with random perturbations of small magnitudes added near the center plane x2 = 0 to

trigger transition to turbulence. The initial nondimensionalized temperature profile is set

to

φ = 1 +
1

2
(γ − 1)Ma2 (1− u1) (1 + u1) , (2.24)

where γ is the heat capacity ratio and Ma is the free-stream Mach number. The initial

pressure is set equal to the free-stream pressure p = 1. The Reynolds number based on

half the initial vorticity thickness is 100, 000, and the free-stream Mach number is Ma =

0.25. The computational domain spans 90 times half the initial vorticity thickness in each

direction. The simulations are performed on anisotropic rectangular grids with constant

grid spacing in each direction. The computational grid has 90 cells in the streamwise and

spanwise directions, and 180, 360, or 720 grid cells in the direction normal to the mixing

layer. Thus, the computational grids have aspect ratios ∆1/∆2 = ∆3/∆2 of 2, 4, and 8,

respectively. Periodic boundary conditions are imposed in the streamwise and spanwise

directions, and free-slip boundary conditions are imposed at the boundaries in the direction

normal to the mixing layer.

The simulations are performed with the fourth-order accurate collocated method for

compressible flow, and with the DSM, Vreman, MD, and AMD models. On anisotropic

grids, the MD model requires an approximation of the filter size. Simulations are performed

with the approximation proposed in the literature in Eq. (2.13), labeled MD1, and with the

conventional approximation in Eq. (2.14), labeled MD2. The growth rate of the momentum

thickness θ of the mixing layer, the variance of the streamwise velocity, the dissipation rate
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Figure 2.3: (a) Growth rate of the momentum thickness obtained in simulations of the
temporal mixing layer on the grid with aspect ratio 4 with the DSM ( ), Vreman ( ),
MD1 ( ), MD2 ( ), and AMD ( ) models, and the (b) variance of the streamwise
velocity as function of x2 with the AMD model at t = 80 ( ), 100 ( ), 120 ( ), and
140 ( ).

of total kinetic energy, and streamwise energy spectra E1(k1) at the center plane of the

mixing layer are presented.

First, the results obtained on the grid with an aspect ratio of 4 are presented. Figure

2.3(a) shows the growth rate of the mixing layer. The DSM and the Vreman model are

known to appropriately switch off for laminar and transitional flows [165, 166]. Transition

of the mixing layer occurs at approximately the same time for the DSM and the Vreman

model. For both models, the growth rate of the mixing layer is approximately constant from

t = 50 to t = 140, which indicates self-similarity of the mixing layer in the turbulent regime.

The MD and AMD models predict transition to turbulence at approximately the same time,

suggesting that the MD and AMD models appropriately switch off for transitional flow.

The behavior of the MD model in the turbulent regime is sensitive to the approximation

of the filter size, ∆. For the MD2 model the growth rate of the mixing layer is approximately

equal to the growth rate predicted by the DSM, but for the MD1 model, the growth rate is

considerably smaller. The AMD model does not require an approximation of the filter size
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Figure 2.4: (a) Decay rate of the total energy and the (b) streamwise energy spectra as a
function of streamwise wavenumber k1 at the center plane of the mixing layer at t = 140
obtained in simulations of the temporal mixing layer on the grid with aspect ratio 4 with
the DSM ( ), Vreman ( ), MD1 ( ), MD2 ( ), and AMD ( ) models.

on anisotropic grids and predicts a growth rate which closely agrees with the growth rate

obtained with the DSM and the Vreman model.

Figure 2.3(b) shows the streamwise velocity variance 〈ū′21 〉 obtained with the AMD

model at different times in the turbulent regime approximately collapse. Here 〈·〉 denotes

averaging in the homogeneous directions (and time if flow is stationary), and (·)′ denotes
fluctuating quantities. This indicates that the AMD model appropriately captures the self-

similar character of the mixing layer in the turbulent regime.

Figure 2.4 shows the temporal rate of change of the total kinetic energy and the stream-

wise energy spectra at t = 140. The kinetic energy is practically constant for the DSM,

Vreman, MD1, MD2, and AMD models up to t = 25, which confirms that all models con-

sidered appropriately switch off for transitional flow. The DSM, Vreman model, MD2, the

AMD models predict approximately equal ∂K/∂t in the turbulent regime. However, the

MD1 model predicts significantly higher energy decay rate in the turbulent regime. The

energy spectra show a marked quantitative difference between the results obtained with

the MD1 model, and the other models. The DSM, Vreman, MD2, and AMD models give
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Figure 2.5: Growth rate of the momentum thickness and the streamwise energy spectra
at the center plane of the mixing layer at t = 140 obtained in simulations of the temporal
mixing layer on the grids with aspect ratio 2 (a and b, respectively) and 8 (c and d,
respectively) with the DSM ( ), Vreman ( ), MD1 ( ), MD2 ( ), and AMD
( ) models.
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energy spectra with the desirable E1(k1) ∼ k
−5/3
1 power law. However, the MD1 model

gives accumulation of energy at scales near the grid cut-off, indicating insufficient energy

dissipation on anisotropic grids for the particular filter size approximation (Eq. 2.13).

Figure 2.5 shows the growth rate of the momentum thickness and the streamwise en-

ergy spectra for grids with aspect ratios 2 and 8. The results confirm that on grids with

considerable anisotropy, the behavior of the MD model is primarily determined by the fil-

ter size approximation. At the smaller aspect ratios, results obtained with both filter size

approximations closely agree with results obtained with the DSM and the Vreman model.

However, at the larger aspect ratios, the MD model behaves differently for the two consid-

ered filter size approximations, where both approximations deviate from the k−5/3 power

law and result in accumulation of kinetic energy near the grid cut-off.

At both aspect ratios, results obtained with the AMD model closely agree with results

obtained with the DSM and the Vreman model. The AMD model appropriately switches

off for transitional flow, and successfully captures the constant growth rate of the mixing

layer in the turbulent regime. Also, the AMD model gives energy spectra with k−5/3 power

law.

2.3.3 Turbulent channel flow

To assess the applicability of the proposed AMD model to wall-bounded flows, simulations

of turbulent channel flow at a friction Reynolds number of Reτ ≈ 550 are performed.

The coordinates x1, x2, and x3 are the streamwise, wall-normal, and spanwise directions,

respectively. The size of the channel is 2πδ×2δ×πδ, where δ is the channel half-height. The

simulations were run for at least 100 eddy-turnover times, defined as δ/uτ , after transients,

where uτ is the friction velocity. The channel flow is driven by a constant streamwise

pressure gradient.

Large-eddy simulations are performed with the staggered second-order finite difference

method. The simulations are performed on a coarse grid with 64 cells in each direction.

The grid spacing is uniform in the streamwise and spanwise directions. In the wall-normal

direction the grid stretches towards the wall according to a hyperbolic tangent function.
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Figure 2.6: (a) Mean streamwise velocity and the (b) streamwise, (c) spanwise, and (d)
wall-normal turbulence intensities for no SGS model ( ), DSM ( ), MD1 ( ), MD2
( ), and AMD ( ) models. DNS ( ) plotted for comparison.
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The height of the first grid cell at the wall is ∆2
+ ≈ 3.5, where the superscript + denotes

viscous units defined by uτ and ν. Simulations are performed both without an SGS model

and with the DSM and AMD models. The results of the simulations are compared with

results of DNS by Hoyas and Jiménez [48].

Figure 2.6 shows the mean streamwise velocity and the turbulence intensities. A simu-

lation without an SGS model predicts a lower mass flow than DNS. Both the DSM and the

AMD model give satisfactory predictions. Just as in simulations of the temporal mixing

layer, results obtained with the two MD models are primarily determined by the used filter

size approximation. Results obtained with the MD1 closely agree with the DNS, but the

filter size approximation for MD2 is too dissipative. This is in contrast with the simulations

of the temporal mixing layer, which suggests that neither of the two filter size definitions

discussed are robust.

It is well known that the accuracy of channel flow simulations with eddy-viscosity models

is mainly influenced by the behavior of the SGS model near the wall [104]. The near-wall

behavior of the two considered filter size approximations is different due to the stretching

of the grid in the wall-normal direction while maintaining constant grid sizes in the wall-

parallel directions. Further analysis of the near-wall behavior of the AMD model and its

performance in the outer region of wall-bounded flows will be discussed in Chapter 3.

2.4 Extension to the scalar transport equation

The AMD model formulation can be extended to the transport equations for scalar concen-

tration. Applying a box filter, as in the derivation of the filtered Navier-Stokes equations,

to the scalar-transport equation gives

∂φ̃

∂t
+

∂ũiφ̃

∂xi
= D

∂2φ̃

∂xi∂xi
− ∂qi

∂xi
, (2.25)
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where D is the scalar diffusivity, and qi = ũiφ − ũiφ̃ is the LES subfilter scalar flux. The

subfilter scalar flux is commonly approximated with an eddy-diffusivity model

qi ≈ qSGS
i = −∂Deφ̄

∂xi
, (2.26)

where De is the eddy diffusivity. De is related to νe by the SGS Schmidt number Sce, such

that De = νeSc
−1
e . Since, the turbulent scalar transport is a key component of many envi-

ronmental and engineering turbulent flows, an extension of the AMD approach to modeling

the SGS scalar flux is valuable.

2.4.1 Formulation

The modified Poincaré inequality applied to the scalar concentration is given by

∫

Ω∆

1

2
(φ̄− ˜̄φ)(φ̄− ˜̄φ) dΩ∆ ≤ C

∫

Ω∆

1

2

∂sφ̄

∂xi

∂sφ̄

∂xi
dΩ∆. (2.27)

If the eddy diffusivity is assumed to be constant in the filter box Ω∆, then the evolution

equations for scaled scalar-concentration gradient energy density, (∂sφ̄/∂xi)(∂sφ̄/∂xi)/2,

can be expressed as

∂

∂t

(
1

2

∂φ̄

∂xi

∂φ̄

∂xi

)
= −∂ūi

∂xj

∂φ̄

∂xj

∂φ̄

∂xi
− (D +De)

∂2φ̄

∂xi∂xj

∂2φ̄

∂xi∂xj
+

∂gi
∂xi

, (2.28)

where gi are the fluxes of scaled scalar-concentration gradient energy. Upon spatial integra-

tion over the filter box Ω∆, the divergence terms ∂gi/∂xi, can be rewritten as a boundary

integral and can be ignored as in the derivation of the AMD model.

Following the same argument as the SGS eddy-viscosity model, the AMD eddy diffusivity

is given by

De =
max

{∫
Ω∆

−Cj(∂sūi/∂xj)(∂sφ̄/∂xj)(∂φ̄/∂xi) dΩ∆, 0
}

∫
Ω∆

(∂φ̄/∂xk)(∂φ̄/∂xk) dΩ∆
. (2.29)

By approximating the integrals over the filter box with the mid-point rule, the practical
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form of the AMD eddy-diffusivity model can be written as

De =
max

{
−(∂sūi/∂xj)(∂sφ̄/∂xj)(∂φ̄/∂xi), 0

}

(∂φ̄/∂xk)(∂φ̄/∂xk)
. (2.30)

Similar to the eddy viscosity model, the computational complexity of the AMD eddy-

diffusivity model is comparable to that of the constant coefficient Smagorinsky model, and

the AMD SGS scalar flux is consistent with the exact SGS scalar flux on both isotropic and

anisotropic grids.

2.4.2 Numerical experiments

To test the performance of the AMD model, a high-Reynolds-number boundary layer flow

(ν = 0) with a constant surface scalar flux Q∗ = u∗φ∗ is simulated, where u∗ is the friction

velocity and φ∗ is the surface potential scalar [1]. The coordinates x1, x2, and x3 are

the streamwise, spanwise, and wall-normal directions, respectively. The wall-normal height

of the computational domain is set to H = 1000m, and the horizontal domain spans are

2πH. The boundary layer is driven by an imposed uniform pressure gradient −u2∗/H in

the streamwise direction. Friction velocity u∗ and aerodynamic surface roughness xo are

set to 0.45m/s and 0.1m, respectively, which is similar to the setup in previous studies

[127, 153, 82]. The simulations are carried out with resolutions of 48× 48× 48, 72× 72× 72

and 96 × 96 × 96.

The streamwise and spanwise directions are discretized pseudo-spectrally, while the

wall-normal direction is discretized with staggered second-order finite difference. Hence,

in the AMD model, we adopt C1 = C2 = 1/12 and C3 = 0.30 for the modified Poincaré

constant (see section 2.2.3). The nonlinear terms are de-aliased in Fourier space using

the 3/2 rule [21]. The time advancement is based on a second-order-accurate Adams-

Bashforth scheme. In the streamwise and spanwise directions, periodic boundary conditions

are applied. The upper boundary conditions are zero stress, zero flux, and zero vertical

velocity. For the bottom surface, the standard wall-stress formulation based on the Monin-

Obukhov similarity theory is employed [103].



CHAPTER 2. MINIMUM DISSIPATION SUBGRID-SCALE MODELS 27

10-2 10-1 100
8

10

12

14

16

18

20

22

24

(a)

0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

(b)

Figure 2.7: (a) Streamwise mean velocity profile and (b) ΦM for grid resolutions Ni = 48
( ), 72 ( ), and 96 ( ). The logarithmic law profile and ΦM = 1 ( ) are plotted for
comparison.

2.4.3 Results

Figure 2.7(a) shows the mean velocity profile obtained from the AMD model with different

grid resolutions. The mean streamwise velocity gradient ΦM = (κx3/u∗)(∂〈ū1〉/∂x3), where
κ is the von Kármán constant, is also plotted in Figure 2.7(b) as a function of height. For

the homogeneous surface, the mean velocity is expected to be logarithmic in the surface

layer, following 〈u1〉/u∗ = (1/κ) log(x3/xo), which occupies the bottom 10% − 20% of the

simulation domain. The ΦM predicted by the similarity theory is expected to have a con-

stant value in the surface layer [18]. The AMD model accurately predicts the logarithmic

profile for the mean streamwise velocity.

For the scalar concentration, since a constant surface flux is imposed as the boundary

condition, it is more common to evaluate the mean scalar concentration gradient Φφ, de-

fined as (κx3/φ∗)(d〈φ̄〉/dx3), instead of the actual value of the scalar concentration. For

a passive scalar under neutral stratification, the value of Φφ has been reported to be 0.74

[18, 154] in the surface layer. The vertical profile of Φφ is presented in Figure 2.8(a). The

values obtained from the AMD model show the expected behavior, and are comparable
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Figure 2.8: (a) Profiles of Φφ and (b) SGS Schmidt number for grid resolutions Ni = 48
( ), 72 ( ), and 96 ( ). Φφ = 0.74 and Sce = 0.33, 0.7 ( ).

to the reported trends using the scale-dependent DSM implementation [127, 153, 20] (not

shown). The vertical distribution of the subgrid Schmidt number Sce is also shown in Figure

2.8(b). This is obtained by averaging the ratio of the eddy viscosity and eddy diffusivity

in homogeneous directions and in time. In most LES with a passive scalar, the subgrid

Schmidt number is chosen to be a fixed constant value between 0.33 and 0.7 [90, 156, 3].

As seen in this figure, the obtained value for the subgrid Schmidt number is consistent with

those reported in previous studies. In addition, the results show very little sensitivity to

the grid resolution.

Figure 2.9 depicts the resolved and subgrid profiles of the shear stress and wall-normal

scalar flux, respectively. In the absence of viscous effects and under quasi-steady state

conditions, the divergence of the total shear stress must balance the imposed pressure

gradient. Also, the divergence of the total scalar flux must balance the rate of change

in the scalar concentration. In this study, the boundary layer flow is driven by a constant

streamwise pressure gradient, and a constant scalar flux is imposed at the surface. Therefore,

the total shear stress and wall-normal scalar flux are both expected to have linear mean

profiles [128, 127, 153]. As shown in these figures, the LES calculations with the AMD
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Figure 2.9: (a) Total and partial shear stress normalized by u2∗, and the (a) total and partial
wall-normal scalar flux normalized by Qs. Total quantities given by solid line. The resolved
and SGS quantities for Ni = 48 ( ; ×), 72 ( ; ∗), and 96 ( ; +).

model reproduces the linear profiles of the total turbulent fluxes which can serve as a

confirmation of stationarity, and momentum and scalar flux conservation of the scheme

[82]. The influence of spatial resolution is also depicted in these figures. As expected, the

contribution of the resolved turbulent fluxes increases as the spatial resolution increases.

In a high-Reynolds-number turbulent boundary layer flow, it is well-known that the

velocity and scalar spectra follow the Kolmogorov −5/3 power law in the inertial subrange

(k1x3 > 1, where k1 is the streamwise wave number and x3 is the distance to the wall)

[137, 150]. In addition, in the energy-production range (k1x3 < 1), the velocity spectrum is

expected to follow a slope of −1 [118, 57, 59]. Figure 2.10 shows the spectra of the simulated

streamwise velocity and scalar concentration, respectively. As demonstrated in these figures,

for the small scales (k1x3 > 1), the normalized spectra shows the expected collapse and

follows the theoretical inertial subrange scaling with a slope of −5/3. For the scales larger

than the distance to the wall (k1x3 < 1), the slope of the velocity spectra is smaller and close

to the expected value of −1. It is worth mentioning that, as reported in several studies, the

Smagorinsky model yields spectra that decay faster and with higher slopes at the smallest

resolved scale [3, 128, 17, 82]. In contrast, the slopes of the power spectra obtained from

the DSM are too flat with an unrealistic pile-up for the scalar fluctuations at high wave
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Figure 2.10: (a) Resolved streamwise velocity spectra and (b) resolved scalar concentration
spectra obtained with Ni = 96 for different heights x3/H from 0.005 to 0.5. The line
k1x3 = 1 ( ) is plotted for reference.

numbers [127, 153]. The obtained results demonstrate that the AMD model accurately

predicts the transfer of energy from the resolved scales to the subgrid scales at the proper

rate.

2.5 Summary

The minimum-dissipation (MD) SGS model is investigated. The MD model gives the min-

imum eddy dissipation required to remove energy pile-up in the smallest resolved scales of

the LES, and appropriately switches off for laminar and transitional flow. The model has

low computational complexity and is consistent with the exact subgrid tensor on isotropic

grids. The MD model gives satisfactory results in simulation of decaying grid turbulence

on an isotropic grid. On anisotropic grids, however, the model is not consistent with the

exact SGS tensor, and requires an approximation of the filter size. Results obtained with

the MD model on anisotropic grids are highly sensitive to the filter size approximation, and

neither of the two approximation tested give acceptable results in simulations of a temporal

mixing layer and turbulent channel flow.

To address the shortcoming of the MD model, a modification for anisotropic grids was
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proposed. The anisotropic minimum-dissipation (AMD) model appropriately switches off

in laminar and transitional flow, and has low computational complexity. The model is

consistent with the exact SGS tensor on both isotropic and anisotropic grids and does

not require an approximation of the filter size. The AMD model gives accurate results in

simulations of decaying grid turbulence on an isotropic grid and in simulations of a temporal

mixing layer and turbulent channel flow with anisotropic grids. Thus, unlike the MD model,

the AMD model is suitable for practical LES on anisotropic grids.

Additionally, the AMD model was extended to subgrid scalar flux for scalar transport

equations. The AMD model for the SGS stress tensor and scalar flux was implemented

in the simulation of a high-Reynolds-number boundary layer flow with a constant surface

scalar flux. Simulation results obtained from the AMD model reveal good agreement with

well-established empirical formulations and theoretical predictions of different flow statistics

in a neutral boundary layer flow. Specifically, the AMD model produces mean velocity and

scalar concentration profiles that are in good agreement with similarity theory in the surface

layer. In addition, LES with the AMD model reproduces the expected power-law spectra

for both velocity and scalar concentration.



Chapter 3

Error convergence of subgrid-scale

models for large-eddy simulation in

the outer region of wall-bounded

flows∗

3.1 Motivation

While LES enables a reduction of computational cost compared to DNS, the solutions pro-

vided by most LES approaches are grid-dependent, and multiple computations are required

in order to faithfully assess the quality of the LES results. This brings the fundamental

question of what is the expected LES error as a function of Reynolds number and grid

resolution. The necessity of assessing the impact of grid resolution on both the accuracy

and convergence properties of SGS models and flow statistics has been highlighted in the

NASA Vision 2030 [145] as a pacing item for the computational fluid mechanics. The issue

was also remarked by Pope [126] as a central problem concerning the foundations of LES.

∗Part of the contents of this chapter have been submitted to Journal of Computational Physics with
coauthor Adrián Lozano-Durán [79].
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Therefore, LES must be framed in the context of a convergence study, and the associated

grid requirements for different flow configurations must be determined for LES to be deemed

as a cost-saving approach when compared with DNS. In the present work, we analyze the

LES error scaling of the mean velocity profile, turbulence intensities, and energy spectra in

the outer region of wall-bounded flows without the influence of the wall.

The equations for LES are formally derived by applying a low-pass filter to the Navier-

Stokes equations [76]. The common procedure is then to solve these filtered equations

together with a model for the SGS stresses, but no explicit filter form is usually specified.

Instead, the discrete differentiation operators and limited grid resolution used to compute

the LES solution are assumed to act as an effective implicit filter. The approach, usually

referred to as implicitly-filtered LES, yields a velocity field that is considered representative

of the actual filtered velocity with filter size proportional to the grid resolution. This lack

of explicit filtering is responsible for the aforementioned intimate relation between the grid

resolution and the LES equations [84, 15]. Grid convergence is only guaranteed in the limit

of DNS-like resolution, and the LES predictions may be sensitive in an intricate manner to

the grid size above such limit. This is a distinctive feature of implicitly-filtered LES which

entails important difficulties for evaluating the quality of the solutions.

First studies aiming to assess the accuracy of SGS models include the pioneering in-

vestigation by Clark et al. [32], who established the numerical study of decaying isotropic

turbulence as a reference benchmark, although the grid resolutions and Reynolds numbers

tested were highly constrained by the computational resources of the time. Since then, com-

mon benchmarks for LES have broadened to include simple hydrodynamic cases such as

forced or decaying isotropic turbulence [94], rotating homogeneous turbulence [65], spatial

or temporal mixing layers [167, 168] and plane turbulent channel flow [122, 42, 28], among

others. See Bonnet et al. [11] for an overview of cases for LES validation.

Analysis of numerical errors in LES by Ghosal [44], Kravchenko and Moin [69] and Chow

and Moin [27] revealed that the magnitude of the numerical errors can be comparable to

that of modeling errors, and Meyers et al. [97] showed that the partial cancellation of model-

ing and numerical errors can lead to coincidentally accurate results in isotropic turbulence.
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Along the same line, Meyers et al. [98] studied the combined effect of discretization and

model errors, and a further series of works resulted in the error-landscape-methodology

framework reviewed by Meyers [95], where it is stressed that the determination of LES

quality based on one single metric alone may provide misleading results. The performance

of SGS models in the presence of walls has been found to be even more erratic. Meyers

and Sagaut [96] presented the grid-convergence behavior of channel-flow DNS at resolutions

typically encountered in subgrid-model testing. They observed a non-monotonous conver-

gence of the skin friction and turbulence intensities with grid-refinements, suggesting that

the robustness of SGS models should be tested for a range of Reynolds numbers and resolu-

tions in order to avoid incidental coincidences with DNS results. At much higher Reynolds

numbers, Sullivan and Patton [155] examined the numerical convergence of LES in time-

dependent weakly sheared planetary boundary layers. They considered the convergence of

the second-order statistics, energy spectra, and entrainment statistics and concluded that

LES solutions are grid-independent provided that there is adequate scale separation be-

tween the energy-containing eddies and those near the filter cut-off scale. Stevens et al.

[151] showed the ability of LES to reproduce accurately second and higher-order velocity

moments for grid resolutions fine enough to resolve 99% of the LES kinetic energy. The

convergence of SGS models in complex geometries has been explored in a lesser degree,

but some noteworthy efforts are the pulsatile impinging jet in turbulent cross-flow by Toda

et al. [159] and the full plane calculations by Lehmkuhl et al. [74, 75].

A central matter among the convergence studies above is the search for the most mean-

ingful flow quantity to collapse the LES errors when the grid size, Reynolds number, and

model parameters are systematically varied. Geurts and Fröhlich [43] characterized the

simulation errors in terms of the subgrid-activity, defined as the relative subgrid-model

dissipation rate with respect to the total dissipation rate. Klein [63] studied the accuracy

of single-grid estimators for the unresolved turbulent kinetic energy to assess the quality

of LES, and evaluated the sensitivity of the LES results on the modeling and numerical

errors. Similarly, Freitag and Klein [41] presented a method to evaluate error contributions

by assuming that the numerical and modeling errors scale like a power of the grid spacing
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and filter size, respectively. Other indices to estimate the quality of the LES solution are

the fraction of the total turbulent kinetic energy in the resolved motions [126], the relative

grid size with respect to Kolmogorov or Taylor scales, or the effective eddy viscosity com-

pared to the molecular viscosity [23]. Alternative and more sophisticated metrics are still

emerging, such as the Lyapunov exponent measurement proposed by Nastac et al. [107] for

assessing the dynamic content and predictability of LES among others, but there is a lack

of consensus regarding which should be the most meaningful metric to quantify errors in a

general set-up, if any.

We assess the error scaling of two SGS models based on the eddy viscosity assumption

in the outer region of wall-bounded turbulence at moderately high Reynolds numbers. Our

goal is to characterize the errors as a function of grid resolution and Reynolds number,

and to find the physical length-scale dictating the relative size of the grid that is relevant

for error quantification. For that purpose, we perform a theoretical estimation of the error

scaling for the mean velocity profile, turbulence intensities, and kinetic energy spectra. Our

results are corroborated by LES of turbulent channel flows using either a modified boundary

condition or a wall model that acts as a surrogate of the near-wall dynamics by supplying

the exact mean wall stress. It is important to remark that turbulent free shear flows such

as mixing layers, jets, and wakes are also tenable candidates for studying shear-dominated

flows away from walls. However, their large scales are dynamically different than the large

scale motions of turbulent boundary layer flows typically relevant for external aerodynamics,

which is the focus of this chapter.

The chapter is organized as follows. In section 3.2, we illustrate the near-wall behavior

of SGS models in LES. We discuss the methodology and the numerical setup to assess the

convergence of SGS models in section 3.3 without the physical constraint imposed by the

wall. The results for the errors in the mean velocity profile are presented in section 3.4,

for the turbulence intensities in section 3.5, and for the energy spectra in section 3.6. A

relevant length-scale for local error quantification are discussed in section 3.7. Finally, a

summary is offered in section 3.8.
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3.2 The near-wall behavior of SGS models in LES

Most SGS models assume that a considerable fraction of the turbulent kinetic energy (i.e.,

80-90% [126]) is resolved by the grid, and the Reynolds number and grid resolutions must

comply with this requirement in order to faithfully assess the performance of the models.

In unbounded flows like isotropic turbulence, LES can be performed at relatively coarse

grid resolutions while still meeting this condition. On the contrary, this condition is not

as favorable for wall-bounded flows. The number of grid points N to compute a turbulent

boundary layer of thickness δ spanning a wall-parallel area of L1 × L3 is

N =

∫ L1

0

∫ δ

0

∫ L3

0

dx1dx2dx3
∆1∆2∆3

, (3.1)

where x1, x2 and x3 are the streamwise, wall-normal and spanwise directions, respectively,

and ∆1, ∆2 and ∆3 are the target grid resolutions in each direction that may be a function

of space. Usually, the required number of grid points N can be expressed as a power of

Reynolds number, where the exponent depends on the sizes of the eddies expected to be

accurately represented by the grid. Estimations of the scaling can be found in Chapman

[25] and Choi and Moin [26]. DNS aims to capture eddies in the dissipative range, and

hence ∆i ∼ η and N ∼ Re37/14, where η is the Kolmogorov length-scale. To resolve the

energy-containing eddies as in wall-resolved LES, it is necessary that ∆i ∼ Lε which yields

N ∼ Re13/7, where Lε is the integral length-scale. In the logarithmic region of wall-bounded

flows, Lε grows linearly with x2 and the energy-containing eddies have sizes proportional to

the distance to the wall [51, 71]. Consequently, the LES grid must be accordingly reduced in

all spatial directions to resolve a constant fraction of the turbulent kinetic energy, increasing

the computational cost. Wall-resolved LES can be properly performed through nested grids

[157, 70] such as the one depicted in Figure 3.1. Otherwise, the near-wall grid resolution

does not suffice to capture the energy-containing eddies, and most SGS models perform

poorly [54]. Finally, if we target to model only the outer motions as in wall-modeled LES,

the grid requirements are such that ∆i ∼ δ, and N is at most linear with Reynolds number,

depending on the wall model approach.
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Figure 3.1: Instantaneous streamwise velocity contours of a turbulent channel flow and
sketch of wall-attached eddies of different sizes. Grid 1 (left) depicts a uniform grid typical
of wall-modeled LES. Grid 2 (right) is a nested grid necessary for wall-resolved LES.

Although wall-resolved LES has been practiced for a long time, actual wall-resolved

LES is scarce. Typically, only the wall-normal resolution is properly refined according to

the size of the energy-containing eddies, while the wall-parallel directions remain under-

resolved. Most of the grid convergence studies in wall-bounded LES mentioned in Section

3.1 fall within this category as is the case of the channel flow simulation in Section 2.3.3.

The consequence is that the majority of the validation studies in turbulent channel flows

are at relatively low Reynolds numbers to make the computational cost of wall-resolved

LES affordable [26]. However, it is questionable whether the SGS models are active enough

in these conditions to adequately measure their performance, and even then it is unclear

whether the near-wall region is sufficiently resolved in the wall-parallel directions.

Figure 3.2(a) shows the modeled SGS shear stress, τSGS
12 for the dynamic Smagorinsky

model (DSM) [42, 77] and anisotropic minimum dissipation (AMD) model [136] for the

turbulent channel simulation in Section 2.3.3. It is clear that despite the satisfactory results

in predicting the mean velocity profile (Figure 2.6a), the two SGS models show considerable

differences in the prediction of SGS shear stress near the wall. This difference in the near-

wall behavior can be neglected in relatively well-resolved low Reynolds number simulations,

where the SGS contribution is small. However, with increasing Reynolds number and coarser

grids, the discrepancy will become more significant, resulting in different statistics as shown
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Figure 3.2: Subgrid-scale shear stress for the DSM ( ) and AMD model ( ) for channel
flow at (a) Reτ ≈ 550, where the near-wall region is relatively well-resolved (Section 2.3.3),
and (b) Reτ ≈ 950, where the near-wall region is not resolved (Table 3.1).

in Figure 3.2(b) and Figure 3.3.

To illustrate the poor performance of SGS models when the near-wall region is under-

resolved, Figure 3.3 shows the mean streamwise velocity profile, 〈ū1〉, for a turbulent channel
flow as a function of the wall-normal distance x2, where (̄·) is the resolved LES field and

〈·〉 denotes average in homogeneous directions and time. The fluctuating quantities will be

denoted by (·)′. The details of the simulations are discussed in Section 3.3.2 (see Table 3.1),

but for now, it is only important to remark that all cases were computed using identical

grids (with 13 points per channel half height, δ) and friction Reynolds number, Reτ ≈ 950.

Coarse DNS (no SGS model and no wall model) provides the worst prediction. Ideally, a

perfect SGS model will supply the missing stresses at all distances from the wall. Indeed,

Figure 3.3 shows that the solution improves by introducing SGS models ( and ); however,

the performance is still poor and the LES mean velocity profile is far from the reference

DNS velocity profile. In contrast, the agreement with DNS is excellent when the correct

mean wall stress is provided using a Neumann boundary condition (♦), despite the fact that

there is no explicit SGS model in this case.
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Figure 3.3: Mean streamwise velocity profile for NM950-NS ( ), DSM950-NS ( ), AMD950-
NS ( ), and NM950-EWS (♦). DNS is given by ( ).

Note that for all cases, the shape of 〈ū1〉 is barely affected in the outer region and always

very close to the DNS mean velocity profile even when there is no SGS model due to the

low Reynolds number. The main source of error comes from the inaccurate prediction of

the wall friction velocity, uτ , that translates into a vertical shift of 〈ū1〉. In particular, the

two different SGS models applied show contrasting predictions of uτ with the DSM under-

estimating and AMD model overestimating the DNS profile. The modeled SGS shear stress

for the two different SGS models is given in Figure 3.2(b), which shows large differences

near the wall, impacting predictions of wall shear stress. Note that due to the coarse grid

resolutions at the wall, τSGS
12 |w 6= 0, contrary to what is typically assumed in wall-resolved

LES. The result highlights the rarely mentioned fact that, for increasing Re or coarsening

grid resolutions, wall models are necessary before SGS models, at least for prediction of the

mean velocity profile in wall-bounded flows.

The problem would be alleviated by performing wall-resolved LES with three-dimensional

refinement as the grid approaches the wall. However, this is not common in practice, and

most attempts at wall-resolved LES suffer at some degree from the limitation demonstrated

in Figure 3.3. Moreover, true wall-resolved LES is not cost-effective, as the grid requirement
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scales as Re13/7 [26]. Therefore, it is important to emphasize that in wall-bounded flows,

the testing and validation of SGS is contaminated and dominated by the errors accumu-

lated near the wall, and many of the mismatches of mean velocity profiles in DNS and LES

reported in the literature are probably caused by the necessity of wall models before an SGS

model. It is necessary to remark that we do not advocate for LES without an SGS model,

but we only highlight the fact that validation at low Reynolds numbers could be limited

due to inactive SGS models far from the wall and the predominance of the near-wall errors.

Thus, when assessing an SGS model, it is important to distinguish its performance near the

wall and far away from the wall. Provided that a wall model can circumvent the errors in

the near-wall region, it becomes more important to assess the behavior of SGS models in

the outer-region at high Reynolds numbers without the burden of the wall.

3.3 Benchmark for the outer region of wall-bounded turbu-

lence

3.3.1 Slip-wall and exact-wall-stress turbulent channel flows

We consider a plane turbulent channel flow with periodic boundary conditions in the stream-

wise and spanwise directions. The incompressible LES equations obtained by applying a

spatial filter to the Navier-Stokes equations are

∂ũi
∂t

+
∂ũiũj
∂xj

= −1

ρ

∂p̃

∂xi
+ ν

∂2ũi
∂xj∂xj

− ∂τij
∂xj

,
∂ũi
∂xi

= 0, (3.2)

where ũi for i = 1, 2, 3 are the streamwise, wall-normal and spanwise filtered velocities,

respectively, p̃ is the filtered pressure, τij = ũiuj − ũiũj is the effect of the subgrid scales on

the resolved eddies, ρ is the flow density, and ν is the kinematic viscosity. The wall units are

defined by uτ and ν, and the outer units by uτ and δ, where uτ is the friction velocity. The

streamwise, wall-normal and spanwise spatial directions are xi for i = 1, 2, 3, respectively,

and the walls are located at x2 = 0 and x2 = 2δ. The objective of LES modeling is to

approximate τij via the SGS tensor τSGS
ij . To emphasize that an LES model is not exact,
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the resolved LES velocity is denoted by ūi, and we expect that ūi ≈ ũi for an accurate SGS

model.

We discussed in Section 3.2 the necessity of benchmarks for wall-bounded turbulence

that are independent of the strict near-wall resolution requirements. To attain this goal,

we discuss two different approaches, namely, slip-wall (SLW) and exact-wall-stress (EWS)

turbulent channel flows.

In slip-wall channel flow [78], the no-slip walls are replaced with the slip boundary

condition with transpiration

ui|w = l
∂ui
∂n

∣∣∣∣
w

, i = 1, 2, 3, (3.3)

where the (·)|w denotes quantities evaluated at the wall, n is the wall-normal direction

oriented towards the interior of the channel, and l is the slip length, assumed to be constant.

Note that Eq. (3.3) complies with the symmetries of the channel flow and the impermeability

constraint of the wall on average.

The incompressible Navier-Stokes equations with boundary conditions in Eq. (3.3) is

well-defined and has been solved by DNS for Reτ ≈ 550, 950, and 2000 with l = 0.1δ

[78]. Figure 3.4 compares DNS of the SLW channel and no-slip channel. First, note the

contribution of the mean resolved Reynolds shear stress in Figure 3.4(a). The Reynolds

shear stress accounts for more than 90% of the total stress for all cases and roughly 98%

for Reτ ≈ 2000 due to the ability of the boundary condition given by Eq. (3.3) to generate

nonzero 〈u1u2〉 at the wall. The viscous stress contribution is less than 10% at all heights,

including the near-wall region. Figure 3.4(d) shows the different characteristic flow length-

scales for the DNS of the SLW channel and the no-slip channel flow, namely, the Kolmogorov

scale η = (ν3/ε)1/4 [125], the Taylor micro-scale Lλ = (15〈u′iu′i〉/ε)1/2 [158], the integral

length-scale Lε = (〈u′iu′i〉/6)3/2/ε [125], and the shear length-scale Ls = uτ (∂〈u1〉/∂x2)−1

[101], where ε is the rate of energy dissipation. The length-scales covered here no longer

drop rapidly to zero as x2 → 0 for the SLW channel. Rather, they remains roughly constant

in the near-wall region. Moreover, the integral length scale for the SLW cases collapse for
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Figure 3.4: (a) Mean tangential Reynolds stress for slip-wall DNS of Reτ ≈ 550 ( ), Reτ ≈
950 ( ), and Reτ ≈ 2000 ( ). Corresponding no-slip DNS values ( ) are given in the
respective colors. (b) Mean streamwise velocity profiles of SLW DNS at Reτ ≈ 550 ( ),
Reτ ≈ 950 ( ), and Reτ ≈ 2000 ( ). The mean velocity profiles for Reτ ≈ 950 and
2000 are shifted 5 and 10 wall units, respectively, in the vertical direction for clarity. The
corresponding no-slip DNS values ( ) are adjusted to match the center-line velocity of
the SLW DNS and plotted in the corresponding color. (c) Streamwise ( ), wall-normal ( ),
and spanwise ( ) rms velocity fluctuations and (d) Kolmogorov scale ( ), Taylor micro-scale
( ), integral length-scale ( ), and shear length-scale (♦) for slip-wall DNS of Reτ ≈ 550.
Corresponding no-slip DNS values ( ) are given in respective colors.
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Figure 3.5: Wall-parallel premultiplied streamwise velocity spectra at (a) x2 = 0.5δ and (b)
x2 = 0.75δ for SLW DNS ( ) and no-slip DNS ( ) at Reτ ≈ 550. Contours are 0.1 and
0.6 of the maximum.

different Reynolds numbers (not shown), demonstrating that it scales in outer-units across

the entire boundary layer thickness. Thus, the boundary condition given by Eq. (3.3)

suppresses the formation of near-wall viscous layers and breaks the linear scaling of eddies

close to the wall. Moreover, it is also shown that in the outer layer, the first-order statistics

and spectra of the SLW channel flow match quantitatively those of no-slip DNS simulations,

as can be observed in Figures 3.4(b) and (c) and 3.5. Thus, the SLW channel flow is an

excellent candidate to test the performance of SGS models in the outer region of the flow.

The second approach is the EWS turbulent channel flow, where the no-slip boundary

condition at the wall is replaced by an EWS condition imposed through a Neumann bound-

ary condition
∂ū1
∂n

∣∣∣∣
w

=
τw − τSGS

12

∣∣
w

ν
, (3.4)

where τw is the mean wall stress known a priori from DNS such that Eq. (3.4) can be

thought of as a perfect wall-model. It has been shown before that for wall-modeled LES,

imposing the correct mean wall stress is sufficient to predict one-point statistics accurately

[72].
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Case SGS model Wall condition Reτ ∆1/δ ∆2/δ ∆3/δ

NM950-NS NM NS

934 0.10 0.080 0.050
DSM950-NS DSM NS
AMD950-NS AMD NS
NM950-EWS NM EWS

Table 3.1: List of cases used in section 3.2. The second column contains the SGS model: no
explicit SGS model (NM) or dynamic Smagorinsky model (DSM). The third column refers
to the wall boundary condition: no-slip (NS) or the exact-wall-stress (EWS) condition. The
fourth column indicates the friction Reynolds number. ∆1, ∆2 and ∆3 are the streamwise,
wall-normal and spanwise grid resolutions respectively.

The set-up of the two benchmark cases above is not intended to capture the near-wall

dynamics, and the small eddies close to the wall are prone to be misrepresented for coarse

grid resolutions. However, our focus is on outer flow along the range 0.2δ < x2 < δ [125], and

previous studies have revealed that this region can survive independently of the particular

configuration of the eddies closest to the wall, even if they are partially or completely under-

resolved. Some examples are the roughness experiments in channels and boundary layers

[117, 50, 9, 39, 40], and the idealized numerical studies by Flores and Jiménez [39], Mizuno

and Jiménez [102], Chung et al. [30], Lozano-Durán and Bae [78], among others. In all these

cases, the near-wall region was seriously modified or directly bypassed, but the properties

of the outer layer remained essentially unaltered. Therefore, the correct representation of

the outer layer dynamics remains uncoupled from the inner layer structure, supporting the

numerical experiment presented here as a valid framework to assess LES errors far from the

wall.

3.3.2 Numerical experiments

We perform two sets of LES of plane turbulent channels for the SLW and EWS approaches.

The simulations are computed with a staggered second-order finite difference [110] and

fractional-step method [62] with a third-order Runge-Kutta time-advancing scheme [176].

The flow is either driven by imposing a constant mean pressure gradient for the SLW cases
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Grid resolution label ∆1/δ ∆2/δ ∆3/δ

i1 0.20 0.20 0.20
i2 0.10 0.10 0.10
i3 0.050 0.050 0.050
i4 0.025 0.025 0.025

a1 0.20 0.10 0.05
a2 0.10 0.10 0.07
a3 0.20 0.10 0.10

Table 3.2: Tabulated list of resolutions in outer units. The first column contains the label
used to name LES cases computed with different grids. ∆1, ∆2 and ∆3 are the streamwise,
wall-normal and spanwise grid resolutions, respectively.

or a constant mass flux for the EWS cases. Periodic boundary conditions are imposed in

the streamwise and spanwise directions, while for the top and bottom walls we use either

the no-slip (NS) boundary condition, SLW boundary condition from Eq. (3.3) with l = 0.1δ

for the SLW cases, or EWS Neumann boundary condition from Eq. (3.4).

Two SGS models are investigated: DSM and AMD, which are regarded as representative

eddy viscosity models with and without test filtering, respectively. We will also consider

cases without any explicit SGS model (NM).

The size of the channel is 8πδ × 2δ × 3πδ in the streamwise, wall-normal and spanwise

directions, respectively for both SLW and EWS cases. The grid resolutions are denoted

by ∆1,∆2, and ∆3 for the respective spatial directions. We use a wide range of grid

resolutions spanning from ∼ 0.01δ to ∼ 0.2δ that are characteristic of wall-modeled LES

and fall within the recommendations by Chapman [25] for resolving the large eddies in the

outer portion of the boundary layer. For the SLW cases, three different friction Reynolds

numbers Reτ = uτδ/ν ≈ 550, 950, and 2000 are considered and compared to DNS from

Lozano-Durán and Bae [78]. For the EWS cases, four different friction Reynolds numbers

Reτ ≈ 950, 2000, 4200 and 8000 are considered. These are compared with reference DNS

data from Hoyas and Jiménez [48], Lozano-Durán and Jiménez [80], and Yamamoto and

Tsuji [177]. All the LES channel flow simulations were run for at least 100 eddy-turnover

times, defined as δ/uτ , after transients.
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The list of cases used to motivate the need of wall models in section 3.2 is given in Table

3.1. The simulations discussed for the remainder of the chapter are named following the

convention [SGS model][Reτ ]-[boundary condition]-[grid resolution], where the grid resolu-

tions are denoted by either by i1, i2, i3 and i4 for isotropic grids, and by a1, a2 and a3 for

anisotropic grids. The different grid resolutions are provided in Table 3.2.

3.4 Error scaling of the mean velocity profile

The mean velocity profile is examined first as it is the figure of merit for most LES studies.

We will assume that 〈u1〉 ≈ 〈ũ1〉 and, hence, the LES mean velocity can be directly compared

with unfiltered DNS data. The approximation is reasonable in most cases where the quantity

averaged is dominated by large-scales, as is the case for the mean velocity profile. In

particular, the error for the mean velocity profile is systematically quantified as the average

difference between the LES solution and the corresponding DNS in the outer region as

Em =

[∫ δ
0.2δ (〈ū1〉 − 〈u1〉)2 dx2∫ δ

0.2δ〈u1〉2dx2

]1/2
, (3.5)

where 〈u1〉 is evaluated from DNS data. This choice excludes the nonphysical/under-

resolved range x2 < 0.2δ for the LES cases as discussed in section 3.3. For a channel

flow driven by constant mass flux and exact mean wall-stress, some reference errors at

Reτ ≈ 4200 can be obtained from two extreme cases, i.e., a fully turbulent profile defined

by the flat velocity 〈ū1〉 = Q/2δ, and the laminar solution represented by the parabolic func-

tion 〈ū1〉 = 3Q/(4δ)(2 − x2/δ)(x2/δ), whose errors are Em,turb ≈ 0.06 and Em,lam ≈ 0.26,

respectively.

In general, the error will depend on the grid resolution and Reynolds number,

Em = Em(∆1,∆2,∆3,Reτ ), (3.6)

and if we further assume that Em ∼ ∆αmReγmτ , where ∆ is a (yet to be defined) measure
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of the grid size, the exponents αm and γm can be theoretically estimated from the error

equation and empirically computed from numerical experiments. Both analyses are per-

formed below. We will conclude that LES is a viable approach for computing the outer flow

of wall-bounded flows if the empirical values of the exponents are such that αm > 0 and

γm ≈ 0.

3.4.1 Theoretical estimations

We estimate the expected error behavior of Em for a generic SGS model that will serve as

a reference for the numerical observations in the next section. Let us consider the exact

relation between the LES and DNS velocities at a location x2 obtained from the integrated

mean momentum equation for ũ1 and u1,

[〈ũ1〉 − 〈u1〉](x2) = 〈ũ1〉(0) +
1

ν

∫ x2

0
〈ũ′1ũ′2 − u′1u

′
2 + τ12〉dx′′2. (3.7)

For a symmetric filter with well-defined non-zero second moment in real space, τ12 can be

written as [174]

τ12 ≈
∂ũ1
∂xi

∂ũ2
∂xi

∆̃2
i +O(∆̃2

i ∆̃
2
i ), (3.8)

where repeated indices imply summation, and ∆̃i signifies the filter size in the i-th direction

defined as the square root of the second moment of the filter operator

∆̃2
i =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
x2iG(x1, x2, x3)dx1dx2dx3, (3.9)

where G is the filter kernel. For the rest of the section, we will neglect terms of the order of

O(∆̃4
i ), namely, we assume that traditional SGS models are a fourth order approximation

to τij. The simplification will be useful for estimating the error scaling independently of

any particular SGS model.

Analogously, the difference of the filtered and unfiltered fluctuating tangential stresses
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can be approximated by

ũ′1ũ
′
2 − u′1u

′
2 ≈

∆̃2
i

2

(
ũ′1

∂2ũ′2
∂x2i

+ ũ′2
∂2ũ′1
∂x2i

)
. (3.10)

From Eqs. (3.7), (3.8) and (3.10), the error in the mean velocity profile can be shown to be

Em ∼ [〈ũ1〉 − 〈u1〉](x2) ∼
∫ x2

0

〈
∆̃2

i

∂ũ1
∂xi

∂ũ2
∂xi

+
∆̃2

i

2

(
ũ′1

∂2ũ′2
∂x2i

+ ũ′2
∂2ũ′1
∂x2i

)〉
dx′′2. (3.11)

Note that the filter sizes in Eq. (3.11) are arranged such that Em ∼ (∆̃i∆̃i)
αm/2, which

motivates the use of the L2-norm of (∆1,∆2,∆3) as the characteristic grid-size, with ∆i ∼
∆̃i. Eq. (3.11) also shows that ∆i do not provide a full description of the error, and that

a complete characterization will involve an effective grid size that is flow dependent (given

by Eq. (3.11)).

Equation (3.11) can be further exploited to determine the scaling of Em with ∆ by

approximating the dependence of ũ′i, ∂
2ũ′j/(∂xi∂xi) and ∂ũj/∂xi on ∆. A rough estimation

may be performed by assuming a kinetic energy spectrum EK ∼ kβ, with the wavenumber

k ∼ 1/∆, and the isotropic velocity gradient G = ∂u/∂x at scale ∆ such that

ũ′1,2
∂2ũ′2,1
∂xi∂xi

,
∂ũ1
∂xi

∂ũ2
∂xi

∼ G2 ∼ u2

∆2
∼ kEK

∆2
∼ ∆−(β+3), (3.12)

where the exponent β depends on the regime the SGS models operates; for the shear-

dominated range β = −1 [117] and G2 ∼ ∆−2, whereas for the inertial range β = −5/3

[67] and G2 ∼ ∆−4/3. Taking into account the scaling above and after integration of the

right-hand-side in (3.11), the expected error in the LES mean velocity profile should scale

as

Esh
m ∼ ∆, E in

m ∼ ∆5/3, (3.13)

for SGS models acting on the shear-dominated or inertial regimes, respectively. The scaling

of Em with ∆ in (3.13) can be estimated from simpler dimensional arguments without going

through (3.11), but it was beneficial to write the explicit equation of the error to obtain
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more information about its functional form. Nevertheless, it is important to remark that

(3.13) should be understood as a rough estimation since the actual errors evolve according

to a non-linear equation and, hence, their rigorous mathematical treatment is highly elusive.

This consideration is also applicable to the error estimations for the turbulence intensities

and energy spectra in the later sections.

3.4.2 Numerical assessment

Figure 3.6(a) contains the mean velocity profiles for three SLW cases at Reτ ≈ 2000 with

AMD for different grid resolutions. As expected, 〈ū1〉 converges to 〈u1〉 as the grid is refined.

The quantitative assessment of the Em for Reτ ≈ 550, 950, and 2000 of the SLW cases is

shown in Figure 3.6(b) as a function of the characteristic grid resolution ∆, taken to be

∆ =

√
∆2

1 +∆2
2 +∆2

3

3
. (3.14)

as motivated by Eq. (3.11). The error roughly follows

Em ∼
(
∆

δ

)αm

(3.15)

with αm between the values of 1 and 5/3, which is consistent with the scaling given by

theoretical assessment in section 3.4.1. The constant prefactor is model and Reynolds

number dependent. For a given ∆, the error increases from Reτ ≈ 550 to Reτ ≈ 950, but

shows signs of saturation at Reτ ≈ 2000, which may be an indication that the constant

prefactor will remain constant for higher Reynolds numbers. Both DSM and AMD model

yield comparable errors. Figure 3.6(b) also includes two cases equivalent to AMD550-SLW-

i3,i4 but without an explicit SGS model. The error is comparable to, but slightly larger than,

the cases with SGS model. Other cases without SGS models for various grid resolutions and

Reynolds numbers were computed and their accompanying errors were scattered within the

range provided by Eq. (3.15) (not shown). This is a symptom that, despite the desirable

properties of the SLW channel flow as a benchmark for LES, the span of Reynolds numbers
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Figure 3.6: (a) Mean streamwise velocity profile for AMD2000-SLW-i2 ( ), AMD2000-SLW-
i3 ( ) and AMD2000-SLW-i4 ( ). The SLW DNS for Reτ ≈ 2000 is given by ( ). (b)
Error in the mean velocity profile of the SLW cases given as a function of the characteristic
grid resolution for different SGS models (DSM, ; AMD model, ; and no SGS model, ×)
and Reτ (550, ; 950, ; and 2000, ). Reference lines are Em ∼ ∆/δ and (∆/δ)5/3

( ).

examined here is too small to scrutinize the effect of the SGS models and offer unambiguous

conclusions. Higher Reynolds number SLW DNS were not available for comparison, so

EWS cases are utilized to examine the effect of SGS models at high Reynolds numbers

(Reτ ≈ 4200, 8000).

Figure 3.7 shows the mean velocity profiles for a selection of EWS cases at Reτ ≈ 4200

without SGS model (Figure 3.7a) and with DSM (Figure 3.7b) for different grid resolu-

tions. Similar to the SLW cases, 〈ū1〉 converges to 〈u1〉 as the grid is refined for cases with

DSM (equivalently for AMD), while the trend is inconsistent for cases without explicit SGS

model. The quantitative assessment of the Em is shown in Figure 3.8(a) as a function of the

characteristic grid resolution ∆. Other grid definitions were also inspected in Figure 3.8(b)

such as the cube root of the cell volume [34, 140], the maximum of the grid sizes [149], or the

square root of the harmonic mean of the squares of the grid sizes, among others. However,

the best collapse is achieved for Eq. (3.14), in accordance with the discussion in section
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Figure 3.7: Mean streamwise velocity profile for EWS cases at Reτ ≈ 4200 for (a) no explicit
SGS model, and (b) DSM for grids i1 ( ), i2 ( ), i3 ( ), and i4 (♦) from Table 3.2. The
DNS is given by ( ).

3.4.1. A survey of existing subgrid length-scales can be found in Trias et al. [161] but note

that in the current study we are discussing the most meaningful grid size to characterize

Em, that differs from the characteristic length-scale embedded in SGS models (i.e., ∆̃ in the

Smagorinsky model −2Cs∆̃
2
√

2S̄nmS̄nmS̄ij, where S̄ij is the resolved rate-of-strain tensor

and Cs is the Smagorinsky coefficient).

The errors for cases without SGS model are discernibly larger than those calculated

with DSM or AMD, especially for the finer grid resolutions, and similar to those for fully

turbulent flows (Em,turb ≈ 0.06). Moreover, they follow a non-monotonic behavior with

∆, inconsistent with the second-order prediction from the linear analysis of the spatial

discretization errors, probably because such an approximation only holds for ∆ → 0 and

is no longer representative of errors subjected to non-linear diffusion and convection as

expected for ∆ ∼ δ. Visual inspection of the instantaneous streamwise velocity fields for

cases without SGS model in Figure 3.9 shows that there is a substantial change in the flow

topology at ∆ ≈ 0.05δ. For ∆ > 0.05δ, the velocity field lacks the characteristic turbulence

features and exhibits instead a highly disorganized structure (Figures 3.9a-c). On the other
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Figure 3.8: (a) Error in the mean velocity profile of the EWS cases as a function of the
characteristic grid resolution for different SGS models (DSM, ; AMD model, ; and no
SGS model, ×) and Reτ (4200, ; 8000, ). Open and closed symbols are for isotropic
and anisotropic grids, respectively. Reference lines are Em = 0.107∆/δ and Em = 0.210∆/δ
( ) and ∆/δ = 0.05 ( ). (b) Error in the mean velocity profile for Reτ ≈ 4200
as a function of alternate definition of characteristic grid resolution ∆alt = 3

√
∆1∆2∆3

(green), ∆alt = max(∆1,∆2,∆3) (blue), and ∆alt =
√

3/(1/∆2
1 + 1/∆2

2 + 1/∆2
3) (black).

The symbols and reference lines ( ) are as in (a).
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Figure 3.9: Instantaneous snapshots of the streamwise velocity in wall-parallel plane at
x2 ≈ 0.5δ for (a) NM4200-EWS-i1, (b) NM4200-EWS-i2, (c) NM4200-EWS-i3, and (d)
NM4200-EWS-i4.

hand, clearly defined streamwise velocity streaks emerge for ∆ < 0.05δ (Figure 3.9d). The

physical justification for the existence of this critical grid resolution is relegated to the

spectra analysis in section 3.6, but for now we can argue that these streaks are nonphysical

in the sense that they worsen the mean velocity profile prediction as shown in Figure 3.7(a)

for NM4200-EWS-i4. This suggest that the errors reported in Figure 3.8(a) should be

separated into two different regimes delimited by ∆ = 0.05δ.

For cases with SGS model and ∆ > 0.05δ, the error follows

Em ∼
(
∆

δ

)
Re0τ (3.16)

for different SGS models. The results show that the LES solution convergences to the

correct value free from viscous effects, Em ∼ Re0τ (given a perfect wall model) as demanded

from a proper LES far from the walls. Our results also suggest that Em ∼ ∆, which agrees

with the theoretical estimation Esh
m discussed in section 3.4.2. Although both DSM and

AMD converge at the same rate with ∆, the prefactor can play an important role in the
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error magnitude and thus different models may be preferred.

For ∆ < 0.05δ, the errors depart from Em ∼ ∆ and saturate, probably due to the same

effect that generates the nonphysical flow structures discussed in Fig. 3.9. However, further

refinement of the grid show an augmented Em ∼ ∆ convergence (not shown). Therefore, the

convergence of 〈ū1〉 to the DNS solution may entail an intricate non-monotonic response as

reported in Meyers and Sagaut [96] for grids much finer than those typical of wall-resolved

LES.

Alternative metrics to functionally quantify Em are the resolved turbulent kinetic energy,

Kres =
〈ūiūi〉
〈uiui〉

, (3.17)

and the SGS activity parameter [43, 97],

ς =
〈2νeS̄ijS̄ij〉

〈2νeS̄ij S̄ij + 2νS̄ijS̄ij〉
, (3.18)

where νe is the eddy viscosity. The results are shown in Figure 3.10 where Kres and ς

are averaged over the wall-normal range [0.3δ, δ]. Despite the coarse grid resolutions in-

vestigated, the resolved kinetic energy remains above 90% for all cases (Figure 3.10a) and

emerges as an effective metric to assess the errors in the mean profile, even among differ-

ent SGS models. The result is not surprising since Kres can be easily related to Em if we

assume that 〈u21〉/〈u2i 〉 ≫ 1 for i = 2, 3, and 〈u2i 〉 ≈ 〈ui〉2. The former are usually ∼100

for 0.3δ < x2 < δ, and the last condition is reasonably well satisfied if u1 is close to a

normal distribution N (µ, σ) with mean µ and standard deviation σ such that µ/σ ≫ 1,

that can shown to be the case for high-Reynolds-number turbulent channel flows. Under

those conditions, the resolved kinetic energy can be expressed as

Kres ≈ (1− Em)2, (3.19)

which is included in Figure 3.10(a) and shows an excellent agreement with the data. There-

fore, Em and Kres are interchangeable metrics for characterizing errors in 〈ū1〉. Cases with
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Figure 3.10: Error in the mean streamwise velocity profile of the EWS cases as a function
of the (a) resolved total kinetic energy and (b) SGS activity parameter for different SGS
models (DSM, ; AMD model, ; and no SGS model, ×) and Reτ (4200, ; 8000, ).
Open and close symbols are for isotropic and anisotropic grids, respectively. The reference
lines are Kres ≈ (1− Em)2 ( ) and Kres = 1 and ς = 1 ( ).

no explicit model does not follow the trend, and Kres can even exceed unity due to non-

physical velocity fluctuations whose origin is discussed in more detail in section 3.5. The

SGS activity is plotted in Figure 3.10(b). Increasing ς is associated with increasing Em,

although the results are Reynolds number and SGS model dependent and do not collapse

for isotropic and anisotropic grids. Nevertheless, Eq. (3.18) does not require DNS data, and

it is a more realistic estimator for practical applications where the reference DNS solution

is not available.

3.5 Error scaling of turbulence intensities

In this section, we study the theoretical and numerical convergence of the LES turbulence

intensities in wall-bounded flows. In the previous section we have measured the errors on

〈ū1〉 by assuming that LES and DNS are directly comparable. The assumption is reasonable

if the filtering operation has little impact on the mean of a variable φ, that is, 〈φ̃〉 ≈ 〈φ〉, and
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Figure 3.11: (a) Streamwise rms velocity fluctuations at Reτ ≈ 4200 for NM4200-EWS-
i2 ( ), DSM4200-EWS-i2 ( ), and DNS ( ). (b) Model spectrum for the streamwise
turbulence intensity. The wavenumbers k0, b/x2, and kd mark transition from the large-
scale to shear-dominated to inertial to viscous regimes.

this is the case for the mean velocity profile even with coarse filter sizes. However, smaller-

scale motions play a non-negligible role in 〈u′2i 〉, casting doubts on how to compare fairly

LES and DNS. If LES is formally interpreted by means of a spatial low-pass filter [34, 76],

the meaningful quantities to compare are the turbulence intensities of the filtered DNS

velocities. However, although numerical differentiation has a low-pass filtering effect, the

filter operator is not distinctly defined in implicitly-filtered LES [84, 22] and, consequently,

neither is the associated filter size.

Figure 3.11(a) shows the root-mean-squared (rms) of the streamwise fluctuating velocity

for DNS, LES without SGS model, and LES with DSM. In the absence of model, the LES

intensities are over-predicted compared with DNS and under-predicted with DSM. Similar

results are obtained for the wall-normal and spanwise velocity fluctuations. The change

in magnitude of the LES rms fluctuating velocities can be easily understood through the

volume integrated conservation of energy equation over the channel flow domain,

u2τQV

2δ2
=

∫

V
(ν + νe)

(
∂ūi
∂xk

∂ūi
∂xk

+
∂ūi
∂xk

∂ūk
∂xi

)
dV. (3.20)
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where V = 2δL1L3. Eq. (3.20) shows that the power input to maintain the mass flow Q

must be dissipated by the viscous and SGS terms. For DNS and LES with no SGS model,

where νe = 0, this is achieved by the velocity gradients, ∂ūi/∂xj . Unlike in DNS, where

the fluctuations are resolved and the resulting gradients are physical, in LES with no SGS

model, the length scales are limited by the grid size ∆j, and the gradients ∼ u′i/∆j . Thus,

the only possible mechanism to maintain consistency with the energy equation (3.20) for

increasing ∆j is by increasing the fluctuating velocities as illustrated in Figure 3.11(a). In

the case of LES with an SGS model, the additional dissipation through νe 6= 0 provides the

a way to achieve balance without the necessity to increase the fluctuating velocities.

Thus, the physical mechanism regulating the magnitude of the fluctuating velocities in

implicitly-filtered LES is unrelated to the (undefined) filtering operation, but rather to the

necessity of generate dissipative terms of the correct magnitude. Nevertheless, the results

above shows that even if implicitly-filtered LES is not rigorously equivalent to the filtered

Navier-Stokes equations, it does hold some resemblance in the sense that the values of νe

providing the correct mean velocity profile are accompanied by lower rms velocities as it

would be expected from the filtered DNS velocity field.

In general, one is interested in predicting DNS values, whereas their filtered counterparts

are of less practical importance. The metric adopted to measure errors in the turbulence

intensities in this section is

Ef,i =
[∫ δ

0.2δ

(
〈ū′2i 〉 − 〈u′2i 〉

)2
dx2∫ δ

0.2δ〈u′2i 〉2dx2

]1/2
, i = 1, 2, 3, (3.21)

where the comparison is made directly with unfiltered DNS values. For brevity, we will

occasionally omit the subscript i when the particular component is not relevant in the

discussion. Our goal is to estimate Ef as a function of ∆. The numerical results are also

compared with filtered DNS data (fDNS) using a three-dimensional box-filter with filter

size equal to the LES grid resolution in each direction.
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3.5.1 Theoretical estimations

In the logarithmic layer of wall-bounded turbulence at high Reynolds numbers, the inten-

sities of the velocity fluctuations are known to follow

〈u′21 〉
u2τ

= B1 −A1 log
(x2
δ

)
,

〈u′22 〉
u2τ

= B2,
〈u′23 〉
u2τ

= B3 −A3 log
(x2
δ

)
, (3.22)

where the coefficients Bi and Ai are constants considered to be universal for turbulent

channel flows. Equations (3.22) can be derived by using the attached-eddy hypothesis [160]

or by dimensional analysis on the k−1 spectrum of u1 and u3 [117], and the blocking effect of

the wall for u2. The hypothesis has been confirmed at high-Reynolds-number flows [89, 49],

and it has also been clearly observed in the spanwise velocity fluctuations even for relatively

low Reynolds numbers [53, 141, 80, 73]. An important consequence of Eqs. (3.22) is that at

a given x2 in δ units, the magnitude of the velocity fluctuations scaled with uτ is constant

and independent of the Reynolds number.

The LES asymptotic high-Reynolds-numbers limit for the filtered fluctuating velocities

〈ũ′2i 〉 can be written as

〈ũ′21 〉
u2τ

= B̃1 − Ã1f
(x2
δ

)
,

〈ũ′22 〉
u2τ

= B̃2,
〈ũ′23 〉
u2τ

= B̃3 − Ã3f
(x2
δ

)
, (3.23)

where B̃i and Ãi are constants that depend on ∆i, and f is an unknown function such that

f(x2) → log(x2) as ∆i → 0. The exact dependence of B̃i and Ãi on ∆i, and the particular

shape of f is expected to vary with the filter. The value of 〈ũ′2i 〉 may be estimated for a

symmetric filter with well-defined non-zero second moment in real space by considering the

relation [22, 180]

〈ũ′2i 〉 = 〈ũ′2i 〉 −∆2
k

〈(
∂ũ′i
∂xk

)2
〉

+O(∆2
i∆

2
i ). (3.24)
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If we further assume that 〈ũ′2i 〉 ≈ 〈u′2i 〉,

〈ũ′2i 〉
u2τ

≈ Bi −Ai log
(x2
δ

)
−∆2

k

〈(
∂ũ′i
∂xk

)2
〉
, (3.25)

where A2 = 0. Eq. (3.25) shows that the wall-parallel turbulence intensities of the filtered

field do not follow Eq. (3.22), and the major contributor to the departure from the classic

logarithmic law is the filter dependent correction term on the right-hand side of (3.25). The

error is then given by

Ef,i ∼ ∆2
k

〈(
∂ũ′i
∂xk

)2
〉
, (3.26)

and the estimation for G in section 3.4.1 yields

Esh
f ∼ ∆0, E in

f ∼ ∆2/3, (3.27)

which predict a rather low convergence rate for the LES turbulence intensities.

A limitation of Eq. (3.27) is that it does not provide a clear insight into the explicit

logarithmic dependence of 〈u′21 〉 and 〈u′23 〉 with x2. An alternative procedure to estimate Ef
is to connect Eqs. (3.22) and (3.23) by the spectra of the velocity,

〈u′2i 〉
u2τ

= 2

∫ ∞

0
Ei(kp, x2)dkp, (3.28)

where Ei is the two-dimensional spectrum for the i-th velocity component as a function of

k2p = k21 + k23, where k1 and k3 are the streamwise and spanwise wavenumbers, respectively.

Similarly,
〈ũ′2i 〉
u2τ

= 2

∫ ∞

0
Ẽi(kp, x2)dkp, (3.29)

where Ẽi(kp, x2) should be interpreted as the energy spectra of the filtered velocities. We

will focus on the streamwise velocity component, but the reasoning below is also applicable

to the spanwise component. Moreover, to make the problem tractable, we adopt the model

spectrum for E1 from Figure 3.11(b). The four different piecewise domains of the model
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correspond to the large-scale, shear-dominated [117], inertial [67] and viscous regimes [68],

respectively. Evaluation of Eq. (3.28) for the streamwise velocity component using the

model spectrum results in
〈u′21 〉
2u2τ

∼ constant− log
(x2
b

)
, (3.30)

where the contributions from inertial and viscous regimes were neglected. Hence, the results

are consistent with the logarithmic functional dependence of the streamwise turbulence in-

tensity from Eq. (3.22). Under the severe assumptions that the filtering operator resembles

a Fourier sharp cut-off, and neglecting filtering in the wall-normal direction,

〈ũ′21 〉
u2τ

= 2

∫ ∞

0
Ẽ1(kp, x2)dkp,≈ 2

∫ π/∆

0
E1(kp, x2)dkp. (3.31)

The difference between 〈u′21 〉 − 〈ũ′21 〉, definitory of the error in Eq. (3.21), is

Ef,1 ∼
∫ ∞

0
E1(kp, x2)dkp −

∫ π/∆

0
E1(kp, x2)dkp, (3.32)

and after integration we obtain

Esh
f,1 ∼ log(∆/x2), E in

f,1 ∼ ∆2/3, (3.33)

for the shear-dominated and inertial regimes, respectively. When the filter cut-off lies on

the k−1
p regime, Eq. (3.33) predicts a log(∆/x2) correction to the ∆0-dependence estimated

in Eq. (3.27), although both cases imply a slow convergence with ∆. Additionally, for ∆

within the shear-dominated region,

〈ũ′21 〉 ≈ constant +O(log(∆)), (3.34)

independently of x2, and the LES turbulence intensities will not reproduce the asymptotic

logarithmic profile. For the inertial range, the prediction in Eq. (3.33) coincides with the
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one reported in Eq. (3.27). Indeed, integration of the model spectrum yields

〈ū′21 〉 ∼ constant− log(x2) +O(∆2/3), (3.35)

and the LES is expected to capture the classic logarithmic behavior in x2 with an error of

the order of ∆2/3.

3.5.2 Numerical assessment

We aim to quantify the exponents αf and γf for the error in turbulence intensities

Ef ∼
(
∆

δ

)αf

Re
γf
τ , (3.36)

from LES data and the range of grid resolutions of interest in the present work. The results

reported in this section are for LES with DSM. Nevertheless, similar conclusions are drawn

for AMD for x2 > 0.3δ where the turbulence intensities predicted by AMD and DSM are

almost indistinguishable. The results are also compared with filtered DNS data (fDNS),

but this is only done qualitatively. For that, we use a three-dimensional box-filter with filter

size equal to the LES grid resolution in each direction. The choice of this particular filter

shape and filter size definition is arbitrary, and it was argued previously that no specific

form can be established a priori for implicitly-filtered LES.

Figures 3.12(a)-(c) show the turbulence intensities as a function of the wall-normal

distance for DNS and LES at Reτ ≈ 2000 and various grid resolutions. The main observation

from Figure 3.12(a) is that the LES turbulence intensities diverge from DNS as the grid is

coarsened, and the shape of the 〈ū′21 〉 becomes distinctively different from 〈u′21 〉. Moreover,

the effect is more pronounced closer to the wall. Hence, the behavior of the DNS is not

captured by LES when ∆ = O(δ), consistent with the discussion in section 3.5.1. The error

between LES and DNS is quantified in Figure 3.12(d) and compared with the predictions

from Eq. (3.27). The results show that Ef,1 converges as ∆0.4, whereas Ef,2 and Ef,3 are

well represented by ∆0.7.
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Figure 3.12: (a) Streamwise, (b) wall-normal, and (c) spanwise turbulence intensities of
DSM2000-EWS cases as a function of the wall-normal distance for different grid resolutions
(or filter sizes) i1 ( ), i2 ( ), i3 ( ), and i4 (♦) from Table 3.2. The DNS ( ) values
are given in the respective colors. For clarity, grid resolutions (filter sizes) i2, i3 and i4 are
vertically shifted by 1.2, 2.4 and 3.8 wall units, respectively. The first two points closer to
the wall for case DSM2000-EWS-i1 are omitted as they are contaminated by the nonphysical
solution close to the wall. (d) Error of the turbulence intensities Ef,i as a function of the
characteristic grid resolution for the streamwise ( ), wall-normal ( ), and spanwise ( )
directions. The dashed and dotted lines are Ef ∼ ∆0.7 and Ef ∼ ∆0.4, respectively.
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The effect of the Reynolds number is evaluated in Figure 3.13, which also includes

comparisons with fDNS. The grid resolution (or filter size) for the LES and fDNS cases is

set to i2 from Table 3.2 (∆ = 0.1δ), and Reτ ranges from ≈ 950 to ≈ 4200. The dependence

of Ef,i with Reτ is weak, and the error remains roughly constant for Reτ > 2000, from where

we conclude that γf ≈ 0. Therefore, the empirically measured error for the LES turbulence

intensities scales as

Ef,1 ∼
(
∆

δ

)0.4

Re0τ , Ef,2, Ef,3 ∼
(
∆

δ

)0.7

Re0τ , (3.37)

for ∆ > 0.025δ, and the correct representation of 〈ū′2i 〉 is more demanding than the mean

velocity profile, consistent with the analysis in section 3.5.1.

Figure 3.13(a) also shows that the LES turbulence intensities are well approximated by

fDNS, especially for the highest Reynolds numbers and far from the wall. However, the

filter operator is not distinctly defined as discussed in the beginning of the section, and

the agreement should be interpreted as an indication that the LES turbulence intensities

required to predict the correct mean velocity profile for grid size ∆ are comparable to the

values obtained by filtering the DNS with filter size ∆.

For completeness, we also consider the Reynolds stress tensor interpretation of 〈uiuj〉,

RDNS
ij = 〈uiuj〉 − 〈ui〉〈uj〉, (3.38)

where the diagonal components of RDNS
ij are the mean squared DNS velocity fluctuations

which coincide with the total diagonal Reynolds stress. As argued in Carati et al. [22],

assuming 〈φ̃〉 ≈ 〈φ〉,

RDNS
ij = 〈uiuj〉 − 〈ui〉〈uj〉 ≈ 〈ũiuj〉 − 〈ũi〉〈ũj〉 ≈ 〈ūiūj〉+ 〈τSGS

ij 〉 − 〈ūi〉〈ūj〉 = RLES
ij . (3.39)

Thus the main difference between considering 〈u′iu′j〉 as a stress rather than a velocity vari-

ance lies on the contribution of the SGS tensor, and RDNS
ij and RLES

ij are directly comparable
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Figure 3.13: (a) Streamwise, (b) wall-normal, (c) and spanwise, turbulence intensities of
DSM-EWS cases as a function of the wall-normal distance for Reτ ≈ 950 ( ), 2000 ( ), and
4200 ( ). The DNS ( ) and box-filtered DNS ( ) values are given in the respective
colors. For clarity, cases at Reτ ≈ 2000 and Reτ ≈ 4200 are vertically shifted by 1.2 and
2.4 wall units, respectively. (d) Error of the turbulence intensities Ef,i as a function of the
Reynolds number for the streamwise ( ), wall-normal ( ), and spanwise ( ) directions. The
reference line is Ef = 0.35 ( ).
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without prescribing a particular filtering operation. It also shows that the error in the ve-

locity fluctuations can be quantified as the error in the modeled SGS shear stress, i.e.,

τ12 − τSGS
12 . However, the approach is also accompanied by a limitation for the incompress-

ible Navier-Stokes equations, where the subgrid contribution τSGS
ij is usually modeled as a

traceless quantity and in order to allow for straight comparisons, only the deviatoric con-

tributions of RDNS
ij and RLES

ij must be taken into consideration [175]. An error analogous to

Eq. (3.21) can be defined using the traceless counterparts of RDNS
ij and RLES

ij . The results,

omitted for brevity, show that the errors have a weak dependence on the grid resolution

and follow ∼ (∆/δ)αf with αf < 2/3.

3.6 Error scaling of the velocity spectra

We consider the two-dimensional kinetic energy spectra for the unfiltered velocity field at a

given wall-normal distance x2, EK(k1, k3, x2) = 〈ûiû∗i 〉t/2, where (̂·) is the Fourier transform
in the homogeneous directions, (·)∗ denotes complex conjugate, and 〈·〉t is average in time.

Similarly, the kinetic energy spectra for the filtered velocity is ẼK(k1, k3, x2) = 〈ˆ̃ui ˆ̃u∗i 〉t/2.
The magnitude of EK is given by

〈u′21 + u′22 + u′23 〉 = 2

∫ ∞

0

∫ ∞

0
EK(k1, k3, x2) dk1dk3, (3.40)

(analogously for ẼK and ĒK) and it was investigated in the previous section. We are now

concerned with the distribution of energy in the homogeneous scale-space at a given wall-

normal distance. Similarly to the turbulence intensities, we compare directly to DNS and

thus define the error in the energy spectra as

Es(x2) =
[∫∞

0

∫∞
0 (ĒK −EK)2 dk1dk3∫∞
0

∫∞
0 E2

K dk1dk3

]1/2
. (3.41)
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3.6.1 Theoretical estimations

The effect of τij on the distribution of energy can be analyzed by considering the spectral

kinetic energy equation for ẼK at a given wall-normal distance,

∂ẼK

∂t
= P̂ + T̂ + Π̂ + D̂ + ε̂+ D̂τ + ε̂τ , (3.42)

where the first five terms on the right-hand are the production rate of the turbulent kinetic

energy (P̂), turbulent transport (T̂ ), pressure diffusion (Π̂), viscous diffusion (D̂), and the

molecular dissipation rate (ε̂), respectively. The explicit form of these terms can be found

in Mizuno [100]. We will focus on the contributions from τij,

ε̂τ = R

[
−ik1〈ˆ̃u∗i τ̂i1〉t − ik3〈ˆ̃u∗i τ̂i3〉t +

〈
∂ ˆ̃u∗i
∂x2

τ̂i2

〉

t

]
, and D̂τ = R

[
−∂〈τ̂i2 ˆ̃u∗i 〉t

∂x2

]
, (3.43)

where i =
√
−1 and R denotes the real part. The term ε̂τ is the dissipation rate of the

spectral kinetic energy by τij, while D̂τ is the wall-normal turbulent transport by τij . A

detailed equation for the spectral error can be derived from Eq. (3.42) although the result is

quite cumbersome. Instead, we will assume, by dimensional arguments, that the functional

dependence of Es on ∆ is proportional to the temporal integration of (ε̂τ + D̂τ ),

Es ∼
∫ tc

0
(ε̂τ + D̂τ )dt ∼ ∆2G, (3.44)

where tc ∼ G−1 is a characteristic time, and the estimated error scalings are

Esh
s ∼ ∆, E in

s ∼ ∆4/3 (3.45)

for grid resolutions comparable to eddies in the shear-dominated or inertial range, respec-

tively.
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Figure 3.14: Premultiplied two-dimensional kinetic energy spectra for DNS data as a
function of the streamwise and spanwise wavelengths normalized by (a) δ, and (b) wall-
normal distance. Different contours denote 90% of the turbulent kinetic energy at dif-
ferent heights x2/δ = 0.16, 0.21, 0.30, 0.40, 0.50, and 0.60 for Reτ ≈ 950 ( ) and
x2/δ = 0.08, 0.10, 0.20, 0.30, 0.40, and 0.50 for Reτ ≈ 2000 ( ).

3.6.2 Energy-resolving grid resolutions estimations

Prior to the numerical assessment of the error scaling, we estimate the required LES grid

resolution to resolve 90% of the turbulent kinetic energy at a given wall-normal distance from

the two-dimensional spectral energy density EK(λ1, λ3, x2) as a function of the streamwise

and spanwise wavelengths, namely λ1 = 2π/k1 and λ3 = 2π/k3, respectively. Simple models

describing the 2-D spectral contributions for moderate and high Reynolds numbers have

been proposed by Del Álamo et al. [36] and Chandran et al. [24], respectively. However,

both works focus on the energy bounds for the large scales, whereas we are interested in

the limiting length-scales for the smaller energy-containing eddies, that is, we are seeking

for the minimum streamwise and spanwise grid spacing, ∆min
1 and ∆min

3 such that EK(λ1 >

2∆min
1 , λ3 > 2∆min

3 , x2) contains 90% of the total turbulent kinetic energy.

Figure 3.14(a) shows contours of 90% energy for EK at difference wall-normal distances.

As expected, the size of the energy-containing eddies shrinks as they get closer to the wall,
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and according to the attached eddy hypothesis [160], the only relevant length-scales for the

motions spanning along the logarithmic layer is x2, which allows to write the energy spectra

as

EK = EK(λ1/x2, λ3/x2). (3.46)

The scaling from Eq. (3.46) has been extensively assessed in the literature [102] and DNS

results are plotted in Figure 3.14(b) for various heights and Reynolds numbers. Eq. (3.46)

enables the estimation of energy bounds that are approximately valid at all the wall-normal

distances within the outer layer. Taking (λ1)min = 2∆min
1 and (λ3)min = 2∆min

3 , the a priori

minimum wall-parallel grid resolutions to resolve 90% of the turbulent kinetic energy at x2

are (
λ1

x2

)

min

=
2∆1

x2
≈ 0.15,

(
λ3

x2

)

min

=
2∆3

x2
≈ 0.15. (3.47)

For example, to resolve 90% of the turbulent kinetic energy at x2 ≈ 0.5δ, we require

∆1 = ∆3 ≈ 0.04δ. The grid resolution guidelines in Eq. (3.47) imply ∆1 ≈ ∆3, in contrast

with the common choice of ∆1 > ∆3 among LES practitioners, and usually argued in terms

of the elongated streamwise velocity streaks typical of wall-bounded flows. However, it was

shown in Figure 3.14(b) that, given its small-scale nature, the ‘nose’ of the spectra are

roughly located at λ1 ≈ λ3, which justifies the choice of ∆1 ≈ ∆3. Nevertheless, it would be

reasonable to choose ∆1 > ∆3 for coarser grid resolutions aiming to resolve a lower fraction

of the turbulent kinetic energy.

3.6.3 Numerical assessment

Figure 3.15 displays the premultiplied two-dimensional spectra of the streamwise velocity

for fDNS and LES (with DSM, AMD, and no explicit SGS model). The filtered spectra was

calculated from box-filtered DNS data with a filter size ∆1 × ∆2 × ∆3. The results show

that both DSM and AMD perform similarly, and that the LES spectra is representative of

the expected energy distribution for the filtered velocities (Figures 3.15a-c), although the

LES prediction tends to be biased towards smaller scales for all grid resolutions.

For cases without explicit SGS model, the spectra is seriously misrepresented for ∆ >
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Figure 3.15: Premultiplied two-dimensional streamwise velocity spectra as a function of the
streamwise and spanwise wavelengths at x2 = 0.75δ for different grid resolutions (left) i1
(∆ = 0.2δ), (middle) i3 (∆ = 0.05δ), (right) i4 (∆ = 0.025δ) from Table 3.2 for the SGS
models (top) DSM ( ) and AMD model ( ) and (bottom) no SGS model ( ). The fDNS is
given by ( ). Contours are 0.1 and 0.6 of the maximum.



CHAPTER 3. CONVERGENCE OF SGS MODELS IN WALL-BOUNDED FLOWS 70

0.05δ (Figures 3.15d,e), with most of the energy piled up close to the smallest scales sup-

ported by the grid. The physical interpretation of this effect was provided in section 3.5 in

terms of the necessary velocity gradients to comply with the conservation of energy. Figures

3.15(d) and (e) are just the spectral depiction of the same effect, i.e., the energy cascades

towards the smallest available scales until the resulting gradients can balance the power

input driving the flow in the channel. The distribution of energy changes drastically for

∆ < 0.05δ, where large-scale streaks are now a clear constituent feature of the flow (Fig-

ure 3.15f). The result is consistent with the visualizations in Figure 3.9(d), which shows

a clear streaky pattern in the streamwise velocity for ∆ = 0.025δ, but a notably different

non-streaky structure is observed for ∆ > 0.05δ. The existence of this critical grid reso-

lution may be connected to the grid requirements estimated in section 3.6.2, where it was

concluded that ∆ ≈ 0.04δ in order to capture at least 90% of the turbulent kinetic energy at

x2 ≈ 0.5δ. This seems to be a necessary requirement to support the development of streaks

in the absence of SGS model, at least for the particular numerical discretization adopted in

this study.

Two mechanisms are potentially responsible for the improvements reported in Figure

3.15 for cases with SGS model with respect to those without: the dissipation of energy

piled up at the smallest LES scales by ε̂SGS, and the redistribution of energy in the wall-

normal direction by D̂SGS. These are the LES counterparts of ε̂τ and D̂τ discussed in section

3.6.1 and their spectra are plotted in Figure 3.16. The computed values reveals that the

main contributor is ε̂SGS whose magnitude is roughly ten times larger than D̂SGS, and the

improved predictions of the velocity spectra in Figure 3.15(a) and (b) are mostly due to the

removal of the excess energy close to the grid cut-off.

Finally, the scaling of Es is evaluated in Figure 3.17, which contains the errors for two

wall-normal distances x2 = 0.2δ and x2 = 0.75δ. The errors are well scaled by ∆, as

argued in 3.6.1 for grid resolutions within the shear-dominated range, and are insensitive to

variations in the Reynolds number. In addition, Es increases when represented as a function

of ∆/δ for different wall-normal heights due to the decrease of the energy-containing eddies

relative to δ. Conversely, the errors collapse at different x2-locations as a function of ∆/Ls,



CHAPTER 3. CONVERGENCE OF SGS MODELS IN WALL-BOUNDED FLOWS 71

10-1 100 101

λ1/δ

10-1

100

101

λ
3
/
δ

(a)

10-1 100 101

λ1/δ

10-1

100

101

λ
3
/
δ

(b)

Figure 3.16: Premultiplied two-dimensional spectra of the resolved turbulent kinetic energy
ĒK ( ) compared with (a) the SGS dissipation rate of spectral kinetic energy, ε̂SGS,
and (b) the SGS turbulent transport, D̂SGS, as functions of the streamwise and spanwise
wavelengths at x2 = 0.75δ for DSM2000-EWS-i2 ( ) and AMD2000-EWS-i2 ( ). Contours
are 0.1 and 0.6 of max(ĒK), min(ε̂SGS), and max(D̂SGS), respectively. Reference lines are
λ1 = λ3 = 0.20δ ( ).
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Figure 3.17: Error of the kinetic energy spectra Es for DSM-EWS cases as a function of the
characteristic grid size ∆ scaled by (a) δ and (b) Ls(x2) for Reτ ≈ 950 ( ) and Reτ ≈ 2000
( ) with DSM. Open symbols are for x2/δ = 0.75 and closed symbols are for x2/δ = 0.2.
Reference lines ( ) are (a) Es ∼ ∆/δ and (b) Es ∼ ∆/Ls.



CHAPTER 3. CONVERGENCE OF SGS MODELS IN WALL-BOUNDED FLOWS 72

reinforcing the shear length scale Ls as the representative physical length-scale to measure

the relative magnitude of ∆. In summary, we conclude that the errors in the kinetic energy

spectra follow

Es ∼
(
∆

Ls

)
Re0τ . (3.48)

3.7 Relevant length-scale for local error quantification

In sections 3.4 and 3.5, we defined the error as an integrated measure across the entire outer

layer, and consistently, the grid resolution was non-dimensionalized by the boundary layer

thickness δ. However, the length-scale of the energy-containing eddies is a function of the

wall-normal distance x2, and local errors at a given x2 are expected to vary accordingly.

This calls for a new physical length-scale that is relevant for scaling the local SGS model

errors. In particular, for the energy spectra, the error was measured locally due its local

nature, and the corresponding length-scale was given by the shear length-scale Ls. To

investigate the relevant length-scale for the mean velocity profile and turbulence intensities,

we define the x2-dependent error of the mean velocity as

Em,l(x2) =



∫ x2+∆2/2
x2−∆2/2

(〈ū1〉 − 〈u1〉)2 dx2
∫ δ
0.2δ〈u1〉2dx2



1/2

, (3.49)

and the x2-dependent error of the turbulent kinetic energy K = (u′21 + u′22 + u′23 )/2 as

EK,l(x2) =



∫ x2+∆2/2
x2+∆2/2

(
〈K̄〉 − 〈K〉

)2
dx2

∫ δ
0.2δ〈K〉2dx2



1/2

, (3.50)

where the integration limits x2±∆2/2 coincide with the LES grid locations of the evaluated

quantity. Different candidates for the normalization length, L, are tested, namely, the

Kolmogorov scale, the Taylor micro-scale, integral length-scale, and shear length-scale.

The results for Em,l for AMD4200-EWS-i1,i2,i3,i4 are shown in Figure 3.18, and the

best collapse is found for the shear length-scale, Ls. Similar results are obtained for the



CHAPTER 3. CONVERGENCE OF SGS MODELS IN WALL-BOUNDED FLOWS 73

101 102

∆/η

10-3

10-2

10-1

100

E
m
,l

(a)

100

∆/Lλ

10-3

10-2

10-1

100

E
m
,l

(b)

10-1

∆/Lε

10-3

10-2

10-1

100

E
m
,l

(c)

10-1 100

∆/Ls

10-2

10-1

100

E
m
,l

(d)

Figure 3.18: Local error in the mean velocity profile as a function of ∆ normalized by (a)
Kolmogorov scale η, (b) Taylor micro-scale Lλ, (c) integral length-scale Lε, and (d) shear
length-scale Ls for AMD4200-EWS-i1 ( ), AMD4200-EWS-i2 ( ), AMD4200-EWS-i3 ( ),
and AMD4200-EWS-i4 (♦). References lines ( ) are (a) Em ∼ ∆/η, (b) Em ∼ ∆/Lλ, (c)
Em ∼ ∆/Lε, and (d) Em ∼ ∆/Ls.
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equivalent DSM cases except for the first off-wall grid point (not shown). It shows that

Em,l ∼ ∆/Ls, which are the same scaling as the errors integrated over the entire channel

height. The local error lies below 10% when the grid resolution is at least 0.5 times smaller

than Ls, and it drastically drops for ∆ < 0.2Ls, although these ranges should be understood

as tentative estimates. The results are also consistent with the excellent agreement with

the scaling of the integrated quantities with δ shown in Figure 3.8 since assuming the

universality of mean velocity profile in the outer layer of the boundary layer, the average

integrated effect of the shear length-scale is (Ls)avg = 1/(0.8δ)
∫ δ
0.2δ Ls(x2)dx2 ∼ δ. For

instance, under the coarse assumption that there is no wake effect and the logarithmic layer

is valid until the edge of the boundary layer δ then (Ls)avg ≈ 0.25δ.

The large errors for ∆/Ls > 1 correspond to the first off-wall point. They are the

consequence of a very low contribution of τSGS
12 at x2 = 0 and, hence, a very large 〈∂ū1/∂x2〉

in order to achieve the target τw. Note that close to the wall Ls ≈ κx2, where κ is the

von Kármán constant, and given that the third grid point is always at x2 = 2∆, then

∆/Ls ≈ 1/(2κ) ≈ 1.25 independently of ∆. Consequently, no improved predictions are

expected for the first few off-wall grid point as ∆ is refined until the grid resolution reaches

the wall-resolved-LES-like regime, as argued by Larsson et al. [71] based on the size of wall-

attached eddies across the logarithmic region. However, recent studies show that the first

grid point may still be utilized for wall-modeling if a temporal filter is applied [179].

Figure 3.19 shows that the best collapse for EK,l is also with Ls, which stands again

as a sensible measure of the size of the energy-containing eddies that are significant for

quantifying LES errors when compared with η, Lλ and Lε. It shows that EK,l ∼ (∆/Ls)
2/3,

consistent with the errors integrated over the entire channel height.

3.8 Summary

Large-eddy simulation has emerged as a fundamental tool for both scientific research and

industrial applications. However, the solutions provided by implicitly-filtered LES are grid-

dependent, and multiple computations are required in order to faithfully assess the quality of
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Figure 3.19: Local error in the turbulence kinetic energy as a function of ∆ normalized
by (a) Kolmogorov scale η, (b) Taylor micro-scale Lλ, (c) integral length-scale Lε, and (d)
shear length-scale Ls for DSM4200-EWS-i1 ( ), DSM4200-EWS-i2 ( ), DSM4200-EWS-
i3 ( ), and DSM4200-EWS-i4 (♦). References lines ( ) are (a) Ef ∼ (∆/η)2/3, (b)
Ef ∼ (∆/Lλ)

2/3, (c) Ef ∼ (∆/Lε)
2/3, and (d) Ef ∼ (∆/Ls)

2/3.
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the LES results and obtain meaningful conclusions. This brings the fundamental question of

what is the expected LES error scaling as a function of Reynolds number and grid resolution,

which has been the aim of this investigation. In particular, we have focused on wall-

bounded flows at high Reynolds numbers with grid resolutions comparable to the boundary

layer thickness, as expected to be the typical scenario encountered in computational fluid

mechanics for external aerodynamics.

LES of wall-bounded turbulence is, nevertheless, challenging since the energy-containing

eddies are constrained to reduce their characteristic size in order to accommodate the pres-

ence of the wall. Proper wall-resolved LES calculations demand nested grid refinements

to capture these eddies, with an associated high computational overhead. To make the

problem tractable, previous studies have quantified the SGS errors in wall-resolved LES at

relatively low Reynolds numbers and unrealistically fine grids. In those conditions, most of

the errors reported are probably dominated by the near-wall region, where SGS models are

known to be deficient, while the outer layer resolution is fine enough for the contribution

of the SGS models to be negligible. For example, we have shown that for Reτ ≈ 1000 and

20 points per δ, errors smaller than 1% in the mean velocity profile can be obtained by

wall-modeled LES without any explicit SGS model. Since wall-modeled LES stands as the

most feasible approach compared to wall-resolved LES or DNS and given that in this case,

the SGS model is only effective for the outer flow, we have argued that it is necessary to

consistently isolate the errors from the bulk flow from those in the near-wall region.

In order to evaluate the performance of SGS models in the outer region independently

of the effect of the wall, we have designed a numerical experiment referred to as exact-wall-

stress channel flows where the integrated effect of the near-wall region on the outer flow

is bypassed by supplying the exact stress at the wall. This numerical experiment retains

the same physics as the traditional channel flow far from the wall and hence is a perfect

framework to test boundary layer flows. We have considered two SGS models, namely,

dynamic Smagorinsky model and minimum dissipation model, that are representative of

eddy viscosity models with and without test filtering, respectively.

We have investigated the error scaling of the mean velocity profile, turbulence intensities,
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and kinetic energy spectra, with the grid resolution and Reynolds number of the form

E(·) ∼
(
∆

L

)α(·)

Re
γ(·)
τ , (3.51)

for each quantity of interest, where ∆ and L are the characteristic grid size and the energy-

containing eddies length-scale, respectively. Our results show that ∆/L is an intricate

function of the flow state and grid resolutions, but it is well approximated by the L2-norm

of (∆1,∆2,∆3) divided by δ for quantities integrated over the outer layer, and by the shear

length-scale, Ls for errors along the wall-normal direction. The observation that L ≈ Ls as

the relevant physical length-scale to scale LES errors is consistent with Ls as representative

of the size of the energy-containing eddies. For large Reynolds number, Reτ > 1000, the

errors are independent of the viscous effects, and γ ≈ 0, as expected for wall-modeled LES.

We have derived the theoretical values for α(·) by assuming an hypothetical SGS model

that is able to represent the Reynolds stress tensor up to fourth order, and the results

have been compared with the empirical values obtained by numerical simulations. To be

consistent with the available computational resources, we have only considered cases where

the grid resolutions are a fraction of the boundary layer thickness, and the corresponding

LES filter cut-off lies either in the shear-dominated regime or in the inertial range, and

always far from the viscous Kolmogorov region. Overall, the theoretical predictions match

the numerical estimations, and we detail below the results of (3.51) for the different flow

statistics investigated.

Errors in the mean velocity profile follow Em ∼ ∆/δ, where the constant prefactor is

model dependent. Local measurements of the deviation of the LES profiles with respect

to DNS have revealed that the errors increase with the proximity of the wall, and the

prediction in the first off-wall grid point does not improve with grid refinement until the

grid resolutions approach the wall-resolved LES regime.

We have reasoned that the turbulence intensities in implicitly-filtered LES are akin to

those from filtered Navier-Stokes, but the former are controlled by the necessity of dissi-

pating the energy input at the rate consistent with the statistically steady state, while the
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latter are directly linked to the filtering operation. In terms of convergence, the turbulence

intensities are more demanding than the mean velocity profile and their error scales as

Ef ∼ (∆/δ)αf with αf ≈ 0.4 − 0.7. Furthermore, in order to correctly capture the classic

wall-normal logarithmic dependence of the streamwise and spanwise turbulence intensities,

the grid resolution must lie within the inertial range, and we have shown that the turbulence

intensities may exhibit a disparate behavior otherwise.

Errors in the relative distribution of the turbulent kinetic energy have been analyzed

through the two-dimensional wall-parallel spectra, and they have been shown to follow Es ∼
(∆/Ls)

4/3. We have pointed out that SGS models affect the distribution of energy via two

difference mechanisms, namely, dissipation and space-space transport, but that the former

dominates and is ten times larger in magnitude than the latter. The wall-parallel kinetic

energy spectra from DNS was also utilized to estimate the LES grid requirements to resolve

90% of the turbulent kinetic energy as a function of x2, resulting in ∆1 ≈ ∆3 ≈ 0.15x2. For

example, if we wish to accurately resolved 90% of the turbulent kinetic energy at x2 ≈ 0.2δ,

then ∆1 = ∆3 ≈ 0.03δ. If we further assume an isotropic grid, the count results in ∼30

points per boundary layer thickness.



Chapter 4

Dynamic slip wall models∗

4.1 Motivation

The near-wall resolution requirement to accurately resolve the boundary layer in wall-

bounded flows remains a pacing item in large-eddy simulation (LES) for high-Reynolds-

number engineering applications. Choi and Moin [26] estimated that the number of grid

points necessary for a wall-resolved LES scales as Re13/7, where Re is the characteristic

Reynolds number of the problem. The computational cost is still excessive for many prac-

tical problems, especially for external aerodynamics, despite the favorable comparison to

the Re37/14 scaling required for direct numerical simulation (DNS), where all the relevant

scales of motion are resolved.

By modeling the near-wall flow such that only the large-scale motions in the outer

region of the boundary layer are resolved, the grid-point requirements for wall-modeled LES

scale at most linearly with increasing Reynolds number. Therefore, wall-modeling stands

as the most feasible approach compared to wall-resolved LES or DNS. Several strategies

for modeling the near-wall region have been explored in the past, and most of them are

effectively applied by replacing the no-slip boundary condition in the wall-parallel directions

∗Part of the contents of this chapter have been published in Physical Review Fluids, volume 3, 014610
(2018) with coauthors Adrián Lozano-Durán, Sanjeeb T. Bose, and Parviz Moin [6] and submitted to Journal

of Fluid Mechanics with coauthors Adrián Lozano-Durán, Sanjeeb T. Bose, and Parviz Moin [7].
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with a Neumann condition. This approach is motivated by the observation that, with the

no-slip condition, most subgrid-scale models do not provide the correct stress at the wall

when the near-wall layer is not resolved by the grid [54].

Examples of the most popular and well-known wall models are the traditional wall-stress

models (or approximate boundary conditions), and detached eddy simulation (DES) and

its variants. Approximate boundary condition models compute the wall stress using either

the law of the wall [34, 139, 123, 178] or the Reynolds-averaged Navier-Stokes (RANS)

equations [10, 171, 29, 60, 113]. DES [149] combines RANS equations close to the wall

and LES in the outer layer, with the interface between RANS and LES domains enforced

implicitly through the change in the turbulence model. The reader is referred to Piomelli

and Balaras [120], Cabot and Moin [19], Larsson et al. [71], and Bose and Park [14] for a

more comprehensive review of wall-stress models and to Spalart [148] for a review of DES.

One of the most important limitations of the models above is that they depend on

pre-computed parameters and/or assume explicitly or implicitly a particular law for the

mean velocity profile close to the wall. Recently this has been challenged by Bose and Moin

[13] with a dynamic slip wall model that is free of any a priori specified coefficients. In

addition, the no-transpiration condition used in most wall models was replaced by a Robin

boundary condition in the wall-normal direction. This chapter is divided in two parts. In

the first part, we investigate the use of the slip boundary condition at the wall for the three

velocity components in the context of wall-modeled LES. The motivation for the use of this

boundary condition is corroborated both theoretically and through detailed a priori tests

of filtered velocity fields. We then assess whether this condition is physically advantageous

compared to other boundary conditions when the LES grid resolution is insufficient to

accurately resolve the near-wall region. Additionally, sensitivities of the slip boundary

condition with respect to Reynolds number, grid resolution, and SGS models in actual LES

are explored. In the second part of the chapter, we discuss the requirements for constructing

wall models based on the slip condition and present a dynamic procedure independent of

any a priori tunable parameters, consistent with the slip boundary condition, and based

on the invariance of wall stress under test filtering.
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The chapter is organized as follows. In section 4.2, we present and motivate the suit-

ability of the slip boundary condition for LES by considering the behavior of the filtered

velocities at the wall. A priori testing is performed on filtered DNS data to test the va-

lidity of the analysis. In section 4.3, we perform a set of turbulent channel LES with the

slip boundary condition and study the effect of the slip parameters, choice of SGS model,

grid resolution, and Reynolds number on the one-point statistics such as the mean and

root-mean-squared (rms) velocity profiles. A more detailed analysis of the effect of the slip

boundary condition on turbulence intensities is given in section 4.4. A dynamic procedure

is presented in section 4.5, and its performance is evaluated in section 4.6 for LES of two-

dimensional and non-equilibrium three-dimensional transient turbulent channel flows and

zero-pressure-gradient flat-plate turbulent boundary layer. Finally, a summary is offered in

section 4.7.

4.2 Slip boundary condition with transpiration

We define the slip boundary condition with transpiration as

ūi|w = li
∂ūi
∂n

∣∣∣∣
w

+ vi, i = 1, 2, 3, (4.1)

where repeated indices do not imply summation. The indices i = 1, 2, 3 denote the stream-

wise, wall-normal, and spanwise spatial directions represented by x1, x2 and x3, respectively,

ui are the flow velocities, (̄·) is the resolved LES field, n is the wall-normal direction, and

(·)|w indicates quantities evaluated at the wall. The grid or filter size will be denoted as ∆i

for the respective directions. We define li to be the slip lengths and vi the slip velocities.

In general, both the slip lengths and velocities are functions of space and time. A sketch of

the slip boundary condition for a flat wall is given in Figure 4.1. In this section we provide

theoretical motivation for the slip boundary condition in the context of filtered velocity

components and inspect the validity of Eq. (4.1) using a priori testing of filtered DNS

data. The physical implications of the slip lengths are investigated in terms of the mean
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Figure 4.1: Sketch of the slip boundary condition with transpiration (ū2|w 6= 0) for a flat
wall.

velocity profile and rms velocity fluctuations.

4.2.1 Theoretical motivation

Let us consider a wall-bounded flow. For the Navier-Stokes equations, the velocity at the

wall is given by the no-slip boundary condition [152]

ui|w = 0, i = 1, 2, 3. (4.2)

If we interpret LES as the solution of the filtered Navier-Stokes equations [76], the filtering

operation in the wall-normal direction will result, in general, in non-zero velocities at the

wall. For wall-resolved LES, where the effective filter size near the wall is small, ūi|w
can still be approximated by the no-slip boundary condition [45]. However, when the

filter size is large or the near-wall resolution is coarse, such as in wall-modeled LES, a

modified wall boundary condition different from the usual no-slip is required for the three

velocity components. Consider a one-dimensional symmetric filter kernel G(χ) with nonzero

associated filter size ∆̃ defined by its second moment

∆̃2
G =

∫ ∞

−∞
G(χ′)χ′2 dχ′. (4.3)

Then, far from the wall (x2 ≫ ∆̃), where x2 = 0 is the location of the wall, the filtered

velocity field can be computed as

ũi(x) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G(−x1 + χ′

1)G(−x2 + χ′
2)G(−x3 + χ′

3)ui(χ
′) dχ′, (4.4)
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Figure 4.2: Sketch of the change in effective kernel near the wall as it approaches the wall.

where x = (x1, x2, x3) and χ
′ = (χ′

1, χ
′
2, χ

′
3). However, in near-wall region, the filter kernel

in the wall-normal direction has a functional dependence on the wall-normal distance, which

becomes prevalent as x2 → 0 for depicted in Figure 4.2. The new filter operator restricted

by the wall then becomes

ũi(x) =

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
G(−x1 + χ′

1)G∗(x2,−x2 + χ′
2)G(−x3 + χ′

3)ui(χ
′) dχ′ (4.5)

where

G∗(x2, χ) =
G(χ)∫∞

−x2
G(ϕ) dϕ (4.6)

is the effective (rescaled) kernel at a wall-normal distance x2.

Assuming no slip for the unfiltered velocity and approximating the velocity near the

wall as a Taylor expansion ui(x) =
∑p

m=1 amxm2 , the filtered velocity at the wall can be

expressed as

ũi|w =

p∑

m=1

amM
(m)
G∗

0
, (4.7)

where M
(m)
G∗

0
is the m-th moment of G∗(0, χ), the effective filter at the wall. From (4.7, it
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can be shown that

∂ũi
∂x2

∣∣∣∣
w

=

p∑

m=1

−2amG(0)M (m)
G∗

0
+mamM

(m−1)
G∗

0
. (4.8)

Since M
(m)
G∗

0
∼ ∆̃m

G and G(0) ∼ ∆̃−1
G , we can use Eqs. (4.7) and (4.8) to obtain an second

order approximation of the boundary condition of the form

ũi|w = l
∂ũi
∂x2

∣∣∣∣
w

, (4.9)

where l = M
(1)
G∗

0
/
(
1− 2G(0)M (1)

G∗

0

)
.

This boundary condition is exact for a linear velocity profile but is expected to deterio-

rate as the linear approximation is no longer valid for x2 < ∆̃. In this case, the second- and

higher-order terms neglected in Eq. (4.9) may result in different slip lengths and extra terms

for each velocity component as in Eq. (4.1) in order to achieve an accurate representation

of the flow at the wall. The particular expressions for li and vi depend formally on the filter

shape, size, and instantaneous configuration of the filtered velocity vector at the wall.

Equation (4.9) motivates the use of the slip boundary condition for wall-modeled LES.

Nevertheless, it is important to highlight a few remarks regarding the derivation and the

consistency of the slip condition. The first observation is that in the case of explicitly-

filtered LES [85, 84, 12] with a well-defined filter operator, the filter size is a given function

of the wall-normal distance, and the slip lengths and velocities can be computed explicitly.

However, in the present study, we focus on traditional implicitly-filtered LES, where the

filter operator is not distinctly defined and, as a consequence, neither is the filter size, which

is typically assumed to be proportional to the grid size. This supposed relation between the

filter and grid sizes is not always valid [84, 142], and worsens close to the wall. Therefore,

in the near-wall region, it is reasonable to assume that the effective filter size is an unknown

function of the wall-normal distance, and the slip lengths and velocities must be modeled as

they cannot be computed explicitly. As a final remark, note that commutation of the filter

and derivative operators is necessary to formally derive the LES equations which, in turn,
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entails a constant-in-space filter size or filter operator constructed to be commutative [88].

This condition is not met by Eq. (4.1) but given that the filter size for implicitly-filtered

LES is an unknown function of space, we also neglect terms arising from commutation

errors.

4.2.2 A priori evaluation

A priori testing of the slip boundary condition is conducted to assess the validity of Eq.

(4.1) in filtered DNS data of turbulent channel flow from Del Álamo et al. [36], Hoyas

and Jiménez [48], and Lozano-Durán and Jiménez [80] at friction Reynolds numbers of

Reτ ≈ 950, 2000 and 4200, respectively.

In the following, uτ is the friction velocity, ν is the kinematic viscosity, and the channel

half-height is denoted by δ. Wall units are defined in terms of ν and uτ and denoted by

the superscript +. In each case, the DNS velocity vector is filtered in the three spatial

directions with a box-filter with filter size ∆̃i/δ. The resulting filtered data contain ũi|w
and ∂ũi/∂x2|w, which can be used to test the accuracy of Eq. (4.1) by computing their

joint probability density function (PDF). The PDF for Reτ = 950 with ∆̃1 = ∆̃2 = ∆̃3

are plotted in Figure 4.3(a-c). The results show, on average, a linear correlation between

ũi|w and ∂ũi/∂x2|w, which supports the suitability of the slip boundary condition given in

Eq. (4.1) with vi = 0. However, the spread of the joint PDFs increases with increasing

filter size. A trend similar to that of Figure 4.3(a-c) appears when increasing the Reynolds

number for a constant filter size ∆̃i/δ (not shown), which implies that the second-order

approximation deteriorates as the filter size increases in wall units. However, despite this

scaling, a linear relationship between ũi|w and ∂ũi/∂n|w is still satisfied on average, and it

will be shown in section 4.3 that this is enough to obtain accurate predictions of the mean

velocity profile in actual LES.

Finally, Figure 4.3(d) shows the streamwise slip length l1 as a function of Reynolds

number for a constant ∆̃i/δ. The slip length was computed as the average ratio of ũ1|w and

∂ũ1/∂x2|w. The plot shows that the dependence of the streamwise slip length on Reynolds

number is stronger for smaller Reτ . This behavior can be explained by the relative thickness
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Figure 4.3: Joint probability density function of (a) ũ1|w and ∂ũ1/∂x2|w, (b) ũ2|w and
∂ũ2/∂x2|w, and (c) ũ3|w and ∂ũ3/∂x2|w for box-filtered DNS and ∆̃i = 0.01δ ( ), 0.02δ
( ), and 0.03δ (♦) with Reτ = 950. For each probability distribution the contours are 50%
and 95%. (d) l1 dependence on Reτ with ∆̃2 = 0.050δ (black) and 0.100δ (blue) calculated
from box-filtered DNS channel flow data ( ), and estimation from box-filtered logarithmic

layer approximation l1/δ = ∆̃2/(2δ)
[
log(Reτ ∆̃2/(2δ)) − 1

]
+ κB∆̃2/(2δ), κ = 0.41 and

B = 5.3, ( ).
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of the filter size and the buffer layer. When the ratio is of O(1), the filtered velocity at

the wall takes into account contributions from the buffer layer, and l1 is expected to be

sensitive to changes in Reynolds number. However, when the buffer layer is a small fraction

of the filter size, most of the contribution to l1 comes from the logarithmic layer, which has

a universal behavior with Reτ . Neglecting the effect of the buffer layer, the approximate

functional dependence of the slip length on Reynolds number can be estimated from the

logarithmic velocity profile,
〈u1〉
uτ

=
1

κ
log
(
x+2
)
+B, (4.10)

where 〈·〉 denotes average in the homogeneous directions and time, κ is the von Kármán

constant, and B is the intercept constant. In the limit of high Reynolds numbers, the box-

filtered streamwise velocity and its wall-normal derivative can be estimated by assuming

a logarithmic law in the entire near-wall region and integrating Eq. (4.10). This gives an

approximation for the average streamwise slip length

l1
δ

∼ 〈ũ1/uτ 〉
∂〈ũ1/uτ 〉/∂(x2/δ)

∼ ∆̃2

2δ

[
log

(
Reτ

∆̃2

2δ

)
− 1

]
+ κB

∆̃2

2δ
(4.11)

(dashed lines in Figure 4.3d), which predicts a weak Reτ dependence for large Reynolds

numbers. It is important to remark that l1 from the figure is only an estimation from a

priori testing and the particular values are not expected to work in an actual LES, although

we expect the trends to be relevant.

4.2.3 Consistency constraints on the slip parameters

In an actual LES implementation, the choice of li and vi must comply with the symmetries

of the flow. Moreover, it is also necessary to satisfy on average the impermeability constraint

of the wall to preserve the physics of the flow (more details are offered in section 4.3.6).

Therefore, the slip boundary condition for a plane channel flow should fulfill

〈ūi|w〉 =
〈
li
∂ūi
∂n

∣∣∣∣
w

〉
+ 〈vi〉 = 0, i = 2, 3. (4.12)



CHAPTER 4. DYNAMIC SLIP WALL MODELS 88

Equation (4.12) can be further simplified by assuming li and vi to be constant in the

homogeneous directions. Since 〈ūi|w〉 = 0 and 〈∂ūi/∂x2|w〉 = 0 for i = 2, 3, 〈v2〉 and 〈v3〉
must be set to zero. We can also set 〈v1〉 = 0 without loss of generality, since its average

effect can be absorbed by moving the frame of reference at constant uniform velocity. Then,

the slip boundary condition consistent with the symmetries of the channel is of the form

ūi|w = li
∂ūi
∂n

∣∣∣∣
w

. (4.13)

When the flow is no longer homogeneous in x1, as in a spatially developing flat-plate

boundary layer, the above arguments based on the symmetry of the channel do not hold.

Then, the slip velocity vi can be used to impose zero mean mass flow through the walls and

ensure that the boundary behaves, on average, as a non-permeable wall. The mass through

a flat wall is only affected by v2, and we can still set v1 and v3 to zero for simplicity.

4.3 Effect of the slip boundary condition on one-point statis-

tics

It was argued in section 4.2 that the most general form of the Robin boundary condition,

given by Eq. (4.1), should replace the no-slip condition in wall-modeled LES. In this

section, we investigate the effects of li and vi on the one-point statistics of LES of plane

turbulent channel flow and flat-plate boundary layer. Our conclusions will be numerically

corroborated by considering li and vi as free parameters in an LES with slip boundary

conditions at the walls. A dynamic procedure to compute these parameters will be given

in section 4.5.

4.3.1 Numerical experiments

We perform a set of plane turbulent channel LES with parameters given in Table 4.1.

The simulations are computed with a staggered second-order finite difference [110] and a

fractional-step method [62] with a third-order Runge-Kutta time-advancing scheme [176].
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Case SGS model Reτ ∆+
i ∆i/δ l1/δ l2/δ

DSM-2000

DSM 2003 83.3 0.050

0.008 0.008
DSM-2000-s1 0.008 0.004
DSM-2000-s2 0.004 0.008
DSM-2000-s3 0.097 0.045

DSM-2000-c1
DSM 2003

154 0.077
0.008 0.008

DSM-2000-c2 200 0.100

DSM-950
DSM

934 46
0.050 0.008 0.008

DSM-4200 4179 210

AMD-2000 AMD
SM-2000 SM 2003 100 0.050 0.008 0.008
NM-2000 NM

Table 4.1: Tabulated list of cases. The numerical experiments are labeled following the
convention [SGS model]-[Reτ ](-[other cases]). SGS models used are the dynamic Smagorin-
sky model (DSM), constant coefficient Smagorinsky model (SM), anisotropic minimum-
dissipation model (AMD), and no SGS model (NM). Grid resolutions different from the
baseline case are noted by c1 and c2. Three additional cases with different slip length than
the baseline case are labeled s1, s2, and s3. See text for details.

The size of the channel is 2πδ×2δ×πδ in the streamwise, wall-normal, and spanwise direc-

tions, respectively. It has been shown that this domain size is sufficient to accurately predict

one-point statistics for Reτ up to 4200 [80]. Periodic boundary conditions are imposed in

the streamwise and spanwise directions. The eddy viscosity νe is computed at the cell cen-

ters and the values at the wall are obtained by applying the Neumann boundary condition,

which is motivated by the fact that for coarse grid resolutions the SGS contribution at the

wall must be non-zero. The channel flow is driven by imposing a constant mean pressure

gradient, and all simulations were run for at least 100 eddy turnover times (defined as δ/uτ )

after transients.

The slip boundary condition from Eq. (4.13) is used on the top and bottom walls. We

have tested the variability of li in time by oscillating li(t) with different amplitudes and

frequencies around a given mean. The frequency of the oscillation considered were 0.5, 1,

and 2 times the natural frequency given by the size of the grid and uτ , and the amplitudes

imposed were up to 0.5 times the value of the mean. The different cases resulted in almost
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identical one-point statistics as those obtained with a constant li of the same mean with

the relative difference in the resulting wall stress below 0.5% for all cases. Thus, li will

be considered constants in both homogeneous directions and time for the remainder of the

section.

We take as a baseline case the friction Reynolds number Reτ ≈ 2000 with a uniform

grid resolution of 128×40×64 in the x1, x2, and x3 directions, respectively. The grid size in

outer units is 0.050δ in the three directions and follows the recommended grid resolution by

Chapman [25] for resolving the large eddies in the outer portion of the boundary-layer. The

baseline SGS model used is the dynamic Smagorinsky model (DSM) [42, 77]. The baseline

slip lengths are li = 0.008δ for reasons given in section 4.3.2. Three additional cases with

different slip lengths are used to study the effect of the slip lengths on one-point statistics.

To study the effects of the slip boundary condition on grid resolution, we define two

meshes with 82×26×42 and 64×20×32 grid points distributed uniformly in each direction,

which correspond to a uniform grid size of 0.077δ and 0.100δ, respectively. The resolutions

were chosen such that the first interior point lies in the logarithmic region and is far from

the inner-wall peak of the streamwise rms velocity. The intention is to avoid capturing

(even partially) the dynamic cycle in the buffer layer, since the wall-normal lengths of the

near-wall vortices and streaks scale in viscous units, and that scaling is incompatible with

the computational efficiency pursued in wall-modeled LES. The range of grid resolutions is

limited due to the fact that the outer layer still needs to be resolved by the LES. However,

it will be shown in section 4.3.5 that the selected range of grid resolutions is sufficient to

show the sensitivity of the slip lengths on the grid resolution.

To investigate the effect of the Reynolds number we will consider three cases at Reτ ≈
950, 2000 and 4200. The sensitivity to the SGS model will be assessed by comparing results

from DSM, constant-coefficient Smagorinsky model (SM) [146] without damping function

at the wall, the anisotropic minimum-dissipation model (AMD) [135], and cases without an

SGS model (NM). Finally, LES results will be compared with DNS data from Del Álamo

et al. [36], Hoyas and Jiménez [48], and Lozano-Durán and Jiménez [80].
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4.3.2 Control of the wall stress and optimal slip lengths

In an LES of channel flow with the slip boundary condition Eq. (4.13), the wall stress is

given by

〈τw〉 = ν

〈
∂ū1
∂x2

∣∣∣∣
w

〉
− 〈ū1ū2|w〉 −

〈
τSGS
12

∣∣
w

〉
, (4.14)

where τw is the stress at the wall, τSGS
12 is the tangential SGS stress tensor, and 〈ū1ū2|w〉 is

the result of the non-zero velocity provided by the slip condition. The slip lengths can be

explicitly introduced by substituting ū1ū2 from Eq. (4.13) such that

〈τw〉 = ν

〈
∂ū1
∂x2

∣∣∣∣
w

〉
−
〈
l1l2

∂ū1
∂x2

∂ū2
∂x2

∣∣∣∣
w

〉
−
〈
τSGS
12

∣∣
w

〉
, (4.15)

where τSGS
12 also implicitly depend on the slip lengths. Therefore, the wall stress (and hence

the mass flow) can be controlled by the proper choice of slip lengths. This is an important

property of the slip boundary condition, and it is illustrated in Figure 4.4. For coarse LES

with no-slip boundary conditions, the near-wall region cannot be accurately computed due

to the inadequacy of the current SGS models and large numerical errors in the near-wall

region, even if the resolution is enough to resolve the outer layer eddies. This may result

in under- or over-predictions of the wall stress, among other effects, and the mean velocity

shift with respect to DNS. Figure 4.4 shows the mean streamwise velocity profile for the

cases DSM-2000 and DSM-2000-s[1-3]. The results reveal that increasing l1 (at constant

l2) moves up the mean velocity profile by 8%, while increasing l2 (at constant l1) have the

opposite effect and decreases the mean by 15%. Although not shown, it was tested that

varying l3 has a second-order effect on the mean velocity profile when compared to changes

of the same order in l1 and l2. For instance, the change in mean velocity profile is 1.2% when

l3 is changed from 0.008δ to 0.004δ for case DSM2000. The result is not totally unexpected

since ū1 and ū2 are active components of the mean streamwise momentum balance in a

channel flow (see Eq. 4.15), while ū3 enters only indirectly. All calculations in this chapter

have been performed with l3 equal to l2.

The observations in Figure 4.4 may be explained in terms of the mean streamwise
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Figure 4.4: Mean streamwise velocity profile as a function of (a) outer units and (b) wall
units for DSM-2000, (l1, l2) = (0.008δ, 0.008δ) ( ), DSM-2000-s1, (l1, l2) = (0.008δ, 0.004δ)
( ), DSM-2000-s2, (l1, l2) = (0.004δ, 0.008δ) ( ), DSM-2000-s3, (l1, l2) = (0.097δ, 0.045δ)
(×), and DNS ( )

momentum balance at the wall and non-zero streamwise slip. With respect to the former,

increasing l2 enhances the 〈ū1ū2〉 contribution at the wall, which is translated into a lower

mean velocity profile due to the higher momentum drain at the boundaries. The same

argument applies when increasing l1. However, higher l1 also implies larger average slip in

x1, which overcomes the previous momentum drain. The resulting net effect of larger l1 is

an increase of the mean mass flow. For the laminar Poiseuille flow with the slip boundary

condition, the shift in the mean velocity profile can be computed analytically and can be

shown to be proportional to l1.

The duality between the streamwise and wall-normal slip lengths makes possible to

always achieve the correct wall stress by an appropriate selection of (l1, l2), which we define

as optimal slip lengths. The optimal slip lengths are effectively computed by running an

LES with slip boundary condition using Eq. (4.15) with τw = τDNS
w as a constraint, and

then averaging in time the values obtained for l1 and l2. Note that we have the freedom

to impose the ratio l1/l2, and the optimal slip lengths are not unique. Two examples are

shown in Figure 4.4. Is is also important to remark that the control of the mean velocity
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profile is not possible in general without wall-normal transpiration. In particular, if an LES

with l1/δ = l2/δ = 0 (no-slip) already over-predicts the mean velocity profile with respect to

DNS, the only possible outcome of increasing l1/δ while maintaining l2/δ = 0 is a positive

shift of the mean velocity profile. Since our experience shows that negative values of l1 will

result in an unstable solution, the conclusion is that the correct mean velocity profile cannot

be achieved in theses cases unless l2 6= 0, making the wall-normal slip length indispensable.

4.3.3 Prediction of the logarithmic layer

A second observation from Figure 4.4 is that the shape of the mean velocity profile remains

roughly constant for different slip lengths, and changes in l1 and l2 are mainly responsible

for a shift along the mean velocity axis. We would like to connect the previous observation

with the classic logarithmic profile for the mean streamwise velocity given in Eq. (4.10).

Assuming that the filter operation does not alter the logarithmic shape of 〈ū1〉 for the

typical filter sizes (or grid resolutions), Eq. (4.10) should also hold for LES. However, it

is not clear whether this would be the case for an actual LES. For example, Millikan’s

asymptotic matching argument [99] requires a scale separation that tends to infinity as the

Reynolds number increases, which is not the case in wall-modeled LES as the length scales

are fixed in outer units. Other arguments, such as the Prandtl’s mixing length hypothesis

[129] would suggest that the correct wall-normal mixing of the flow should be obtained in

order to recover the logarithmic profile. Alternatively, from the point of view of Townsend’s

attached eddy hypothesis [160], the flow from the LES should be populated by a self-similar

hierarchy of eddies with sizes proportional to the wall distance and the proper number of

eddies per unit area. In all cases, the SGS model plays a non-negligible role in fulfilling

these conditions, especially at high Reynolds numbers and coarse grids. As a consequence,

not all SGS models are expected to recover the correct shape of the mean velocity profile,

and this is further discussed in section 4.3.5.

The prominent role of the SGS model in the correct representation of the logarithmic
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layer can be seen from the integrated mean streamwise momentum balance for LES velocities

〈ū+1 〉(x+2 ) = 〈ū+1 |w〉︸ ︷︷ ︸
∼B

+x+2

(
1− x2

2δ

)
+

∫ x+
2

0
〈ū+1 ū+2 + τSGS+

12 〉dx′+2
︸ ︷︷ ︸

∼1/κ log(x+
2 )

. (4.16)

By comparing the structure of Eqs. (4.10) and (4.16), it is reasonable to hypothesize that

the slip boundary condition mainly influences the intercept B, which is independent of x2,

while the SGS model controls the x2-dependent slope 1/κ, related to the wall-normal mixing

of the flow by the attached eddies. Note that this is not strictly the case, and some coupling

is expected between all terms in Eq. (4.16). For example, the value of the integrand at the

wall will depend on the slip lengths.

4.3.4 Velocity fluctuations and Reynolds stress contribution

The sensitivity of 〈u′2i 〉1/2 to the choice of slip lengths is examined in Figures 4.5(a). Three

cases DSM-2000, DSM-2000-s1, and DSM-2000-s3 are considered, two of them supplying

the correct mean velocity profile. The rms velocities are insensitive, especially away from

the wall, even when the slip lengths are such that the mean velocity profile does not match

that of DNS. The most noticeable difference is observed at the wall, where larger l1 results

in smaller rms values. The consequence is that even if the mean velocity profile matches

that of DNS for an optimal (l1, l2), some pairs are preferred in order to avoid the near-wall

under- and over-shoot in the rms velocity fluctuations. A more comprehensive study of the

near-wall turbulence intensities with the slip boundary condition can be found in section

4.4.

Figure 4.5(b) stresses another important property of the slip condition. As was the case

for rms velocities, the changes in the mean tangential Reynolds stresses are negligible to

varying values of l1 and l2, except at the walls. For the case with larger l1, the wall-stress

contribution from the 〈ū1ū2〉 is roughly 50%, and the remaining stress is then carried by

the SGS and viscous terms. This can be considered an advantage compared to the classic

no-transpiration condition since the SGS model, usually known to under-predict the wall
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Figure 4.5: (a) Streamwise, spanwise and wall-normal rms velocity fluctuations (from
top to bottom), and (b) mean Reynolds stress contribution for DSM-2000, (l1, l2) =
(0.008δ, 0.008δ) ( ), DSM-2000-s1, (l1, l2) = (0.008δ, 0.004δ) ( ), DSM-2000-s3, (l1, l2) =
(0.097δ, 0.045δ) (×), and DNS ( ).

stress [54], is not constrained to account for the resolved non-zero ūiūj at the wall.

Finally, the structure of the streamwise velocity at the wall for filtered DNS and wall-

modeled LES is shown in Figure 4.6. The filtered DNS data was obtained by box-filtering the

streamwise velocity with filter size ∆̃i = 0.050δ, that coincides with the LES grid resolution.

Although our analysis is qualitative, the figures show that despite the comparable intensities,

the filtered DNS is organized into more elongated streaks. Also note that for a constant l1,

the slip boundary condition forces the velocity and its wall-normal derivative to have the

same structure close to the wall, that is inconsistent with box-filtered DNS. This suggests

that an accurate representation of the flow structure at the wall is neither expected nor

necessary in order to obtain accurate predictions of the low-order flow statistics far from

the wall. This is consistent with previous studies indicating that the outer layer dynamics

are relatively independent of the near-wall cycle [37, 39, 102, 52, 81, 38].
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(a) (b)

Figure 4.6: Instantaneous snapshot of the streamwise velocity at the wall for (a) box-filtered
DNS (Reτ ≈ 2000) with filter size ∆̃i/δ = 0.050 and (b) wall-modeled LES (DSM-2000)
with grid resolution ∆i/δ = 0.050 of channel flow. Colors indicate velocity in wall units.

4.3.5 Sensitivity to SGS model, Reynolds number, and grid resolution

In this section, we study the effect of the SGS model, Reynolds number, and grid resolution

on the mean velocity profile and rms fluctuations for different slip lengths. The discussion

is necessary for understanding the most relevant sensitivities of wall models based on the

slip boundary condition.

Figure 4.7 shows the sensitivity of the mean velocity to different SGS models for DSM-

2000, SM-2000, AMD-2000, and NM-2000. In all of the cases, the slip lengths are fixed and

equal to 0.008δ such that the velocity profile at the center of the channel for DSM-2000

matches the DNS data. Note that this particular choice is arbitrary, and that alternative

values of slip lengths could be selected to find the best match between SM-2000, AMD-

2000, or NM-2000 with DNS. However, the results below are independent of this choice,

since the relative shift between cases is barely affected. The results in Figure 4.7 reveal

that not only the shape but also the mean mass flow, and thus the optimal slip lengths for

each SGS model, are highly dependent on the SGS model for the grid resolutions typical

of wall-modeled LES. Regarding the shape of 〈ū1〉 (Figure 4.7b), for low-dissipation SGS

models (e.g. NM), the flow becomes more turbulent, causing the mean velocity profile to

flatten due to the enhanced mixing. On the other hand, for highly-dissipative SGS models

(e.g. SM), the shape approaches a parabolic profile, that is closer to the laminar solution.
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Figure 4.7: (a) Effect of SGS models on the mean velocity profile for li = 0.008δ. (b) The
mean velocity profiles have been shifted to compare the shapes of the mean velocity profile,
where the shift is given by ∆u = u+1 (δ) − u+DNS

1 (δ). Dynamic Smagorinsky model ( ),
constant coefficient Smagorinsky model ( ), anisotropic minimum-dissipation model (♦),
and no model ( ) are given for the turbulent channel with Reτ = 2000. DNS ( ).

The effect of each SGS model on the mass flow rate in wall units can be understood by

considering the definition of the friction velocity,

u2τ = −〈ū1ū2|w〉+
〈
ν
∂ū1
∂x2

∣∣∣∣
w

〉
+

〈
νe

∂ū1
∂x2

∣∣∣∣
w

〉
. (4.17)

For a channel flow driven by a constant mass flow rate, the last term in Eq. (4.17) is zero

for LES without an SGS model, which results in lower uτ and therefore a positive shift

of the mean velocity profile scaled in wall units. For non-zero eddy viscosity, the mean

SGS stress at the wall will contribute to increase uτ , creating a negative shift in the mean

velocity profile in wall units. The actual impact of the SGS model on uτ is more intricate

due to the coupling between νe and the flow velocities. However, the qualitative behavior

of uτ still holds.

Conversely, the effects on the mass flow can also be explained for a channel flow driven

by a constant pressure gradient. In this case, the left-hand side of Eq. (4.17) is fixed. As a

consequence, variations in the SGS stress at the wall must be compensated by variations in
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Figure 4.8: Effect of (a) the grid resolution, and (b) Reynolds number on the mean velocity
profile for li = 0.008δ. (a) ∆i/δ = 0.050 ( ), 0.063 ( ), and 0.077 ( ). (b) Reτ = 950 ( ),
Reτ = 2000 ( ), Reτ = 4200, ( ). DNS ( ).

the Reynolds and viscous stress terms. We have observed that these changes are balanced

by the viscous stress, ν ∂ū1/∂x2|w, rather than by the Reynolds stress term. The variation

in the mass flow can then be understood through the slip boundary condition, where larger

∂ū1/∂x2|w implies a larger slip at the wall and, hence, higher mass flow.

The grid resolution and Reynolds number sensitivity are studied in Figure 4.8, again

maintaining constant slip lengths. Regarding the resolution, coarsening the grid increases

the mass flow. This phenomenon is also observed in LES with no-slip boundary condition

and, in the present case, is probably related to an inconsistency between the choice of slip

lengths and the wall-normal momentum flux provided by the SGS model. Figure 4.8(b)

shows a weak dependence of the mean velocity profile on the Reynolds number. The most

notable observation is the under-estimation of the mass flow for the lowest Reynolds number,

but overall the optimal slip lengths are quite insensitive to Reτ , consistent with our analysis

in section 4.2.2.
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4.3.6 The role of slip velocity in imposing zero mean mass flow through

the walls

As discussed in section 4.2.3, we require the slip velocities to guarantee no net mass flow

through the walls for flows which are inhomogeneous in the wall-parallel direction. The

requirement is demonstrated here in an LES of zero-pressure-gradient flat-plate turbulent

boundary layer.

The numerical method is similar to that of the channel flow with the exception of the

boundary conditions and the Poisson solver, which was modified to take into account the

non-periodic boundary conditions in the streamwise direction. The simulation ranges from

Reθ ≈ 1000 to 10,000, whereReθ is the Reynolds number based on the momentum thickness.

This range is comparable to the boundary layer simulation by Sillero et al. [141], which will

be used for comparisons.

The slip boundary condition from Eq. (4.1) is used in the bottom (x1-x3) plane located

at x2/δ = 0. In the top plane, we impose u1 = U∞ (free-stream velocity), u3 = 0, and

u2 estimated from the known experimental growth of the displacement thickness for the

corresponding range of Reynolds numbers as in Jiménez et al. [56]. This controls the

average streamwise pressure gradient, whose nominal value is set to zero. The turbulent

inflow is generated by the recycling scheme of Lund et al. [86], in which the velocities

from a reference downstream plane, xref, are used to synthesize the incoming turbulence.

The reference plane is located well beyond the end of the inflow region to avoid spurious

feedback [109, 143]. In our case, xref/θ0 = 890, where θ0 is the momentum thickness at

the inlet. A convective boundary condition is applied at the outlet with convective velocity

U∞ [114] and small corrections to enforce global mass conservation [143]. The spanwise

direction is periodic. The length, height and width of the simulated box are L1 = 1060θavg,

L2 = 18θavg and L3 = 35θavg, where θavg = 2.12θ0 denotes the momentum thickness

averaged along the streamwise coordinate. This domain size is similar to those used in

previous studies [138, 56, 141]. The streamwise and spanwise resolutions are ∆1/δ = 0.05

(∆+
1 = 118) and ∆3/δ = 0.04 (∆+

3 = 84.3) at Reθ ≈ 6500. The number of wall-normal grid
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points per boundary layer thickness is chosen to be ∼ 20 at the inlet, which is in line with

the channel flow simulations in the previous sections. The grid is slightly stretched in the

wall-normal direction with minimum ∆2/δ = 0.01 (∆+
2 = 20.8). All computations were run

with CFL=0.5 and for 50 washouts after transients.

The slip lengths are computed to match the empirical friction coefficient, Cf , fromWhite

and Corfield [173]. The connection between the slip parameters and the friction coefficient

including the effect of v2 is

1

2
U2
∞〈Cf 〉 = ν

〈
∂ū1
∂x2

∣∣∣∣
w

〉
−
〈
l1l2

∂ū1
∂x2

∂ū2
∂x2

∣∣∣∣
w

〉
+

〈
v2

∂ū1
∂x2

∣∣∣∣
w

〉
−
〈
τSGS
12

∣∣
w

〉
, (4.18)

where the slip lengths are now a function of the streamwise coordinate to take into account

the inhomogeneity of the flow in x1. In order to ensure numerical stability, exponential

filtering in time with filter size 0.2δ/uτ was applied to the slip lengths in addition to aver-

aging in the homogeneous direction. Equation (4.18) is key to guarantee the correct wall

stress, but we have the freedom to impose two more conditions to fully determine l1, l2 and

l3, which for simplicity, we set l1 = l2 = l3 = l. The value of v2 is computed at each time

step to ensure zero mean mass flow through the wall such that

v2(t+∆t) = −〈u2(x1, 0, x3, t)〉w, (4.19)

where ∆t is the time step and 〈·〉w denotes averaging over the entire wall. Equations (4.18)

and (4.19) were used to compute the slip parameters. The mean v2 obtained was of the

order of 10−3U∞. The slip velocities v1 and v3 in Eq. (4.1) are set to zero.

Figure 4.9(a) shows the resulting mean slip lengths computed to produce the target

Cf , and that was successfully achieved as shown in Figure 4.9(b). It is important to stress

again that one of the main differences of the boundary layer case with respect to the channel

flow is the necessity of a nonzero v2 term from Eq. (4.1) in order to guarantee that the

wall behaves as a no-transpiration boundary on average. We have implemented a global

condition (constant-in-space v2, Eq. 4.19) that does not prevent instantaneous local mass
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Figure 4.9: (a) Mean slip length l ( ) normalized by θavg, the average momentum thick-
ness, (b) the friction coefficient from the wall-modeled LES ( ) and the empirical friction
coefficient from White and Corfield [173] ( ), and (c) the instantaneous ( ) and time-
averaged ( ) wall-normal velocities at the wall as a function of Reθ.

flow at a particular streamwise location as seen in Figure 4.9(c). However, the mean mass

flow remains locally close to zero for all streamwise locations.

The mean streamwise velocity and the three rms velocity fluctuations at Reθ ≈ 6500

(Reτ ≈ 1989.5) are shown in Figure 4.10 and compared with Sillero et al. [141]. As expected,

the mean DNS and LES velocities match in the wake region, as the correct Cf in the LES is

imposed. The shape of the profile is also well predicted. The rms velocities are reasonably

well reproduced at this Reynolds number, with no over-prediction of the streamwise rms

velocity and under-prediction of the other two components close to the wall, consistent with

the analysis in section 4.3.4. Overall, these results along with those from LES of channel

flow in the previous sections show that the slip boundary condition successfully reproduces

the one-point statistics of the flow as long as the slip lengths accurately reflect the correct

mean wall stress.
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Figure 4.10: (a) Mean streamwise velocity profile ( ) and (b) rms streamwise (×), span-
wise ( ), and wall-normal ( ) fluctuation profiles at Reθ ≈ 6500. Symbols are LES. DNS
from Sillero et al. [141] ( ).

Two more cases (not shown) were run to test the effect of the slip boundary condition

on the net mass flow through the wall. In the first case, a slip boundary condition was

imposed such that the net mass flow through the wall is positive (incoming flow through

the wall) such that 〈ū2|w〉w ≈ 0.01U∞. In this case, the boundary layer thickness grew five

times faster than the reference DNS. On the contrary, when the simulation was run with

net negative mass flow through the walls (〈ū2|w〉w ≈ −0.01U∞), the flow remained laminar.

The results are consistent with observations in previous studies on blowing and suction of

boundary layers [144, 4, 31, 181] and highlight the relevance of imposing a correct zero net

mass flow through the walls in order to faithfully predict the boundary layer growth.

4.4 Effect of the slip boundary condition on predictions of

turbulence intensities

4.4.1 Numerical experiments

We perform a set of plane turbulent channel LES. The details of the numerical methods are

the same as in the previous section. The DSM is used as the SGS model [42, 77]. The grid
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Case Reτ ∆+
1 ∆+

3 min(∆+
2 ) max(∆+

2 )
max〈ū′2

1 〉1/2

max〈u′2
1DNS〉

1/2

NS-550-s 546 107.4 53.6 1.41 98.6 1.75
NS-550-s-f 546 53.6 26.8 0.64 49.7 1.24
NS-2000-s-f 2003 196.7 98.3 2.35 182.1 1.90

NS-550-u 1.07
NE-550-u 546 107.4 53.6 34.2 34.2 1.15
SL-550-u 1.00

Table 4.2: Tabulated list of cases. The case name is given in the first column, where the
first two upper-case letters indicate the boundary condition used: no-slip (NS), Neumann
(NE), and slip (SL). The middle number is Reτ for Reτ ≈ 550, 2000. The lower-case letter
is used to denote the stretching of the grid: stretched (s) and uniform (u). Case with a
finer grid resolution is denoted with f. The relative intensity of the peaks for 〈u′21 〉1/2 for
LES with respect to DNS is given in the sixth column. The symbols for each case are used
in the subsequent plots.

resolutions for this set of cases are chosen to be comparable to those found in the literature

[96].

At the wall, three different boundary conditions are applied: the no-slip boundary con-

dition, the Neumann boundary condition without transpiration, and the slip boundary con-

dition with transpiration with the optimal slip lengths. The Neumann boundary condition

without transpiration is defined as

∂ū1
∂n

=
τDNS
w

〈ν + νe〉w
, ū2 = 0,

∂ū3
∂n

= 0, (4.20)

where τDNS
w is mean wall stress corresponding to the DNS case. We have adopted the

simplification of imposing the correct mean wall stress, which has been shown by Lee et al.

[72] to be sufficient for prediction of low-order turbulence statistics in channel flow for

the Neumann boundary condition. The channel was driven by imposing a constant mean

pressure gradient, and all cases were run for at least 100δ/uτ after transients, where uτ is

the friction velocity.

The details of the simulations are given in Table 4.2. The table is divided in two

blocks. The first group is used to assess whether the problem under investigation scales in
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inner or outer units. The second group serves to evaluate the effect of different boundary

conditions. The results are compared with DNS data at the corresponding Reynolds number

from Del Álamo et al. [36] and Hoyas and Jiménez [48].

4.4.2 Scaling of the problem

An example of the under- and over-estimation of the turbulence intensities is shown in

Figures 4.11(a) and (b). The relative intensity of the peaks for 〈ū′2+1 〉1/2 with respect to

DNS is given in the last column of Table 4.2.

The first question is to assess whether the grid requirements to address this problem

scales in outer or inner units for no-slip LES. As demonstrated in Figure 4.11(a), the

resolution used in case NS-550-s (Reτ ≈ 550) results in large peaks for the streamwise

rms velocity fluctuations, whereas doubling the number of grid points in each direction

improves the prediction noticeably (Figure 4.11c). The result worsens again by increasing

the Reynolds number from Reτ ≈ 550 to 2000 while maintaining the finer grid resolution

(Figure 4.11d). This suggests that, for the no-slip boundary condition, the problem is

independent of the outer-layer eddies, and the required near-wall grid to avoid under/over-

predictions scales in wall units.

4.4.3 Effect of the streak breakup

The cause of the problem is analyzed in Figures 4.12 and 4.13, which show instantaneous

snapshots and the auto-correlations of 〈ū′2+1 〉1/2 at x+2 ≈ 15 for a selection of the cases from

Table 4.2. The results reveal that when the peaks are not well-predicted, as in Figures

4.12(a) and 4.13(a), the associated flow is dominated by streamwise streaks several times

longer than those of DNS. This is consistent with observations in Baggett [8], Rasam et al.

[130], Weatheritt et al. [172]. On the other hand, the lengths of the streaks developed

in the flow when increasing the resolution (Figure 4.13b) or introducing the slip boundary

condition (Figures 4.12b and 4.13c) are comparable to those from DNS. Although not shown,

the Neumann boundary condition (NE-550-u) yields similar results to those observed for
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Figure 4.11: The rms velocity fluctuations ( ) for NS-550-s in the (a) streamwise, (b)
spanwise ( ) and wall-normal (♦) directions. Streamwise rms velocity fluctuations for (c)
NS-550-s-f and (d) NS-2000-s-f. DNS data at the corresponding Reynolds number ( ).
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the slip case. Note that the improvement achieved with the Neumann or slip boundary

condition does not increase the computational cost of the simulation since grid refinement

was not required, in contrast to the improvements attained using the no-slip boundary

condition in Figure 4.11(c).

The interpretation from the previous results is that, in the case of the no-slip boundary

condition, the near-wall dynamics are altered in such a way that the streaks are unable to

follow their natural cycle of meandering and breakup [169, 55], which manifests itself in

the flow by a strong 〈ū′2+1 〉 and reduced 〈ū′2+2 〉 and 〈ū′2+3 〉. Other investigations on drag

reduction have reported a similar behavior in the turbulence intensities by controlling the

near-wall streaks [170] or by adding a stochastic forcing term to break up the large-scale

structures [90, 124].

The previous interpretation is further supported by the improved intensities (Figure

4.14) and shorter streamwise streaks (Figure 4.13d) in case NS-550-u, where the first interior

grid point is such that the streaks below x+2 ≈ 15 are bypassed while maintaining the no-

slip boundary condition. A more systematic analysis of the effect of the first grid point is

shown in Figure 4.15(a), where the grid is stretched in order to modify ∆2 at the wall. For

coarse resolutions with ∆+
2 > 15, the over-prediction of 〈ū′2+1 〉 is mitigated for all boundary

conditions. By stretching the grid such that ∆2 is finer at the wall, only the slip boundary

condition provides good predictions of the streamwise turbulence intensities regardless of

the grid resolution, whereas the results from the no-slip and Neumann boundary conditions

degrade for ∆+
2 < 15. As an example, the streamwise rms velocities for the most stretched

grid are shown in Figure 4.15(b). Note that despite the good prediction of the no-slip

case for resolutions with ∆+
2 > 15, this is not a practical solution as the no-slip condition

cannot be used in context of wall-modeled LES. Another important remark is that in most

wall-modeled LES, the Neumann boundary condition has been used on canonical flows such

as channel or boundary layer flows, where the near-wall grid resolution is usually chosen

to satisfy ∆+
2 > 15. Our analysis is relevant for those flow configurations where the local

Reynolds number is not known a priori and, hence, the first grid point may lie in the region

∆+
2 < 15.
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(a) (b)

Figure 4.12: Instantaneous snapshots of the streamwise velocity component at x+2 ≈ 15 for
(a) NS-550-s and (b) SL-550-u.

Finally, the results in Figure 4.15(a) highlight the fact that providing the perfect wall

model (correct mean wall stress) is not enough for good prediction of the turbulence in-

tensities at all resolutions, and the intensities also depend on the form of the boundary

condition.

According to the previous results, both Neumann and slip boundary conditions improve

the prediction of the turbulence intensities by avoiding the formation of long streaks; how-

ever, the mechanisms involved are different for each case. To analyze in more detail these

mechanisms, the production (P), pressure strain (Π), and turbulent transport (T ) compo-

nents of the streamwise turbulence intensity budget are plotted in Figures 4.16(a-c). The

choice of these quantities is motivated by the fact that the energy source for 〈u′2+1 〉 is given
by the production term, while the transfer of energy to the 〈u′2+2 〉 and 〈u′2+3 〉 components

is provided through the streamwise pressure strain correlation [125]. The turbulent trans-

port term is also included since it is used to explain the improvements with the Neumann

boundary condition at coarse near-wall grid resolutions.

In all cases, the magnitude of the pressure strain is under-estimated, and moderate

improvements appear by refining the grid or using either the Neumann or slip boundary
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Figure 4.13: Auto-correlations of the streamwise velocity component at x+2 ≈ 15 for (a)
NS-550-s, (b) NS-550-s-f, (c) SL-550-u, and (d) NS-550-u. The upper half of the auto-
correlation is for LES and the lower half for DNS. Contour lines are for positive correlations
of 5% and 35% of the maximum ( ) and negative correlations of 2% and 7 % of the
maximum ( ).



CHAPTER 4. DYNAMIC SLIP WALL MODELS 109

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

x+2

〈u
′2
+

1
〉1/

2

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x+2
〈u

′2
+

2
,3
〉1/

2
(b)

Figure 4.14: (a) Streamwise, (b) spanwise (top) and wall-normal (bottom) rms velocity
fluctuations of Reτ ≈ 550 for uniform grids with no-slip ( ), Neumann (♦), and slip ( )
boundary condition. DNS given by ( ).
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Figure 4.15: (a) Relative intensity of the streamwise rms peaks with respect to DNS as
a function of ∆2 at the wall and the (b) streamwise rms velocities for the most stretched
mesh with ∆+

2 |w = 1.41 for the no-slip ( ), Neumann (♦), and slip ( ) boundary condition.
DNS given by ( ).
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condition. Regarding the production, the no-slip cases are characterized by a strong near-

wall peak. On the contrary, this peak is absent for cases with slip, where most of the

production is concentrated far from the wall. Similar results are observed for all slip cases

shown in Figure 4.15(a). In the case of the Neumann boundary condition, the strong near-

wall maxima in the production term is still present but is compensated by the turbulent

transport term, which transports the excess energy away from the wall. This is only the

case when the near-wall resolution bypasses the near-wall peaks. For Neumann cases with

∆+
2 < 15 in Figure 4.15(a), the magnitude of the turbulent transport term is reduced near

the wall, while the strong peak in the production term persists (not shown).

The above results are consistent with the streak lengths observed in Figure 4.13 and it

could be hypothesized that the excess of P+T intensifies the streaks (stronger 〈u′2+1 〉) while
the lack of pressure strain reduces the distribution of the energy to the other two velocity

components (weaker 〈u′2+2 〉 and 〈u′2+3 〉). This is further supported by the results in Figure

4.16(d), which shows that the ratio 〈P + T 〉/〈Π〉 approaches the DNS value for those cases

where the under- and over-shoots of the rms velocity fluctuations are less pronounced.

4.4.4 Wall blocking effect

An additional cause of the problem may be attributed to the formation of splats due to

the blocking effect of the wall. Splats are local regions of stagnation point flow resulting

from fluid impinging on a wall and have been investigated in Perot and Moin [116]. Here

we study the effect of the splats on the turbulence intensities by comparing cases NE-

550-u (Neumann boundary condition with no transpiration) and SL-550-u (slip boundary

condition with transpiration). The resulting rms velocity fluctuations are plotted in Figure

4.14. Note that 〈ū′2+2 〉 is not zero at the wall for the slip case due to transpiration. Although

not shown, for coarser grid resolutions, the required slip lengths to match the target Reτ are

larger, which leads to a larger variability in the transpiration velocities as well. As the grid

is refined, the slip length (and hence 〈ū′2+2 〉) approaches zero. The results in Figure 4.14

show that the blocking effect of the wall intensifies the splats, increasing the wall-parallel

turbulence intensities near the wall. Compared to the traditional Neumann condition,
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Figure 4.16: (a) Average production 〈P〉, (b) pressure strain 〈Π〉, and (c) turbulent trans-
port 〈T 〉 for the streamwise turbulence intensity budget, and (d) 〈P + T 〉/〈Π〉 for NS-550-s
( ), NS-550-s-f (×), NE-550-u (♦), and SL-550-u ( ). DNS given by ( ).
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better predictions of the streamwise velocity fluctuations are obtained when transpiration

is allowed due to the local nonzero ū2 which reduces the formation of splats.

4.5 Wall-stress invariant model

It is pertinent to discuss first the expected role of wall models in LES. From section 4.3.4 and

previous analysis in the literature [72], the most important requirement for a wall model is to

supply accurate mean tangential stress at the wall. This requirement must be accompanied

by an effective SGS model responsible for generating correct turbulence statistics in the

outer region, where the wall model plays a secondary role. The first requirement is necessary

for obtaining the correct bulk velocity, whereas the last point is crucial to predict the shape

of the mean velocity profile and rms velocity fluctuations far from the wall (see sections

4.3.2 and 4.3.5).

The wall models reviewed in the introduction are capable of meeting the first require-

ment by assuming a specific state of the boundary layer and relying on empirical parameters

consistent with such state. In this regard, most traditional wall models assume quasi-

equilibrium turbulence in the vicinity of the wall and encode explicitly or implicitly in-

formation about law of the wall which cannot be derived from first principles but only

extracted from DNS or wind tunnel experiments, such as the values of κ and B. Despite

the equilibrium-turbulence assumption, current wall-modeling approaches have been suc-

cessful in predicting numerous flow configurations up to date, although their performance in

some regimes such as transitional or separated flows as well as non-equilibrium turbulence

is still open to debate.

The main purpose of a dynamic wall model is similar to that of traditional wall models,

i.e., the estimation of accurate wall stress τw. However, the objective is to achieve this goal

without prior assumptions regarding the state of the boundary layer or embedded empirical

parameters. Instead, dynamic wall models aim to use only the current (local) state of the

LES velocity field and universal modeling assumptions valid across different flow scenarios.

Note that the task outlined above is an outstanding challenge, since without any empirical
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coefficients there is no explicit reference to how the near-wall flow should behave in different

situations. Moreover, the instantaneous velocity field is intertwined with the effects of the

LES grid resolution, Reynolds number, and SGS model choice as documented in previous

sections. Additionally, numerical errors are amplified at the wall, and discretization schemes

are expected to play an important role as well. Dynamic models must encompass these

factors in order to be of practical use, and whether this can be accomplished for arbitrary

flow configurations remains to be demonstrated.

Despite the aforementioned difficulties, we provide below a dynamic slip model that

shows the ability to adapt to different grid resolutions and Reynolds numbers as well as

flow configurations, provided an SGS model. For a slip boundary condition of the form (4.1),

the problem of estimating τw can be reformulated as finding the value of slip parameters that

provides the correct wall stress. The relationship between l and τw was shown in sections

4.3.2 and 4.3.6 for channels and boundary layers. Moreover, for the slip boundary condition

to be used as a predictive tool in wall-modeled LES, the computed li and vi should comply

with the observations discussed in the previous sections.

4.5.1 Previous dynamic models

Bose and Moin [13] introduced a dynamic wall model based on the slip boundary condition

free of any a priori parameters. The slip length, assumed to be equal for the three spatial

directions, is computed via a modified form of the Germano’s identity [42],

l2
(
∆2

R

∂ ˜̄ui
∂n

∂ ˜̄uj
∂n

− ∂ūi
∂n

∂ūj
∂n

)
+ T SGS

ij − τ̃ij
SGS = ˜̄uiūj − ūiūj, (4.21)

where l is the slip length, (̃·) is the test filter, ∆R is the filter size ratio between the test

and grid filters, τSGS
ij and T SGS

ij represent the grid and test filter SGS tensors, respectively.

Equation (4.21) is then solved for l by using least-squares.

In Bose and Moin [13], the model was tested for a series of LES of turbulent channel

flow and NACA 4412 airfoil. However, our attempts to reproduce the channel flow results

did not perform as expected with our current implementation, which uses a different SGS



CHAPTER 4. DYNAMIC SLIP WALL MODELS 114

model and numerical discretization. The discrepancies motivated a deeper study of the

slip boundary condition and investigation of alternative dynamic wall-models as the one

presented in the next section.

4.5.2 Wall-stress invariant dynamic wall model

We present a dynamic wall model based on the invariance of wall stress under filtering when

the flow is in the statistically steady state. The physical rationale behind this assumption

lies in the observation that, in LES, we aim to obtain the same wall stress regardless of the

grid resolution (or filter). A similar approach was adopted by Anderson and Meneveau [2]

for modeling rough walls.

As mentioned before, the problem of constructing a wall model consists of estimating

the stress at the wall, τw, given the current and/or past states of the flow. An important

observation is that the coupling of the wall model and the governing equations forms a

dynamical system such that for a statistically steady flow, the equilibrium state must be

stable and ‖τw − τDNS
w ‖ is below the acceptable tolerance in some norm ‖ · ‖. For the

slip boundary condition, an equivalent equilibrium state can be stated in terms of the slip

lengths. We will refer to this condition as the stable-dynamical-model requirement.

We propose a procedure to build dynamic wall models based on the stable-dynamical-

system requirement. In addition, we will impose four more model requirements, namely,

that (R1) the model only uses information of flow quantities at the wall, (R2) the wall stress

is imposed through a slip boundary condition, (R3) the wall is impermeable on average,

and (R4) the dynamic model should only use up to two test filter levels.

Condition (R1) has a practical implication since wall models using information far from

the wall are difficult (and ambiguous) to implement in complex geometries [179]. The use

of condition (R2) is has been motivated in Sections 4.3 and 4.4. (R3) is an important

constraint to support mass conservation as discussed in Section 4.3.6; however, in the case

of a channel flow, no special treatment is required given the symmetry of the set-up (see

Section 4.2.3). Regarding (R4), in the limit of the grids required for wall-modeled LES,

increasing the levels of test filtering adds little information since most of the fluctuating
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energy content is already lost.

If the slip boundary condition holds for both grid- and test-filtered velocity fields, then

l2
∂ūi
∂n

∂ūj
∂n

− l̃2
∂ ˜̄ui
∂n

∂ ˜̄uj
∂n

= ūiūj − ˜̄ui ˜̄uj, (4.22)

where l̃ is the slip length at the test filter level. We will assume a linear functional depen-

dence of the slip length with the filter size of the form l̃ = ∆Rl. The actual a posteriori

values for the optimal slip length (Eq. 4.15 with l1 = l2) as a function of grid resolu-

tion can be seen in Figure 4.18(c), which shows a close to linear relationship. The next

step is to include a control term Fij that is a function of the flow, in order to meet the

stable-dynamical-model requirement,

l2
(
∂ūi
∂n

∂ūj
∂n

−∆2
R

∂ ˜̄ui
∂n

∂ ˜̄uj
∂n

)
= ūiūj − ˜̄ui ˜̄uj + Fij . (4.23)

To close the functional form of Fij , we will assume that it is only a function of the wall

stress at different filter levels. Taking into account restriction (R4), there are six possible

definitions of wall stress under test filtering,

T 1
ij = −ūiūj − τSGS

ij (ū) + 2νSij(ū)− p(ū)δij , (4.24)

T 2
ij = −˜̄uiūj − τ̃ij

SGS(ū) + 2νS̃ij(ū)− p̃(ū)δij , (4.25)

T 3
ij = −˜̄ui ˜̄uj − τSGS

ij (˜̄u) + 2νSij(˜̄u)− p(˜̄u)δij , (4.26)

T 4
ij = −˜̄̃uiūj − ˜̃τij

SGS
(ū) + 2ν

˜̃
Sij(ū)− ˜̃p(ū)δij , (4.27)

T 5
ij = −˜̄̃ui ˜̄uj − τ̃ij

SGS(˜̄u) + 2νS̃ij(˜̄u)− p̃(˜̄u)δij , (4.28)

T 6
ij = − ˜̄̃ui

˜̄̃uj − τSGS
ij (˜̄̃u) + 2νSij(

˜̄̃u)− p(˜̄̃u)δij , (4.29)

where T k
ij is the wall stress tensor at different filter levels, and τSGS

ij , Sij and pδij are

the subgrid stress, the strain-rate and pressure tensors, respectively, computed from the

specified (test- or grid-filtered) velocity field. The wall stress τw can be computed as the

norm of the projection of T k
ij onto the wall-normal direction. The formulation above also
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allows to account for different types of walls by adding the appropriate drag term to the

right-hand side of Eqs. (4.24-4.29).

Then, a family of dynamic wall models can be formulated as

l2
(
∂ūi
∂n

∂ūj
∂n

−∆2
R

∂ ˜̄ui
∂n

∂ ˜̄uj
∂n

)
= ūiūj − ˜̄ui ˜̄uj + akT k

ij , (4.30)

where ak are constants that need to be specified. In order to limit the parameter space of

ak, we limit the constant ak to have values equal to -1, 0 or 1.

Finally, the model from Eq. (4.30) needs to satisfy the stable-dynamical-model require-

ment in order to be usable. This condition can be formally expressed as





a) If τw ≈ τDNS
w , then akT k

ij ≈ 0,

b) If τw > τDNS
w , then akT k

ij < 0 for t > tc,

c) If τw < τDNS
w , then akT k

ij > 0 for t > tc,

(4.31)

where t is time and tc is a characteristic time scale of the flow to adapt to changes in the

boundary condition. Condition a) implies that the change in the predicted l for the next

step should be minimal when starting from a flow configuration where τw ≈ τDNS
w . This is

achieved by akT k
ij ≈ 0. In Section 4.3.2, we show that increasing l results in increasing τw,

and vice versa. Hence, conditions b) and c) are related to the stability of the model and are

necessary to guarantee that the predicted slip length drives the flow in the correct direction.

For example, when τw > τDNS
w , l at the next step should decrease (that is, akT k

ij < 0), and

when τw < τDNS
w , l must increase (akT k

ij > 0). In addition, the invariance of wall stress

under test filtering is taken into account by imposing
∑

k ak = 0, which is also required in

order to guarantee that the wall models revert to the no-slip boundary condition as the grid

size ∆ → 0.

The system in Eq. (4.30) is over-determined and l is computed via least-squares. For

incompressible flows, the isotropic part τSGS
ij is usually not defined by the SGS models.

Since the system is already over-determined, we will exclude the i = j components of Eq.

(4.30).
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Ideally, we would like to construct a dynamic wall model of the form (4.30) that satisfies

condition (4.31), where the coefficients ai are determined based only on first principles.

However, the task is quite challenging due to the highly non-linear nature of the Navier-

Stokes equations, and it is difficult to assess whether condition (4.31) will be satisfied a

priori once the wall model is coupled with the flow. Furthermore, this condition must

hold for a broad range of equilibrium and non-equilibrium flow configurations of interest.

Instead, to make the problem tractable, we will evaluate models in Eq. (4.30) a posteriori

by considering only three reference channel flow simulations at Reτ ≈ 4200 with DSM and

grid resolution ∆1 = ∆2 = ∆3 = 0.050. The first case, C1, is computed using the optimal

slip length, lc1 = lopt. In a channel flow with transpiration, the wall stress is given by Eq.

(4.14). If τDNS
w is known, lopt is easily obtained by introducing the slip boundary condition

(4.1) in the term 〈ū1ū2〉|w, and the resulting equation for lopt is

l2opt =
ν 〈∂ū1/∂x2〉|w − 〈τSGS

12 〉
∣∣
w
− τDNS

w

〈(∂ū1/∂x2)(∂ū2/∂x2)〉
. (4.32)

Note that Eq. (4.32) is not a wall model itself but rather a compatibility condition that

links the stress at the wall with the slip length. The second and third cases, denoted by C2

and C3, are analogous to C1 but with lc2 = 1.35〈lopt〉 and lc3 = 0.65〈lopt〉, respectively.
We proceed to evaluate the performance of different dynamic wall models using condition

(4.31) with tc = 0. Starting from cases C1, C2 and C3, we compute the slip length at the

next time step, lmc1, l
m
c2, and lmc3, evaluated from all possible models in the family (4.30).

Condition (4.31a) can be quantified by ǫc1 = |lmc1 − lc1|/lc1. Conditions (4.31b) and (4.31c)

can be similarly quantified by ǫc2 = (lc2 − lmc2)/lc2 and ǫc3 = (lmc3 − lc3)/lc3. For a model to

be viable, it is necessary that ǫc1 ≪ 1 and ǫc2, ǫc3 > 0. We defined the “best” model as the

one with ǫc1 < 0.05 and maximum ǫc2 + ǫc3. Additionally, in order for the model to be less

sensitive to the filter size ratio, the above requirements should hold for both ∆R = 1.6 and

1.8. After a search over all possible models complying with our constraints, the wall-stress
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invariant model (WSIM) for the slip boundary condition is given by the modeling choice

Fij = T 1
ij − T 3

ij − T 5
ij + T 6

ij , (4.33)

such that l is computed from

l2
(
∂ūi
∂n

∂ūj
∂n

−∆2
R
∂ ˜̄ui
∂n

∂ ˜̄uj
∂n

)
= ūiūj − ˜̄ui ˜̄uj + T 1

ij − T 3
ij − T 5

ij + T 6
ij , (4.34)

which can be rewritten as

l2Mij = Rij + Fij (4.35)

with

Mij =
∂ūi
∂n

∂ūj
∂n

−∆2
R

∂ ˜̄ui
∂n

∂ ˜̄uj
∂n

, Rij = ūiūj − ˜̄ui ˜̄uj, (4.36)

The least-squares process can be written as

l2 =
(Rij + Fij)Mij

MijMij
=

R+ F
M , (4.37)

where repeated indices imply summation and the compact notation R = RijMij , F =

FijMij, and M = MijMij is used.

Note that the first part of the right-hand-side of (4.30), ūiūj − ˜̄ui ˜̄uj (Rij), is the result

of applying the boundary condition at the grid and test filter levels. The remaining terms,

T 1
ij−T 3

ij−T 5
ij+T 6

ij (Fij), then act as an effective control such that the slip length increases if

the current wall stress is under-predicted, and decreases if the wall stress is over-predicted.

This self-regulating mechanism can be examined by analyzing the terms M, R, and F for

three test cases C1, C2, and C3. The terms M, R, and F were evaluated after the cases

were run with their corresponding slip lengths fixed in time until the statistically steady

state was reached. Note that the term R can be interpreted as the model prior to applying

the control mechanism, and this allows us to define two slip lengths, namely, lR = R/M
and lR+F = (R+ F)/M.

The terms M, R, and R + F evaluated from the three test cases are plotted in figure
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Figure 4.17: (a) R ( ), R+ F ( ), and M ( ) computed from channel LES using the slip
boundary condition with fixed l equal to l = 0.35lopt = 0.003δ, l = lopt = 0.009δ, and
l = 1.70lopt = 0.015δ. (b) The slip lengths lR ( ), lR+F ( ) normalized by the optimal
slip length. ∆R was assigned to be 1.6. The vertical dotted lines are l = lopt. Red arrows
highlight the improvement achieved by including the control term Fij . See text for more
details.

4.17(a), and the corresponding slip lengths lR and lR+F in figure 4.17(b). The results show

that application of WSIM recovers the optimal slip length, and thus the correct wall stress,

through the control mechanism Fij . The analysis provided here is performed a priori, that

is, the wall model was used to predict l at time t+∆t for a given flow field at time t, but

without an actual dynamic coupling between WSIM and LES. The remainder of the chapter

is devoted to test WSIM in real LES under different test scenarios.

4.6 Performance of the wall-stress invariant model

4.6.1 Test cases

To test the performance of WSIM, three flow configurations are considered: a statistically

steady plane turbulent channel (2-D channel), a non-equilibrium three-dimensional transient

channel (3-D channel), and a zero-pressure-gradient flat-plate turbulent boundary layer.

The numerical methods of the simulations are the same as the ones given in sections 4.3.1
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and 4.3.6. The 2-D channel flow and the turbulent boundary layer was discussed in section

4.3. The three-dimensional transient channel flow is a temporally developing turbulent

boundary layer in a planar channel subjected to a sudden spanwise forcing as in Moin et al.

[105].

The size of the 2-D and 3-D channel domain is 8πδ × 2δ × 3πδ in the streamwise, wall-

normal and spanwise directions, respectively. For both 2-D and 3-D channel flows, periodic

boundary conditions are applied in the streamwise and spanwise directions. For the top

and bottom walls, we impose either the no-slip (NS), slip boundary condition for WSIM,

or Neumann boundary condition for cases with the equilibrium wall model (EQWM). The

formulation for the EQWM follows Kawai and Larsson [60] with a matching location at

the third grid cell for the streamwise velocity, although recent studies have shown that the

first grid cell may be used for the EQWM when the velocities are filtered using a spatial or

temporal filter [179] following the methodology first introduced for algebraic wall models

[16].

For the 2-D channel, the flow is driven by imposing a constant mean pressure gradient

and the simulations are started from a random initial condition run for at least 100δ/uτ

after transients. In the case of the 3-D channel, the calculations were started from a 2-

D fully developed plane channel flow driven by a streamwise mean pressure gradient. The

subsequent calculations were performed with a transverse (spanwise) mean pressure gradient

of ∂〈p〉/∂x3 = 10τ2Dw /δ, where τ2Dw is the mean wall shear stress of the unperturbed channel.

The 3-D channel simulations were run for 10uτ0/δ and averaged over seven realizations,

where uτ0 is the friction velocity of the 2-D initial condition.

For the boundary layer, the setup is identical to the one in section 4.3.6, where the

range of Reθ is from 1000 to 10,000. The length, height and width of the simulated box are

L1 = 1060θavg, L2 = 18θavg, and L3 = 35θavg with the streamwise and spanwise resolutions

of ∆+
1 = 118 and ∆+

3 = 84.3 at Reθ ≈ 6500. The grid is slightly stretched in the wall-normal

direction with minimum ∆+
2 = 20.8. The inlet, outlet, and top boundary conditions are

as in section 4.3.6 with xref/θ0 = 890. For the bottom wall, we impose the slip boundary

condition for WSIM.
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Grid label ∆1/δ ∆2/δ ∆3/δ

G0 0.080 0.080 0.080
G1 0.050 0.050 0.050
G2 0.025 0.025 0.025

Table 4.3: Grid resolutions in outer units. The first column contains the label used to name
LES cases for the 2–D and 3–D channel flow simulations computed with different grids.
The second, third, and fourth columns are the streamwise, wall-normal, and spanwise grid
resolutions, respectively.

It is important to note the details of the filter operation, as dynamic wall models are

particularly sensitive to this choice (see section 4.6.2). Test filtering a variable f in a given

spatial direction at point i is computed as 1/6f(i−1)+2/3f(i)+1/6f(i+1) (Simpson’s rule).

The operation is repeated for all three directions away from the wall. This corresponds to

a discrete fourth-order quadrature over a cell of size 2∆1 × 2∆2 × 2∆3 for a uniform grid,

where ∆1, ∆2 and ∆3 are the grid sizes in the three directions, respectively. At the wall,

the same filtering operation is used in the horizontal directions while the wall-normal filter

is one-sided and given by 2/3f(1)+1/3f(2), with f(1) and f(2) denoting values at the first

and second wall-normal grid points. This is an integration over a cell of size 2∆1×∆2×2∆3.

Also, the definition of the filter operation fixes the value of ∆R, which is the ratio between

the grid and test filter sizes at the wall. In this case, the ∆R based on the cell volume is

given by 3
√
2× 1× 2 ≈ 1.6.

The cases for the 2-D and 3-D channel are labeled in following the convention ([Channel

type]-[Wall model]-[Reynolds number]-[Grid]), where the grid labels G0, G1, and G2 given

in table 4.3 correspond to 320 × 25 × 120 (∆1 = ∆2 = ∆3 = 0.080δ), 512 × 40 × 192

(∆1 = ∆2 = ∆3 = 0.050δ), and 1024 × 80 × 384 (∆1 = ∆2 = ∆3 = 0.025δ), respectively.

The wall model applied are labeled NS, EQWM, WSIM. Additional cases with anisotropic

grids, different values of ∆R, test-filtering operations, or SGS model were run to study the

sensitivity of the model to these choices. They are discussed in section 4.6.2.

The 2-D channel results are compared with DNS data from Hoyas and Jiménez [48] and

Lozano-Durán and Jiménez [80] for Reτ ≈ 2000 and 4200, Yamamoto and Tsuji [177] for
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Reτ ≈ 8000, and with the law-of-the wall for Reτ > 8000. For the boundary layer, the

resulting friction coefficient is compared to the empirical Cf from White and Corfield [173],

and the mean velocity profiles are compared with the DNS data from Sillero et al. [141] at

Reθ ≈ 6500 and the experimental data from Österlund [111] at Reθ ≈ 8000.

The performance of the WSIM in laminar flows has not been studied. However, in the

limit of fine grids, the dynamic procedure of WSIM should produce zero slip lengths and

revert to the no-slip boundary condition. Thus, for laminar cases with enough grid resolution

to resolve the near-wall structures, we expect the dynamic wall model to naturally switch

off.

4.6.2 Statistically steady two-dimensional channel flow

We assess the performance of WSIM compared to EQWM and NS. The results are discussed

in terms of the error in the streamwise mean velocity profile across the logarithmic region.

This choice was necessary in order to include higher Reynolds number cases where the

corresponding DNS was not available and the law of the wall is used instead. Restricting

the error to be evaluated only in the logarithmic layer is justified as wall models mainly

impact the solution by vertically shifting the mean velocity profile and do not alter its shape

for the range of grid resolutions tested as shown in section 4.3.3. In particular, the error in

the mean profile is measured as the normalized L2 error of the streamwise mean velocity

profile between the second grid point and 0.2δ.

Em =

[∫ 0.2δ
∆2

(
〈ū1〉 − 〈uDNS

1 〉
)2

dx2
∫ 0.2δ
∆2

(
〈uDNS

1 〉
)2

dx2

]1/2
. (4.38)

In the case where the corresponding DNS does not exist, 〈uDNS
1 〉 is replaced by the law of

the wall,

〈uDNS
1 〉 = 1

κ
log x+2 +B, (4.39)

with κ = 0.392 and B = 4.48 [83].

Figure 4.18(a) and (b) shows Em as a function of grid resolution and Reynolds number.
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At moderate Reynolds numbers (Reτ < 8000) and all grid resolutions, the error for WSIM

(Em ∼2-6%) is similar to that of the EQWM (Em ∼2-4%). With increasing Reynolds

number, the performance degrades (up to Em ∼15% at Reτ ≈100,000), while the EQWM

does not. The accurate results for EQWM are not surprising as its modeling assumptions

are well satisfied for channel flow settings. The declining performance of WSIM at very

high Reynolds number is probably connected to the discussion in section 4.2.1 where it

was argued that the underlying assumptions for the slip condition are invalidated for large

filter sizes. However, it is worth mentioning that the errors for an LES with no wall model

(Em ≈100% for 2D-NS-4200-G1) are an order of magnitude larger than the errors of WSIM

for all cases. The mean velocity profiles and streamwise rms velocity fluctuations for WSIM

for various cases are shown in Figure 4.19.

The slip lengths predicted by WSIM are shown in Figure 4.18(c) and (d) as a function

of Reynolds number and grid resolution and compared to the optimal slip lengths. It is

remarkable that WSIM captures the overall behavior of the optimal slip lengths, that is, a

strong dependence on grid resolution and a weak variation with Reynolds number.

Four additional cases were computed to analyze the sensitivity of the WSIM to ∆R, grid

anisotropy, shape of the test filter, and choice of SGS model. The effect of ∆R turned out to

be negligible for the plausible range of values ∆R = [1.4, 1.8], and the measured difference

in Em was less than 1%. Regarding grid anisotropy, coarsening case 2D-WSIM-4200-G1

by a factor of two in only the streamwise or spanwise direction had a negligible effect on

Em. While coarsening in both the streamwise and spanwise directions simultaneously by a

factor of two had a larger effect with Em increasing to ∼8%. The error trend for anisotropic

grids also follows the results shown in Fig. 4.18 (a) when scaled with grid size based on cell

volume, ∆. This shows that the wall model is robust to mild grid anisotropies.

On the contrary, the test filter shape and SGS model highly impacted the prediction

of the mean flow. Case 2D-WSIM-4200-G1 was repeated using test filter based on the

trapezoidal rule, and the error increased from 2.5% to 32%. When 2D-WSIM-4200-G1 was

run using the anisotropic minimum-dissipation (AMD) model, the stress provided by the

SGS model τSGS
12 was larger than u2τ , and the slip length prediction by WSIM was clipped to
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Figure 4.18: Error in the streamwise mean velocity profile, Em, as a function of (a) grid size
(for Reτ = 4200) and (b) Reynolds number (for grid G1) for WSIM ( ) and EQWM (♦).
The slip lengths l/δ for WSIM ( ) and optimal slip lengths ( ) as a function of (c)
grid resolution for Reτ = 4200 and (d) Reynolds number for grid G1.
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Figure 4.19: (a) Mean velocity profiles and (b) streamwise rms velocity fluctuations for
WSIM at Reτ ≈ 4200 for grid G0 ( ), G1 ( ), and G2 ( ). DNS for Reτ ≈ 4200 ( ). (b)
Mean velocity profiles and (b) streamwise rms velocity fluctuations for WSIM at Reτ ≈ 2000
( ), 4200 ( ), 8000 ( ), and 20, 000 (♦) for grid G1. DNS for Reτ ≈ 4200 ( ).
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zero due to the excess of wall stress, reverting the boundary condition to no-slip. Although

this is consistent with the fact that τSGS
12 > u2τ , it also implies that the correct stress at the

wall can never be obtained through the slip boundary condition with a single slip length

in this case. It was shown in section 4.3 that the slip lengths in the wall-normal direction

must be larger than the wall-parallel ones in order to drain the excess of stress supplied by

the SGS model. This suggests that WSIM should be generalized to a formulation with a

different slip length in each spatial direction to overcome this limitation. It also remains to

study the near-wall behavior of various SGS models in the wall-modeled grid limits in more

detail.

4.6.3 Three-dimensional transient channel flow

The performance of WSIM in non-equilibrium scenarios is assessed in a three-dimensional

transient channel flow [105]. Note that in general RANS-based wall models cannot be

assumed to be effective at transferring information from the inner to the outer layer in

non-equilibrium flows. Hence, the current flow set up, characterized by a spanwise bound-

ary layer growing from the wall due to viscous effects, is expected to be problematic for

wall-modeled LES. A plane channel flow was modified to incorporate a lateral (transverse)

pressure gradient 10 times that of the streamwise pressure gradient. The details of the

simulations were given in section 4.6.1.

The wall models explored are WSIM and EQWM. A case with the no-slip boundary

condition is used for control, and the figure of merit is the evolution of the streamwise and

spanwise wall stress as a function of time (Figure 4.20). Note that the temporal increment

of the wall stress magnitude involves an increase of the Reynolds number from Reτ ≈ 932

at t = 0 to Reτ ≈ 2600 at t = 10δ/uτ0. The results show that the performance of WSIM

is similar to the EQWM despite its parameter-free nature. The streamwise and spanwise

mean velocity profiles at various time instances are given in Figure 4.21, which show that

both WSIM and EQWM predict similar time evolution. testing the capabilities of WSIM

in transient flows. Although there is no reference DNS available for comparison for the full

time span of our simulations, in the limited time range from t = 0 to 1δ/uτ0, Giometto
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Figure 4.20: Wall stress in (a) streamwise and (b) spanwise directions as a function of time
for WSIM ( ), EQWM (♦), and NS (×).

et al. [47] showed that the EQWM predicts the evolution with less than 10% deviation in the

spanwise wall stress prediction from DNS, and thus the results fromWSIM are also expected

to exhibit a similar error. Both the EQWM and WSIM entail a quantitative correction to

the prediction provide by the no-slip boundary condition. Consequently, the computational

simplicity and absence of a secondary mesh makes WSIM an appealing approach at the cost

of a moderate attenuation of the predictive capabilities compared to more sophisticated wall

models.

4.6.4 Zero-pressure-gradient flat-plate turbulent boundary layer

Finally, the performance of WSIM is assessed in a flat-plate turbulent boundary layer. The

friction coefficient is shown in Figure 4.22 from Reθ = 1000 to 10,000. Note that the

recycling scheme of Lund et al. [86] imposes an artificial boundary condition at the inlet,

requiring an initial development region for the flow to fully adapt to the slip boundary

condition, which is the reason for the discrepancy in Cf near the inlet. Consistent with

previous test cases, the results show that WSIM predicts the friction coefficient well within

4% error for Reθ > 6000. The mean streamwise velocity profile at Reθ ≈ 6500 and 8000 and
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Figure 4.21: Mean (a) streamwise and (b) spanwise velocity profile as a function of x2/δ at
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Figure 4.22: Friction coefficient from WSIM ( ) and the empirical friction coefficient
from White and Corfield [173] ( ).

the rms velocity fluctuations at Reθ ≈ 6500 are also well predicted as reported in Figure

4.23.

4.7 Summary

Due to the scaling of grid resolution requirements in DNS and wall-resolved LES, wall-

modeled LES stands as the most viable approach for most engineering applications. In most

existing wall-models, the Dirichlet no-slip boundary condition at the wall is replaced by a

Neumann and no-transpiration conditions in the wall-parallel and wall-normal directions,
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Figure 4.23: Mean streamwise velocity profile for (a) Reθ ≈ 6500 and (b) Reθ ≈ 8000, and
the rms (c) streamwise (×), (d) spanwise ( ), and wall-normal ( ) fluctuation profiles at
Reθ ≈ 6500. WSIM (symbols) and DNS [141] or experiment [111] ( ).
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respectively. In this study, we have investigated the efficacy of the Robin (slip) boundary

condition, where the velocities at the wall are characterized by the slip lengths and slip

velocities. One novel aspect of this boundary condition is the non-zero instantaneous wall-

normal velocity at the wall, i.e., transpiration, that opens a new avenue to model near-wall

turbulence in LES. We have also presented a new dynamic slip wall model, WSIM, that is

free from a priori tunable RANS parameters, which most traditional wall models for LES

rely on. The model is based on the invariance of the wall stress under test filtering and is

effectively applied through the slip boundary condition.

We have provided theoretical support for the use of the slip condition in wall-modeled

LES instead of the widely applied Neumann boundary condition with no-transpiration. A

priori testing was performed to assess the validity of the slip condition in the context of

filtered DNS data.

The slip boundary condition was implemented in LES of channel flow in order to gain

a better insight into its capabilities and shortcomings. One of the key properties, made

possible by transpiration, is that the correct wall stress can always be achieved by an

appropriate combination of slip lengths. This property is crucial when the grid resolution

in the near-wall region does not capture the buffer and logarithmic layer dynamics, which

may result in an under- or over-prediction of the wall stress. We have derived the consistency

conditions for coupling the wall stress with the slip boundary condition in channel flows

and flat-plate boundary layers and showed that such constraints are sufficient to guarantee

the correct wall stress. Another advantage emanates from the non-zero Reynolds stress at

the wall. This is not only consistent with the filtered velocity fields but also alleviates the

well-known problem of wall-stress under-estimation by commonly used SGS models. We

have also assessed the sensitivities of one-point statistics to grid refinements, changes in

Reτ , and different SGS models. The role of imposing zero mean mass flow through the wall

by proper calculation of the slip parameters has also been shown to be a key component of

the model.

Finally, we have tested the performance of WSIM in a plane turbulent channel flow

at various Reynolds numbers and grid resolutions. WSIM was able to correctly capture
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the overall behavior of the optimal slip length for a wide range of grid resolutions and

Reynolds numbers. The results have been compared with those from the EQWM and the

no-slip boundary condition. In all cases, WSIM performed substantially better than the

no-slip, and the predictive error in the mean velocity profile was found to be below 10%

for Reτ < 20,000 and all grid resolutions investigated. The model was also tested for a

three-dimensional transient channel flow, where the performance was similar to that of the

EQWM, and for a zero-pressure-gradient flat-plate turbulent boundary layer at Reθ up

to 10,000, where the error in the friction coefficient was less than 4%. However, due to

the sensitivity of the model to SGS models and numerical filtering operations, additional

advancements are required to formulate a robust dynamic wall model that is consistent with

different numerical methods and SGS models.



Chapter 5

Concluding remarks

For large-eddy simulation (LES) to be used as a predictive tool in practical applications,

accurate and efficient subgrid-scale (SGS) models are required. Once an SGS model is

developed, rigorous procedures to assess the performance of the proposed SGS model are

essential. Finally, for the near-wall region of turbulent boundary layers, where SGS models

are known to under-perform, effective wall models that compensate for the missing stresses

are necessary. This work attempts to address the three necessary requirements for practical

use of LES highlighted here.

First, an SGS model based on first principles to remove the pile-up of energy in the

smallest resolved scales has been formulated, implemented and validated in various flow

configurations. The anisotropic minimum-dissipation (AMD) model dynamically estimates

the required eddy viscosity without the need of test-filtering, which reduces the computa-

tional cost compared to the widely used dynamic Smagorinsky model (DSM). It is evaluated

locally without the need for averaging in the homogeneous directions, which has practical

advantages over the DSM for complex geometries. The AMD model is parameter-free, as

the Poincaré constant is a physical constant with only modifications necessary depending on

the discretization of the Navier-Stokes equations. A new method of computing the Poincaré

constant for different numerical discretizations have been introduced. The AMD model was

validated in decaying isotropic turbulence, turbulent mixing layer, and turbulent channel

132
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flow. The SGS model was extended to scalar transport equations, and the scalar model was

tested in a high-Reynolds number rough-wall boundary layer.

Secondly, two benchmark cases to assess the performance of SGS models in high-

Reynolds-number wall-bounded flows without the additional burden of resolving the near-

wall region have been introduced: the slip-wall and the exact-wall-stress channel flow. The

proposed cases bypass the viscous effects by either supplying the correct mean wall stress

or applying a permeable wall to damp the viscous effects. This allows the SGS models to

be tested in the outer-region of wall-bounded flows without the grid refinement in all three

spatial dimensions, which is required for wall-resolved LES. The proposed model problems

provide good platforms to test SGS models away from the wall. The theoretical and nu-

merical error convergence for the mean velocity profile, turbulence intensities, and spectra

are given. The relevant length scale to measure LES performance has also been proposed.

The results highlighted show that existing SGS models such as the AMD model proposed

in Chapter 2 or the DSM perform well in the outer-region.

Finally, a dynamic slip wall model based on the invariance of wall stress under test

filtering has been proposed. The efficacy of the slip boundary condition was first examined

using theoretical arguments and a priori study using direct numerical simulation (DNS)

data. The effect of the slip boundary condition on one-point statistics was studied using

LES of channel flow. A compatibility condition for the slip boundary condition to recover

the correct wall stress was derived. We also show that the over-prediction of streamwise

turbulence intensities that is prevalent in under-resolved LES can be alleviated using the

slip boundary condition. The dynamic slip wall model is then tested in different flow

configurations, for a wide range of Reynolds numbers, and with various grid resolutions.

Predictions of the mean velocity profile and turbulence intensities are in good agreement

with DNS and experimental data at moderate Reynolds numbers.
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[43] B. J. Geurts and J. Fröhlich. A framework for predicting accuracy limitations in

large-eddy simulation. Phys. Fluids, 14(6):L41–L44, 2002.

[44] S. Ghosal. An analysis of numerical errors in large-eddy simulations of turbulence. J.

Comp. Phys., 125(1):187–206, 1996.

[45] S. Ghosal and P. Moin. The basic equations for the large eddy simulation of turbulent

flows in complex geometry. J. Comp. Phys., 118(1):24 – 37, 1995.

[46] S. Ghosal and M. M. Rogers. A numerical study of self-similarity in a turbulent plane

wake using large-eddy simulation. Phys. Fluids, 9:1729–1739, 1997.

[47] B. M. Giometto, A. Lozano-Durán, G. I. Park, and P. Moin. Three-dimensional

transient channel flow at moderate Reynolds numbers: analysis and wall modeling.

In Annual Research Briefs, pages 193–205. Center for Turbulence Research, Stanford

University, 2017.
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[94] O. Métais and M. Lesieur. Spectral large-eddy simulation of isotropic and stably

stratified turbulence. J. Fluid Mech., 239:157–194, 1992.

[95] J. Meyers. Error-landscape assessment of large-eddy simulations: A review of the

methodology. J. Sci. Comp., 49(1):65–77, 2011.

[96] J. Meyers and P. Sagaut. Is plane-channel flow a friendly case for the testing of

large-eddy simulation subgrid-scale models? Phys. Fluids, 19(4):048105, 2007.

[97] J. Meyers, B. J. Geurts, and M. Baelmans. Database analysis of errors in large-eddy

simulation. Phys. Fluids, 15(9):2740–2755, 2003.

[98] J. Meyers, B. J. Geurts, and P. Sagaut. A computational error-assessment of central

finite-volume discretizations in large-eddy simulation using a smagorinsky model. J.

Comp. Phys., 227(1):156 – 173, 2007.

[99] C. M. Millikan. A critical discussion of turbulent flows in channels and circular tubes.

In Proceedings of the Fifth International Congress for Applied Mathematics, Harvard

and MIT, 1938.

[100] Y. Mizuno. Spectra of energy transport in turbulent channel flows for moderate

Reynolds numbers. J. Fluid Mech., 805:171–187, 2016.
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