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Abstract

We study the numerical errors of large-eddy simulation (LES) in isotropic and wall-bounded turbulence. A
direct-numerical-simulation (DNS)-aided LES formulation, where the subgrid scale (SGS) term of the LES is
computed by using filtered DNS data is introduced. We first verify that this formulation has zero error in the
absence of commutation error between the filter and the differentiation operator of the numerical algorithm.
This method allows the evaluation of the time evolution of numerical errors for various numerical schemes
at grid resolutions relevant to LES. The analysis shows that the numerical errors are of the same order of
magnitude as the modeling errors and often cancel each other. This supports to the idea that supervised
machine learning algorithms trained on filtered DNS data might not be suitable for robust SGS model
development, as this approach disregards the existence of numerical errors in the system that accumulate
over time. The assessment of errors in turbulent channel flow also identifies that numerical errors close to
the wall dominate, which has implications for the development of wall models.

1. Introduction

DNS of most turbulent flows relevant for industrial applications is not tractable because the range of
scales of motions in these flows is so large that the computational cost becomes prohibitive. In LES, the
effect of the small scales on the larger ones is modeled through a SGS model, reducing the computational
cost by several orders of magnitude. The accuracy of the representation of turbulent flows depends on both
the performance or modeling capabilities of the choice of the SGS model, the adequacy of the LES resolution,
and the numerical method employed to discretize the equations. In addition, the various sources of error
can interact, which may lead to further complications in the validation of SGS models in LES. Given that
accurate predictions are required in many engineering and scientific applications, close assessment of LES
numerical errors is crucial. This will also have implications for developing SGS models using supervised
learning methods, which most often use filtered DNS data to train LES models without regarding the
numerical errors.

Various SGS models have been introduced in the past decades such as the eddy-viscosity models [1, 2,
3, 4, 5], stochastic models [6, 7], similarity models [8, 9, 10], and mixed models [11, 12], among others. In
addition, an important development in subgrid scale modeling arose with the dynamic procedure [13, 14, 15],
which allows optimization of parameters in the eddy-viscosity SGS models in accordance with the turbulent
flow that is simulated. First works aiming to assess the accuracy of SGS models include the pioneering
investigation by Clark et al. [8], who established the numerical study of decaying isotropic turbulence as a
reference benchmark, although the grid resolutions and Reynolds numbers tested were highly constrained
by the computational resources of the time. Since then, common benchmarks for LES have broadened to
include simple hydrodynamic cases such as forced or decaying isotropic turbulence [4], rotating homogeneous
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turbulence [16], spatial or temporal mixing layers [17, 18] and plane turbulent channel flow [19, 13, 20, 21],
among others. See Bonnet et al. [22] for an overview of cases for LES validation.

The validation cases mentioned above are representative of most LES error quantification, where the
numerical error and the modeling error are not distinguished. Vreman et al. [23] was one of the first to
quantify the modeling and discretization errors separately for various flow properties. In this analysis,
modeling and numerical errors were found to be of comparable magnitude and could partially cancel each
other. Further error analysis for LES was presented in Geurts and Fröhlich [24] in the context of the
“subgrid-activity” parameter. More recently, Meyers et al. [25] differentiated the two errors and again
showed that the partial cancellation of both sources can lead to coincidental accurate results. Along the
same line, Meyers and Sagaut [26] studied the combined effect of discretization and model errors, and a
further series of works resulted in the error-landscape-methodology framework reviewed by Meyers [27],
where it is stressed that the determination of LES quality based on one single metric alone may provide
misleading results. However, in these works, the LES errors are quantified as the error occurring in SGS
models on a DNS grid by setting the filter size of the SGS grid to the LES grid size. As most SGS models
for LES are not designed or expected to work in DNS grid resolutions, the error defined above may not be
an accurate depiction of the true modeling error observed in LES grid resolutions. Moreover, this method
is able to assess SGS models when there is a clearly defined filter size, which is not straight forward for
anisotropic and unstructured grids [28]. Ideally, the modeling error would compare a filtered DNS solution
in an LES grid with the LES solution. This can be made possible by first quantifying the correct numerical
error for an LES using explicitly filtered LES.

Previous works on explicitly filtered LES include the study of Winckelmans et al. [29], who investigated a
two-dimensional explicitly filtered isotropic turbulence and channel flow LES to evaluate various mixed sub-
grid/subfilter scale models. Stolz et al. [30] implemented the three-dimensional filtering schemes of Vasilyev
et al. [31] by using an approximate deconvolution model for the convective terms in the LES equations. Lund
[32] applied two-dimensional explicit filters to a channel flow and evaluated the performance of explicitly fil-
tered versus implicitly filtered LES. Gullbrand and Chow [33] attempted the first grid-independent solution
of the LES equations with explicit filtering. Bose et al. [34] further investigated the grid independence of
explicitly filtered LES with a three-dimensional filter for turbulent channel flows. The recent works of Bae
and Lozano-Durán [35, 36] introduce a DNS-aided LES (DAL) framework using explicitly filtered LES that
computes the exact SGS stress term in the absence of commutation errors from filtered DNS data.

From a different perspective, machine-learning-based SGS models trained using high-fidelity data, typ-
ically DNS, have recently emerged (see reviews [37, 38, 39, 40]). SGS models have been developed in
several canonical and complex flows, including two-dimensional homogeneous isotropic turbulence [41, 42],
three-dimensional forced and [43, 44, 45, 46] decaying [47, 48] isotropic turbulence, turbulent channel flow
[49, 50, 51], and flow over an aircraft [52]. A majority of the research utilizes supervised learning framework,
where the model is trained to produce accurate SGS stresses obtained from DNS (or filtered DNS) data,
and is often based on single-step target values to limit computational challenge in minimizing the model
prediction error. Therefore, it is important to differentiate between a priori and a posteriori testing for
these models. While the model might perform well in a priori testing, a posteriori testing is performed by
integrating the LES equations in time. Due to the single-step cost function as well as the discrepancy in the
filtered Navier-Stokes and LES equations, the resulting machine-learned model is not trained to compensate
for the discrepancies between DNS and LES and the compounding (numerical and modeling) errors. The
issue of inconsistency in data-driven SGS models has been exposed by studies that performed a posteriori
testing [53, 49, 48]. Thus, in order to account for the discrepancies between DNS and LES in machine-
learning-based model development, a systematic understanding of the different errors associated with LES
SGS modeling is necessary.

It is the aim of this paper to introduce a framework that will allow the evaluation of the time evolution of
numerical errors in LES. For that purpose, we introduce a method that produces zero modeling error using
the DAL framework [35, 36] as a method to define separate numerical and modeling errors. Our goal is to
assess the errors for unbounded and wall-bounded turbulent flows using this methodology. In particular, for
wall-bounded flows, the wall-normal dependency of errors in LES will be investigated.

The paper is organized as follows. In Section 2, the filtered Navier-Stokes equations are compared to
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the traditional LES equations to clearly define numerical error, and the DAL framework is introduced. We
then introduce the numerical experiments in Section 3, where we evaluate the numerical errors for forced
isotropic turbulence and turbulent channel flows. Finally, we conclude the paper in Section 4.

2. Zero-modeling-error formulation

2.1. Filtered Navier-Stokes equations and large-eddy simulation equations

The incompressible Navier-Stokes equations are given by

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

,
∂ui
∂xi

= 0, (1)

where the velocity components are represented by ui for i = 1, 2, 3 (or equivalently u, v, and w) for the
directions xi (x, y, and z), ρ is the fluid density, ν is the kinematic viscosity, and p is the pressure. As LES
is formally derived from the filtered Navier-Stokes equations, we define a filter operator on a variable φ in
integral form

φ̄(x) =

∫
Ω

G(t,x,x′)φ(x′)dx′, (2)

where x = (x1, x2, x3), G is the filter kernel, and Ω is the domain of integration. When Eq. (1) is filtered
with Eq. (2), the resulting equations are

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

,
∂ui
∂xi

= 0. (3)

However, in LES, we have access to the filtered velocity quantities ūi and not the full flow field ui. In order
to be able to solve Eq. (3) for a practical LES applications, the order of the filter and the differentiation
operator must be inverted such that the equations become

∂ūi
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

− ∂Tij
∂xj

+ δnum
i ,

∂ūi
∂xi

+ δnum = 0, (4)

where δnum
i and δnum are the commutation error due to the inversion of the order of operators. In traditional

LES, the commutation error is often neglected or assumed to be zero regardless of the choice of filter and
differentiation operator. However, in most numerical methods used for LES, these commutation errors are
not negligible even with the use of commutative filters [54] as the commutation of the two operators is
guaranteed only up to a finite order. Here, we retain δnum

i and δnum to signify the difference between the
formulations in Eq. (3) and Eq. (4). The term Tij = uiuj − ūiūj is the SGS stress tensor, which is modeled
through an SGS model in LES. At each time step, the effect of using an SGS model can be characterized
as δmod

i = ∂/∂xj
(
T SGS
ij − Tij

)
, where T SGS

ij is the modeled SGS stress tensor given by the choice of SGS
model. In this paper, we will categorize the time integrated effect of δnum

i and δnum as the numerical error,
Enum in the absence of δmod

i .

2.2. Zero-modeling error through DNS-aided LES

One possible way of enforcing zero modeling error in LES is by using an exact SGS model that can be
produced by running a DNS concurrently. That is, starting from an initial DNS velocity field uDNS

i (t0) and

filtering it, we can compute the initial condition ūDAL
i (t0) for the DAL simulations such that uDNS

i (t0) =
ūDAL
i (t0). At any given time step tn of the DAL, the exact SGS stress tensor Tij can be given by the DNS

at the same time step tn, i.e.,

T DAL
ij (tn) = uDNS

i (tn)uDNS
j (tn)− ūDAL

i (tn)ūDAL
j (tn). (5)

A schematic of the proposed method is given in Figure 1. Note that this would be not possible for
traditional implicitly filtered LES due to the lack of an explicit filter operator. In the absence of numerical
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Figure 1: Schematic of DAL. The SGS stress tensor T DAL
ij is computed at each time step from the DNS flow field at the same

time step and then applied to the LES equations.

(commutation) error, the filtered DNS and DAL solutions will be identical, thus the name zero modeling

error. However, in the presence of numerical error, the solutions of uDNS
i and ūDAL

i will diverge from the
integrated effect of δnum

i , and the difference in the filtered DNS and DAL solution will provide a measure
for the numerical error of the simulation without the presence of modeling error in a grid relevant to LES.

3. Error evaluation in LES

We consider two test cases, forced isotropic turbulence and turbulent channel flow, to evaluate the
numerical and modeling errors of LES. We quantify the error in the LES flow fields as the L2 error of the
filtered DNS and LES velocity fields,

Etot(t) =

[
1

LxLyLz

∫∫∫ 3∑
i=1

(
uDNS
i (t)− ūLES

i (t)
)2

dxdy dz

]1/2

, (6)

where Lx,y,z is the length of the domain in the corresponding direction. The error Etot can be seen as a
combination of the numerical and modeling error by considering the square-root of the integrand of Eq. (6)
as

uDNS
i (t)− ūLES

i (t) =
(
uDNS
i (t)− ūDAL

i (t)
)

+
(
ūDAL
i (t)− ūLES

i (t)
)
, (7)

where we define the numerical error as

Enum(t) =

[
1

LxLyLz

∫∫∫ 3∑
i=1

(
uDNS
i (t)− ūDAL

i (t)
)2

dx dy dz

]1/2

. (8)

In essence, the numerical error quantifies the error due to the filter operator.
In the case of channel flow, we also quantify a wall-normal distance dependent error

Etot
y (y, t) =

[
1

LxLz

∫∫ 3∑
i=1

(
uDNS
i (y, t)− ūLES

i (y, t)
)2

dxdz

]1/2

, (9)

where y is the wall-normal direction. An analogous y-dependent numerical error can be defined as Enum
y .

It is worth remarking the fact that if an SGS model is able to counteract the numerical errors with the

modeling errors such that
(
uDNS
i (t)− ūDAL

i (t)
)

= −
(
ūDAL
i (t)− ūLES

i (t)
)

, the total error is zero. Thus, not

only does the DAL formulation provide a method to evaluate errors, it can be used to inform future SGS
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Figure 2: (a) Time evolution of the numerical error Enum using dealiased Fourier discretization in space and the Fourier cutoff
filter for grid resolutions 323 ( ), 643 ( ), and 1283 ( ). Vertical lines ( ) divide the initial response region and
growth region. (b) Time evolution of the numerical error Enum using second-order finite difference in space and downsampling
for grid resolutions 803 ( ) and 483 times ( ). Vertical lines ( ) divide the initial response region, growth region,
and saturation region.

models. However, SGS models are not expected to provide the correct closure term in an instantaneous
manner. Rather, the goal of LES is to obtain the correct statistics of the system. Thus, computing instan-
taneous modeling errors does not align with the goal of LES and SGS modeling and will not be considered
in this paper.

3.1. Forced isotropic turbulence

To demonstrate the method given in section 2.2 provides zero modeling error and evaluate modeling
error, we first perform a simulation of forced isotropic turbulence using a dealiased Fourier discretization in
space in a triply periodic domain of size 2π3 and advanced in time using a fourth-order Runge-Kutta time
stepping method. A linear forcing [55], fi = Aui, is applied with A = 0.45. The DNS is performed using
a 2563 mesh at Reλ ≈ 100. Three DAL (section 2.2) cases with grid resolution of 322, 643 and 1283 are
performed with the filter operator given by a sharp Fourier cutoff filter at the largest wavenumber resolvable
by the LES grid. The LES simulations are run with the same time-step size as DNS to take advantage of
the DAL formulation without interpolation in time. The initial condition for the numerical experiment was
taken from a separate DNS after transients. The errors are normalized by the square-root of the turbulence
kinetic energy k, and the time is given in integral times k/|ε|, where ε is the dissipation rate.

We evaluate the numerical error using DAL. Since DAL can be thought of as supplying the exact SGS
model that produces zero modeling error, the difference between the filtered DNS flow field and the DAL
flow field can be considered the numerical error as defined in the beginning of section 2.1. The sharp
Fourier cutoff filter used in the simulations commutes with the derivative operator in Fourier space, which
gives, in theory, zero numerical error. In practice, the numerical error is zero only up to machine precision,
and the resulting small perturbations in the velocity profile will grow exponentially following the leading
Lyapunov exponent of the Navier-Stokes equation until it reaches saturation [56]. The Lyapunov exponent
λ represents the rate of separation, such that the error grows proportional to exp(λt), and its reciprocal
is closely related to the predictability horizon of a chaotic solution, such as solutions to the Navier-Stokes
equations. Thus, DAL solution should give Enum ≈ 0 initially with a small exponential growth rate to ensure
that this formulation is effective.
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In Figure 2(a), we plot Enum(t) for the cases considered. As expected, the error is initially O(10−15) for all
LES grid resolutions, with the error following a linear curve, known as the initial response, until t|ε|/k ≈ 1.5.
Then, the error grows exponentially in time with an exponential growth rate, or the Lyapunov exponent, of
λk/|ε| ≈ 0.4. This demonstration shows that for short times, the two flow fields can be considered identical
(the error will be less than 10−10 for 30 integral times), and thus, the modeling error of evaluated from DAL
flow fields is zero in the absence of numerical error.

We repeat the previous experiment using a second-order finite difference staggered discretization in space
and advanced in time using a third-order Runge-Kutta time-stepping method. The same linear forcing is
applied in using a 2403 mesh. The DAL cases are three and five times coarser than the DNS case in all three
spatial directions, i.e., computed on a 803 and 483 mesh. Due to the numerical method of the simulation,
there is no filter operator that maps a velocity field of a DNS grid to a smaller LES grid and commutes with
the differentiation matrix (see Appendix A). An example of a case with the LES grid equal to the DNS grid
is given in Bae and Lozano-Durán [36] for a differential filter [57] utilizing the extension method [35, 36].
However, for practical applications, LES should reduce the computational cost by using a low pass filter
and a smaller computational domain. Here, we utilize a down-sampling method where the velocity field at
a certain point of the LES is the same as the (interpolated) DNS velocity field at the same point.

The numerical error Enum as a function of time is given in figure 2(b). Unlike the case using Fourier
discretization where the differentiation operator commutes with the Fourier-cutoff filter, the down-sampling
does not commute with the second-order finite-difference operation. The error is much larger from the fist
time step, assuming a polynomial growth with growth factor of 0.4 until it reaches saturation. Unlike the
previous case, the initial error is too large and the gap between the initial and fully saturated error is too
small to develop a exponential growth region. Instead, the polynomial growth rate shows how the initial
error develops.

3.2. Channel flow

We perform a set of plane turbulent channel simulations at friction Reynolds number Reτ = uτh/ν ≈ 180
and 550, where h is the channel half-height and uτ is the friction velocity at the wall. The simulations are
computed with a staggered second-order finite difference [58] and a fractional-step method [59] with a third-
order Runge-Kutta time-advancing scheme [60]. The code has been validated in previous studies in turbulent
channel flows [61, 62, 63]. The size of the channel is 2πh× 2h× πh in the x, y and z directions, which are
the streamwise, wall-normal, and spanwise directions, respectively. It has been shown that this domain size
is sufficient to accurately predict one-point statistics for Reτ up to 4200 [64]. Periodic boundary conditions
are imposed in the streamwise and spanwise directions, and the flow is driven by imposing a constant mean
pressure gradient.

The DNS grid resolutions utilizes 192× 120× 96 grid points for the Reτ ≈ 180 case and 510× 300× 510
grid points for the Reτ ≈ 550 case in the three spatial directions. The streamwise and spanwise directions
are uniform with ∆+

x ≈ 6 and ∆+
z ≈ 6 or 3, where the superscript + denotes wall units given by ν and uτ .

Non-uniform meshes are used in the normal direction, with the grid stretched toward the wall according to a
hyperbolic tangent distribution. The height of the first grid cell at the wall is ∆+

y ≈ 0.2 for both cases. The
DAL cases are either three or five times coarser than the DNS case in all three spatial directions. Similar to
the forced isotropic turbulence case, we utilize a down-sampling method where the velocity field at a certain
point of the LES is the same as the (interpolated) DNS velocity field at the same point. The details of the
simulations are given in Table 1.

In order to evaluate the numerical error, we use the same approach as in section 3.1 and supply the
SGS stress term using DAL for the three different cases. Figure 3(a) shows the evolution of the integrated
numerical error as a function of time. When the error is normalized with ∆DNS/∆DAL, we see that error
evolution of the three cases collapse. The linear dependence of the error on grid resolution and its inde-
pendence on Reynolds number is similar to the LES error scalings found in Lozano-Durán and Bae [21].
This study did not distinguish between modeling and numerical errors and considered errors in resulting
statistics. However, this shows that either the numerical errors are dominant in the total LES error or the
modeling error is proportional to the numerical error, demonstrating that numerical errors are a significant
source of error in LES.
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Figure 3: Time evolution of the (a) integrated numerical error Enum and wall-normal distance dependent numerical error Enumy

at (b) y+ ≈ 15 and (c) y/h ≈ 1 for CH180DAL3 ( ), CH550DAL3 ( ), and CH550DAL5 ( ). Vertical lines ( )
divide the initial response region, growth region, and saturation region. (d) Enumy normalized with the mean velocity profile as

a function of wall-normal height at tu2τ/ν ≈ 1 for CH550DAL3.
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Case Method Reτ ∆+
x min(∆+

y ) max(∆+
y ) ∆+

z

CH180DNS DNS 186 6.1 0.19 8.2 6.1
CH180DAL3 DAL 186 18.3 0.61 24.3 18.3
CH550DNS DNS 547 6.7 0.21 9.6 3.4
CH550DAL3 DAL 547 20.2 0.66 28.7 10.1
CH550DAL5 DAL 547 33.6 0.97 49.5 16.8
CH550DSM3 DSM 547 20.2 0.66 28.7 10.1
CH550AMD3 AMD 547 20.2 0.66 28.7 10.1
CH550NM3 NM 547 20.2 0.66 28.7 10.1

Table 1: Tabulated list of cases for the channel flow case. Cases are named as CH[Reτ ][Method][Coarsening Factor], where
method is either DNS or DAL and coarsening factor is the ratio of grid points from DNS to DAL in one spatial direction.

For all three cases, after the initial linear growth, the errors assume a polynomial growth with a growth
rate of 0.8, until saturation. This growth rate is larger that that observed in the forced isotropic turbulence
case. The faster growth in error can be attributed to the non-uniform mesh in the wall-normal direction
and, incidentally, the modifications in the Poisson solver, which contribute towards additional sources of
numerical error.

Figures 3(b) and (c) show Enum
y for a given time at different wall-normal heights, y+ ≈ 15 and y/δ = 1.

The linear dependence on the factor ∆DNS/∆DAL is true for all wall-normal heights, similar to the integrated
error. The growth rates are similar for the two wall-normal heights, with the error accumulating slightly
slower in the outer region, compared to the error at y+ ≈ 15. This shows that the numerical error will
accumulate faster closer to the wall. Additionally, the errors are weakly dependent on Reynolds number
close to the wall, but become independent of Reynolds number away from the wall. Thus, the relative error
close to the wall will increase with Reynolds number but stay constant with Reynolds number in the outer
region. Moreover, the relative y-dependent numerical error at each wall-normal height is given in figure 3(d).
While only one time step is shown, all temporal locations show similar trends as a function of wall-normal
distance. This shows that the relative numerical error is the largest close to the wall and decreases with
distance from the wall. This large and fast accumulation of errors in the near-wall region is known to be
problematic for SGS models and in particular for wall models for LES.

Finally, we plot the modeling and total errors for the DSM and AMD model as well as the NM case in
figure 4. The errors show that the AMD model has the largest modeling error Emod, followed by the DSM
and the NM case. However, the total error Etot shows the smallest error for the AMD case, followed by the
DSM and NM. This demonstrates that the modeling error and the numerical error cancel each other, as
widely accepted in the literature.

4. Conclusions

Large-eddy simulation has become a viable tool in performing simulations of turbulent flow for industrial
and engineering applications. In order for LES to be regarded as a useful tool, the errors associated with
it must be carefully studied. In particular, the errors associated with the numerical method and the choice
of subgrid scale model must be clearly distinguished and evaluated at grid resolutions relevant to practical
LES applications. Moreover, for wall-bounded flows, it is important to evaluate the error as a function of
wall-normal distance to account for near-wall effects.

In this paper, we introduce a formulation that allows the accurate assessment of numerical errors at grid
resolutions typical of LES. DNS-aided LES is used to compute exact SGS stress terms in the absence of
numerical error; that is, by running a DNS and LES with the equivalent initial condition, the DNS flow field
at each time step is used to generate the exact SGS stress term for the corresponding LES flow field. This
requires an explicit filter operator which is often lacking in traditional LES. DAL allows the evaluation of
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Figure 4: (a) Emod
y and (b) Etoty normalized with the mean velocity profile as a function of wall-normal height at tu2τ/ν ≈ 1 for

CH550DSM3 ( ), CH550AMD3 ( ), and CH550NM3 ( ).

numerical errors as a function of time. Moreover, it allows the distinction of numerical and modeling errors
for LES, which is often not straightforward.

Using this method, we compute the numerical errors of two cases: forced isotropic turbulence and
turbulent channel flow. The evaluation of numerical errors of the Fourier discretization show that the errors
are machine precision zero, as expected. This also verifies that DAL indeed produces zero modeling error.
In the case of numerical error for the finite difference case, the error follows a polynomial growth until
saturation. The growth rate is indicative of how the LES solution is correlated to the corresponding DNS
solution. The results verify that the numerical errors are largest closer to the wall. Furthermore, it also shows
that numerical errors and modeling errors partially counteract each other. The findings imply that SGS
models are not expected to perform well in all numerical methods and will perform better when coupled with
numerical methods where the numerical errors are counterbalanced with the modeling errors. In particular,
supervised learning SGS models trained on filtered DNS data do not account for numerical errors, and thus
do not perform as expected in a posteriori testing. The latter observation also has implications for wall
modeling in LES, in which wall models become sensitive to the flow details close to the wall where the
numerical errors are the largest.

The method introduced here can be helpful in two main directions. Firstly, the method can inform
development of new SGS models in conjunction with a target numerical method such that the effect of
counterbalancing the numerical and modeling errors is be maximized. Since the method here provides the
numerical errors as a function of space and time, this information can be used to develop SGS models
specifically designed to cancel numerical errors. Secondly, the method can similarly aid in development and
assessment of wall models, which remains a pacing item to achieve practical LES.
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Appendix A. Commutation of filter operator for finite difference

For the filter operator to commute with the differentiation operator numerically, we need, in matrix form,

DLESF~u = FDDNS~u, (A.1)
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where a nonzero matrix F ∈ RN×mN is the filter matrix, DDNS ∈ RmN×mN and DLES ∈ RN×N are the one-
dimensional differentiation matrix for DNS and LES respectively. The factor m denotes the ratio between
the DNS and LES grid sizes, and for practical cases, m > 1. For simplicity, we consider central finite
difference in a uniform grid, which gives

DDNS
i,j =


1/∆, i = j + 1

−1/∆, i = j − 1

0, otherwise

, DLES
i,j =


1/m∆, i = j + 1

−1/m∆, i = j − 1

0, otherwise

, (A.2)

where ∆ is the grid size for DNS.
Solving Eq. (A.1) as F = DLES−1FDDNS, we get

Fi,j =


m

N/2∑
k=(i+1)/2

(−F2k,j−1 + F2k,j+1), i odd

m

(i−1)/2∑
k=1/2

(F2k,j−1 − F2k,j+1), i even

(A.3)

We can rewrite this equation as a linear equation M ~f = ~f by transforming matrix F as a vector ~f ∈ RmN2

,
such that ~fmN(i−1)+j = Fi,j . Thus, there exists a filter that commutes with the finite difference if and only
if M has an eigenvalue of unity. While there may be a specific choice of m and N such that this is possible
(e.g. m = 1), for an arbitrary grid, this is not always true.
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