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Abstract. The regeneration mechanism of streamwise vortical structures in the self-sustaining
process of wall-bounded turbulence is investigated. Resolvent analysis [1] is used to identify the
principal forcing mode which produces the maximum amplification of the response modes in
the minimal channel for the bu↵er [2] and logarithmic layer [3]. The identified mode is then
projected out from the nonlinear term of the Navier-Stokes equations at each time step from the
direct numerical simulations (DNS) of the corresponding minimal channel. The results show
that the removal of the principal forcing mode is able to significantly inhibit turbulence for
the bu↵er and logarithmic layer while removing the subsequent modes instead of the principal
one only marginally a↵ects the flow. Analysis of the dyadic interactions in the nonlinear term
shows that the contributions toward the principal forcing mode come from a limited number of
wavenumber interactions. Using conditional averaging, the flow structures that are responsible
for generating the principal forcing mode, and thus the nonlinear interaction to self-sustain
turbulence, are identified to be spanwise rolls interacting with meandering streaks.

1. Introduction

The structure of near-wall turbulence has been extensively investigated over the past half-
century. In the vicinity of the wall, the flow is found to be highly organized, consisting of
streamwise rolls and low- and high-speed streaks [4, 5, 6, 7, 8] that are involved in a quasi-
periodic regeneration cycle [9, 10, 11, 12, 13]. However, despite the large e↵ort devoted to
the subject, questions still remain in understanding the exact mechanisms by which turbulence
self-sustains in wall-bounded turbulent shear flows, and the dynamics in which these structures
interact is still uncertain.

Important progress was made in the early 1990s using the “minimal flow unit” approach,
which revealed that bu↵er layer streaks can self-sustain even when motions at larger scales are
inhibited and that their existence, therefore, relies on an autonomous process [2]. Hamilton et
al. [14] utilized a similar approach for Couette flow, where either certain velocity modes were
suppressed to remove streak formation or disturbances were added to allow streak breakdown.
Jiménez & Pinelli [15] further confirmed that this near-wall process is independent of the flow in
the logarithmic and outer regions by showing the survival of the near-wall motions in the absence
of outer turbulence. The consensus from these studies, along with many others that followed (e.g.
[16, 17]), is that the streaks are significantly amplified by the quasi-streamwise vortices via the
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lift-up e↵ect; the amplified streaks subsequently undergo a rapid streamwise meandering motion,
reminiscent of streak instability or transient growth, which eventually results in breakdown of
the streaks and regeneration of new quasi-streamwise vortices. A similar but more disorganized
scenario is hypothesized to occur for the logarithmic layer [3, 18]. Streak formation by streamwise
vortices has been extensively documented in the literature (e.g. [19, 7, 20, 21, 22, 23]), and
streak breakdown has also received considerable attention (e.g. [24, 25, 14, 26, 27]). Regarding
the final component of the self-sustaining cycle, the streamwise vortex regeneration through
nonlinear interactions, there is a lack of consensus, and many possible mechanisms have been
proposed. Coles [28] and Sreenivasan [29] proposed that the streamwise vortices are generated
through the Görtler instability mechanism. A closely related Craik-Leibovich instability [30]
has also been considered. Jiménez & Moin [2] proposed the tilting of the vorticity into the
streamwise direction as a cause. Nikolaidis et al. [31] cite the parametric interaction between
the fluctuating streamwise mean flow and the streamwise varying perturbations as the main
mechanism. However, vortex regeneration seems to be a complicated process that arises from
nonlinear interactions, and the exact mechanism is still elusive.

Resolvent analysis [1, 32], which treats the nonlinear term as a forcing term and identifies
the forcing mode associated with the most amplified structures, can be useful in shedding light
on the nonlinear mechanism behind streamwise vortex regeneration. The resolvent analysis
identifies pairs of response (velocity) and forcing (nonlinear) modes and the corresponding
amplification factor from the linearized Navier-Stokes operator and has been successful at
identifying the most energetic motions in actual turbulent flows by approximating the nonlinear
forcing from the interaction of highly amplified coherent structures. It has been shown that
a rank-one approximation captures the characteristics of the most energetic modes of wall-
bounded turbulent channels [33]. We postulate that the principal (most amplified) forcing mode
then must have the largest impact on the flow and, in particular, the regeneration cycle. We
show that the turbulence can be suppressed by removing the nonlinear component corresponding
to the principal forcing mode, which supports our hypothesis. We further investigate the flow
structures that form the principal forcing mode through nonlinear interactions, shedding light
to coherent structures involved in this process.

The paper is organized as follows. We first introduce the method used to identify and remove
resolvent forcing modes from the nonlinear term computed from the DNS in §2. We then present
the resulting changes in the flow statistics as well as the identification of coherent structures
involved in this process in §3. Finally, we summarize our findings in §4.

2. Methods

In the following, we consider a channel flow between two parallel walls. The streamwise, wall-
normal and spanwise directions are denoted by x, y, and z, respectively. The flow velocities
in the corresponding directions are given by u, v, and w. The streamwise and spanwise
directions are considered to be periodic. The flow is characterized by the friction Reynolds
number Re⌧ = �u⌧/⌫, where � is the half channel height, u⌧ is the friction velocity, and ⌫ is the
kinematic viscosity.

2.1. Principal forcing modes
The incompressible Navier-Stokes equations of the velocity fluctuations can be Fourier
transformed in homogeneous directions and time and reorganized as

�i!ũ+ (U · r̂)ũ+ (ũ · r̂)U + r̂p̃�
1

Re⌧
�̂ũ = f̃ , r̂ · ũ = 0, (1)

for each (kx, kz,!), where (̃·) is the Fourier transform in time and space, ũ(y; kx, kz,!) =
[ũ, ṽ, w̃]T is the velocity fluctuation vector, f̃(y; kx, kz,!) = [f̃u, f̃v, f̃w]T denotes the nonlinear
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advection terms, U(y) = [U, V,W ]T is the mean velocity vector averaged over homogeneous
directions and time, p̃(y; kx, kz,!) is the pressure, r̂ = [ikx, @y, ikz]T , and �̂ = @yy�k2x�k2z . Here,
the triplet (kx, kz,!) is the temporal frequency and the streamwise and spanwise wavenumbers,
respectively. Equivalently, we can express this as


ũ(y; kx, kz,!)
p̃(y; kx, kz,!)

�
= H(kx, kz,!)


f̃(y; kx, kz,!)

0

�
. (2)

We refer to the linear operator H(kx, kz,!) as the resolvent operator. The singular value
decomposition of the resolvent operator returns an ordered basis pair { ̃j , �̃j} along with the
associated singular value �j (�1 � �2 · · · � 0) which can be used to express the resolvent operator
as


ũ(y; kx, kz,!)
p̃(y; kx, kz,!)

�
=

1X

j=1

�j(kx, kz,!) ̃j(y; kx, kz,!)

⌧
�̃j(y; kx, kz,!),


f̃(y; kx, kz,!)

0

��
,

(3)
where h·, ·i is the inner product corresponding to the kinetic energy norm, and the basis �̃i and
 ̃i are unitary. We refer to  ̃j as the response modes and �̃j as the forcing modes. The former
identifies the most amplified coherent structures, which are considered to contain most of the
energy. The latter are the basis for the nonlinear terms that create the response modes via the
linear resolvent operator.

Note that due to the symmetry in the channel flow, the resolvent modes occur in pairs with
the same singular value. While any linear combination of the two resolvent modes corresponding
to the largest singular value �1 can be considered the principal mode, we focus on the principal
forcing mode �̃1 = [�̃1,u, �̃1,v, �̃1,w, 0]T with the support isolated to one half (bottom) of the
channel such that the projection of the resolvent mode will only be directly a↵ected by flow in
the bottom half of the channel.

2.2. Numerical simulation
The simulations are performed by discretizing the incompressible Navier-Stokes equations with
a staggered, second-order accurate, central finite-di↵erence method in space [34], and an explicit
third-order accurate Runge-Kutta method for time advancement [35]. The system of equations
is solved via an operator splitting approach [36]. Periodic boundary conditions are imposed
in the streamwise and spanwise directions, and the no-slip condition is applied at the walls.
The code has been validated in previous studies of turbulent channel flows [37, 38, 39]. The
resolvent modes were computed using the same staggered, second-order accurate, central finite
di↵erence method in the wall-normal direction. The Fourier discretization in the computation of
the resolvent modes in the streamwise and spanwise directions was modified to use the modified
wavenumber corresponding to a staggered second-order finite-di↵erence method.

We perform two sets of DNS of incompressible turbulent channel flow to investigate the self-
sustaining process at di↵erent scales, where each simulation is performed within a computational
domain tailored to isolate the dynamics in either the bu↵er or the logarithmic layer. For the
bu↵er layer case with Re⌧ ⇡ 186 (CH180B), the streamwise, wall-normal, and spanwise domain
sizes are L+

x ⇡ 340, L+
y ⇡ 372 and L+

z ⇡ 170, respectively. Jiménez & Moin [2] showed that
simulations in this domain constitute an elemental structural unit containing a single streamwise
streak and a pair of staggered quasi-streamwise vortices, which reproduce reasonably well the
statistics of the flow in larger domains. The case at Re⌧ ⇡ 930 (CH950L) was computed for the
minimal unit for the logarithmic layer with L+

x ⇡ 1450, L+
y ⇡ 1860 and L+

z ⇡ 726, respectively.
These dimensions correspond to a minimal box simulation for the logarithmic layer and are
considered to be su�cient to isolate the relevant dynamical structures involved in the bursting
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Table 1: Tabulated list of cases. The CH180B case corresponds to the minimal box for the
simulations of the bu↵er layer and the CH950L case corresponds to the minimal box for the
simulations of the logarithmic layer. CH950B is the bu↵er layer simulation for the taller domain.

Case Re⌧ L+
x L+

z L+
y �+

x �+
z min(�+

y ) max(�+
y )

CH180B 186 340 170 372 10.6 5.3 0.17 7.6
CH950L 930 1450 726 1860 7.6 3.8 0.28 12.7
CH950B 930 340 170 1860 7.6 3.8 0.28 12.7
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Figure 1: Mean streamwise velocity profile of the (a) bu↵er layer minimal channel at Re⌧ ⇡ 186
and (b) the log layer minimal channel at Re⌧ ⇡ 930 (——), compared to the mean velocity
profile of the channel flow for the domain size of 12⇡� ⇥ 2� ⇥ 4⇡ or 8⇡� ⇥ 2� ⇥ 4⇡, respectively,
(– – –) at corresponding friction Reynolds numbers [40].

process [3]. An additional case with L+
x ⇡ 340, L+

y ⇡ 1860 and L+
z ⇡ 170 (CH950B) was

performed to isolate the bu↵er layer dynamics that are independent of the logarithmic layer
dynamics in the Re⌧ ⇡ 930 case [15], which is later used to compare against the CH950L case.
The grid spacings in the streamwise and spanwise directions are uniform; non-uniform meshes
are used in the wall-normal direction, with the grid stretched toward the wall according to a
hyperbolic tangent distribution. The details of the simulation and the grid resolutions for each
case are summarized in Table 1.

The flow is simulated for more than 50�/u⌧ after transients for computation of the mean
streamwise velocity profile, U(y), shown in Figure 1. Once the mean velocity profile has
converged, a separate simulation with the mean U(y) frozen in time by an appropriate forcing
at each time step is performed. The mean velocity profile is frozen so that the most amplified
resolvent modes remain constant throughout the simulation. It also aligns with the aim of the
study, which is to characterize the mechanisms that sustain the turbulent mean state. Once
a statistically steady state is reached, the simulation is advanced in time by removing the
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projection of the Fourier transformed (in homogeneous directions only) nonlinear term, f̂ , onto
�̃1, i.e.,

ĝ1(y; kx, kz) =

⌧
f̂(y, kx, kz)

0

�
, �̃1(y; kx, kz,!)

�2

4
�̃1,u(y; kx, kz,!)
�̃1,v(y; kx, kz,!)
�̃1,w(y; kx, kz,!)

3

5 , (4)

from f̂ for a given (kx, kz,!) at each time step. Projections onto �̃i are analogously defined as ĝi.
Symmetry of the Fourier modes is preserved by also removing ĝ⇤

1, the conjugate of ĝ1, from the
nonlinear term f̂(y;�kx,�kz) at each time step. This projection includes the contributions from
various temporal frequencies apart from the specified !. However, it ascertains the removal of
this particular forcing mode. Later, in §2.3, we show that our particular choice of ! is such that
the singular value associated with the chosen ! is much larger than other temporal frequencies,
making the removal of other frequency contents relatively less significant.

For the remainder of the paper, we denote the channel flow simulation with the mean fixed
at each time step but no forcing mode removed as the undamped case and the simulation with
the forcing mode removed as the damped case.

2.3. Choice of target wavenumbers
As mentioned in the previous section, a choice of the target wavenumbers is required to identify
the forcing modes that are removed at each time step. For this, we target the Fourier modes
with the most energy content. Figure 2(a) shows the spectral energy content, Ê(y, kx, kz) =
1/2 (û⇤û), in the bu↵er layer (y+ ⇡ 15) of the minimal channel CH180B as a function of
streamwise and spanwise wavenumber. There is a clear peak at (kxLx/2⇡, kzLz/2⇡) = (0,±1).
This is consistent with the fact that the domain size of the minimal channel is such that it
isolates flow structures to be infinitely long in the streamwise direction and once-periodic in the
spanwise direction. Thus, for our analysis, we choose the streamwise and spanwise wavenumbers
(kxLx/2⇡, kzLz/2⇡) = (0, 1). The temporal frequency is given as ! = 0 since the kxLx/2⇡ = 0
wavenumber identifies the streamwise stationary mode, and the convective velocity of this mode
is zero. While not shown, the case CH950L also shows similar spectral energy content in the
logarithmic layer (y/� ⇡ 0.2), and thus the same set of wavenumbers are chosen for the analysis.
As mentioned in §2.2, we do remove other frequency content by removing the projection of
�̃1. However, first of all, the principal forcing mode of ! = 0 is not identical to that of other
frequencies, and removing �̃1 for (kxLx/2⇡, kzLz/2⇡,!) = (0, 1, 0) does not completely remove
the principal forcing modes for other temporal frequencies. Moreover, the singular values as a
function of ! (Figure 2(b)) show that the most amplified structure of the given (kx, kz) pair is
given by ! = 0.

The principal forcing modes of CH180B and CH950L for this particular frequency-
wavenumber triplet are given in Figure 2(c) and 2(d), respectively. In both cases, the forcing
mode highlights a pair of streamwise rolls spanning the entire channel half-height. A much
weaker streamwise streak whose magnitude (|�̃1,u|) is approximately 5% (CH180B) or 1%

(CH950L) of that of the streamwise rolls, (�̃
2
1,v + �̃

2
1,w)

1/2, is also present. The values above
y/� = 1 are negligible due to our definition of the principal forcing mode. For the given
(kx, kz,!), the principal forcing mode contains the largest energetic contribution (approximately
85%), defined as �2

i /
P1

k=1 �
2
k for each �̃i. The subsequent modes �̃2 and �̃3 have an energetic

contribution of approximately 12% and 2%, respectively. The large separation in the singular
values indicates that the principal forcing mode will be amplified by almost an order of magnitude
more than the other forcing modes and thus will be integral in the self-sustaining process.



Fourth Madrid Summer School on Turbulence
Journal of Physics: Conference Series 1522 (2020) 012001

IOP Publishing
doi:10.1088/1742-6596/1522/1/012001

6

(a)

0 2 4 6 8 10
0

10

20

30

40

50

60

70

(b)

(c) (d)

Figure 2: (a) Spectral energy content, Ê, at y+ ⇡ 15 for the minimal channel at Re⌧ ⇡ 186.
(b) Principal singular value �1 as a function of ! for (kxLx/2⇡, kzLz/2⇡) = (0, 1). (c) The y-z
plane of the principal forcing mode �̃1 for (kxLx/2⇡, kzLz/2⇡,!) = (0, 1, 0) for CH180B. The

streamwise component |�̃1,u| (color) and the cross-flow component (�̃
2
1,v + �̃

2
1,w)

1/2 (quiver) are
given, with the color bar indicating magnitude for both components. The contour lines (——)
indicate streamwise magnitudes that are 3% and 5% of the maximum cross-flow magnitudes.
(d) Same as (c) but for CH950L. The contour lines (——) indicate streamwise magnitudes that
are 0.5% and 0.9% of the maximum cross-flow magnitudes.
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Figure 3: (a) Temporal evolution of TKE at y+ ⇡ 15 for the undamped minimal channel (——)
and the undamped minimal channel (——) at Re⌧ ⇡ 186. (b) Streamwise (——), wall-normal
(– – –), and spanwise (— · —) rms velocity fluctuations for the damped (red) and the undamped
(black) minimal channel.

3. Results

3.1. Time evolution of turbulence kinetic energy and turbulence intensities
The e↵ect of removing ĝ1 for the case CH180B can be seen in Figure 3(a) in the form of the
turbulence kinetic energy (TKE) evolution in time. It shows that removing ĝ1 reduces the
TKE significantly. The steady-state root-mean-square (rms) velocity fluctuation profiles for this
case are given in Figure 3(b). As expected, the e↵ect of removing the principal forcing term is
observed only on the bottom half of the channel where the principal forcing term was isolated,
with only minor changes in the statistics in the top half of the channel. At any instance of time
of the undamped case, the average contribution of ĝ1 to the total advection term is less than
0.9%, and removing the same magnitude randomly from the advection term at each time step
had no e↵ect on the first-order statistics. Thus, the spatial structure of the mode that is being
projected out is essential in the laminarization of the flow.

We also repeat the previous experiment, but removing either ĝ2 or ĝ3 instead of ĝ1 in the
CH180B. We see that turbulence is sustained in both cases from Figure 4(a), but the extreme
peaks in TKE observed in the undamped case are not as prominent. We can also see in Figure
4(b) that while the e↵ect of removing ĝ2 still has some impact on the steady-state turbulence
intensities, especially around y+ ⇡ 15, the net change in the statistics is much smaller than that
of removing ĝ1. Removing ĝ3 has no impact on first-order statistics, and similar results are
expected of subsequent forcing modes. At any instance of time, the average contribution of ĝ2
or ĝ3 in the undamped case are statistically similar to the contribution of ĝ1 at 0.9% of the total
advection term, which supports the impact of the principal forcing mode on the turbulent flow.
This demonstrates the capability of resolvent analysis in identifying important fluid structures.

In the case of CH950L, as shown in Figure 5(a), the TKE does not vanish but is small
compared to the undamped case such that the average TKE for the damped case is comparable
to the minimum value of TKE for the undamped case. The steady-state rms fluctuating velocities
(Figure 5(b)) show a clear decrease in the logarithmic region of the bottom half of the channel.
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Figure 4: (a) Temporal evolution of TKE at y+ ⇡ 15 for the minimal channel at Re⌧ ⇡ 186
removing ĝ2 (——) or ĝ3 (——) at each time step. The TKE for the undamped minimal
channel is given for comparison (——). (b) Streamwise (——), wall-normal (– – –), and spanwise
(— · —) rms velocity fluctuations of damping ĝ2 at each time step (blue), ĝ3 at each time step
(green), and the undamped minimal channel (black).

The remaining turbulence intensities can be attributed to the transport of energy from the bu↵er
layer dynamics, which are still sustained as the resolvent mode is centered around the logarithmic
region and has no impact on the inner region. The larger box for the logarithmic layer isolates
more complicated, fully multiscale structures that reach from the wall farther into the core flow,
making it harder to isolate individual flow features to be studied as in the bu↵er layer case. A
separate undamped DNS (CH950B) is performed to demonstrate the turbulence intensities due
to bu↵er layer dynamics. The results in Figure 5(b) show that the damped CH950L case exhibit
lower levels of turbulence in the logarithmic region even compared to the undamped CH950B
case, showing that the removal of the principal forcing mode e↵ectively removes the logarithmic
layer contributions to the turbulence intensities and the remaining turbulence is generated by
the energy transfer from the bu↵er layer.

3.2. Nonlinear interaction
As demonstrated above, the principal forcing mode �̃1 identifies the most amplified nonlinear
interaction and is integral in sustaining turbulence in the near wall cycle. In order to study the
nonlinear interactions that produce this term through dyadic interactions, we decompose the
nonlinear term as a convolution sum in Fourier space

f̂(y; kx, kz) =
1X

k0x,k
0
z=�1

⇣
û(y; k0x, k

0
z) · r̂

⌘
û(y; kx � k0x, kz � k0z), (5)

where r̂ = [ikx, @y, ikz]T . The contribution of each component of the convolution sum toward
the projection of the principal forcing term for any given flow field can be measured as

⇧(k0x, k
0
z; kx, kz) =

*" ⇣
û(y; k0x, k

0
z) · r̂

⌘
û(y; kx � k0x, kz � k0z)

0

#
, �̃1(y; kx, kz,!)

+
, (6)
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Figure 5: (a) Temporal evolution of TKE at y/h ⇡ 0.35 for the damped minimal channel (——)
and the undamped minimal channel (——) at Re⌧ ⇡ 930. (b) Streamwise (——), wall-normal
(– – –), and spanwise (— · —) rms velocity fluctuations of the damped channel (red) and the
undamped minimal channel (black) at Re⌧ ⇡ 930. The rms velocity fluctuations for the minimal
channel of the bu↵er layer at Re⌧ ⇡ 930 (gray) is also shown for comparison.

where (kxLx/2⇡, kzLz/2⇡) = (0, 1) as before. Note that integration over all k0x and
k0z of ⇧(k0x, k

0
z; kx, kz) gives the projection coe�cient computed in Eq. (4). Also, due

to incompressibility, ⇧ is symmetric with respect to (kx, kz) for each flow field; that is,
⇧(k0x, k

0
z; kx, kz) = ⇧(kx � k0x, kz � k0z; kx, kz). The average spectral map of |⇧(k0x, k

0
z; kx, kz)|

normalized by the total contribution |
P

k0x,k
0
z
⇧(k0x, k

0
z; kx, kz)| is computed from flow fields of

the undamped minimal channel at Re⌧ ⇡ 186 for kxLx/2⇡ = 0 and kzLz/2⇡ = 1 and is depicted
in Figure 6. The spectral map identifies two main sources of contribution from the wavenumber
pair (k0xLx/2⇡, k0zLz/2⇡) = (±1, 0) (and from symmetry (k0xLx/2⇡, k0zLz/2⇡) = (⌥1, 1)), which
account for approximately 40% of the total contribution. While the contributions from other
wavenumber pairs are not negligible, for the remainder of this paper, we focus on these two sets
of wavenumbers to identify the coherent structures responsible for the nonlinear forcing term. In
particular, since the two sets are mere mirror images in the x-plane, we focus on only one of the
two cases, namely (k0xLx/2⇡, k0zLz/2⇡) = (1, 0) with ((kx � k0x)Lx/2⇡, kz � k0zLz/2⇡) = (�1, 1).

To identify instantaneous flow configurations where the contribution towards �̃1 is strong or
weak, we first observe values of ⇧̄(k0x, k

0
z) = |⇧(k0x, k

0
z)|/hf̂(k

0
x, k

0
z), f̂(k

0
x, k

0
z)i

1/2, which represents
the normalized contribution to the principal forcing term with respect to the total energy of the
nonlinear term in the (k0x, k

0
z) mode, computed from flow fields of the undamped channel. We

then determine the mean µ and standard deviation & of the distribution of ⇧̄(k0x, k
0
z) over all time

instances. The high forcing-intensity events are defined as those with ⇧̄(k0x, k
0
z) > µ+2& and low

forcing-intensity events as those with ⇧̄(k0x, k
0
z) < µ � 2&. Both cases consist of approximately

5% of the total events. Note that for events in both categories, the total energy in the (k0x, k
0
z)

mode, hf̂(k0x, k
0
z), f̂(k

0
x, k

0
z)i, was similarly distributed.

The average F
�1û(k0x, k

0
z) and F

�1û(kx � k0x, kz � k0z) conditioned to high forcing-intensity
events are shown in Figure 7, where F�1 is the inverse Fourier transform. The modes are phase
shifted before averaging such that they are phase aligned for the streamwise velocity component
at y+ ⇡ 40. The coherent structures identified by the (k0x, k

0
z) mode are in the form of a
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Figure 6: Average contribution of each convolution sum |⇧(k0x, k
0
z)| normalized by the total

contribution
���
P

k0x,k
0
z
⇧(k0x, k

0
z)
��� for kxLx/2⇡ = 0 and kzLz/2⇡ = 1 for channel flow at Re⌧ ⇡ 186.

(a) (b) (c)

(d) (e) (f)

Figure 7: Average (a) F
�1û, (b) F

�1v̂, (c) F
�1ŵ for (k0x, k

0
z) and (d) F

�1û, (e)F�1v̂, (f)
F

�1ŵ for (kx � k0x, kz � k0z) conditioned to high forcing-intensity events shown in physical
coordinates for Re⌧ ⇡ 186. The surface plots are in wall units with values indicated by the
colorbar. The isosurfaces are values corresponding to 0.41 (solid red), 0.26 (transparent red),
�0.26 (transparent blue), and �0.41 (solid blue).
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(a) (b) (c)

(d) (e) (f)

Figure 8: Correlations (a,d) Cuu, (b,e) Cvv, and (c,f) Cww conditioned to (a,b,c) high forcing-
intensity and (d,e,f) low forcing-intensity events for Re⌧ ⇡ 186. The isosurfaces are 0.1 (red)
and �0.04 (blue).

pair of spanwise rolls that is being sheared in the spanwise direction. The (kx � k0x, kz � k0z)
mode show meandering streaks, with high-speed streaks moving towards the wall and low-
speed streaks moving away from the wall, corresponding to sweeps and ejections. Furthermore,
the spatial auto-correlation coe�cients of the streamwise, wall-normal, and spanwise velocity
fluctuations, denoted Cuu, Cvv, and Cww respectively, are computed conditioned to high forcing-
intensity events at the same wall-normal location y+ ⇡ 40. The correlations shown in Figure
8(a,b,c) reveal structures very similar to ones highlighted by the time-averaged F

�1û(k0x, k
0
z)

and F
�1û(kx � k0x, kz � k0z) and resemble spanwise-sheared spanwise rolls (Cvv and Cww) with

meandering streaks (Cuu).
On the contrary, although not shown, F�1û(k0x, k

0
z) and F

�1û(kx � k0x, kz � k0z) conditioned
to low forcing-intensity events are less coherent for these wave parameters and show no visible
structures using the same threshold as Figure 7. This can be observed from the conditional
correlation in Figure 8(d,e,f), where the streamwise and wall-normal velocities only show
structures resembling straight streaks and no structures resembling meandering streaks or
spanwise rolls as in Figure 8(a,b,c). The spanwise shear component Cww shown in Figure
8(f) also has a much narrower footprint in the spanwise direction compared to its counterpart
in Figure 8(c). Considering the fact that the total kinetic energy distribution for the strong
and weak events are similar, these results show that the precursor to the nonlinear interaction
that generates the principal forcing mode has more defined coherent structures in the form of
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spanwise rolls and meandering streaks, which interact to produce the principal forcing mode,
which then plays an important role in the self-sustaining cycle of near-wall turbulence.

4. Conclusions

We have studied the self-sustaining process of wall-bounded turbulence with special emphasis
on mechanisms involved in regenerating streamwise vortices. Vortex regeneration seems to be a
complicated process that arises from nonlinear interactions, and the exact underlying mechanism
is still elusive. For this purpose, we have utilized resolvent analysis to identify the most amplified
nonlinear term in the incompressible Navier-Stokes equations and studied the e↵ect of this term
on DNS of turbulent channel flow.

Simulations of the minimal channel for the bu↵er and logarithmic layer with a fixed mean
streamwise velocity profile were performed to isolate the structures at a prescribed scale. The
most amplified nonlinear term corresponding to the most energetic wavenumber was then
computed from the resolvent analysis using the mean velocity profile of the minimal channel
simulations. The identified mode was removed from the nonlinear term of a DNS for a minimal
channel simulation with a fixed mean velocity profile at each time step. We have shown that the
removal of the principal forcing mode leads to a significant decrease in turbulence intensities,
with the flow laminarizing in the bu↵er layer case. In the logarithmic layer case, the non-
laminarization was attributed to the turbulence generated in the bu↵er-layer that survives
regardless of the logarithmic layer dynamics. We also applied the removal method for subsequent
forcing modes instead, and observed an only marginal decrease in the turbulence intensities,
which reinstates the principal forcing mode as the most amplified, and thus the most important,
component of the nonlinear term.

In addition, we identified the coherent structures that, through the nonlinear interaction,
form the principal forcing mode. The identified structures are in the form of spanwise-sheared
spanwise rolls and meandering streaks. The interaction of these two coherent structures is
similar to the tilting of the vorticity into the streamwise direction, which was a phenomenon
proposed by Jiménez & Moin [2] as the mechanisms of vortex regeneration. The interaction of
the two components highlighted here regenerates streamwise vortices, which through the lift-up
mechanism amplifies streamwise streaks. These streamwise streaks break down from instability,
which spawn new generations of meandering streaks and spanwise rolls, completing the self-
sustaining process.
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