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Analysis of the resolvent operator is used to study the properties of high-speed turbulent

boundary layers for cooled walls. Previous study [1] shows that the resolvent response modes

in the relatively subsonic region of high-speed turbulent boundary layers with adiabatic wall

boundary conditions follow the same scaling law as those of the incompressible boundary layer

case, validating Morkovin’s hypothesis on a mode-by-mode basis. Here, we study the effect of

the cooled-wall boundary condition on the individual resolvent response modes to understand

the underlying mechanisms that cause the failure of Morkovin’s hypothesis and velocity trans-

formations for increasingly non-adiabatic walls. In particular, we show that the density and

temperature resolvent mode shapes for the cooled-wall case exhibit a secondary peak in the

inner and logarithmic layer, which is a result of the non-monotonic mean temperature profile

that is absent in adiabatic cases. We also show that the secondary peak becomes more promi-

nent with decreasing surface temperature ratio. The deviation of the mean velocity profiles is

attributed to the change in the response modes in the near-wall region, the effect of which is

propagated further away from the wall through nonlinear interactions.

I. Nomenclature

x1 = streamwise location
x2 = wall-normal location
x∗2 = semi-local wall-normal location
xc2 = wall-normal location of critical layer
x3 = spanwise location
δ = boundary layer thickness corresponding to the 99% of free-stream velocity
ui = velocity component in the i direction
ūi = mean velocity component in the i direction
ū+1 = mean streamwise velocity profile in wall units
ū∗1 = mean streamwise velocity profile transformed as in Trettel and Larsson [2]
ū⋆1 = mean streamwise velocity profile transformed as in Bae et al. [1]
ū1,∞ = free-stream streamwise velocity
ū1,w = streamwise velocity at the wall
(ui )1 = principal velocity response mode for velocity component in the i direction
uτ = friction velocity
ρ = density
ρ̄ = mean density
(ρ)1 = principal density response mode
ρw = density at the wall
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ρ∞ = free-stream density
T = temperature
T̄ = mean temperature
(T )1 = principal temperature response mode
Tw = wall temperature
Tr = recovery temperature
T∞ = free-stream temperature
q = state vector (ui, ρ,T )

µ = viscosity
µ̄ = mean viscosity
µw = viscosity at the wall
µ∞ = free-stream viscosity
λ = second coefficient of viscosity
λ̄ = mean second coefficient of viscosity
τw = wall shear stress
k = thermal conductivity
p = pressure
t = time
M∞ = free-stream Mach number
Mτ = Mach number based on shear velocity and wall viscosity
M∞ = relative Mach number to the free stream
Mw = relative Mach number to the wall
Reδ = Reynolds number based on boundary layer thickness and free-stream quantities
Reθ = Reynolds number based on momentum thickness and free-stream quantities
Reτ = friction Reynolds number based on boundary layer thickness and wall (shear) quantities
Re∗τ = semi-local friction Reynolds number
Pr = Prandtl number
cp = specific heat at constant pressure
cv = specific heat at constant volume
γ = ratio of specific heats, cp/cv
δi j = Kronecker delta
R = universal gas constant, cp − cv
I = identity matrix
L = linearized compressible Navier-Stokes operator
H = resolvent operator
ψ j = resolvent response modes
φ j = resolvent forcing modes
σ j = resolvent gains
f = nonlinear terms in the compressible Navier-Stokes equations
κ1 = streamwise wavenumber
κ3 = spanwise wavenumber
ω = temporal frequency
c = wave speed
r = recovery rate
E = total energy defined by the Chu [3] norm
EK = turbulent kinetic energy
ET = turbulent thermodynamic energy
EKK = kinetic energy density of the principal response modes
ETT = thermodynamic energy density of the principal response modes
ˆ(·) = Fourier transformed quantities
˘(·) = dimensional quantities

(·)† = conjugate transposed quantities
(·)⊺ = transposed quantities
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II. Introduction
The prediction of turbulent high-speed wall-bounded flows remains an active field of study for its technological

importance in the aerospace industry. Given that the surface temperatures of supersonic and hypersonic flight vehicles
are typically significantly lower than the adiabatic wall temperature due to considerable radiative cooling and internal
heat transfer and that experiments for evaluating these vehicles are designed to have a non-adiabatic turbulent boundary
layer at the wall, it is of practical importance to investigate wall-temperature effects on high-speed turbulent boundary
layers.

Wall cooling causes a change in both the boundary-layer thickness and the fluid properties across the boundary
layer. Many numerical studies have focused on the effect of wall cooling on the scaling of velocity fluctuations
and the relationship between temperature and velocity fields [2, 4–11]. However, the literature is still limited due
to the extremely long domain requirements needed to generate a fully developed state of the boundary layer as well
as computational efforts to incorporate compressibility effects and avoid the formation of shocklets. Modeling the
turbulent boundary layer with cooled walls is also a difficult challenge because, in particular, Morkovin’s hypothesis
[12] is known to fail for non-adiabatic wall temperatures, and the accuracy of the Van Driest transformation [13], as
well as other proposed velocity transformations, deteriorate for increasingly non-adiabatic walls. There have been
attempts to find a new scaling for compressible channel flows [2], which achieved an excellent collapse of the mean
velocity profiles at different Reynolds and Mach numbers and wall heat transfer rates for high-speed channel flows.
However, the same scaling does not provide a satisfactory collapse for turbulent boundary layers.

Studies over the past decade have demonstrated that the properties of the mean-linearized resolvent operator provide
a framework with which to understand and predict the properties of incompressible wall-bounded turbulence [14–18].
Recent study of the compressibility effect using resolvent analysis demonstrated that the resolvent response modes can
be useful in identifying the regions of significant difference in the different regimes of the Navier-Stokes equations on a
mode-by-mode basis [1]. The study identified that the main source of the variation with respect to the incompressible
case comes from the density variation in the wall-normal direction and the presence of Mach waves in the relatively
supersonic region. This allowed the verification of Morkovin’s hypothesis in the wave parameter space corresponding
to the relatively subsonic region.

In the present work, we study the effects of wall cooling through the resolvent framework for compressible flows.
Sec. III describes the resolvent formulation of the compressible Navier-Stokes equations. Sec. IV shows results from
applying the formulation to supersonic boundary layers with cooled and adiabatic walls. Finally, conclusions are given
in Sec. V.

III. Compressible Navier-Stokes equations
The non-dimensional compressible Navier-Stokes equations for a perfect gas are given by
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where the equations are given in nondimensionalized form using the Mach, Reynolds, and Prandtl numbers,

M∞ =
˘̄u1,∞√
γRT̆∞

, Reδ =
ρ̆∞Ŭ∞δ

µ̆∞
, Pr =

µ̆ cp

k̆
. (4)

Here, we assume constant specific heat coefficients and constant Prandtl number, Pr = 0.72, and we set γ = 1.4
(diatomic gas).

Assuming a fully developed, locally parallel flow, the state variable q = [q1, q2, q3, q4, q5]⊺ = [u1, u2, u3, ρ,T ]⊺ is
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decomposed using the Fourier transform in homogeneous directions and time,

q(x1, x2, x3, t) =

$ ∞

−∞
q̂(x2; κ1, κ3, ω)ei(κ1 x1+κ3x3−ωt )dκ1dκ3dω, (5)

where ˆ(·) denotes variables in the transformed domain, and the triplet (κ1, κ3, ω) is the streamwise and spanwise
wavenumbers and the temporal frequency, respectively. The corresponding wave speed for each triplet is given by
c = ω/κ1.

The mean turbulent state, q̄(x2) = [ū1(x2), 0, 0, ρ̄(x2), T̄ (x2)]⊺, corresponds to (κ1, κ3, ω) = (0, 0, 0) and is assumed
to be known. Furthermore, with the parallel-flow assumption, which is reasonable as the base flow variations depend
on the viscous time scale compared to the much faster convective time scale for fluctuations, the mean momentum
equation (Eq. (1)) gives a constant p̄(x2). In the remainder of the paper, we scale the pressure such that p̄ = 1 for
simplicity.

The governing equations (Eqs. (1)–(3)) can be rewritten in the Fourier domain for each (κ1, κ3, ω) , (0, 0, 0) as

− iωûi + ū1∂1ûi + û2∂2ūi = −
1
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∂j û j

)
+

∂ µ̄

∂T
∂jT̂

(
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+ f̂5, (8)

where f̂ contains the nonlinear terms and (∂1, ∂2, ∂3) = (iκ1, d/dx2, iκ3). This can be equivalently expressed as

q̂(x2; κ1, κ3, ω) = [−iωI + L(κ1, κ3, ω)]−1 f̂ (x2; κ1, κ3, ω), (9)

where L is the linearized operator of the governing equations around the supersonic turbulent mean profile [19] and I
is the identity matrix. The operatorH = [−iωI + L(κ1, κ3, ω)]−1 is called the resolvent operator.

We take the singular value decomposition of the resolvent, namely,

H =
∞∑

j=1

ψ j (κ1, x2, κ3, ω)σ j (κ1, κ3, ω)φ
†
j
(κ1, x2, κ3, ω), (10)

for σ j ≥ σ j+1 ≥ 0 with the norm introduced by Chu [3] that eliminates pressure related energy transfer terms
(compression work),

2E = (q, q)E = ‖q‖2E =
∫ ∞

0

(
ρ̄u
†
i
ui +

T̄

γ ρ̄M2
ρ†ρ +

ρ̄

γ(γ − 1)T̄ M2
T†T

)
dx2 (11)

such that the orthogonality condition becomes

(ψi (κ1, x2, κ3, ω),ψ j (κ1, x2, κ3, ω))E = δi j, (12)

(φi (κ1, x2, κ3, ω), φ j (κ1, x2, κ3, ω))E = δi j . (13)

This norm has been used in numerous other studies of compressible flows where the definition of an inner product is
required [e.g., 20–26]. The φ j and ψ j form the right and left singular vectors for the forcing and velocity fields, and the
real σ j are the singular values. Here, we focus on the principal singular vectors, i.e. the principal forcing mode φ1 and
the principal response mode ψ1 = [(q1)1, (q2)1, (q3)1, (q4)1, (q5)1]⊺ = [(u1)1, (u2)1, (u3)1, ρ1,T1]⊺, and the principal
singular value σ1.
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Case M∞ Mτ Reτ Reθ T̆w , [K] Tw/Tr Reference

M4-R500-T100 4.0 0.10 505 5915 650 1.0 Bernardini and Pirozzoli [29]

M6-R450-T76 5.86 0.13 453 9455 300 0.76 Zhang et al. [30]

M6-R450-T25 5.84 0.17 450 2121 88 0.25 Zhang et al. [30]

Table 1 The free-stream Mach number M∞, friction Mach number Mτ , friction Reynolds number Reτ , Reynolds

number based on momentum thickness Reθ , the wall temperature Tw , and the surface temperature ratio Tw/Tr
for the cases considered here.

IV. Resolvent analysis of cooled-wall supersonic boundary layers
We consider a flow over a flat plate with zero pressure gradient where the wall is cooled, i.e. the wall temperature

is lower than the recovery temperature

Tr = T∞

(
1 + r (γ − 1)

M2
∞

2

)
, (14)

where r = Pr1/3 is the recovery rate. If the surface temperature ratio Tw/Tr = 1, where Tw is the temperature of the
wall, the wall is adiabatic, whereas if Tw/Tr < 1, the wall is considered cooled. For the computation of the resolvent
modes, we discretize in the wall-normal direction using a Chebyshev collocation method on a grid which is transformed
by a rational transformation to increase resolution near the wall [27, 28]. The code has been validated in previous
studies of compressible planar Couette flow and compressible turbulent boundary layers [1, 26].

A. Mean profiles

The turbulent mean profiles for the cooled-wall cases are obtained from Zhang et al. [30], where direct numerical
simulations of a spatially evolving zero-pressure-gradient supersonic and hypersonic turbulent boundary layer with the
wall temperature set below its nominally adiabatic value are computed. The results from the cooled-wall cases are
compared against the results from an adiabatic wall boundary condition case with the mean profiles obtained from
Bernardini and Pirozzoli [29]. In particular, the cooled wall cases under consideration are M∞ ≈ 6 with Tw/Tr = 0.25
and 0.76, and the adiabatic case is M∞ ≈ 4. In all cases, Reτ = (ρwuτδ)/µw ≈ 450–500. A tabulated list of cases
considered is given in Table 1. Cases are named according to the nomenclature M[M∞]-R[Reτ ]-T[100Tw/Tr ].

We plot the transformed mean velocity profile in semi-local units and in defect form in 1(a,b), where the transfor-
mation in 1(a) is the one given by Trettel and Larsson [2],

x∗2 =
ρ̄(τw/ρ̄)

1/2x2

µ̄
, ū∗1 =

∫ ū+1

0

(
ρ̄

ρ̄w

) (
1 +

1

2 ρ̄

d ρ̄

dx2
x2 −

1

µ̄

dµ̄

dx2
x2

)
dū+1 , (15)

and the one in 1(b) is given by Bae et al. [1],

ū⋆1 = ū+1

(
ρ̄

ρ̄w

)1/2

, (16)

which showed a satisfactory collapse for the outer region for adiabatic wall boundary conditions. We also plot the
mean temperature profiles in 1(c,d). Note that, due to the normalized equation of state, the mean density profiles are
the reciprocal of the mean temperature profile and thus omitted. As expected, the mean velocity profiles do not observe
the same scaling laws as in the adiabatic case [30, 31]. While the overall scaling laws do not apply, the inner region for
the velocity profile and the outer region for both the velocity and temperature profiles show reasonable collapse.

The lack of a universal scaling law for the mean profiles, as seen from the lack of collapse of the mean profiles
in Figure 1, has implications for the resolvent modes. In Bae et al. [1], it was shown that the resolvent response
modes for the supersonic boundary layer with adiabatic wall boundary conditions observe the same scaling laws as the
incompressible boundary layer due to the collapse of the transformed mean velocity profile. In the absence of such
scaling law, the universality of the resolvent modes will also break down (see Sec. IV.C). However, the mechanism
that drives the deviation of the mean velocity profile from the classical incompressible counterpart can be identified by
observing the wavenumber space in which the resolvent response modes deviate from their respective scaling law.

5



100 101 102 103 104
0

5

10

15

20

25

30

35

(a)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

(b)

100 101 102 103 104
-0.2

0

0.2

0.4

0.6

0.8

1

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d)

Fig. 1 Mean streamwise velocity profile (a) in semi-local units given by the transformation Eq. (15) and (b)

in defect form given by the transformation Eq. (16). Mean temperature profile scaled by (c) the temperature

at the wall and (d) the free-stream temperature. Lines are M4-R500-T100 (black dashed), M6-R450-T76 (blue)

and M6-R450-T25 (red).

B. Effect of cooled walls on resolvent gains

The energy contribution of the principal mode to the total response subject to broadband forcing in the wall-
normal direction can be quantified by σ2

1/
∑

j σ
2
j . Figure 2 shows this energy contribution for the three cases under

consideration for xc+2 ≈ 15, xc2/δ ≈ 0.2 and xc2/δ ≈ 0.5, where xc2 is the critical layer where the wave speed matches
the convective speed, i.e., c = ω/κ1 = ū1(xc2 ). Note that the energy contribution of unity signifies that the resolvent
operator is rank-one while a low value indicates the operator is not low-rank.

Closer to the wall, at xc+2 ≈ 15, all three cases exhibit the presence of a relatively supersonic region, with the

relative sonic line, M∞ = 1 clearly present, where the relative Mach number to the free stream is defined as

M∞ =
(κ1ū1,∞ −ω)M∞

(κ21 + κ
2
3)1/2T̄

1/2
∞
. (17)

Although not shown, the resolvent response modes in the relatively supersonic region are centered around the sonic
layer, where the convective velocity is equal to the relative sonic velocity [1]. Also, the irregular patterns shown in
the relatively supersonic region are a numerical phenomenon and are attributed to the discrete representation of the
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Fig. 2 Energy contribution of the principal mode to the total response subject to broadband forcing in the

wall-normal direction for a given (κ1, κ3, ω) quantified by σ2
1/

∑
j σ

2
j

for (a,d,g) M4-R500-T100, (b,e,h) M6-R450-

T76 and (c,f,i) M6-R450-T25 at critical layers corresponding to (a,b,c) xc+2 ≈ 15, (d,e,f) xc2/δ ≈ 0.2 and (g,h,i)

xc2/δ ≈ 0.5. The contours are 10%, 50%, and 90% of the maximum energy of the premultiplied energy spectra

for channel flow at Reτ ≈ 550 (solid) and Reτ ≈ 180 (dashed) [32] at the corresponding wall-normal locations.

The white dashed line indicates the relative sonic line, M∞ = 1.

continuous acoustic modes [1, 26]. There may be a secondary relative sonic line located at Mw = −1, where

Mw =
(κ1ū1,w −ω)M∞

(κ21 + κ
2
3)1/2T̄

1/2
w

, (18)

for small values of T̄w and κ21 + κ
2
3 and large values of ω and M∞; however, for the parameters considered in the present

study, the secondary relative sonic line is not observed.
The behavior of resolvent gains in the three cases is similar, where, in the relatively subsonic region, the low-rank

behavior aligns well with the high-energy region highlighted by the premultiplied energy spectra of the incompressible
channel flow at Reτ ≈ 550 [32]. The largest deviation is seen in the M6-R450-T25 case. Farther away from the
wall, at xc2/δ ≈ 0.2, the higher Mach number cases still exhibit a relatively supersonic region. The relationship
between the extent of the relatively supersonic region with Mach number is given in Eq. (17), and a three-dimensional
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Fig. 3 Energy contribution of the principal mode to the total response subject to broadband forcing in the

wall-normal direction for (a) M4-R500-T100, (b) M6-R450-T76 and (c) M6-R450-T25. The contour surface is

σ2
1/

∑
j σ

2
j
= 0.75 colored by wave speed c. The black surface indicates the relative sonic plane, M∞ = 1. (d) Semi-

local Reynolds number as a function of wall-normal distance for M4-R500-T100 (black dashed), M6-R450-T76

(blue) and M6-R450-T25 (red).

depiction of this region can be seen along with the isosurface of the energy contribution of the principal mode in Fig.
3. It demonstrates an enlarged relatively supersonic region for the M∞ = 6 cases. In both the wall-normal planes
corresponding to xc2/δ ≈ 0.2 and xc2/δ ≈ 0.5, the behavior of the principal gain is similar in the relatively subsonic
region for the M4-R500-T100 and M6-R450-T76 cases, whereas the energy contained in the principal mode is smaller
for the M6-R450-T25 case.

The difference for the resolvent gains for M6-R450-T25 can be partly attributed to the differences in the semi-local
Reynolds numbers, defined as

Re∗τ (x2) =
ρ̄(x2)(τw/ρ̄(x2))1/2δ

µ̄(x2)
, (19)

for the different cases (Fig. 3(d)). Up to xc2/δ ≈ 0.5, Re∗τ for M4-R500-T100and M6-R450-T76are similar, whereas the
Re∗τ for the M6-R500-T25 case is significantly smaller. Bae et al. [1] showed that the meaningful Reynolds number for
comparison of compressible resolvent modes is given by Re∗τ , and given the large discrepancy between the semi-local
Reynolds number, the difference in the energy spectra is not surprising. In contrast, the energy spectra of M6-R450-T25
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Class κ1-scale κ3-scale x2-scale c-scale (u1)1, (ρ)1, (T )1-scale

Inner
κ1δ

Re∗τ

κ3δ

Re∗τ
x∗2 c∗ (̃qi )1

1
√

Re∗τ
Outer κ1δRe∗τ κ3δ

x2

δ

c

ū⋆1,∞
(̃qi )1

Logarithmic κ1xc2 xc∗2 κ3xc2
x2

xc
2

– (̃qi )1

√
xc2
δ

Table 2 Expected length scales for the universal modes of the resolvent operator for the turbulent boundary

layer.

match better with the premultiplied streamwise energy spectra of a lower Reynolds number channel flow at Reτ ≈ 180
[32] (see dashed spectra in Fig. 2(c,f,i)). Calibrating for this difference, the resolvent gains follow a similar behavior
as the one observed in the adiabatic case.

C. Scaling of the principal response mode for cooled walls

As observed in Sec. IV.A, the mean streamwise velocity profiles for cooled walls do not collapse, even with semi-
local variables, to the adiabatic boundary layer profile. This implies that the same scaling used in Moarref et al. [17]
for the incompressible channel flow, which has been extended to adiabatic supersonic boundary layers [1], cannot be
expected to work for the cooled wall cases. Nonetheless, we compare the resolvent response modes in order to identify
points of discrepancy in the scaling laws; this will allow a modal assessment of the source of failure of Morkovin’s
hypothesis for cooled walls.

The universality and self-similarity of the resolvent scaling law for the incompressible channel flow [17], which
have been subsequently extended to adiabatic supersonic boundary layers [1], are given in Table 2. We compare the
resolvent response modes for various wave speeds in order to identify the region where the largest deviation from
the adiabatic scaling law occurs. For comparison, the velocity response modes are normalized by the kinetic energy
content in the response modes, and the temperature and density response modes are normalized by the thermodynamic
energy. We define turbulent kinetic energy and turbulent thermodynamic energy as

EK = (q, q)K =

∫ ∞

0
ρ̄u
†
i
uidx2, ET =

∫ ∞

0

1

γM2
∞

(
ρ†ρ

ρ̄2
+

T†T

T̄2

)
dx2, (20)

respectively, and we normalize the velocity, density and temperature modes such that

(̃ui )1 =
ρ̄1/2(ui )1√

EK

, (̃ρ)1 =
(ρ)1/(γM2

∞ ρ̄
2)1/2

√
ET

, (̃T )1 =
(T )1/(γM2

∞T̄2)1/2

√
ET

. (21)

In Fig. 4, the normalized resolvent response modes for streamwise velocity and temperature are given for the outer,
logarithmic, and inner regions for the cases under consideration. The density mode shapes and amplitudes are identical
to the temperature modes, and thus we omit them for brevity. We choose a set of modes in the outer region with
xc2/δ = 0.7, in the logarithmic region with 70 ≤ xc∗2 ≤ 100, and in the inner region with xc∗2 = 15. The results from the
cooled-wall cases are compared against the adiabatic case, which also collapses to the modes from the incompressible

boundary layer [1]. We plot modes corresponding to a reference case of Re
re f
τ = 450 and (κ

re f

1 , κ
re f

3 ) = (1, 10) with

c = ū1(xc2 ) for each region. For example, we choose κ1 = κ
re f

1 Re∗τ/Re
re f
τ for the inner layer and κ1 = κ

re f

1 Re
re f
τ /Re∗τ

for the outer layer.
As expected, the outer region modes in Fig. 4(a,b) collapse regardless of the surface temperature ratio, as the outer

region mean velocity and temperature profiles still retain the scaling law observed for adiabatic cases as observed in
Fig. 1(b,d). In all three regions, the velocity modes (Fig. 4(a,c,e)) show reasonable universal and self-similar behavior,
with the M6-R450-T25 case in the inner region showing the most deviation, despite the lack of a universal scaling
law for the mean velocity profiles. The largest deviation occurs in the temperature (and density) modes close to the
wall (Fig. 4(f)), with increasing deviation with lower surface temperature ratios. In particular, the temperature modes
develop a secondary peak closer to the wall, which becomes more prominent with smaller Tw/Tr and closer to the wall.
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Fig. 4 Normalized resolvent response (a,c,e) streamwise velocity modes and (b,d,f) temperature modes for the

(a,b) outer, (c,d) logarithmic, and (e,f) inner region. Lines are M4-R500-T100 (black dashed), M6-R450-T76

(blue) and M6-R450-T25 (red)
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The satisfactory collapse of the modes in the logarithmic and outer layer could indicate that the changes observed in
the mean profile stem from the modes closer to the wall, which propagates to the logarithmic region through nonlinear
interactions.

(a) (b)

(c) (d)

Fig. 5 Logarithm of the premultiplied one-dimensional (a,c) kinetic energy density log(EKK ) and (b,d) ther-

modynamic energy density log(ETT ) normalized by its maximum value at each c for the (a,b) M6-R450-T76 and

(c,d) M6-R450-T25 cases conditionally sampled to M∞ < 1. Solid lines indicate mean (a,c) velocity and (b,d)

temperature profiles.

The formation of the secondary peak in the temperature and density modes can be explained by comparing the energy
density of the thermodynamic response modes to the mean temperature profile. The premultiplied one-dimensional
kinetic energy density of the principal velocity response modes is defined as

EKK (x2, c) =

3∑

i=1

"
κ21κ3

[
σ1(κ1, κ3, c) | (̃ui )1 |(κ1, x2, κ3, c)

]2
d log κ1d log κ3, (22)

and the premultiplied one-dimensional thermodynamic energy density of the response modes is analogously defined
as

ETT (x2, c) =

"
κ21κ3

[
σ1(κ1, κ3, c) | (̃T )1 |(κ1, x2, κ3, c)

]2
+

[
σ1(κ1, κ3, c) | (̃ρ)1 |(κ1, x2, κ3, c)

]2
d log κ1d log κ3.

(23)
Note that the additional premultiplication by a factor of κ1 is due to the fact that the energy intensity is defined as the
integration of EKK and ETT over c = ω/κ1. We plot EKK and ETT normalized by its maximum value over x2 for fixed
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values of c in Fig. 5 for M6-R450-T76 and M6-R450-T25. For both cases, the principal resolvent modes are localized
around the critical layer for the velocity profile. The thermodynamical energy density also shows localization of the
principal temperature and density modes around the mean temperature profile. However, in the case of Tw/Tr = 0.25
case, due to the clear non-monotonic behavior in the temperature profile, there is a wide range of wave speeds c,
0 ≤ c/ū1,∞ ≤ 0.75, where two wall-normal locations have the same mean temperature corresponding to that of the
critical layer. Thus, the localization of the temperature modes to the temperature corresponding to the critical layer
causes the dual peak of response modes in the near-wall region, as observed in Fig. 4(d,f). While this behavior can
be observed to a much lesser degree for the Tw/Tr = 0.76 case, the region in which the mean temperature profile
is non-monotonic is significantly less than the Tw/Tr = 0.25 case, and the temperature mode resembles that of the
adiabatic case.

V. Conclusions
The resolvent analysis framework has been applied to high-speed cooled-wall turbulent boundary layers. The

wavenumber–frequency space can be divided into the supersonic and subsonic regions based on the relative Mach
number similar to the adiabatic wall boundary case in Bae et al. [1]. While the mean velocity and temperature/density
profiles lack a universal scaling even with transformation laws that are successful with adiabatic high-speed turbulent
boundary layers, the resolvent velocity response mode shapes and amplitudes do coincide with its adiabatic and
incompressible counterparts in the relatively subsonic region. The temperature and density response modes deviate
close to the wall from the incompressible and compressible adiabatic wall cases. In particular, this discrepancy is
expressed in the response modes through a formation of secondary peaks in the temperature and density modes, with
the secondary peak amplitude becoming larger closer to the wall and with a smaller surface temperature ratio. The
wave speeds in which the secondary peaks form are regions where the non-monotonic growth of the temperature profile
leads to two wall-normal locations exhibiting the same temperature as the temperature of the critical layer. We also
show that the two peaks observed align with these two wall-normal locations. This suggests that the main source of
deviation between the adiabatic and the cooled-wall cases is the mean temperature profile, especially close to the wall,
and the nonlinear interactions create the observed differences in the mean velocity profiles.
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