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Abstract.
Despite the large amount of information provided by direct numerical simulations of

turbulent flows, their underlying dynamics remain elusive even in the most simple and canonical
configurations. Most common approaches to investigate the turbulence phenomena do not
provide a clear causal inference between events, which is essential to determine the dynamics
of self-sustaining processes. In the present work, we examine the causal interactions between
streaks, rolls and mean shear in the logarithmic layer of a minimal turbulent channel flow.
Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how
much the uncertainty of one structure is reduced by knowing the past states of the others. We
choose to represent streaks by the first Fourier modes of the streamwise velocity, while rolls
are defined by the wall-normal and spanwise velocity modes. The results show that the process
is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by
extracting energy from the mean shear which controls the dynamics and time-scales. The well-
known lift-up effect is also identified, but shown to be of secondary importance in the causal
network between shear, streaks and rolls.

1. Introduction
Turbulence is an important nonlinear dynamical phenomenon and one of the most challenging
problems in classical physics. However, it has not been systematically investigated from the point
of view of causality and, to date, the only attempts are the works by [1, 2, 3]. Indeed, most
standard methods in turbulence research (one-point statistics, correlations, Fourier analysis,
mode decomposition, exact coherent structures, energy budgets, data interrogation, etc.) do not
provide a clear causal inference between events. Understanding the causal relations in turbulent
flows is a necessary requirement (although maybe not sufficient) in order to comprehend the
physical behavior of the system in an intuitive manner. In this study, we investigate the causal
interaction between different coherent structures in the logarithmic layer of fully developed wall-
bounded turbulence.

Streamwise rolls and streaks are ubiquitous in wall-shear flows. They are considered to be
the most representative coherent structures that are able to explain the dynamics of the flow
as a whole. Since the experiment by [4] and the discovery of sublayer streaks and ejections
by [5], among others, the roll-streak structure has attracted enormous interest within the fluid
mechanics community. Their spatially and temporally varying structure is generally believed to
play an important role in maintaining and carrying shear-driven turbulence [6, 7, 8, 9, 10, 11].

http://creativecommons.org/licenses/by/3.0
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Most works have focused on the buffer layer where the streaks and rolls (or vortices) are
essentially one-scale objects, which simplifies their analysis. Farther from the wall, streaks
and rolls persist but their internal Reynolds numbers are higher, making their characterization
and understanding a more challenging task.

Although it is widely agreed that in both the buffer and logarithmic layers the streaks and rolls
are involved in a regeneration cycle, alternative mechanisms have been derived from different
simplified scenarios. In the buffer layer, it has been hypothesized that streamwise vortices near
the wall may collect the fluid from the inner region, where the flow is very slow, and organize
it into streaks [12, 11]. Other alternatives suggest that the generation of streaks are due to
the structure-forming properties of the linearized Navier–Stokes operator, independent of any
organized vortices [13]. Conversely, the streaks are hypothesized to trigger the formation of
vortices by losing their stability [10, 14]. For a review of self-sustained processes in the buffer
layer see [15].

A similar but more disorganized scenario is believed to take place in the logarithmic layer
[16, 17, 18]. The existence of a self-similar streak/roll structure consistent with the Townsend
attached-eddy hypothesis [19] has been documented by [20, 21, 22], and [23] from direct
numerical simulation data at moderate Reynolds numbers. However, the most interesting results
are not the kinematic description of the structures in individual flow realizations, but rather the
elucidation of how they relate to each other and how they evolve in time. A growing body of
evidence indicates that the generation of these log-layer streaks has its origins in the linear lift-
up effect [20, 24, 25, 26] in conjunction with the Orr’s mechanism [27, 11]. On the other hand,
rolls are speculated to be the consequence of a sinuous secondary instability of the streaks that
collapse through a rapid meander until breakdown [28, 29, 26, 30]. Other scenarios advocate for
the formation of rolls via a stochastic structural instability [31].

The different mechanisms, each capable of leading to the observed turbulence structure, are
rooted in theoretical or conceptual arguments. Whether the flow follows any or a combination
of these mechanisms is in fact unclear. Most of the theories stem from linear stability theory,
which has proved very successful in providing a theoretical framework to explain the lengths
and time scales observed in the flow. However, an appropriate base flow for the linearization
must be selected a priori depending on the flow state of interest, introducing some degree of
arbitrariness. Moreover, quantitative results are known to be sensitive to the details of the base
state [32]. Another criticism is that turbulence is a highly nonlinear phenomenon, and a full
self-sustained cycle is not expect to be unraveled from a single set of linearized equations. For
example, in turbulent channel flows, the classic linearization around the mean velocity profile
does not account for the redistribution of energy from the streamwise velocity component to the
cross-flow, which is the prevailing energy transfer on average [33]. In order to capture different
energy transfer mechanisms, the base state for linearization should be selected accordingly.
Moreover, optimal solutions should not be taken as representative of the actual flow and, if
so, the time and length-scales for which linearization remains meaningful becomes a relevant
issue, which is barely discussed in the literature. The causal analysis presented here aims to
clarify what accounts for driving the fully nonlinear self-sustaining processes in the log-layer in
a non-intrusive manner.

Causal inference is an important subject in many scientific disciplines. Given that what
is usually known about events in question is in the form of time series, causal analysis of
temporal signals is of particular importance. Frequently, causal inference is understood in terms
of time-correlation between pairs of signals. However, it is well known that correlation lacks the
directionality and asymmetry required to guarantee causation [34]. Another common method
for causality assessment is the so-called Granger test [35], which is a statistical measure of the
usefulness of one time series in forecasting another. However, this provides only a yes-or-no
judgment, without the quantitative information that may be needed in many circumstances.
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In an attempt to remedy this deficiency, recent works have centered their attention to an
information-theoretic measure, namely, transfer entropy [36]. This measure is notoriously
challenging to evaluate, requiring long time series and a high associated computation cost [37].
However, recent advancements in entropy estimation from insufficient datasets [38, 39] have
made transfer entropy a viable method to quantify causality.

The paper is organized as follows. The first section contains the methods subdivided in three
parts (Section 2). First, we define transfer entropy as a tool to quantify causality. In the other
two, we introduce the numerical experiment and the flow decomposition into mean flow, streaks,
and rolls. The results are presented and discussed in Section 3 in terms of the characteristic time-
scales for causality and the causal network between coherent structures. Finally, conclusions are
offered in Section 4.

2. Methods
2.1. Quantitative causality analysis: transfer entropy
We use the framework provided by information theory to quantify the causality between a set
of temporal signals by their associated transfer entropy [36]. Given a set of time-dependent
random variables xk(t), k = 1, · · · , n, the transfer entropy from xj to xi is defined as

Tj→i(Δt) = H(xi(t)|x1,··· ,j−1,j+1,··· ,n(t−Δt))−H(xi(t)|x1,··· ,n(t−Δt)), (1)

where x1,··· ,n = (x1, · · · , xn), and Δt is the time-lag in the signal considered to evaluate causality
at the current state. H(x|y) is the conditional Shannon entropy [40], that is, the uncertainty of
a variable x given y, and is defined as

H(x|y) = E[log(f(x, y))]− E[log(f(y))], (2)

where f(·) is the probability density function, f(·|·) denotes the conditional probability density
function, and E[·] signifies the expected value. In this form, the transfer entropy (or causality)
from xj to xi can be interpreted as the decrease in uncertainty in xi by knowing the past state of
xj. We define the self-induced transfer entropy as Ti→i, and the cross-induced transfer entropy
as Tj→i for j �= i.

To guarantee statistical convergence, transfer entropy calculation requires data from long
time series, especially when the dimension of the data set, n, is large. To alleviate the
computational cost associated with computing H, the Shannon entropy is approximated using
the Kozachenko-Leonenko estimator [38], which is known to provide reasonable improvements
for high dimensional datasets from a relatively short time series [39].

Another key aspect for causality quantification is the normalization of the measurement.
Time correlation, for example, guarantees a value between 0 and 1 when properly normalized,
making the correlation coefficient relevant in terms of determining relative importance. In the
same manner, causality must be normalized to allow for meaningful comparisons. We define the
normalized transfer entropy [41] as

NTj→i(Δt) =
Tj→i(Δt)− T Shuffled

j→i (Δt)

T(1,··· ,n)→i(Δt)
. (3)

The term T Shuffled
j→i aims to remove spurious contributions due to statistical errors, and it is the

transfer entropy computed from the random variables x1, · · · , xj−1, x
Shuffled
j , xj+1, · · · , xn, where

xShuffled
j is xj randomly permuted in time in order to retain first order statistics but break any

time-delayed causal links. Eq. (3) is used as the measure of causality for the remainder of the
paper.
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The causality measure from Eq. (3) is advantageous compared to the classic time-correlations.
One desirable property is the asymmetry of the measurement, i.e., if a variable x1 is causal to x2,
it does not imply that x2 is causal to x1. Moreover, as NT2→1(Δt) is based on the probability
density function of xk, it is invariant under shifting and rescaling of the signals. In addition,
transfer entropy accounts only for direct causality, that is, if x2 is only caused by x1 and x3 is
only caused by x2, there is no causality from x1 to x3 [41].

2.2. Numerical experiment
The data are obtained from direct numerical simulation of a plane turbulent channel flow
with two periodic directions and no-slip condition at the wall [42]. In the following, the
streamwise, wall-normal and spanwise directions are denoted by x, y, and z, respectively, and
the corresponding velocity components by u, v, and w. The friction Reynolds number of the
simulation is Reτ = uτδ/ν = 934, where uτ is the friction velocity, δ is the channel half-height,
and ν is the kinematic viscosity.

The incompressible flow is integrated in the form of evolution equations for the wall-normal
vorticity and the Laplacian of the wall-normal velocity [43]. The spatial discretization is
dealiased Fourier in the two wall-parallel directions and Chebychev polynomials in y. Time
stepping is third-order semi-implicit Runge-Kutta [44]. The number of grid points in the
streamwise and spanwise directions are Nx = 128 and Nz = 128 such that the resolutions are
Δx+ = 11.5 and Δz+ = 5.8, respectively, where the superscript + denotes wall units defined in
terms of the friction velocity and the kinematic viscosity. The maximum wall-normal resolution
is Δy+max = 7.7. The simulation was run with CFL = 0.5 for 140δ/uτ (after transients), and
the velocity fields were stored every ∼ 25 wall units to generate a time-resolved dataset.

The length, height and width of the computational domain are Lx = πδ/2, Ly = 2δ and
Lz = πδ/4, respectively. These dimensions correspond to a minimal box simulation for the log-
layer and are considered to be sufficient for isolating the relevant dynamical structures involved
in the bursting process [16, 11]. Minimal simulation boxes have demonstrated their ability to
reproduce statistics of full-size turbulence computed in much larger domains. [16] showed that
turbulence remains “healthy” roughly below y ≈ 0.3Lz, corresponding in our case to y ≈ 0.25δ,
that is the height chosen in the present study to analyze the causality transfer between rolls,
streaks and mean shear.

Figure 1 shows instantaneous snapshots of the three velocity components. The streaky
elongated nature of u is clearly observed along the streamwise direction, as opposed to the
shorter structure of v and w. Figure 1 also highlights the fact that only a few large scale eddies
are contained and isolated in this computational domain, enabling the causality analysis between
individual objects.

2.3. Representation of streaks and rolls
We define ûnm(y, t) (respectively, v̂nm and ŵnm) as the two-dimensional streamwise and
spanwise Fourier transform of u(x, y, z, t) (respectively, v and w) where kxn = 2πn/Lx and
kzm = 2πm/Lz are the corresponding wavenumbers, with n = −Nx/2, . . . , Nx/2 − 1 and
m = −Nz/2, . . . , Nz/2 − 1. The causal analysis is applied to snapshots of ûnm(y, t), v̂nm(y, t)
and ŵnm(y, t) averaged in the range of wall-normal distances y ∈ [0.2δ, 0.3δ], consistent with the
discussion in Section 2.2. Quantities averaged in the wall-normal direction are denoted by 〈·〉.

We focus the analysis on the shear-dominated motions carrying most of the turbulent kinetic
energy. The mean time-varying velocity profile is defined as 〈û00(y, t)〉 and along the text we
will occasionally refer to this component as mean shear. Streaks are characterized by the first
modes of the streamwise velocity fluctuation, and are classified into two categories as shown in
Figure 1. The straight streak is defined as the L2-norm of 〈û0(±1)(y, t)〉. The meandering streak
is represented by 〈û(±1)(±1)(y, t)〉, which are indicators of the streak breakdown. An example
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Figure 1. Snapshots of the instantaneous velocities u, v, and w (top), and the representative
Fourier modes of the streaks and rolls used for the causal analysis (bottom).

illustrating the two configurations of the streaks is shown in Figure 2. Rolls are defined as the
cross-flow component of the velocity. Analogously to the streaks, v̂ and ŵ are divided into long
and short motions (as shown in Figure 1). Long and short modes for v̂ are (n,m) = (0,±1)
and (n,m) = (±1,±1), respectively. Whereas long and short modes for ŵ are (n,m) = (±1, 0)
and (n,m) = (±1,±1). The final set of signals xk for k = 1, · · · , 7, is composed of the mean
streamwise velocity, the straight streak, the meandering streak, the long v, the short v, the long
w, and the short w, respectively.

3. Results
3.1. Times-scales for causal interactions
The first goal is to establish the time horizon for causal influence between variables. This is
achieved by computing the transfer entropy as a function of the time-lag, Δt. The behavior of
NTj→i(Δt) may differ for each (i, j) pair, but for the sake of simplicity, we define two global
measures: an average over all cross-induced transfer entropies NT j→i(Δt) (j �= i) and self-
induced transfer entropies NT i→i(Δt).

The results are shown in Figure 3(a), and times are normalized by the average shear,
S = 〈∂u/∂y〉. As expected, the maximum self-induced entropy peaks at Δt = 0S−1, implying
that the maximum reduction of uncertainty on a variable takes place by knowing the current state
of the variable itself. More interestingly, the causality of a variable on itself has a characteristic
time-span of ∼ 5S−1 measured by the time NT i→i(Δt) has decayed by 50%. The average cross
transfer entropy exhibits a different behavior, with a peak at Δt = 10S−1 and a characteristic
time-span of ∼ 20S−1. The time scales discussed above are comparable to those in [45], who
reported that the bursting time scale for shear flows is approximately universal and equal to
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Figure 2. Two instances (red dot) in the time-series of the straight streak signal (a) and (b),
and the corresponding streamwise velocity snapshots (c) and (d). Panels (a) and (c) feature a
time of low intensity of the signal, whereas (b) and (d) correspond to the formation of a strong
streamwise straight streak.

20S−1.
The previous analysis is analogous to the classic time-correlation of two variables that, for

comparison purposes, is shown in Figure 3(b). Only cross correlations with a maximum value
larger than 0.4 are included. The characteristic time scales of the time-correlations are of the
order of 10S−1 and consistent with those from the transfer entropy analysis, meaning that both
methods are valid to extract the most representative time scales of the flow. However, transfer
entropy is specifically designed for building bi-directional causality maps among variables,
whereas the time-correlation approach is limited by its symmetry for this purpose. The reader
is referred to [46] for a more detailed analysis of the time-correlations in minimal channel flows

3.2. Causal network of the self-sustained streak-roll interaction
We examine the causal network (NTj→i,∀j, i) between variables at three different time scales,
Δt = 2S−1, 5S−1 and 10S−1. This choice aims to capture the transition in the causality network
from a self-induced dominated to a cross-induced dominated scenario. Longer time-lags could
be considered; however, the statistical errors become significant to draw meaningful conclusions
and the extension to larger time scales will be relegated to future work. The full causality maps
are shown in Figure 4 for the three time scales. As it could be anticipated given the complexity of
turbulent flows, many causal relations are significant and there is no obvious dominant pattern.
In order to attain a simplified physical interpretation of the results from Figure 4, the dominant
cross-induced causal connectivities have been compiled in three causality diagrams (Figure 5).
Dominant causalities are defined as those with NT > 0.7. In addition to this constraint and to
avoid spurious solutions due to statistical errors, those causalities which did not remain above
0.7 when considering half of the time history were excluded.
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Figure 3. (a) Normalized self- (◦) and cross-induced (�) transfer entropy as a function of the
time-lag. The blue dotted line, green dot-dash line, and red dash line are ΔT = 2S−1, 5S−1

and 10S−1, respectively. (b) Time cross-correlations. Colors and symbols are: mean to straight
streak (blue ◦); mean to v long (red ×); straight streak to v long (black); straight streak to w
long (magenta �); meandering streak to v short (green ♦); meandering streak to w long (cyan
�); meandering streak to w short (blue +); v long to w long (gold �); v short to w long (red �);
v short to w short (green ∗).

Figure 4. Causality maps for (a) Δt = 2S−1, (b) 5S−1, and (c) 10S−1. Signal 1: time-varying
mean velocity; 2: streamwise straight streak; 3: meandering streak; 4: long v; 5: short v; 6:
long w; and 7: short w.

The causality diagram for Δt = 2S−1 is shown in Figure 5 (a). The diagram reveals that
most of the information flows from the streamwise streaks to the cross flow components whereas
the mean flow remains inactive. At Δt = 5S−1 (Figure 5 b), the straight streaks are still the
dominant element with a strong causal effect on the mean flow, which begins to influence the
meandering streaks. Finally, at Δt = 10S−1, the causality diagram is reverted and the causal
effect flows from the mean flow to the streamwise streaks, while the effect of the streamwise
streaks are lessened. For all three time scales considered, there is no causal influence from the
cross flow to the other components. Many weaker causal influences (NT < 0.7) are omitted
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Figure 5. Causality diagrams for (a) Δt = 2S−1, (b) 5S−1, and (c) 10S−1. Only connections
with NT > 0.7 are included.

in the description above, the most significant one being the lift-up mechanism. This can be
identified, for example, as the causal influence of the long v to the straight streaks, that is also
present and of the order ∼ 0.3.

Finally, the self-sustaining process of the logarithmic layer is summarized in Figure 6 and
interpreted in the context of different known mechanisms. The process is mostly unidirectional,
emanating from the time-varying mean velocity profile, which generates straight streaks in a
characteristic time scale of 10S−1. We refer to this process as a parametric instability. The
effect of the straight streaks on the flow is twofold. First, it generates long velocity rolls which
interact weakly (NT < 0.7) with the straight streaks through the lift-up mechanism. Secondly,
straight streaks meander, marking the onset of its instability. Both processes take place at a
time scale of 5S−1. The instability results in the breakdown of the streamwise streaks into short
rolls, in a relatively fast process that spans along the time period of 2S−1.

It is important to remark that the causality discussed above is a measure based on the
reduction of the statistical uncertainty of the variables, and it is not directly linked to energy
transfer. Furthermore, the current method detects direct causality only if all the intermediate
causal variables are accounted for. Otherwise, the causality may flow indirectly through other
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Figure 6. Summary of the most relevant causal relations for shear-dominated scales in the
logarithmic layer. See text for details.

signals not taken into consideration. For example, the dynamic equation for v̂01 is

∂v̂01
∂t

=−
∑
n,m

ikxn v̂nmû(−n)(1−m) −
∑
n,m

∂v̂nm
∂y

v̂(−n)(1−m) (4)

−
∑
n,m

ikzm v̂nmŵ(−n)(1−m) + ν

(
∂2v̂01
∂y2

− k2z1 v̂01

)
, (5)

which does not directly depend on û0(±1) (similarly for v̂0(−1)). Hence, the causal connection
from the straight streak to v long shown in Figure 5 follows necessarily an indirect path.

4. Conclusions
Despite the extensive information provided by direct numerical simulation of turbulent flows,
the causal relation between different flow structures has been overlooked in turbulence research.
In the present work, we frame the causal analysis between turbulent signals from a transfer
entropy perspective.

We have examined the causal structure between the streamwise rolls, streaks and mean shear
in the logarithmic layer of a turbulent channel flow. The velocity components of the minimal
channel of the log layer was decomposed in wall-parallel Fourier modes, resulting in a time series
of the mean flow, two different configurations of streaks (straight and meandering), and rolls
(short and long). Transfer entropy analysis was then conducted between the series, providing
the causality flow between flow structures.

The detailed analysis of the causal network shows that the self-sustaining process is mainly
unidirectional rather than cyclic, meaning that the logarithmic layer motions are sustained by
the temporal change of the mean shear which controls the dynamics and time-scales. The
causality flows then to the straight streaks which become unstable and break into smaller scale
rolls. The well-known lift-up effect is present but shown to be weak from a causal point of view.
The temporal causality horizon spans 20S−1 since the initialization of the process from the mean
shear until the breakdown of the flow into smaller scale rolls.
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