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Towards exact subgrid-scale models
for explicitly filtered large-eddy simulation
of wall-bounded flows

By H. J. Bae AND A. Lozano-Durin

1. Motivation and objectives

The equations for large-eddy simulation (LES) are formally derived by applying a low-
pass filter to the Navier-Stokes (NS) equations (Leonard 1975). Typically, no explicit
filter form is specified, and the discrete differentiation operators act as an effective implicit
filter. The resulting velocity field is then assumed to be representative of the filtered
velocity. However, although the discrete operators have a low-pass filtering effect, the
associated filter acts only in the single spatial direction in which the derivative is applied
(Lund 2003), and thus each term in the NS equations takes on a different filter form.
In addition, numerical errors and the frequency content are difficult to control for the
implicit filter approach, and the solutions are grid dependent (Kravchenko & Moin 2000;
Meyers & Sagaut 2007).

Another important limitation of implicitly filtered LES is the known fact that the
subgrid scale (SGS) tensor does not coincide with the Reynolds stress terms resulting
from filtering the NS equations due to the implicit filter operator. This ambiguity renders
DNS inadequate for the development of SGS models. On the contrary, when the filter
operator is well defined and consistent with the filtered NS (fNS) equations, DNS data
provides the necessary information to construct exact SGS models, as demonstrated by
De Stefano & Vasilyev (2002) for the simple Burger’s equation. In order to exploit the
rich amount of DNS data as a tool to devise SGS models, it is indispensable to provide
an LES framework consistent with the fNS equations, that is, explicitly filtered LES.

Previous works on explicitly filtered LES include the study of Winckelmans et al.
(2001), who investigated a two-dimensional explicitly filtered isotropic turbulence and
channel flow LES to evaluate various mixed subgrid/subfilter scale models. Stolz et al.
(2001) implemented the three-dimensional filtering schemes of Vasilyev et al. (1998) by
using an approximate deconvolution model for the convective terms in the LES equations.
Lund (2003) applied two-dimensional explicit filters to a channel flow and evaluated the
performance of explicitly filtered versus implicitly filtered LES. Gullbrand & Chow (2003)
attempted the first grid-independent solution of the LES equations with explicit filtering.
Bose et al. (2010) further investigated the grid independence of explicitly filtered LES
with a three-dimensional filter for turbulent channel flows.

All previous investigations of wall-bounded explicitly filtered LES retain some incon-
sistencies with the rigorously derived incompressible fNS equations. In Lund (2003) and
Gullbrand & Chow (2003), the filter operator in the wall-normal direction was implicit
even though the grid resolution was too coarse to elude the use of a filter. In Vasilyev
et al. (1998) and Bose et al. (2010), the filter size varied as a function of the wall-normal
distance, and the divergence-free condition for incompressible flows was only satisfied up
to a prescribed order of accuracy.



208 Bae & Lozano-Durdn

In this study, we present a formulation of the incompressible NS equations maintain-
ing consistency between the continuity equation, the filter operator, and the boundary
conditions at the wall. Our analysis is focused on the formulation of fNS equations in the
limit of continuous space. An important observation in this case is that there is no clo-
sure problem, provided that the filter operator is reversible. Nonetheless, the resolution
requirements for the discretized fNS equations are similar to those for the unfiltered NS
equations, and when the grid resolution is insufficient to resolve all scales of turbulence,
SGS models are required to supply the contribution from the irreversibly lost scales be-
low the grid cutoff (Carati et al. 2001). Despite the fact that the NS equations are as
demanding as the NS equations in terms of resolution requirements, the formulation of
consistent fNS equations is advantageous to inform SGS models for explicitly filtered
LES.

The report is organized as follows. In Section 2, the fNS equations are introduced,
and their solution is compared to the solution of the unfiltered equations for isotropic
turbulence. In Section 3, we discuss the difficulty of formulating consistent NS equations
for wall-bounded flows and provide a solution for flows over flat walls. Finally, conclusions
are offered in Section 4.

2. Filtered Navier—Stokes equations

The incompressible NS equations and for momentum and mass conservation are

Ou; ~ Ouju; 1 0p 0%u; ou;

ot 0z p Ox; * V(’“)xj oz’ Oz,

=0, (2.1)

where u; are the velocity components, p is the fluid density, v is the kinematic viscosity,
and p is the pressure. The filter operator on a variable ¢ in integral form is defined by

o(x) = F(o)(z) = | G(t,z,2")p(z")d’, (2.2)

Q
where x = (z1, 2, 23), G is the filter kernel, and Q is the domain of integration. When
Eq. (2.1) is filtered with Eq. (2.2), the resulting equations are
Oui  Ouuy;  19p Pu Ous

ot " 0w, pow Vom0, om

=0. (2.3)

The filter and differentiation operators commute when the kernel of the filter is invariant
under translation in space and time, that is, G(¢,z,x’) = G(«’). When this condition is
satisfied, Eq. (2.3) can be rewritten as

ou; 0w, 1 0p 0*u; ou;

ot " 0w, pow Vom0, om

=0, (2.4)

which is valid for both reversible (F~! exists) and irreversible filters. For reversible
filters, since no information is lost, the term w;u; can be expressed as a function of ;.
For symmetric filters with Fourier transform of class C* the explicit form of w;u; as a
function of @; has been extensively studied by Yeo (1987), Leonard (1997) and Carati
et al. (2001), among others. In these cases, Eq. (2.4) can be solved independently of
Eq. (2.1) (no closure is required), and the solution of Eq. (2.1), u;, is identical to the
unfiltered solution of Eq. (2.4), denoted by F~!(u;). For the remainder of the paper, we
will focus on reversible filter operators.
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2.1. Ezact SGS models for explicitly filtered LES

In this section, we motivate how explicitly filtered LES with a consistent set of fNS
equations can benefit from DNS data. When the equations are numerically integrated,
another operator is introduced, i.e., numerical discretization. An in-depth analysis of the
filter and discretization operators can be found in the work by Carati et al. (2001). If we
denote the discretization operator by (%) and assume it commutes with the differentiation
operator, the discrete NS equations become

O, Owu;  10p 0%,

ot 0z p Ox; * V@xjaxj '

(2.5)

The convective term of Eq. (2.5) is usually expressed in terms of the discrete filtered
velocities and such that

ou ouu;,  10p  Pu 9Ty

ot " ow,  powm  Vomon,  ox,

(2.6)

where T;; = w;u; —u;u;. With an additional assumption that filter and the discretization
operators are commutative, this can be further decomposed as

Tij = Wy — ity = (W — Uity) + (Uithy — Uithy) - (2.7)

.Aij Bij

If the discretization errors are negligible (e.g., fine grid resolutions/DNS), then u; ~ u;
and A;; ~ 0. Thus, A;; represents the errors due to discretization (grid resolution)
and is accordingly named the SGS stress tensor. For the remainder of the paper, the
discretization operator is omitted for DNS results. The term B;; only depends on ;,
and it is known for reversible filters. Moreover, if there is no explicit filter, B;; = 0 and,
subsequently, B;; is called the subfilter scale (SF'S) stress tensor. Note that only the
term A;; needs to be modeled since B;; is only a function of the discretized velocities.
Another important remark is that, given a numerical discretization, identical resolutions
are demanded to integrate the NS and fNS equations with the same degree of accuracy.
The reason can be found in the u;u; term in A;;, which needs to be accurately computed
in both cases and becomes the limiting factor for both equations.

One possible way of informing models for 4;; is by using DNS data. In the most
extreme case, a exact SGS model can be produced by running a DNS in parallel with
the equivalent initial condition. By assuming that the numerical errors are negligible for
the DNS velocity field, the term 4;; can be evaluated as follows:

1. Using the DNS velocity field, u;u; is computed.

2. The unfiltered discretized velocities from a explicitly filtered LES, 4; are obtained
by reversing F, it; = F ().

3. The term %;u; is computed.

4. Aj;j is calculated by filtering w;u; — ;4.

In order to utilize the rich DNS data available as described in the process above, it is
absolutely indispensable to have a consistent fNS equations for both unbounded and
bounded domains.

2.2. Application of the filtered Navier—Stokes equations to isotropic turbulence

In unbounded flows, e.g., isotropic turbulence, the condition G(¢,x,x’) = G(x’) is triv-
ially enforced by utilizing a filter with constant filter size and shape.
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FIGURE 1. Error ||ju1 — F ' (@1)||2 as a function of te/k. Dashed line indicates te/k = 7.39.

Starting from the same initial conditions (filtered and unfiltered), the solutions u; and
#; can be numerically obtained by discretizing their respective equations. However, the
numerical errors will propagate and accumulate in time until the solutions diverge due
to the chaotic nature of the NS equations. Despite the difference in u; and F~1(w;) for
long times, both velocity fields are expected to be statistically equivalent if the error in
the solutions is below a given tolerance for times longer than the auto-correlation time
for the kinetic energy.

To quantify how the solutions of discretized NS and fNS equations diverge from one
another, the error ||u; — F~*(&i1)||2 for a DNS of forced isotropic turbulence is given as
a function of time in Figure 1. The solutions were computed using the discrete Fourier
transform in the three spatial directions with 256% modes in a triply-periodic domain of
size L? = (2m)3, and advancing in time with a fourth-order Runge-Kutta time-stepping.
The filter operator selected is the differential filter from Germano (1986)

_ 2 (9’(7,1'

U —a F2,0; =u; (2.8)

with a?/L? = 0.01, where a is a characteristic filter size. This is equivalent to a filter
with kernel

1 exp(—|z—2'|/a)
G N = .
(@,27) 4ma? |z — |
In this case, w;u; is directly given by

01, o
wu; = (ﬁi‘“2m> (aj—az’m). (2.10)
The error is initially of machine precision and increases exponentially with time until
it saturates after 8 integral time-scales, defined as k/e, where k is the turbulent kinetic
energy and ¢ is the energy dissipation rate. Note that the error is of the order of 10~°
(single precision) at ¢t & 5T}, where T} is the auto-correlation time for the kinetic energy,
which is reported to be ~ 1 integral time-scales (Cardesa et al. 2015). Figure 2 compares

(2.9)
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FIGURE 2. Instantaneous snapshot of (a) u1 and (b) F~'(&;) for the same z1-z2 plane at
te [k = 7.39.

uy and F~1(uy) at te/k = 7.39 for a fixed x1-z2 plane. The qualitative agreement
between the two velocity fields is remarkable, despite the saturation of the quantitative
discrepancy.

3. Filtered Navier—Stokes equations for wall-bounded flows

The preferred form of the NS equations for practical applications is the one in Eq. (2.4),
which requires the filter operator to commute with differentiation. This was successfully
accomplished in Section 2.2 by using the differential filter with constant filter size, a2,
and periodic boundary conditions. However, unlike in unbounded flows, the presence of
a wall imposes a limitation on the support of the kernel that violates the invariance of
the filter under translation in space. If x5 is the wall-normal direction, the kernel for Eq.
(2.2) is inevitably of the form G(x2,x’) since the integration is bounded by the presence
of the wall. Therefore, the filter and differentiation operators do not commute and Eq.
(2.4) does not apply.

3.1. Extension method

For flat walls, we propose to resolve this limitation by extending the flow in the wall-
normal direction, allowing for a uniform filter in the near-wall region as illustrated in
Figure 3. From now on, we consider the flow over a smooth flat wall with z, z2, and x3
signifying the streamwise, wall-normal, and spanwise directions, respectively. Quantities
evaluated at the wall, located at zo = 0, are denoted by (+)|,,. The flow is then extended
below the wall as

ur(—x2) = —u1(w2), u2(—r2) = ua(w2), uz(—22)= —uz(z2), (3.1)

where z1 and x5 are omitted for simplicity. In this manner, du;/dx; = 0 is also satisfied in
the extended domain, preserving incompressibility. The extension provided by Eq. (3.1)
removes the limitation on the support of the kernel previously imposed by the wall, and
Eq. (2.4) can be formally obtained for flows over flat walls. Note that, by symmetry, the
filtered velocity field also satisfies

ﬂl(—xz) = —ﬂl(xg), ﬂg(—xz) = ﬂz(xz), ’17,3(—$2) = —ﬂg(xz). (32)
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FIGURE 3. Illustration of the extension method in Eq. (3.1) for the wall-normal velocity compo-
nent of a turbulent channel flow. Solid line depicts the kernel of the filter operator, which can
extend beyond the wall.

Another possible extension consistent with the incompressibility condition is
Ul(—xg) = ul(xg), 'LLQ(—LEQ) = —UQ(LEQ), 'LL3(—ZL'2) = Ug(xg). (33)

However, Juy/0x2|, becomes undefined, and the filter operator does not commute with
the derivative at the wall. As a result, Eq. (2.4) cannot be obtained.
The boundary conditions for the filtered velocity field are derived by consistency with
the filter operator,
Uil = F (i)l (3.4)
By construction of the extended velocity field (Eq. 3.1), the boundary conditions for
the fNS equations reduce to the usual no-slip condition for the streamwise and spanwise
filtered velocities
U1lw =0, asly, =0. (3.5)
In the wall-normal direction, the condition that Ouz/0x2|, = 0 is satisfied. However,
evaluating the filtered continuity equation at the wall
0z, 0xo Ox3

and Jua/ 023, = 0 does not contain any additional information. Thus, the proper bound-
ary condition remains

. Ousg

= | =0 (3.6)

w

w w

Uolw = F(u2)|w- (3.7)

Finally, the procedure to integrate @, in time is outlined as follows:

1. Starting from an filtered velocity field, @;, and for a filter operator in integral form
(Eq. 2.2), the three velocity components are extended following Eq. (3.1).

2. The unfiltered velocities, u;, are obtained by reversing the filter, u; = F _1(%).

3. The filtered Reynolds stress term, u;u;, is computed and filtered, w;u;.

4. The filtered velocity field, @;, is advanced in time by integrating Eq. (2.4) with the
boundary conditions in Egs. (3.5) and (3.7).
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FIGURE 4. Filtered mean streamwise velocity profile for channel flow at Re, ~ 4200. The filter
operator is the differential filter (Eq. 2.8) with a?/6% = 0.001 (circles), 0.005 (squares), 0.01
(triangles), and 0.02 (crosses).

Since the solution of the NS equations (Eq. 2.4) is equivalent to the filtered solution of
the NS equations (Eq. 2.1), the procedure above is not necessary, and it simply illustrates
that the proposed method is well defined.

3.2. A-priori results for channel flow

In this section, we apply the extension method with the differential filter from Eq. (2.8)
to DNS data of channel flow at Re, = u,;d§/v = 4200 (Lozano-Durén & Jiménez 2014),
where 4 is the channel half height, and w, is the friction velocity. The resulting (u) for
various values of a? are plotted in Figure 4, where (-) denotes averages in homogeneous
directions and time. It is important to remark that the original flow can be reconstructed
by reversing the filter, and the reconstructed flow collapses up to machine precision
onto the original mean velocity profile. Also note that for an explicitly filtered LES
consistent with the fNS equations, the predictions for the velocity profile aim to capture
the filtered DNS quantities, unlike implicitly filtered LES, which is usually compared
with the unfiltered DNS data.

4. Conclusions

The equations for LES are formally derived by low-pass filtering the NS equations with
the effect of the small scales on the larger ones captured by a SGS model. However, it is
known that the LES equations usually employed in practical applications are inconsistent
with the filter operator when no explicit filter is used. Moreover, even for explicitly filtered
LES, some inconsistencies remain in the wall-normal direction due to the constraining
effect of the wall. A typically undesirable effect stemming from the inconsistency between
LES and the fNS equations is that DNS data can not be used to aid SGS modeling.

We have proposed a form of the incompressible fNS equations for flows over flat walls
in which the continuity equation, the filter operator, and the boundary condition at the
wall are consistently formulated. The velocity fields were extended in the wall-normal
direction with respect to the wall in order to remove the limitation on the support of the
kernel in the near-wall region. This allowed for the filter size to remain constant in the
entire domain, enabling commutation of the filter and differentiation operators, which
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is essential for rigorously deriving NS equations. The consistent fNS equations will be
useful in future works to inform SGS models for explicitly filtered LES.
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