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Multirate time-stepping least squares
shadowing method

By H. J. Bae AND P. Moin

1. Motivation and objectives

The recently developed least squares shadowing (LSS) method reformulates unsteady
turbulent flow simulations to be well-conditioned time-domain boundary-value problems.
We see from Wang et al. (2013) that the reformulation from LSS can enable scalable
parallel in-time simulation of turbulent flows. It utilizes the large number of processors in
high-performance machines in order to find a trajectory that satisfies the given governing
equation effectively by relaxing the initial condition. This method can speed up the wall
clock time of finding the solution by effectively parallelizing in the temporal domain as
well as the spatial domain. However, the traditional LSS method was limited by the
smallest time-step of the entire domain, and thus required solving of extremely large
block tri-diagonal systems.
A LSS method with multirate time-stepping (MTLSS) was implemented to avoid the

necessity to take small global time-steps (restricted by the largest value of the Courant-
Friedrichs-Lewy (CFL) condition on the grid) and therefore resulting in substantially
more efficient computations when the region that requires small time-steps are relatively
small compared to the entire domain. In this approach, with MTLSS, the time-step can
vary spatially and has to satisfy the CFL condition only locally, resulting in substantially
more efficient computations when the region that requires small time-steps are relatively
small compared to the entire domain.
The idea of multirate time-stepping is not new. This has been an effective way to

compute for geometries with high discrepancy in CFL numbers (Constantinescu & Sandu
2007). Because the computation time step is no longer bound by the cell with the smallest
CFL number, the computational gain is significant. Also, there have been studies by Seny
et al. (2014) on how to utilize multirate time-stepping and how to achieve maximum
computational gain by parallelizing. However, all these previous studies have been limited
to parallel in space methods only. When coupled with a parallel in time methods like
LSS, the computational gain is even more significant.
We will present the results of the multirate time-stepping LSS compared to a traditional

LSS and discuss the problem memory requirements and computational savings.

2. Theoretical aspects

Consider a dynamical system governed by

du

dt
= f(u; s), (2.1)

where f is a nonlinear spatial operator, and s is a parameter. We can achieve a stable
trajectory with a relaxed initial condition by splitting a perturbation into stable and un-
stable components and propagate their effects forward and backward in time, respectively.
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Due to the shadowing lemma by Pilyugin (1999), we can achieve a stable trajectory. The
least squares formulation is used to take advantage of the numerical stability. We seek
to minimize the L2-norm of the difference between the shadow trajectory u and some
reference solution uref

min
u

1

2

∫ T

0

‖u(τ(t))− uref (t)‖
2dt, (2.2)

such that
du

dτ
= f(u; s+ δs). (2.3)

For forward sensitivity analysis, we are interested in the quantity v ≡ ∂u/∂s, so by
dividing by δs and taking δs → 0,

min
v

1

2

∫ T

0

‖v(t)‖2dt, (2.4)

such that
dv

dt
=

∂f

∂u
v +

∂f

∂s
+ ηf, (2.5)

where η ≡ dτ/dt− 1.
We modify the formulation

v, η = argmin
1

2

∫ T

0

(

‖v‖2 + α2η2
)

dt, (2.6)

such that
dv

dt
=

∂f

∂u
v +

∂f

∂s
+ ηf. (2.7)

The corresponding Karush-Kuhn-Tucker (KKT) system is

∂w

∂t
= −

(

∂f

∂u

)∗

w − v, w(0) = w(T ) = 0, (2.8)

α2η = − < f,w >, (2.9)

dv

dt
=

∂f

∂u
v +

∂f

∂s
+ ηf, (2.10)

which can be combined to form a single second-order equation

−
d2w

dt2
−

[

d

dt

(

∂f

∂u

)∗

−
∂f

∂u

d

dt

]

w +

[

∂f

∂u

(

∂f

∂u

)∗

+
1

α
ff∗

]

w =
∂f

∂s
, (2.11)

w(0) = w(T ) = 0, (2.12)

or, taking the Schur complement of the KKT system,

(BB∗ + EE∗)w = b, (2.13)

where the continuous linear operators B and E are defined as

(Bw) (t) =

(

d

dt
−

∂f

∂u

∣

∣

∣

∣

u(t)

)

w(t) (2.14)

(Ew) (t) =
1

α
f(u(t))w(t). (2.15)
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With a simple discretization, the system is very large for many problems of interest,
and requires solving a linear system of O(mn) equations, where m is the number of time
steps and n is the number of dimensions or degrees of freedom of the system, both of
which can be very large (∼ 105 or greater).
We perform the discretization in multiple time-phases in order to reduce the number

of time steps in subdomains of the problem. In this paper, we deal with time steps that
are power of 2 multiples of the minimal time step. That is, given the minimal time step
∆tmin, all other time steps are of the form ∆tm = 2l∆tmin, where l is an integer.
We first consider the case with two different time steps, ∆tf and ∆tc = 2l∆tf , and

divide the spatial domain into two parts.

Ω = Ωf ∪ Ωc, (2.16)

where, the domain Ωf has time step ∆tf and Ωc has time step ∆tc.
From now on uf will refer to the vector corresponding to the fine region with time step

increment ∆tf from 0 → N ; uf
n = u(n∆tf )|Ωf

.

uf ≡ [uf
0 , u

f
1 , u

f
2 , · · · , u

f
N−1, u

f
N ]T , uf ∈ R(N+1)|Ωf |, (2.17)

and uc will refer to the vector corresponding to the coarse region with time step increment
∆tc from 0 → 2−lN .

uc ≡ [uc
0, u

c
2l , u

c
2·2l , · · · , u

c
(N−1)·2l , u

c
N ·2l ]

T , uc ∈ R(2−lN+1)|Ωc|. (2.18)

We then interpolate uc such that uc∗ ∈ R(N+1)|Ω2| and form

u ≡ [u0, u1, u2, · · · , uN−1, uN ]T , u ∈ R(N+1)|Ω|, (2.19)

where ui is formed by the vector uf
i and uc∗

i . However, we can form the vector using
(N + 1)|Ωf |+ (2−lN + 1)|Ωc| elements instead of (N + 1)|Ω| elements.
Thus, if we define

bn ≡
1

2

(

∂f

∂s

∣

∣

∣

∣

un

+
∂f

∂s

∣

∣

∣

∣

un+1

)

, (2.20)

fn ≡
1

2
(f(un) + f(un+1)) , (2.21)

An ≡
∂f

∂u

∣

∣

∣

∣un+un+1

2

, (2.22)

then, the discretized operator becomes

(Bw)n =
wn+1 − wn

∆tn
−An

wn + wn+1

2
, (2.23)

(Ew)n =
1

α
fnwn, (2.24)

such that the total system becomes

(BBT + EET )w = b. (2.25)

We will show below that BBT and EET ∈ RN(|Ωf |+2−l|Ωc|)×N(|Ωf |+2−l|Ωc|) for the
multirate time-stepping method and these are symmetric block tridiagonal matrices with
block size of (2l|Ωf | + |Ωc|) × (2l|Ωf | + |Ωc|), instead of RN |Ω|×N |Ω| with block size
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|Ω| × |Ω| as it previously was with a non-multirate time-stepping method. Also, w, b ∈

R(N |Ωf |+2−lN |Ωc|).

2.1. Reduction in problem size

We can define the matrix B in a non-multirate LSS operation as a bi-diagonal matrix as
seen below.

B =













− I
∆t1

− A1

2
I

∆t1
− A1

2

− I
∆t2

− A2

2
I

∆t2
− A2

2

. . .
. . .

− I
∆tN−1

− AN−1

2
I

∆tN−1
− AN−1

2













.

(2.26)
Each I and An ∈ R|Ω|×|Ω|. We can permute these matrices so that the course and fine
subdomains are bundled together. That is, we can order rows and columns of I and An

so that we can organize it as follows.

(Bw)n =

(

− Iff

∆tn
−

Aff
n

2 − Icf

∆tn
−

Acf
n

2

− Ifc

∆tn
−

Afc
n

2 − Icc

∆tn
−

Acc
n

2

)

(

wf
n

wc
n

)

+





Iff

∆tn+1
−

A
ff
n+1

2
Icf

∆tn+1
−

A
cf
n+1

2

Ifc

∆tn
−

Afc
n

2
Icc

∆tn
−

Acc
n

2





(

wf
n+1

wc
n+1

)

, (2.27)

where Aab maps values in Ωa to Ωb.
Suppose m · 2l ≤ n < (m + 1) · 2l, then wc

n and wc
n+1 can be written as a linear sum

of wc
m·2l and wc

(m+1)·2l . Then, we can rewrite (2.27) as

(Bw)n =

(

− Iff

∆tn
−

Aff
n

2 − Icf

∆tn
−

Acf
n

2

− Ifc

∆tn
−

Afc
n

2 − Icc

∆tn
−

Acc
n

2

)

(

wf
n

pn · wc
m·2l + (1− pn) · w

c
(m+1)·2l

)

+





Iff

∆tn+1
−

A
ff
n+1

2
Icf

∆tn+1
−

A
cf
n+1

2

Ifc

∆tn
−

Afc
n

2
Icc

∆tn
−

Acc
n

2





(

wf
n+1

pn+1 · w
c
m·2l + (1− pn+1) · w

c
(m+1)·2l

)

(2.28)

or

(Bw)n =




pn

(

− Icf

∆tn
−

Acf
n

2

)

− Iff

∆tn
−

Aff
n

2 (1− pn)
(

− Icf

∆tn
−

Acf
n

2

)

pn

(

− Icc

∆tn
−

Acc
n

2

)

− Ifc

∆tn
−

Afc
n

2 (1− pn)
(

− Icc

∆tn
−

Acc
n

2

)



 ·





wc
m·2l

wf
n

wc
(m+1)·2l





+







pn+1

(

Icf

∆tn+1
−

A
cf
n+1

2

)

Iff

∆tn+1
−

A
ff
n+1

2 (1− pn+1)

(

Icf

∆tn+1
−

A
cf
n+1

2

)

pn+1

(

Icc

∆tn+1
−

Acc
n+1

2

)

Ifc

∆tn+1
−

A
fc
n+1

2 (1 − pn+1)
(

Icc

∆tn+1
−

Acc
n+1

2

)






·





wc
m·2l

wf
n+1

wc
(m+1)·2l



 (2.29)
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2.2. Reduction in computational complexity

For the multirate time-stepping method, the system is described by a 2−lN × 2−lN
symmetric tridiagonal matrix of block size (2l|Ω1|+ |Ω2|) × (2l|Ω1| + |Ω2|), making the
computational cost of solving (2.25) using multigrid method equal to

6Cmv(2
l|Ωf |+ |Ωc|)nnz(l)nj

2−lN

P (l)
+ 2βnj log((2

l|Ωf |+ |Ωc|)2
−lNP (l)),

where Cmv is the amortized time per floating point operation for sparse matrix-vector
multiplication, β is the average time to transmit one floating point number between any
two processing elements across the network, nnz is the average number of nonzero entries
per row of Ai, and nj is the number of pre- and post-smoothing Jacobi-like iterations. P
is the number of processors.
Note that nnz and P are the values that depend on l. The dependence of nnz to l

depends on the stencil size and the interface size of the two domains Ωf and Ωc; however,
compared to the entire domain, we are assuming these two values are small, so we can
assume nnz to be constant. More detailed analysis of nnz will follow in the next section.
We can optimize the value of P such that the computational cost is minimized. Such
value of P is

P (l) = 3
Cmvnnz(2

l|Ωf |+ |Ωc|) · 2
−lN

β
.

The minimum computational cost is therefore

2βnj

[

1 + log

(

3
Cmvnnz

β

)

+ 2 log
(

2−lN(2l|Ωf |+ |Ωc|)
)

]

.

In the case l = 0, thus the traditional LSS method, this computational cost is

2βnj

[

1 + log

(

3
Cmvnnz

β

)

+ 2 log (N(|Ωf |+ |Ωc|))

]

.

Then, the speed up can be written as

1

/{

1−
2 log

[

(|Ωf |+ |Ωc|) /
(

|Ωf |+ 2−l|Ωc|
)]

1 + log (3Cmvnnz/β) + 2 log [N(|Ωf |+ |Ωc|)]

}

.

This is not a positive speed up in all cases, but for cases with |Ωf | ≪ |Ωc| and l ≫ 1,
which are the cases of interest, the speed up can be significant as seen in the next section.

2.3. Constant memory requirement

MTLSS has the same memory requirement per core compared to the single rate LSS.
We see from the above setup that the most storage demand comes from forming the
block diagonal matrix B which is a 2−lN × 2−lN matrix with block size (2l|Ω1|+ |Ω2|)×
(2l|Ω1|+ |Ω2|).
From the definition of B, we see that the nonzeros in row i of a block in matrix B

correspond to the points in the stencil of xi. (This holds for Ai as well.) Since B is block
bi-diagonal, B only has 2ns nonzeros in each row, where ns is the number of points in
the stencil. E has only one nonzero element per row. We also store u,w and b.
If we use the number of processors that minimize computational cost according to the

previous section, each processor houses

(2ns + 4)β

3Cmvnnz
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floating points. Since nnz = ns, we can rewrite this as

(2ns)β

3Cmvns

=
2β

3Cmv

+
4β

2Cmvns

doubles.
As we go from a single-rate LSS to MTLSS, ns increases for those points on the

boundary of Ωf and Ωc. However, this increase is in a small subdomain of the entire
spatial domain, and the increase in the number of elements in the stencil decreases the
memory required.

3. Applications

3.1. Stochastic Burgers’ equation

First, consider the Burgers’ equation subject to random forcing with no slip boundary
condition in nondimensional form

{

ut = −uux +
1
Reuxx + χ(x, t), 0 < x < 1,

u(x = 0) = u(x = 1) = 0,
(3.1)

where u is the velocity, Re = UL/ν is the Reynolds number, χ is the random forcing and

< χ >x= 0, < χ2 >x= 1. (3.2)

Here < · >x denotes the average value over space. Define χn
i = χ(xi, tn). At each

instant of time tn, the χ
n
i are uncorrelated random variables in space; for each fixed i, χn

i

is constant on a time interval (tpr, t(p+1)r), where r and p are integers and r denotes the
interval that the χn

i ’s are constant. The initial condition is u(x, 0) = 0. The spatial grid
consisted of 555 points with spacing of 1

512 in the interior and 1
2048 near the boundaries

following the set up of Chambers et al. (1988). We define the domain with spacing 1
512

as Ωc and the domain with spacing 1
2048 as Ωf .

As our reference solution, uref , we use the results from a fourth-order Runge Kutta
(RK-4) method in time and second-order in space solution with parameters Re = 500,
∆t = 0.001 and r = 100. We then apply MTLSS to find the solution for Re = 1500 for
the same time parameters. We plot in Figure 1 the solution obtained from MTLSS and
the solution from a RK-4 method in time and second order in space of the Re = 500
(uref ) and Re = 1500 case. All three solutions are averaged over 25000 time-steps.
In Chambers et al. (1988) and Choi et al. (1993), it is observed that the wall-layer

thickness gets thinner as the Reynolds number increases due to the convective nature of
the solution of the Burgers’ equation. In the solution obtained by MTLSS, we observe
that the wall-layer thickness δ is the same as the wall-layer thickness of the RK-4 solution
at Re = 1500 with δ = 0.9570, compared to the wall-layer thickness of the RK-4 solution
at Re = 500 of δ = 0.9697.

3.2. Two-Dimensional Burgers’ equation

Consider the two-dimensional Burgers’ equation.

ut = −uux + ν(uxx + uyy) (3.3)

subject to the initial condition

u(x, y, 0) = exp[−(x2 + y2)], (x, y) ∈ Ω
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Figure 1. Time averaged solution and normalized by largest velocity solution for equation
(3.1). MTLSS, Re = 1500 ——; RK-4, Re = 1500 - - -; RK-4, Re = 500 - · -.

Figure 2. Grid used in the 2D Burgers’ equation. Each cell represents 4 cells in the actual
grid. The shock profile moves left to right inside Ωf .

and periodic boundary conditions, where Ω = {(x, y)| − 4 ≤ x, y ≤ 4}.
We solve this problem numerically using uniform cartisian grid. We first generate a

reference solution uref using a small Reynolds number, ν = 0.25. We then refine the
uniform grid on a subdomain by interpolating the reference solution and use MTLSS in
order to generate a solution for a high Reynolds number, ν = 0.025.
The solution for the smaller Re has subdomains where the shock forms that require

finer meshing than other parts of the domain. We can divide the domain so that the parts
affected by the shock have smaller grid size, as shown in Figure 2. Due to the difference
in grid size along with the difference in velocity, in order to insure stability, it is necessary
to take smaller time-steps in this region. We then apply MTLSS to this problem. The
results are given in Figure 3.

4. Summary and further plans

We have shown that the multirate time-stepping least squares shadowing method has
computational advantage over the traditional least squares shadowing method with the
same memory requirements. In cases where the global time-step is restricted by a small
domain in space, this improvement is significant. We have shown through Burgers’ equa-
tion in 1D and 2D, that the MTLSS is effective in finding statistics of an ergodic system,
and that it is as effective as the LSS in obtaining the solution. Our future plans for
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Figure 3. Solution for Eq. (3.3). MTLSS, ν = 0.025 (top, left); LSS, ν = 0.025 (top, right);
RK-4, ν = 0.25 (uref )(bottom, left); RK-4, ν = 0.025 (bottom, right).

MTLSS is to apply this method to a fully turbulent 3D flow. We are also looking at ways
to improve temporal accuracy of this method.
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