1 Problem 1.(A)

1.1 a.

\[\vec{L} = \vec{r} \times \vec{p} \]

In components:

\[L_x = y p_z - z p_y \quad L_y = z p_x - x p_z \quad L_z = x p_y - y p_x \]

Express \(x_i \) and \(p_i \) in terms of creation and annihilation operators.

\[x = \sqrt{\frac{\hbar}{2m\omega}}(a_x + a_x^\dagger) \quad p_x = \sqrt{\frac{m\hbar^2}{2} - \frac{a_x^\dagger}{i}} \]

Similar expressions hold for the other coordinates and momenta. Substituting (3) into (2) we get

\[L_x = -i\hbar(a_x^\dagger a_y^\dagger - a_x a_y) \]

\[L_y = -i\hbar(a_y^\dagger a_x^\dagger - a_y a_x) \]

\[L_z = -i\hbar(a_z^\dagger a_y^\dagger - a_z a_y) \]

We can summarize the above relations as \(L_i = -i\hbar \epsilon_{ijk} a_j^\dagger a_k \).

Now consider the operator \(N = a_x^\dagger a_x + a_y^\dagger a_y + a_z^\dagger a_z \). We want to find the commutator \([N, L^2]\). Let’s first calculate the commutators of \(N \) with different components of \(\vec{L} \). We will use the standard commutation relations between creation and annihilation operators:

\[[a_i, a_j] = [a_i^\dagger, a_j] = 0 \quad [a_i, a_j^\dagger] = \delta_{ij} \]

Then we get

\[[L_x, a_x^\dagger a_x] = -i\hbar[a_y^\dagger a_z - a_z^\dagger a_y, a_x^\dagger a_x] = 0 \]
\[[L_x, a_y^\dagger a_y] = -i\hbar[a_y^\dagger a_y - a_y a_y^\dagger] = -i\hbar[a_y^\dagger a_y^\dagger a_y a_y - a_y^\dagger a_y a_y^\dagger a_y] = i\hbar(a_y^\dagger a_y + a_y a_y^\dagger) \tag{9} \]
\[[L_x, a_z^\dagger a_z] = -i\hbar[a_y^\dagger a_z^\dagger a_y a_z - a_y^\dagger a_z a_y^\dagger a_z] = -i\hbar(a_y^\dagger a_z a_y^\dagger a_z - a_y^\dagger a_z a_y^\dagger a_z) = -i\hbar(a_y^\dagger a_z + a_z a_y^\dagger) \tag{10} \]

Thus
\[[L_x, N] = [L_x, a_x^\dagger a_x + a_y^\dagger a_y + a_z^\dagger a_z] = 0 \tag{13} \]

The similar calculation gives that
\[[L_y, N] = [L_z, N] = 0 \tag{14} \]

From (13) and (14) it follows immediately that
\[[L^2, N] = 0 \tag{15} \]

1.2 b.

We know from the study of one-dimensional linear harmonic oscillator that the spectrum of the operator \(a_x^\dagger a_x \) is all integer non-negative numbers:
\[a_x^\dagger a_x |n_x\rangle = n_x |n_x\rangle , n_x = 0, 1, 2, \ldots \tag{16} \]

The same is true for \(a_y^\dagger a_y \) and \(a_z^\dagger a_z \). The spectrum of \(N \) is just the sum
\[N|n_x n_y n_z\rangle = n|n_x n_y n_z\rangle \quad n = n_x + n_y + n_z \tag{17} \]

Obviously \(n \) can be any non-negative integer and if \(n > 0 \) it is degenerate (since many different values of \((n_x, n_y, n_z) \) give the same \(n \)). For example, \(n = 1 \) level is three times degenerate, it has the eigenvectors \(|n_x = 1, n_y = 0, n_z = 0\rangle, |n_x = 0, n_y = 1, n_z = 0\rangle, |n_x = 0, n_y = 0, n_z = 1\rangle \).

Generally the degree of degeneracy of \(n \) is equal to the number of different ways we can write \(n \) as a sum of three integer non-negative numbers.
\[\text{deg}(n) = \frac{(n+1)(n+2)}{2} \tag{18} \]

1.3 c.

Write the hamiltonian in terms of creation and annihilation operators. Since \(H \) is the sum of three one-dimensional oscillators we get
\[H = \hbar \omega (a_x^\dagger a_x + a_y^\dagger a_y + a_z^\dagger a_z + \frac{3}{2}) = \hbar \omega (N + \frac{3}{2}) \tag{19} \]

From (14) and (15) we infer that
\[[H, L^2] = [H, L_z] = 0 \tag{20} \]

\[2 \]
We see that H, \mathbf{L}^2 and L_z commute with each other and thus can be simultaneously diagonalized. The energy eigenstates can be written as $|nlm\rangle$ where

$$L^2|nlm\rangle = l(l+1)|nlm\rangle, \quad L_z|nlm\rangle = m|nlm\rangle, \quad H|nlm\rangle = E_{nlm}|nlm\rangle \quad (21)$$

The energy eigenvalue E_{nlm} can depend on l, m and on additional quantum number n. (We can choose n to be the same number as in part b or not - it’s a matter of convention.) In fact it’s easy to show that E_{nlm} does not depend on m. We use the fact that H commutes with L_x, L_y and thus with L_+. We know that

$$L_+|nlm\rangle = \sqrt{(l-m)(l+m+1)}|nlm+1\rangle \quad (22)$$

Acting by H on both sides of the last eqn. we get

$$LHS = HL_+|nlm\rangle = L_+H|nlm\rangle = E_{nlm}L_+|nlm\rangle \quad (23)$$

$$RHS = \sqrt{(l-m)(l+m+1)}E_{nlm+1}E_{nlm+1}|nlm+1\rangle = E_{nlm+1}L_+|nlm\rangle \quad (24)$$

Compare LHS with RHS:

$$E_{nlm+1} = E_{nlm} \quad (25)$$

Then starting with $l = -m$ we get

$$E_{nl,-l} = E_{nl,-l+1} = \cdots = E_{nl,l} \quad (26)$$

that is indeed $E = E_{nl}$ doesn’t depend on m. The spectrum of H is degenerate in accordance with the result of part b.

Note. We could expect from the analysis above that the degree of degeneracy of E_{nl} be $(2l+1)$ (the dimension of the multiplet with angular momentum l). This contradicts the formula (18). The reason is that there is an additional degeneracy between energy levels with different l's.

1.4 d.

Consider coherent state $|\alpha_x\alpha_y\alpha_z\rangle$. Assume that it is also the eigenstate of L_z, i.e.

$$L_z|\alpha_x\alpha_y\alpha_z\rangle = m|\alpha_x\alpha_y\alpha_z\rangle \quad (27)$$

Then it’s easy to show that the commutators of L_z with annihilation operators a_i, ($i = x, y, z$) must annihilate the coherent state. Indeed

$$[L_z, a_i]|\alpha_x\alpha_y\alpha_z\rangle = (L_z a_i - a_i L_z)|\alpha_x\alpha_y\alpha_z\rangle = (ma_i - a_i m)|\alpha_x\alpha_y\alpha_z\rangle = 0 \quad (28)$$

Calculate the commutators using the results of part a.

$$[L_z, a_x] = -i\hbar[a_x^\dagger a_y - a_y^\dagger a_x, a_x] = -i\hbar a_y[a_x^\dagger, a_x] = i\hbar a_y \quad (29)$$

$$[L_z, a_y] = -i\hbar[a_x^\dagger a_y - a_y^\dagger a_x, a_y] = i\hbar a_x[a_y^\dagger, a_y] = -i\hbar a_x \quad (30)$$

$$[L_z, a_z] = -i\hbar[a_x^\dagger a_y - a_y^\dagger a_x, a_z] = 0 \quad (31)$$

3
Then the following eqns. must be satisfied:

\[
\begin{align*}
[L_z, a_x] = i\hbar \alpha_x |\alpha_x\alpha_y\alpha_z\rangle &= 0 \\
[L_z, a_y] = -i\hbar \alpha_y |\alpha_x\alpha_y\alpha_z\rangle &= 0
\end{align*}
\]

\Rightarrow \alpha_x = \alpha_y = 0 \text{ are the necessary conditions} (34)

These conditions are also sufficient since

\[
L_z |00\alpha_z\rangle = -i\hbar(a_x^\dagger a_y - a_y^\dagger a_x)|00\alpha_z\rangle = 0 (35)
\]

We conclude that the coherent states with \(\alpha_x = \alpha_y = 0\) are the eigenstates of \(L_z\) with the eigenvalue \(m = 0\) and these are the only simultaneous eigenstates of annihilation operators and \(L_z\). \(\alpha_z\) can be an arbitrary complex number.

2 Problem 2.(A)

We have the Schrödinger Eqn.:

\[
-\frac{\hbar^2}{2m} \frac{d^2}{dx^2}\Psi(x) + g\delta(x)\Psi(x) = E\Psi(x)
\]

(36)

The solution with appropriate asymptotic behaviour is:

\[
\Psi(x) = \begin{cases}
e^{ikx} + re^{-ikx}, & x < 0 \text{ (incident plus reflected waves)} \\
t e^{ikx}, & x > 0 \text{ (transmitted wave)}
\end{cases}
\]

(37)

where \(k = \sqrt{2mE/\hbar}\). The amplitude of the incident wave can be arbitrary, we’ve chosen it to be just unity.

The solution must satisfy the boundary conditions at \(x = 0\).

\[
\Psi(-0) = \Psi(+0) \Rightarrow 1 + r = t \text{ (continuity)}
\]

(38)

\[
\Psi'(+0) - \Psi'(-0) = 2\frac{mg}{\hbar^2}\Psi(0) \Rightarrow ikt - ik(1 - r) = \frac{2mg}{\hbar^2}t
\]

(39)

(the derivative of \(\Psi(x)\) is discontinuous due to the presence of the delta-function potential).

After some simple algebra we get the solution to the system of eqns. (38), (39).

\[
t = \frac{1}{1 + \frac{2mg}{\hbar^2k}} \quad r = -\frac{1}{1 - \frac{2mg}{\hbar^2k}}
\]

(40)

The transmission coefficient is

\[
T = |t|^2 = \frac{1}{1 + \frac{\omega^2g^2}{\hbar^2k}} = \frac{2\hbar^2E}{mg^2 + 2\hbar^2E}
\]

(41)

while the reflection coefficient is

\[
R = |r|^2 = \frac{1}{1 + \frac{k^2\hbar^2g^2}{m^2\hbar}} = \frac{mg^2}{mg^2 + 2\hbar^2E}
\]

(42)

Note that \(T + R = 1\) as is required by flux conservation.
3 Problem 3.(G)

We expect that when \(V << \frac{p^2}{2m} \) for any states, the energy vs. momentum dispersion curve will be approximately parabolic for all values of momentum. In this perturbative limit, the eigenstates are still \(|\mathbf{k}\rangle \), where \(p = \hbar k \). The perturbative energy corrections

\[
\Delta E_k = \langle \mathbf{k}|V(x)|\mathbf{k}\rangle + \sum_{k' \neq k} \frac{|\langle \mathbf{k}'|V(x)|\mathbf{k}\rangle|^2}{E_k' - E_k}.
\]

As in the lecture notes on 1/30, the first term only leads to a uniform shifting of the parabola curve. And the second term only is significant for \(k = n\pi/\xi \). So if and only if even for \(k = n\pi/\xi, \frac{p^2}{2m} = (\hbar k)^2 / 2m \gg V_0 \), the dispersion curve will be almost parabolic for all values of momentum. That leads to \((\hbar\pi)^2 / 2m\xi^2 \gg V_0 \).

An alternative way: Still the right condition is that the kinetic energy potential energy for all values of \(k \). The kinetic energy can be calculated by \(\frac{1}{2m} (-i\hbar \frac{\partial}{\partial x} + \hbar k)^2 u(x) \), where \((x) \) is periodic: \(u(x) = u(x - \xi) \). Then the derivative term can be estimated as \(\frac{d}{dx} u \sim \frac{1}{\xi} u \). If \(k \) is large (\(k\xi > 1 \)) kinetic energy is about \((\hbar k)^2 / 2m \), but if \(k \) is small (\(k\xi < 1 \)) the derivative term dominates and kinetic energy is \(\hbar^2 / 2m\xi^2 \). In both cases potential energy is small if \((\hbar\pi)^2 / 2m\xi^2 \gg V_0 \).

(note that \((\hbar\pi)^2 / 2m\xi^2 \gg V_0 \) ~ \(\hbar^2 / 2m\xi^2 \gg V_0 \))

4 Problem 4.(G)

4.1

Dimension of space \(H = H^A \otimes H^B \) is \((2j^A + 1)(2j^B + 1) = 4 + 1 = 3\), so the possible values of total \(j \) are 0 and 1.

4.2

Denote \(C(j^A j^B; m^A m^B | j; m) \) as \((m^A m^B | jm) \). Since \(m = m^A + m^B \), only \((\pm \frac{1}{2}, \pm \frac{1}{2}|0, 0), (\pm \frac{1}{2}, \mp \frac{1}{2}|1, 0), (\frac{1}{2}, \frac{1}{2}|1, 1), (\frac{1}{2}, -\frac{1}{2}|1, -1)\) are non-zero. And since \((\frac{1}{2}, \frac{1}{2}|1, 1)\) is the only non-zero C-G coefficient for \(|1,1\), \((\frac{1}{2}, \frac{1}{2}|1, 1) = 1\). As the same, \((-\frac{1}{2}, -\frac{1}{2}|1, -1) = 1\).

4.3

\[
J^2 = \hbar^2 \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 2
\end{pmatrix}
\]
in the uncoupled basis. \(J^2 |0, 0\rangle = 0 \), so \(|0, 0\rangle = \frac{1}{\sqrt{2}} |\frac{1}{2}, -\frac{1}{2}\rangle - \frac{1}{\sqrt{2}} |\frac{1}{2}, \frac{1}{2}\rangle \).
so $(\pm \frac{1}{2}, \mp \frac{1}{2} | 0, 0) = \pm \frac{1}{\sqrt{2}}$.

4.4

$|1, 0\rangle = (\frac{1}{2}, -\frac{1}{2}|1, 0\rangle |\frac{1}{2}, -\frac{1}{2}) + (-\frac{1}{2}, \frac{1}{2}|1, 0\rangle |\frac{1}{2}, \frac{1}{2})$.

$\langle 0, 0 | 1, 0\rangle = 0$, so $(\pm \frac{1}{2}, \mp \frac{1}{2}|1, 0) = \frac{1}{\sqrt{2}}$.

All the six non-zero C-G coefficients are determined.

State $|1, 0\rangle$ and $|0, 0\rangle$ are entangled states Since these two states cannot be expressed as the direct products of some states in Hilbert-space H^A and H^B. (For example $|1, 1\rangle$ is not entangled since $|1, 1\rangle = |\frac{1}{2}, \frac{1}{2}\rangle^A \otimes |\frac{1}{2}, \frac{1}{2}\rangle^B$.)