
Physics of 

Earthquakes and 

Buildings 

 

 

Textbook by 

Thomas Heaton 

Emeritus Professor of  

Engineering Seismology 

 

 

 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

 



 ii 
 

 

 

 

 

 

 

 

 

 

© [2024] 

[THOMAS H HEATON] 
ORCID: [HTTPS://ORCID.ORG/0000-0003-3363-2197] 

  



 iii 
 

Introduction 

This document is a combination of class notes for CE/Ge 181, which was a Caltech 

graduate course about Engineering Seismology, together with several unpublished research 

papers about the physics of earthquakes. 

The science of seismology has its beginnings at the start of the twentieth century when the 

first seismographs were developed.  The early days of seismology focused on 

understanding the physics of seismic phases that were observed in seismic data.  In 

addition, seismologists sought to understand the characteristics of the seismicity of the 

Earth.  Seismologists focused their efforts on operating seismographic networks that 

recorded motions that were too small to be felt.  Seismologists used the measurements of 

seismic phases (times and amplitudes) to create models of the Earth’s structure and to 

characterize the occurrence of earthquakes. 

Earthquake Engineering is a separate discipline that focuses on designing structures that 

can survive earthquakes.  Whereas seismologists are typically trained in Physics 

departments (the recent trend is for seismologists to be trained in Earth Science 

Departments), earthquake engineers are mostly trained in Civil Engineering departments.  

Earthquake engineering generally began in the 1930’s, and the development of strong 

motion accelerographs resulted in observations of the nature of shaking in damaging 

earthquakes.  Earthquake engineers were mostly interested in the amplitude of ground 

shaking, including the spectral composition. 

At most academic institutions, scientists and engineers are segregated; they typically take 

different courses, they read different journals, and they are members of different 

professional societies.  I have been studying earthquakes at Caltech since 1972.  I received 

a BS in physics from Indiana University in 1972 after which, I became a graduate student 

at Caltech’s Seismological Laboratory.  Prof. Donald Helmberger was my PhD advisor, 

and I focused on understanding the physics of strong ground motion (Heaton, 1979).  

Helmberger was one of the pioneers of seismology who developed methodologies to use 
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computers to simulate the physics of seismic motions.  The fact that my research used the 

theories of seismology to understand the ground motions that were central to earthquake 

engineering meant that my research career has been at the interface between seismology 

and earthquake engineering. 

Following my PhD in 1978, I briefly worked for Dames and Moore, which was a firm that 

provided technical advice to companies that needed to design important facilities (e.g., 

power plants, refineries, ports) to survive natural catastrophes (especially earthquakes).  My 

tenure at Dames and Moore provided a link between my earthquake physics research and 

practical applications.  It also taught me that engineering design firms were necessarily 

focused on getting things built; there was little time to ponder questions about the 

fundamental physics of earthquakes. 

I joined the USGS as a Research Geophysicist in 1979 and I was stationed at the Pasadena 

Field Office.  Earthquake prediction was the primary task of the USGS Branch that hired 

me, and a detailed catalog of small earthquakes was the key tool used to search for spatio-

temporal patterns that could help to recognize that a major earthquake was about to happen.  

The 250-station Southern California Seismic Network allowed us to create this seismic 

catalog.  Analog telephone lines were the only practical way to continuously telemeter data 

from this network.  Seismic data was continuously recorded on photographic films that 

were reviewed by analysts to search for the arrival of seismic phases.  Unfortunately, only 

the arrival time of initial P-waves could be determined from this network; the records of 

ground motion were typically overdriven in earthquakes.  

Following the lead of Don Helmberger, my own research focused on simulating the 

waveforms recorded by networks.  A significant part of my work for the USGS focused on 

redesigning the Southern California Seismic Network so that it would record ground 

motion over a broad range of amplitudes and frequencies.  Much of what I learned about 

seismic networks is summarized in Chapter 2 of these class notes. 

Caltech hired me to be a Professor of Engineering Seismology in 1995.  This meant that I 

was faculty both in Geophysics and also in Civil Engineering.  I taught Engineering 
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Seismology, which was a graduate course that was co-listed in Geophysics and Civil 

Engineering.  Since I had no formal engineering training, the course was especially focused 

on classical seismology, which is mostly comprised of deriving the small motions of the 

Earth with respect to its static equilibrium state.  Taylor’s Theorem indicates that the 

governing equations of motion for small perturbations from equilibrium are linear.  

Solutions of these linear equations can be summed to other linear solutions and they still 

satisfy the linear equations of motion.  There are decades of research to discover solutions 

to linear wave problems.  Chapters 3, 4, and 5 provide examples of a range of these 

problems. 

Teaching classes in classical engineering mechanics was also one of my duties as a Prof. of 

Civil Engineering.  This was challenging since I was not trained as an engineer.  Although 

many of the governing equations are shared between engineering and seismology, there are 

also many important differences.  For example, bending is a key structural engineering 

concept that is rarely encountered in geophysics.  Importantly, engineering structural 

mechanics emphasizes concepts that allow the analysis of materials that yield inelastically.  

That is, these problems are typically nonlinear.  I discovered that civil engineers and 

geophysicists used fundamentally different theories to describe the mechanical failure of 

materials.  For example, residual stress is an important subject in engineering, but it is 

rarely encountered in geophysics.  I have been amazed by that earth scientists believe that 

brittle materials are strong and that ductile materials are weak.  In contrast, earthquake 

engineers try hard to achieve designs that yield ductily. 

I realized that the deformation of buildings is similar to the deformation of the Earth, but 

buildings are characterized by effective elastic constants that are very different from those 

appropriate for the Earth’s Crust.  Furthermore, seismologists almost always use inertial 

coordinate frames, whereas structural engineers typically use non inertial coordinates 

(motions are described relative to the base of a structure).  While both coordinate frames 

can be used to derive identical solutions, the physical intuitions provided by inertial 

coordinates are often different.  For example, ground acceleration is a key concept in 

engineering, but it does not have much significance in seismological analysis. 
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Chapter 6 describes the deformation of buildings.  I describe classical techniques from 

structural dynamics (e.g., normal modes and response spectra) and I also show how the 

same problems can be solved using ray theory developed primarily by seismologists.  

Chapter 6 also explains why peak ground velocity and displacement are so important to 

understand building damage. 

Chapter 7 focuses on the relationship between slip on faults and the resulting ground 

motion.  There is a comprehensive derivation of equivalent source parameters.  If you have 

ever been confused about why seismologists describe earthquakes with seismic moment 

tensors, then you should read Chapter 7.  You will learn that earthquakes do not release 

moment and that seismic potency is a more natural parameter than seismic moment.  

Chapter 7 also describes radiation pattern and rupture directivity, which are critical to 

understand damaging ground shaking.  There is also a description of static displacement 

changes that are induced by slip on finite fault planes. 

Chapter 8 is about the characteristics of earthquake ruptures.  I summarize the development 

of magnitude scales.  I discuss the origin of energy magnitude, MW, and the commonly 

used moment magnitude, ℳ.  Unfortunately, seismic moment is not a physical 

characteristic of earthquakes, so I introduce potency magnitude, M, which is similar to 

moment magnitude, but its physics is correct, and it makes the math simpler.  I then discuss 

the Gutenberg-Richter law that describes how the number of earthquakes in a catalog varies 

with the magnitude of events.  I show that the Gutenberg-Richter relationship means that 

most plate boundary motions occur in the largest events. 

Most of Chapter 8 is about the way that earthquake parameters scale with the size of an 

earthquake, where size is measured as either potency, P, or Energy.  I show how total 

mechanical energy can be decomposed into radiated elastic energy, static strain energy, and 

inelastic energy.  I describe self-similar models of earthquakes, which assume that 

earthquakes are brittle cracks with slip that is controlled by the stress drop.  The most used 

form of these models is referred to as the Brune 2− model and I show that it has 
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fundamental errors.  I show that Brune’s solution is not the solution to the mechanics 

problem that he poses.  If you use Brune’s model, then you should read Chapter 8. 

Chapter 8 also has an extensive discussion about the difference between slip-pulse 

solutions and brittle-crack solutions.  I show that slip-pulses lead to chaotic dynamics that 

can be described with strange attractors, which are states in which the prestress evolves into 

spatially complex distributions that are described as fractals.  That is, I discuss the 

importance of residual stress (a concept from material sciences) in earthquake physics.  I 

discuss how these concepts may solve the stress paradox, which has been the most 

important problem in geophysics for at least the past fifty years.  I argue that many popular 

concepts, such as self similar earthquake scaling, the seismic cycle, and strength of the 

crust need to be reevaluated.  Most importantly, current procedures have underestimated 

the amplitude of long-period motions in infrequent events.  This could lead to catastrophic 

collapse of tall buildings in future earthquakes. 

I wrote Chapter 8 after I stopped teaching, and it is too long and complex to use for a 

standard course.  It consolidates many different studies that I worked on with my graduate 

students, and I attempt to bring these studies together into a coherent document.  The 

concepts of Chapter 8 are not the current standard, but it is my best attempt to bring these 

ideas together into a different model of failure dynamics.   
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Chapter 1  Single-Degree-of-Freedom Linear Oscillator (SDOF) 

For most dynamic systems the relationship between restoring force and 

deflection is approximately linear for small deviations about some 

equilibrium state, which occurs when the system is motionless (all static 

forces are balanced).  If the system is complex (e.g., a building that requires 

numerous variables to describe its properties), it is possible to use normal 

modes to transform the multi-dimensional system into a number of simple 1-

dimensional linear oscillator problems (SDOF).  The SDOF problem is also 

fundamental to understanding the principles of seismometers. 

Consider the most fundamental of seismometers shown in Figure (1.1).  In this 

case the ground moves in an inertial frame with displacement ( )u t ; a mass m  

is supported by a linear spring of stiffness k ; and there is a viscous damper that 

resists the relative velocity x  of the mass with respect to the ground with force 

bx− .  ( )x t  is sometimes measured directly using an optical transducer (e.g., a 

light beam deflected by a mirror on the mass). 

 

  

Figure 1.1.  Sketch showing the configuration of a simple vertical-
component seismometer. 
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the force on m  is kx bx− −  and the inertial force on ( ) is m m x u+ .  The 

equation of motion of the system is then. 

 ( ) 0,m x u kx bx+ + + =  (1.1) 

which can be rewritten as 

 
2

02x x x u + + = − , (1.2) 

Where, 

  0 undamped natural frequency
k

m
  =  (1.3) 

   damping constant, 
2

b

m
  =  (1.4) 

which is related to the fraction of critical damping  by  

 0 .  =  (1.5) 

Equation (1.2) is a 2nd order linear differential equation and its solution is 

widely known.  In general, the solution is broken into two parts.  The 

homogeneous solution, which solves.  

 
2

02 0x x x + + =  (1.6) 

Any solutions, xn(t), of the homogeneous equation (1.6) can be summed and 

they also solve the homogeneous equation since it is linear.  The actual form 

of the solution to the homogeneous problem is determined by the initial 

conditions 0 0and x x .  Solutions to the homogeneous equation can also be 

summed to solutions to the full inhomogeneous equation (1.2) and they will 

still solve the inhomogeneous equation.  The homogeneous solutions 

typically represent the transient part of the response of the system.  The 

homogeneous solution that matches the initial conditions is then added to the 

particular solution that solves equation (1.2).  The particular solution often 

represents the steady-state part of problems. 

 
Frequency Response 

It is particularly useful to represent the ground motion u(t) as a Fourier series, 

or 

 ( ) ( ) ( )
1 1

( ) cos sin cosn n n n n n n

n n

u t A t B t C t   
 

= =

 = + = −    (1.7) 

or 
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 ( ) ( ) ( )2 2

1 1

( ) cos sin cosn n n n n n n n n

n n

u t A t B t C t     
 

= =

 = − + = − −  

 (1.8) 

This representation is possible for functions that are periodic with a repeat 

time of T .  In this case  

 
2

n

n

T


 =  (1.9) 

 

Since our equation is linear, we can write the solution x(t) as the sum of 

solutions to individual harmonic problems, or 

 ( ) ( )
1

,n n

n

x t C x t


=

=  (1.10) 

where xn solves the equation 

 ( )2 2

02 cosn n n n n nx x x t    + + = − . (1.11) 

Since the cosine function is truly periodic, it has no beginning or end, there 

are no initial conditions or transient solutions to deal with.  That is, the 

solution consists of just the particular solution.  As it turns out, when a linear 

system is harmonically forced at one frequency, then the resulting motions 

(except for transients) are also harmonic at that frequency.  Therefore, let us 

guess that the solution of (1.11) is 

 ( ) ( )cosn n n n nx t D t  = − −  (1.12) 

substituting (1.12) into(1.11), we find that 

 ( ) ( ) ( ) ( )2 2 2

0 cos 2 sin cosn n n n n n n n n nD t D t t        − − − − = .

 (1.13) 

We then utilize the following trig identities 

 ( ) ( ) ( )cos cos cos sin sinn n n n n nt t t     − = +  (1.14) 

 ( ) ( ) ( )sin sin cos cos sinn n n n n nt t t     − = −  (1.15) 

substituting (1.14) and (1.15) into (1.13), we find that  

 
( )  ( )

( ) ( )

2 22

0

22

0

cos 2 sin cos

sin 2 cos sin 0

n n n n n n n

n n n n n n

D t

D t

       

      

 − − +
 

 − − − =
 

 (1.16) 
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Now since ( ) ( )sin  and cosn nt t  are linearly independent functions, each 

term in equation (1.16) must be linearly independent.  Setting the second 

term to zero 

 ( )22

0 sin 2 cos 0n n n n     − − =  (1.17) 

or 

 
22

0

2
tan n

n

n

 


 
=

−
 (1.18) 

Now setting the first term in (1.16) to 0 gives 

 
( )

2

22

0 cos 2 sin

n
n

n n n n

D


     
=

− +
 (1.19) 

If we make the clever observation that equation (1.18) can be rewritten as the 

following two equations 

 

( )
2

2 22 2

0

2
sin

4

n
n

n n

 


   

=

− +

 (1.20) 

 

( )

22

0

2
2 22 2

0

cos

4

n
n

n n

 


   

−
=

− +

 (1.21) 

then we can substitute (1.20) and (1.21) into (1.19) to obtain 

 

( )

2

2
2 22 2

0 4

n
n

n n

D


   

=

− +

 (1.22) 

  

thus, the steady-state solution of equation (1.11) is  

 ( )
( )

( )
2

2
2 22 2

0

cos

4

n
n n n n

n n

x t t


  

   

= − −

− +

 (1.23) 

where, 

 
1

22

0

2
tan n

n

n

 


 

−
 

=  
− 

 (1.24) 

Notice that  
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 ( ) ( ) ( ) 0cos     when  n n nx t t U t   − = −  (1.25) 

and that 

 ( ) ( ) ( )
2

02

0

cos     when   n
n n n

m
x t t U t

k


  


 − = −  (1.26) 

 

That is the motion of the mass with respect to the seismometer case is 

proportional to ground displacement at high frequencies and it is proportional 

to acceleration at low frequencies (compared to the natural frequency). 

 Figure 1.2 shows the amplitude and phase of xn(t-) as a function of 

frequency for an SDOF. 

Notice that when the damping is 1
2

, then there is the maximum response 

without having a peak in the response curve.  Most manufacturers of 

seismometers attempt to achieve this level of damping.  Figure 1.2 can be 

thought of as an amplification factor as a function of frequency for ground 

acceleration.  That is the size of the record x(t) is the ground acceleration 

times the amplification factor.  Notice that the instrument response is 

proportional to ground acceleration at low frequencies. 

 

The amplification can be determined as a function of the amplitude of the 

ground displacement by simply multiplying the response by 2 .  In this case 

the instrument response looks like Figure 1.3. 

 



 

6 
 

 

Figure 1.2. Amplification ratio is X U  

 

Figure 1.3.  Amplification ratio is X U  
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We can also find the resonance frequency
R  at which the SDOF has its 

maximum amplitude response to a forced vibration by finding when the 

derivative of the response is zero, or, 

 0

n R

n

n

dx

d
 


=

=  (1.27) 

Performing this differentiation on equation (1.23) gives 

 
2 2 2

0 02 1 2R    = − = −  (1.28) 

To add to the things to remember, there is yet another way to describe the 

system damping called the “quality factor” Q, which is defined as  

 
21 2

2 2

RQ


 

−
 =  (1.29) 

For lightly damped systems, it can be shown that  

 
Total Energy in One Cycle 1

2
Energy Loss During One Cycle 2

Q 


 
  

 
 (1.30) 

For lightly damped systems, Q can also be determined from the resonance 

curve of the system. 

 0Q






 (1.31) 

where  is the frequency interval between the points at which the 

amplitude of nx  is ( )
1

2
Rx  , its maximum.  Although I have encountered 

authors who use Q to describe heavily damped systems, I recommend against 

it; Q. 

Impulse Response 

We just saw how we can derive the response to an arbitrary periodic function 

by decomposing the function into a sum of sinusoids and cosines.  However, 

there are other alternative decompositions that can be quite useful.  For 

example, we can approximate any function by a series of stair steps up and 

down in time.  We define a Heaviside step function as 

 ( )
0 0

1 0

t
H t

t


 


 (1.32) 
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Now suppose that we have the problem of a SDOF subjected to a step 

function in acceleration with the initial condition that the mass starts at rest.  

We can write the equation of motion as 

 ( )2

02x x x H t + + =  (1.33) 

with the initial conditions that  

 ( ) ( )0 0 0x t x t= = = =  (1.34) 

Unlike the problem of the harmonically driven oscillator, for which the 

solution was entirely the particular solution, the complementary solution to 

the homogeneous equation (the transient solution) is very important. The 

general solution can be written 

 ( ) ( ) ( )C Px t x t x t= +  (1.35) 

If 
0   (underdamping), then the complementary solution can be written 

as 

 ( ) ( )1 1cos sint

Cx t e A t B t  −= +  (1.36) 

where 

 
2 2

1 0   −  (1.37) 

The particular solution, which is the steady-state solution, can be found by 

inspection. 

 ( )
( )
2

0

P

H t
x t


=  (1.38) 

Substituting (1.38) and (1.36) into (1.35), and applying boundary conditions 

(1.34) leads to  

 ( ) ( )1 12

0 1

1
1 cos sin

t
t e

x t e t t H t


 
 

 

−
− 

= − − 
 

 (1.39) 

which is shown in figure 1.4. 
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Figure 1.4 shows x(t) for both 20% damping and no damping. 

 

We can take the time derivative of the solution for a step in acceleration, 

equation (1.39), to derive the solution for an impulse in time (delta function, 

( )t ). 

 ( ) ( ) 1

1

1
sintG t H t e t 



−=  (1.40) 

where G(t) is now called a Green’s function for this system.  The Green’s 

function for 20% damping is shown in Figure 1.5.  Although we solved this 

Green’s function problem as a forced vibration problem, we would have 

obtained the same answer if we had solved a free vibration problem (the 

homogeneous problem) but with initial conditions of zero displacement and a 

velocity of unity.  Since the integral of the delta function acceleration is a step 

in velocity, this problem could have been solved in this alternative fashion.  In 

this case, it is easy to see that equation (1.40) consists entirely of the transient 

response. 
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Figure 1.5. The response of an SDOF to an impulse of acceleration. 

 

 

Convolution 

 

With our Green’s function in hand, we can find the response to any ground 

motion using the convolution operator, which is defined as follows. 

 ( ) ( ) ( ) ( ) ( )x t u t G t u G t d  


−

=   −  (1.41) 

There are several ways to view the convolution operator.  Taken literally, it is 

the integral of the product of two functions as they slide past each other.  This 

can be shown graphically in a Figure 1.6, which is taken from Bracewell (1965) 

(Bracewell, 1965).  This is an outstanding textbook that describes linear 

analysis. 

 

Another way to view convolutions is that the Green’s function is added to itself 

many times, but shifted in time  and with an amplitude that is given by x().  
This is the same as saying that the source consists of a continuous sequence of 

delta functions.  Each one excites the response given by (1.40).  Then all these 

delta functions are added together.  

 

We can solve the integral(1.41) as a discrete problem in the following way.  

Define 

 ( ); 1,ix x i t i n=  =  (1.42) 
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 ( ); 1,iu u i t i n=  =  (1.43) 

 ( ); 1,iG G i t i n=  =  (1.44) 

then 

 ( )
1

i

i j i ji
j

x u G t u G −

=

=  =    (1.45) 

which is the serial product of    1 1,...,  and ,....,n nu u G G .  Bracewell (1965) 

discusses the details. 
 

 
Figure 1.6 A graphical representation of the convolution of two 

functions (from Bracewell). 

 

Another approach to convolution (and to solving linear differential equations) is 

to use Fourier transforms.  In practice, Finite-Fourier transforms (FFT), which 

are actually Fourier series, are used in numerical calculations.  We define the 

Fourier transform of x(t) as follows. 
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 ( ) ( ) ( ) i tx FT x t x t e dt


−

      (1.46) 

with an inverse transform given by 

 ( ) ( ) ( )1 1

2

i tx t FT x x e d  




−

−

 = =    (1.47) 

An important aspect of Fourier transforms is that differentiation in the time 

domain is equivalent to multiplying by i in the frequency domain.  This allows 

us to solve linear differential equations algebraically.  That is, 

 

 ( ) ( )x i x  =  (1.48) 

Another important property of Fourier transforms is the stretch rule. 

 ( )
1

FT x at x
a a

 
  =   

 
 (1.49) 

Now since the Fourier transform is itself a linear operator, we can take the 

Fourier transform of our entire differential equation (1.2). 

 ( ) ( ) ( ) ( )2 2

02x i x x u      − + + =  (1.50) 

or 

 ( )
( )

2 2

0 2

u
x

i




  
=

− +
 (1.51) 

or 

 ( )
( )1

2 2

0 2

u
x t FT

i



  

−
 

=  
− +  

 (1.52) 

It just so happens that the Fourier transform of G(t) , which is given by 

equation (1.40), is 

 ( ) ( ) 1 2 2

1 0

1 1
sin

2

tG FT H t e t
i

 
   

−   
= =   

− +   

 (1.53) 

Therefore, we can now write 

 ( ) ( ) ( ) ( ) ( )1x t u t G t FT u G −  =  =    (1.54) 

That is, convolution in the time domain is equivalent to simple multiplication 

in the frequency domain. 
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In practice, the discrete values of x(t) are usually calculated by taking the 

inverse FFT of the product of the FFT’s of G(t) and ( )u t . 

 

Properties of Convolution 

Convolution is ubiquitous to linear vibrational problems.  In this section I 

summarize some of the useful properties of the convolution of functions.  In the 

following, f, g, and h are all arbitrary functions of the same real variable (usually 

time for our problems). 

 ( ) ( ) ( )FT f g FT f FT g =   (1.55) 

 f g g f =   (1.56) 

 ( ) ( )f g h f g h  =    (1.57) 

 ( )f g h f g f h + =  +   (1.58) 

 
( )f g

f g f g
t

 
=  = 


 (1.59) 

 ( ) ( ) ( ) ( )f t g t f t g t  − = −   (1.60) 

 ,    where  is a dirac-delta functionf f  =  (1.61) 

 ,    where  is a Heaviside step functionf H fdt H = 
 (1.62) 

Pay special attention to differentiation (1.59); the normal chain rule does 

not apply. 

Convolution is the operator that is used in linear filtering.  For example, a 

Rectangle function (sometimes called a boxcar) is defined as 

 ( )

10
2

1 11
2 2

10
2

t

t t

t

  −



 = −  





 (1.63) 

 

and its Fourier transform is  

 ( )
2sin

2 sinc
2







 
 =   

 
 (1.64) 
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Convolution with this function is identical to taking the running mean of a 

function where the width of the running mean is unity in the time domain.  It 

is also the same thing as multiplying by a sinc function in the frequency 

domain.  A sinc function is shown in figure1.7.  The sinc function has the 

property that its amplitude decays as -1 at high frequencies and it 

approaches a value of 1 at low frequencies.  Thus, filtering with a rectangle 

function (a running mean) causes the signal to decay as -1 at high 

frequencies compared to the unfiltered signal. 

 

Figure 1.8 shows a sinc function plotted on a log-log scale.  Log-log plots are 

useful for recognizing power-law relationships since if 

 y x=  (1.65) 

then 

 log logy x=  (1.66) 

which is a linear relationship on a log-log plot. The slope of the relationship 

is the exponent of the power law.  Notice the linear slope in Figure 1.8 that 

corresponds to a spectral amplitude decay of 1 − .  This decay rate is 

sometimes referred to as 6 dB per octave, since each octave refers to a factor 

of 2 in frequency and 6 dB refers to a factor of 2 in amplitude (there’s more 

about dB’s in Chapter 2).  A filter with an 2 2 spectral decay (e.g., sinc ) −  

has a spectral decay of 12 db per octave. 

 
Fig. 1.7  plot of sinc(). 
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Fig. 1.8   log-log plot of |sinc()|. 

 

Deconvolution 

A common problem in seismology is that of determining the ground motion u(t) 

that produced a particular seismogram x(t).  We can invert the convolution 

process.  That is, if 

 

 ( ) ( ) ( )x u G  =  (1.67) 

then 

 ( )
( )

( )
1

x
u t FT

G





−
 

=  
  

 (1.68) 

This operation is typically performed using an FFT.  However, as was the 

case with convolution, it is possible to do the calculation recursively in the 

time domain using serial division.  That is the inverse of equation (1.45) is 

 
1

00

1 i

i i j i j

j

u x u G
tG

−

−

=

 
= − 
  

  (1.69) 

In practice, it is often not feasible to perform an exact deconvolution since it 

often involves a division by zero or a very small number in the frequency 

domain.  That is, most deconvolutions are only valid over a limited frequency 

band. 

 

One approach to deconvolution is pose it as a linear inverse problem.  That is, if 

we are dealing with the discrete problem, then we can write ( ) ( ) ( )x t u t G t= 

as the following matrix equation (this is a serial product). 
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  =G u x  (1.70) 

Where 

 

1 1 2 2

2 1 1 3

3 2 1 4

2 1

1 2

1 2 2 1

.

.

.

. . . .

. . .

.

n n n

n n

n

n n n

n n n

G G G G G

G G G G G

G G G G G

G G

G G G

G G G G G

− −

−

− −

− −

 
 
 
 

  
 
 
 
  

G  (1.71) 

 ( )1 2 3, , ,..., nx x x xx  (1.72) 

 ( )1 2 3, , ,..., nu u u uu  (1.73) 

This means that if we know G and x , then we can determine u  as 

 1−= u G x  (1.74) 

Where  

 1−  =G G I  (1.75) 

While this formulation is exactly equivalent to using an FFT and division in 

the frequency domain, there are stabilization techniques (e.g., singular value 

decomposition) in linear inverse problems that can help to reduce instabilities 

due to ill-conditioned decovolutions (i.e. division by small numbers in the 

frequency domain).  Since the SDOF oscillator problem is linear in all 

aspects, it is not surprising that it is equivalent to a linear algebra problem, 

namely the inversion of the matrix G can be done by finding eigenvectors 

and eigenvalues. 

  

Direct Solution 

The solution techniques that we have shown explicitly, or implicitly, assume 

that we are dealing with periodic functions.  That is, we are usually assuming 

that the record time series repeats itself indefinitely.  This can be seen 

directly in the structure of the matrix G in (1.71).  This can cause 

complications if there is a discontinuous jump from the end of a record and 

the beginning.  That is, there is often a step change in the value at the 

beginning/end of the repeating function.  Of course, this repeating jump is 

unphysical and is simply the result of truncating our analysis after some finite 

time.  One simple way to deconvolve the record that avoids this problem is 

direct integration of equation(1.2). 

 
2

02u x x x = − − −  (1.76) 
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Integrating once, we obtain 

  

 

( ) 2

0

0 0

2

0

0

2

2

t t t

o

t

u t xdt xdt xdt

x x xdt C

 

 

= − − −

= − − − +

  



 (1.77) 

Integrating a 2nd time, we obtain 

 ( ) 2

0

0 0 0

2

t t t

u t x xdt xdt Ct D = − − − + +    (1.78) 

Where C and D are constants of integration.  

If ( ) ( ) ( ) ( )0 0 0 0 0u t u t x t x t= = = = = = = = , then 0C D= = . 

 

 

Chapter 1.     Homework 

 

Problem 1.1  Derive equation (1.30). 

 

Problem 1.2  Calculate and sketch the function given by 

1 2

t t
T T

       
   

.  What does the Fourier amplitude spectrum look like? 

 

Problem 1.3  Derive the response of an SDOF to ground motion described 

by 

 ( ) 1

1

1

0, 0

, 0

1,

t

t
U t t T

T

t T

 
 
 

=   
 
  
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  Equation Section 2 Chapter 2 Seismographic Systems 8/28/2022 

 

It is common to separate seismographic systems into “seismographs” and 

“strong-motion accelerographs.”  Seismographs have generally been developed 

by geophysicists and seismographs are typically designed to record ground 

motions that are far too small to be felt.  Strong-motion accelerographs have 

usually been designed by earthquake engineers to record the ground acceleration 

during severe earthquake shaking.  In actuality, though, there is nothing 

fundamentally different in the physics of these two systems. 

 

Seismographs (including strong-motion accelerometers) consist of (at least) a 

sensing unit and a recording unit.  I will begin by discussing the recording 

system.  Current state-of-the-art is to record output voltages from a seismometer 

(the sensing system) with a digital data logger, which typically consists of an 

analog to digital converter (ADC) and some type of digital computer for 

processing, storage, and communications. 

 

Dynamic Range 

 

The most critical specification of a data logger is its dynamic range, which is 

defined as the ratio of the largest on-scale voltage Vmax  divided by the smallest 

resolvable voltage  Vmin .  That is, 

 max

min

V
DR

V
=  (2.1) 

 

Traditionally, dynamic range is given in the somewhat obscure units of decibels 

dB (a tenth of a Bell).  This nomenclature was originated with measuring the 

relative intensity of sound, which is proportional to the power of acoustic waves.  

Bells are a base 10 logarithmic measure of energy per unit time, and 1 Bell 

corresponds to a factor of 10 increase in energy per unit time.  However, most 

of our discussions concern the amplitude of some signal as opposed to its power.  

Since power is proportional to the square of the amplitude, a factor of 10 in 

amplitude corresponds to a factor of 100 in power, which is 2 Bells or 20dB.  

Therefore, we can define dynamic range in units of dB as 

 max

min

20 log dB
V

DR
V

 
=   

 
 (2.2) 
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The dynamic range of a digitizer is typically determined by the number of bits 

that it uses to characterize voltage.  Each bit represents a factor of 2 in dynamic 

range, so the dynamic range is 
#bits2 .  Since log 2 0.301= , the dynamic range in 

dB is #bits times 6.02. 

 

Early digitizers were typically 8-bit or 12-bit units.  16-bit units were 

common by the mid 1980’s, and 20-bit or 24-bit units had become the 

standard by the mid 1990’s. 

 

Some examples of dynamic range are given in Table 2.1. 

 

 

Table 2.1 

# of bits Dynamic range dB 

8 256 48 

12 4,096 72 

16 65,456 96 

20 1,048,560 120 

24 16,777,216 144 

 

Paper or film recording devices were the most common system prior to 

introduction of digital systems.  These older analog systems typically had a 

dynamic range of 50 to 60 dB, depending on how well the trace could be 

measured.  As we shall see later, the total dynamic range of motions 

encountered in the Earth is on the order of 200 dB, and current digitizers do 

not come close to having the dynamic range to record both the strongest 

motions in earthquakes and the smallest motions that occur at quiet sites. 

 

Most electro-mechanical seismometers have an effective dynamic range that 

is about 100 dB, which is much larger than the range of optical recording 

systems.  However, electronic feedback seismometers (described below) 

typically have dynamic ranges of about 140 dB. 

 

Seismometers 

Seismometers are the sensors that produce the signal to be recorded.  Modern 

seismometers produce some voltage that is related to the ground motion by the 

instrument response.  The earliest seismometers (circa 1900) consisted of a 

mass, a spring, and sometimes a damper.  The mass was usually very large since 

its motion was typically measured by a series of levers that caused a needle 

stylus to move over a rotating drum covered with smoked paper.  Thus, it was 
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necessary for the small motions of the ground to cause enough momentum in 

the mass to overcome the friction of the recording system. 
 

In 1922, Harry Wood (a seismologist) and John Anderson (an astronomer) 

collaborated to build a simple system known as the Wood-Anderson torsion 

seismometer.  They developed a system that illuminated a mirror on a mass 

suspended by a vertical wire that served as a torsion spring.  When the ground 

moved horizontally, the wire would twist, causing a deflection of the reflected 

light.  The reflected light was focused onto a rotating drum covered with 

photographic paper.  The motion of the mass was damped electro-magnetically.  

The Wood –Anderson has an undamped natural period of 0.8 s, its gain is 2,800, 

and its damping is 70% of critical.  Several dozen Wood-Anderson 

seismometers were operated in southern California until about 1980.  This 

system was the standard that was used by Richter (1957) (Richter, 1957) in the 

definition of earthquake magnitude in the 1930’s (see Chapter 8).  The response 

of this instrument is that of a simple single degree-of-freedom oscillator. 

 

Many strong-motion accelerographs were also simple optical SDOF’s.  More 

than 10,000 SMA-1 series of accelerographs were manufactured by Kinemetrics 

in Pasadena from the late 1960’s to the mid 1990’s.  This instrument also has a 

mirror that deflects in torsion.  It’s natural frequency is about 30 Hz and it also 

is 70% damped.  A sketch of this instrument is shown in Figure 2.1.  At 

frequencies lower than 30 Hz, the records from this instrument are proportional 

to ground acceleration (see Figure 1.2).  These instruments record on 70 mm 

film and they only record when triggered by vertical accelerations that exceed 

about 1% g.  The clip level on an SMA1 is about 1.5 g.  When the frequency of 

the signal exceeds 15 Hz, it is necessary to deconvolve the instrument response 

to obtain true ground acceleration from this instrument. 

Figure 2.2 shows a schematic of another common strong motion accelerometer 

(SMAC) used in Japan from the 1960’s through the 1980’s.  This is a purely 

mechanical instrument with air damping.  Unfortunately, static friction in the 

system made this a poor system for recording motions at periods exceeding 2 

seconds. 
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Figure 2.1  Schematic of the mechanics of an SMA-1 strong motion 

accelerometer. 

 

 

 
Figure 2.2.  Schematic of a Japanese SMAC strong motion acclerograph. 
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Table 2.1 gives the instrument constants of a number of strong-motion 

seismographs. 

 
 

Seismometers with electromagnetic pickups were developed by Galitzen in 

about 1910.  Currents generated by the seismometer were used to drive a 

galvanometer that deflected a beam of light.  A number of different types of 

these instruments became popular in the 1930’s.  These instruments gave new 

flexibility since the signals could be electronically amplified and filtered.  

Velocity transducers are the most common type of pickup and they typically 

consist of a magnetized mass that moves through a conducting coil.  The voltage 

generated in the coil is proportional to the velocity of the mass with respect to 

the coil, and hence the term, velocity transducer.  Benioff short-period 

seismometers with a 1-second free period, 70% damping, and velocity 

transducers were important standards in seismology. 

 

By the 1970’s more compact 1-second velocity seismometers were 

manufactured in large numbers for use in exploring for petroleum.  Over a 

thousand L4-C (Mark Products, Inc)  1-second seismometers were employed by 

regional seismic U.S. networks from the 1970’s through the 1990’s. 

 

The electrical output from these seismometers have been recorded several ways.  

In many important seismographic systems, the electrical current from the 

seismometer was used to drive galvanometers.  These galvanometers consisted 

of a mirror suspended on a torsion wire.  Deflection of the mirror was measured 

photographically as in other direct seismometers.  The galvanometer was itself 
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a linear SDOF whose forcing was the output from the seismometer.  The 

galvanometer/seismometer system constitutes two coupled linear oscillators.  

The exact solution to this problem is a normal mode problem that is described 

in Chapter 6.  However, the momentum of the seismometer mass greatly exceeds 

that of the galvanometer.  Therefore, the response of these galvanometer 

seismometer systems is approximately given by. 

 ( ) ( ) ( ) ( )2

02x t x t x t u t + + =  (2.3) 

 

 ( ) ( )V t Cx t=  (2.4) 

  

 ( ) ( ) ( ) ( )22 G Gy t y t y t DV t + + =  (2.5) 

 

where x(t) and y(t) correspond to motion of the seismometer and galvanometer 

masses, respectively,  and  are constants, C D ( )  is voltage,  and G GV t    are 

the damping and free period of the galvanometer.  Note that the driving term in 

the second equation is not a 2nd derivative with respect to time. 

 

Since the damping of both systems is 70% of critical, and since older 

seismometer masses were quite large, the feedback from the motion of the 

galvanometer back into the seismometer is minimized.  Therefore we can 

approximately solve this problem as if the solution to equation (2.3) is used as 

the input to equation (2.5).  As was the case for the simple SDOF, we can write 

the solution for these equations as a convolution with the Green’s functions of 

the seismometer G(t) and the galvanometer GG(t). 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

G

G

G

y t G t V t

d
G t D CG t u t

dt

CDG t G t u t

= 

 =   

=  

 (2.6) 

where, 

 ( )
( ) ( )2 2

0
2 2

0

sint
H t

G t e t  
 

−= −
−

 (2.7) 

and 

 ( )
( ) ( )2 2

2 2
sinGt

G G G

G G

H t
G t e t

  
 

−
= −

−
 (2.8) 
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The dynamic range of these electromagnetic seismometers is typically in the 

range of 80 to 100 dB. This is far greater than the range of the film or paper 

systems that were used to record the data from them. 

 

Just as before, we can take the Fourier transform of (2.6) to obtain 

 

 ( ) ( ) ( )( ) ( )3

Gy CDG G i u    = −  (2.9) 

where  

 ( ) 2 2

0

1

2
G

i


  
=

− +
 (2.10) 

 ( ) 2 2

1

2
G

G G

G
i


  

=
− +

 (2.11) 

 

Table 2.1 lists some instrument constants for several seismometer systems.  All 

of these systems are from the early 1900’s, except for the WWSSN LP, which 

was operated as a standard world-wide network from the 1960’s to the 1980’s. 

The ground displacement amplification response as a function of period 
2

T



=  

is shown in Figure 2.3.  Figure 2.4 shows a similar plot for a number of important 

seismographic systems, many of which were operated at the Seismological 

Laboratory of Caltech. 

 

 
Table 2-1 
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Figure 2.3   Seismometer response for some important early seismometers 
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Figure 2.4.  Response of seismometer systems used ib the 1950’s and 1960/s. 
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Poles and Zeros 

We can rewrite the frequency domain response of our 

seismometer/galvanometer system (2.9) in the following way 

 ( ) ( ) ( )y t R t u t=   (2.12) 

where R(t) is the displacement response of  the system given by 

 ( ) ( ) ( )3 G

d
R t CDG t G t

dt
 =    (2.13) 

This can be written in the frequency domain as 

 ( ) ( ) ( )y R u  =  (2.14) 

where 

 

( )
( )

( )( )

( )
( )( )

( )

( ) ( )

( )( )( )

( )( )( )( )

3

2 2 2 2

0

3

2 2 2 2

0

3

2 22 2 2 2

0

1 2 3

1 2 3 4

2 2

2 2

G G

G G

G G G

CD i
R

i i

CD i

i i

i
CD

i i

z z z
iCD

p p p p




     



     



       

  

   

−
=

− + − +

−
=

− − − −

=
   − + − − + −
   

− − −
=

− − − −

 (2.15) 

where 

 1 2 3 0z z z= = =  (2.16) 

and 

 2 2

1 0p i  = − −  (2.17) 

 2 2

2 0p i  = + −  (2.18) 

 2 2

3 G G Gp i  = − −  (2.19) 

 2 2

4 G G Gp i  = + −  (2.20) 

The pj and zi are called the poles and zeros of this system, and together with 

the station gain, -iCD, they define the response of the system. 
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Unfortunately, there is always confusion about conventions used in 

transforms.  The common convention for poles and zeros is defined by the 

Standard for Exchange of Earthquake Data (SEED).  This standard is 

described in the SEED user’s manual that can be found at 

http://www.iris.washington.edu/DOCS/manuals.htm.  The standard is based 

on Laplace transforms as opposed to Fourier transforms.  These two 

transforms are very similar except that the poles and zeros are defined in 

terms of the Laplace transform variable s i= .  Denoting the poles and 

zeros by  Pi and Zi, we can rewrite (2.15) as 

 ( )
( )( )( )

( )( )( )( )
1 2 3

1 2 3 4

s Z s Z s Z
R CD

s P s P s P s P


− − −
=

− − − −
 (2.21) 

where 

 1 2 3 0Z Z Z= = =  (2.22) 

and 

  2 2

1 1 0P ip   = − = + −  (2.23) 

 2 2

2 2 0P ip   = − = − −  (2.24) 

 2 2

3 3 G G GP ip   = − = + −  (2.25) 

 
2 2

4 4 G G GP ip   = − = − −  (2.26) 

In fact, any complex transfer function that can be written in the form 

 ( )
1

1 0

1

1 0

...

...

n n

n n

l l

l l

a a a
T

b b b

 


 

−

−

−

−

+ + +
=

+ + +
 (2.27) 

can also be written in the form 

 ( )
( )

( )

1

1

n

i

i

l

j

j

a z

T

b p







=

=

−

=

−




 (2.28) 

The convention of using poles and zeros is especially useful in systems that 

can be described as a series of convolutions.  Remember that the convolution 

operator is commutative.  That is, these convolutions can be written as a 

series of multiplications in the frequency domain.  Therefore, a linear system 

can be described by compiling the set of all of the poles and zeros that 

correspond to each of the functions that are convolved to form the transfer 

function.  If an additional filter or device is added to the system (and if its 

http://www.iris.washington.edu/DOCS/manuals.htm
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effect is that of a convolution), then the poles and zeros of that device are 

simply added to the set. 

 

Broad-Band Seismometers 

 

It is worth inspecting Figure 2.4 to see that most seismographic systems were 

designed to have high magnification in either a short-period band (about 1 

second) or a long-period band (about 20 seconds).  This was accomplished 

by using short-period galvanometers together with short-period seismometers 

to make a short period seismograph, or by combining a long-period 

galvanometer with a long-period seismometer to make a long-period 

seismograph.  However, it was possible to use a short-period seismometer 

with a long-period galvanometer to make a system which records over a 

broad range of frequencies.  One such instrument was the Benioff 1-90, 

which had a 1-second velocity transducer seismometer driving a 90-second 

galvanometer.  The response of this instrument (see Figure 2.4) is 

approximately flat to velocity between 1 and 90 seconds; hence it records 

velocity over a broad frequency range. 

 

Notice that the amplification of the 1-90 is much less than that of either the 

short- or long-period systems.  This is because there are microseisms, which 

are relatively large amplitude waves continuously, excited by water waves in 

the ocean at periods between 6 and 12 seconds.  There was not much point in 

making a high-magnification broad-band system since it would fill the 

seismogram with quasi-harmonic microseisms.  The presence of 

microseismic noise at virtually all stations meant that seismograph designers 

who wished to detect and locate frequent small-magnitude earthquakes were 

forced to design either long- or short-period instruments. 

 

Simple optical seismometers (Wood-Anderson, SMA-1 accelerograph) also 

respond over a broader frequency band, but they have a relatively small 

overall amplification of signals.  Furthermore, their response is flat to 

acceleration at periods longer than their natural frequency.  This means that 

they are quite insensitive to long-period ground displacements when 

compared to a seismograph that whose response is flat to velocity. 

 

Figure 2.5 shows the amplitude for many different wave types as a function 

of frequency.  The vertical axis is the log of the max amplitude of a 

seismogram after filtering with a 1-octave-wide bandpass filter.   The curves 



 

30 
 

labeled maximum and minimum correspond to the background noise level 

recorded at worldwide seismographic stations.  The minimum curve was 

recorded at a site in Lajitas, Texas.  There is really no maximum curve, since 

one can always find sites with high background noise.  It actually represents 

the noise encountered on ocean island stations where ocean wave generated 

noise is high. 

 

The various lines shown for different earthquake situations show 

approximate median amplitudes for earthquakes recorded at approximately 

10 km, 100 km, and 3000 km from earthquakes of different magnitudes.  You 

can see that there are more than 200 dB in amplitude difference 

(10,000,000,000 to 1) between the ambient ground noise and the maximum 

ground accelerations at seismically quiet sites.  The stippled regions show the 

on-scale range of both an SMA-1 strong motion accelerograph and a typical 

short-period seismographic channel from a regional seismographic network 

with analog telemetry (frequency modulated, FM).  Almost 1,600 of these 

short-period seismographs were operating in the United States in the 1980’s.  

These stations were designed to operate at maximum magnification to detect 

the smallest earthquakes that created motions just larger than the ambient 

ground motions.  Although these stations were well suited for detecting 

ground motions, they were not well suited for recording them.  That is, many 

earthquake ground motions were too large for the range of the system and 

they caused clipping. 

 

Some seismological observatories operated a wide variety of seismographs 

that operated in different amplitude and frequency bands.  The Pasadena 

station routinely recorded several dozen seismograms each day in order to 

obtain a more or less complete record of ground motion over this vast range 

of amplitude and frequency. 
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Figure 2.5 

 

Notice that the spectra of ground accelerations from strong motion records of 

large earthquakes are relatively flat in the frequency band from 0.3 Hz to 5 

Hz.  Since the recording system of early strong motion accelerographs was 

less than 60 dB, it was a good choice to record ground acceleration since that 

was the best way to recover motion in the frequency band from 0.1 Hz to 10 

Hz. 
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In the 1980’s seismic instrumentation was revolutionized by the development 

of force-feedback seismometers.  These systems are similar to standard 

seismometers, but they usually have a displacement transducer to measure 

the motion of the seismometer mass.  In addition, they add an 

electromagnetic forcing system that has the role of minimizing the motion of 

the mass with respect to the seismometer case.  The force necessary to keep 

the mass stationary is simply the ground acceleration.  The essential feature 

of these systems is that the dynamic range of the instrument is dictated by the 

dynamic range of the electronic feedback system, and not by the dynamic 

range of the mechanical seismometer.  This essential addition allows modern 

feedback seismometers to often achieve 140 dB dynamic ranges (a factor of 

100 times greater than the dynamic range of mechanical systems). 

 

The electronic feedback system can also be designed to provide the desired 

instrument response.  STS-1 seismometers manufactured by Streckeisen A.G. 

in Switzerland are considered a standard of excellence for feedback 

seismometers.  They have a mechanical natural period of about 1 Hz that is 

extended to 0.003 Hz (360 seconds) by the feedback system.  Their electronic 

feedback system is designed to provide an instrument response that is flat to 

velocity from 360 seconds to 8 Hz.  In essence they have a response that is 

identical to an SDOF with a 360 second natural period and a velocity 

transducer.  The range of amplitudes and frequencies that can be recorded by 

an STS-1 are shown in Figure 2.5. 

 

Notice that microseismic noise in the .2 Hz to .1 Hz band is several orders of 

magnitude larger than the minimum motion resolved from an STS-1.  Thus, it 

is necessary to filter in this frequency band if one wants to see small motions 

in either shorter or longer periods.  Such filtering was not feasible when STS-

1’s were recorded with older systems with limited dynamic range.  The 

development of 24-bit recording systems with dynamic ranges of 140 dB that 

matched that of the seismometer was the other important development that 

revolutionized seismographic systems in the 1990’s. 

 

A number of other important feedback seismometers have been developed.  

In particular, the Caltech/USGS network has many stations that use STS-2 

seismometers that are flat to velocity from 120 seconds to 30 Hz.  These 

systems are better suited to record small earthquakes and they are also about 

1/3 of the cost of STS-1’s.  STS-1 seismometers are no longer produced. 
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Currently, strong-motion accelerographs are typically force-feedback 

systems with stiff (high-frequency) mechanical suspensions.  Their output is 

usually flat to acceleration from static acceleration (sometimes called DC, as 

in DC current) to 100 Hz.  Their dynamic range is also in the range of 140 

dB.  However, most strong motion accelerographs are still designed to record 

only during strong shaking (usually a trigger threshold of 0.01 g) and hence it 

has not been seen as necessary to record with 24-bit resolution.  The 

Kinemetrics K-2 accelerograph has a 20-bit digitizer and it has been a 

standard at the turn of the millennium. 

 

Stations of the Caltech/USGS seismographic system (Southern California 

Seismic Network, SCSN; previously,TriNet) have six 24-bit digitizers to 

record 3 components each of broad-band velocity and strong-motion 

acceleration.  The 24-bit range of the strong-motion accelerometers is also 

shown in Figure 2.5.  The total range of the combined systems is 

encompassed by the heavy lines in Figure 2.5. 

John Clinton prepared the figure on the following page and it shows an updated 

version of the amplitudes of different signals recorded by the TriNet system in 

southern California (see www.trinet.org). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.trinet.org/
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In this case, the dotted lines outline the range of an STS-2 seismometer and 

the solid blue lines show the range of a hypothetical strong-motion broad 

band seismograph that could potentially serve the dual purpose of recording 

both strong ground motions and large distant earthquakes (teleseisms). 
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Microelectromechanical systems MEMS Accelerometers 

 

MEMS accelerometers are very small accelerometers that are fabricated with 

silicon chips.  They were first developed to provide inexpensive triggers for 

air bag deployment in automobiles.  They often consist of a small 

cantilevered conductive plate that is placed in the void space between an 

upper and lower surface.  All of these plates are connected to a circuit that 

measures the capacitance of the MEMS device.  This capacitance is 

determined by the distance between the plates, which is determined by the 

flexure of the cantilevered plate.  Typically, the undamped frequency of the 

MEMS is very high (> 100 Hz).  Since the output of the MEMS is 

proportional to the displacement of the mass (displacement transducer), the 

output of the sensor is proportional to accelerations for frequencies less than 

the natural frequency. 

Of course, the main advantage of a MEMS sensor is that it can be mass 

produced and can be extremely inexpensive.  These sensors are finding more 

applications as time goes on.  Today, all smart phones have MEMS 

accelerometers; these are used to determine the orientation of the phone 

(acceleration due to gravity is down) and they are also necessary for some 

game controllers.  The original MEMS accelerometers were designed for 

automobile collisions and hence their clip range was high (>10 g).  

Furthermore, there was not much need for precision and the resolution of the 

devices was often only 40 dB. 

 

 

Figure 2.7 ONAVI MEMS accelerometer used by QuakeCatcher network.  

This is a 3-component 80 dB device with a 2 g clip level. 
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Lately MEMS manufacturers are improving the dynamic range of their 

devices, which makes them more suitable for use as strong motion 

seismometers.  Towards that end, two separate development projects are 

attempting to deploy large numbers of MEMS accelerometers to be operated 

by volunteers.  The MEMS accelerometer in Figure 2.7 shows an ONAVI 

accelerometer that has been deployed by the QuakeCatcher Network that was 

developed by Jesse Lawrence (Stanford Univ.) and Elizabeth Cochran 

(USGS, Pasadena).  This device was developed for use in navigational 

equipment and hence it has better fidelity than most other MEMS 

accelerometers. 

 

Figure 2.8 shows the response of several MEMS accelerometers.  Notice that 

the noise level of most current MEMS devices are significantly higher than 

that for a current state-of-the-art accelerometer (a Kinemetrics Episensor with 

a dynamic range of 140 dB).  The Caltech Community Seismic Network 

project is another development project to deploy MEMS accelerometers to 

volunteers.  In this case the accelerometer is a Phidget MEMS accelerometer 

with a 2 g clip level.  The total dynamic range of the current device is in the 

range of 80 dB.  Currently, the cost of the Android phone accelerometer is 

less than $1, the Phidget is less than $100, and the Episensor is in the range 

of $4,000. 

   

 

Figure 2.8 Shows the operating range of several MEMS 

accelerometers as compared with a Kinemetrics Episensor (force 

balance accelerometer).    
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Deriving Ground Motion from Seismograms 

Chapter 1 provides the basic theory of an SDOF oscillator and 

deconvolution.  While this is straightforward in principal, it is anything but 

simple in practice.  Most seismologists use an excellent signal processing 

package for UNIX machines that is available from Lawrence Livermore 

National Lab called SAC (http://www.llnl.gov/sac/).  This package has many 

routines to remove instrument responses, filter, differentiate, integrate, and 

baseline correct.  There are some issues to keep in mind when processing 

data.  First, consider that we typically have three seismometers to record 

three linear components of motion plus three components of rotation of the 

ground.  In general, seismometers are not directly sensitive to rotation.  

However, because they sit on the surface of the Earth in the presence of 

gravity, rotation does have an effect as follows.  If ( )t is maximum tilt of 

the site, then  
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where x and y are horizontal Cartesian coordinates of the seismometer and z 

is the vertical component.  In most of this text, I simply equate the 

acceleration of the base of a seismometer with the particle acceleration ( )u t

of the ground on which it sits.  However, if the ground tilts there is an 

additional acceleration on the instrument caused by changes in the resolved 

gravitational force on the instrument and we need to be more precise in our 

definition of the acceleration experienced by the seismometer. We can  write 

the acceleration A(t) that the seismometer experiences as  
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and 
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Therefore, vertical-component seismic records are insensitive to small tilts.  

This is not generally true for the horizontal component seismographs.  

Fortunately, in most cases the effect of the tilt is small.  However, there are 
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cases when the tilt is important.  Tilt can be considered to be the sum of 

rotations about a horizontal axis due to both elastic strain and rigid body 

rotations.  Tilts can be caused by both traveling elastic waves and also by 

static (or quasi-static) tilts of the ground surface.  Tilts can occur when strong 

shaking causes compaction of soils. 

 

As we will see in Chapter 3, the strains associated with traveling elastic 

waves are proportional to the ratio of particle velocity divided by wave 

velocity.  Therefore, we can generally state that  

 ( )
( )u t

t B
c

  (2.32) 

where B is a constant that depends on the many details of an individual 

problem and c is a wave speed.  Therefore, for traveling waves, we can 

rewrite (2.31) using (2.32) as 

 ( ) ( ) ( )x x x

g
A t u t B u t

c
+  (2.33) 

The fact that the effect of tilt is proportional to particle velocity as opposed to 

acceleration means that tilts generally become more important for lower 

frequency waves. That is (2.33) can be written in the frequency domain as 

 ( ) ( )2 1x x

g i
A u B

c
  



 
− 

 
 (2.34) 

 The constant B can, in many cases, depend strongly on the local geometry of 

the seismometer installation. That is, there can be concentrations in strain 

(i.e., tilt) in corners of rooms.  In fact, the relationship between local tilt at a 

station and the waves passing through are extremely complex and, in most 

instances, they can only be determined from empirical measurements.  In this 

case, the relationship between Earth strain and local tilt is not a single 

constant, but is itself a tensor quantity.  This unfortunate fact means that it is 

extremely difficult to determine true horizontal particle motion for long-

period seismic waves (see King, ??, for more discussion of this problem).  

This ambiguity could be resolved if rotations could be independently 

measured at a site.  Unfortunately, the measurement resolution of instruments 

to measure rotation has not been sufficient to be useful for removing the 

effects of tilt from long-period seismograms.  Fortunately, the vertical 

particle motions are not affected by this problem. 

 

As a particularly simple example, consider the case of a harmonic Rayleigh 

wave (we will discuss them in more detail in Chapter 5) with wavenumber k 
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and frequency  traveling at velocity c in the x direction.  The motion of this 

wave can be described as 

 ( ) ( ), cos cosx x x

x
u x t a kx t a t

c
 
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where  
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Thus, for a given wave velocity, the tilt term becomes large with respect to 

the linear acceleration term when the frequency becomes small.  If we 

assume that  km3.3
s

c   and 210m sg  , then (2.38) becomes 
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where T is the period of the wave.  That is, the size of the tilt effect is about 

10% for a 200-second Rayleigh wave.  In actuality, the tilts on a seismometer 

are very complex since they are really a measure of the local strain at the 

base of the seismometer.  These strains can be strongly affected by the 

geometry of the seismic recording station.  That is, the corners of rooms may 

cause concentrated strains that are several times larger than the average strain 

in the earth for the traveling wave that is being considered.   
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Permanent static tilts can also be caused by other factors, such as differential 

soil compaction, land sliding, or being next to a fault scarp.  In these cases, it 

is impossible to independently determine both the ground displacement and 

the ground rotation from just the traces of a seismometer.  However, it there 

is a sudden static change in tilt, it will show up as a step function in the 

baseline of a horizontal accelerometer.  If one assumes a particular function 

of time over which the static tilt occurs, then it can be removed from the 

record.  However, this usually involves many ad hoc assumptions in practice. 

 

Even if we knew the tilting of the ground and the response of the instrument, 

there are still difficulties in recovering the true ground displacement.  

Consider the case of an SDOF in which the seismogram x(t) is known (to the 

resolution of the instrument and the digitizer).   We could recover the ground 

motion U(t) by either deconvolution (discussed in Chapter 1), or by direct 

integration of the equation of motion (1.2) as follows. 
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While the implementation of the integrals in (2.40) may seem simple, there 

are some difficult issues.  In particular, what time should we consider zero 

time to be, and what is the initial velocity, 
0u ?  Unfortunately, many 

important strong motions were recorded on analog triggered instruments; 

there is no recording for the time period prior to the triggering of the 

instrument.  Therefore, the initial velocity is unknown, which may have an 

important effect on the record. 

 

Another important problem is simply that of obtaining a good record of x(t).  

In particular, there is often some constant baseline that is superimposed on 

the initial part of x(t); this is usually called the bias which I will call 0E .  Let 

us further suppose that we have some digital record from our seismograph 

y(t) which is actually composed of the true motion of the seismograph x(t) 

plus some polynomial function of time E(t) that represents the bias and other 

sources of long-period error.  That is, assume that  

 ( ) ( ) ( )y t x t E t= +  (2.41) 



 

41 
 

where  

 ( ) 2

0 1 2 ...E t E E t E t= + + +  (2.42) 

 

Now if we mistakenly substitute y(t) for x(t) in (2.40) (what other choice do 

we have?), then we derive a flawed ground displacement ( )Fu t  whose 

difference from u(t) is given by (after some algebra) 
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One can see that having an error in the baseline value 0E causes an error in 

the displacement that grows as the square of time.  If there are further 

problems in the digital data, such as linear trends, then we can end up with 

errors that grow as the cube of time.  These problems were especially serious 

for digitization of paper or film records.  In these cases, the baseline of the 

record was often assumed to be the average of the record through time.  

Unfortunately, the average of the record depends on the time interval that is 

being averaged.  Furthermore, there is no satisfactory way to ensure that 

there are no linear or quadratic trends in the records.  These trends can occur 

if the film or paper in the recording device is allowed to skew slightly. 

 

SMA-1 film records contain additional null traces, called fixed traces, that 

are the record described by a rigidly mounted mirror.  Trends in these fixed 

traces are assumed to be the result of wander of the photographic film on the 

sprockets that transport the film.  The trends observed in the fixed traces is 

subtracted from the live traces in order to minimize baseline shifts. 

 

Because of these problems with trends in the baseline that can cause large 

errors in displacement that grow large with time, it has been common to 

subtract best fitting polynomials from records at various stages of processing.  

Unfortunately, this also introduces new problems.  In particular, the process 

of removing best-fitting polynomial baselines (of any order) is a nonlinear 

operator. That is, summing two baseline-corrected ground motions does not 

give the same result as baseline correcting the sum of the motions.  
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Furthermore, when a baseline correction is applied to certain types of true 

ground motions, it may result in very misleading conclusions about ground 

motion.  For example, ground displacements near fault scarps often have a 

static displacement. 

 

Consider the ground motion shown in Figure 2.6.  This motion consists of a 

monotonically increasing displacement up to a new value.  The 

corresponding velocity and accelerations are shown.  Acceleration consists of 

a period of constant positive acceleration followed by an identical negative 

acceleration.  However, if a best-fitting linear baseline is removed from the 

acceleration record, then we obtain a “corrected” acceleration that is quite 

different from the true acceleration.  Integration of this baseline corrected 

acceleration will result in a displacement that is quite different from the true 

displacement. 

 

A real example of this problem is shown in Figure 2.6 from a study by Iwan, 

Moser, and Peng (BSSA, 1985, 1225-1246).  They digitally recorded a 

Kinemetrics FBA-13 feed-back accelerographs placed on a moving platform.  

The platform was moved 25 cm and the resulting accelerogram is shown.  If 

the accelerogram is simply integrated into velocity and displacement, then 

the resulting motions are close to the known input.  However, if baselines are 

removed, then the resulting motion does not look much like the input. 
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 Figure 2.5.  Idealized example of how baseline corrections can distort 

acceleration records for records with net displacements.   

 

 

Figure 2.6.  From Iwan, Moser, and Chen.  Integration of raw 

displacement records are shown on the left and the effect of 

baseline correction is shown on the right.  The instrument was 

actually moved to a static displacement of 25 cm. 

Records that have no processing, or which only have a bias and the trend of a 

fixed trace removed are sometimes referred to as Volume I records.  This 

alludes to an important project at Caltech in the 1970’s to provide standard 

processing of most of the known strong-motion records.  Records that were 

corrected (e.g., baselines, initial velocities, and bandpass Ormsby filters) 

were referred to as Volume II records (everything was published in CIT 

reports).  This processing is described by Trifunac and Lee (Routine 

Computer Processing of Strong-motion Accelerographs, Earthquake 

Engineering Research Laboratory Report 73-03, 1973, Pasadena, CA). 

 

An example of how static ground displacement can be recovered is from a 

study of the 1985 M 8.2 Michoacan, Mexico, earthquake (Anderson and 

others, 1986, Science, v. 233, 1043-1049).  Figure 2.7 shows the locations of 

strong-motion stations on the Mexican west coast.  It also shows the surface 

projection of the rupture surfaces for several important earthquakes including 

the Michoacan earthquake that is labeled 19 Sept. 1985.  The accelerograms 

from the four closest digital fba stations (three of which are directly above 
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the rupture) are also shown.  The surface projection of the place where 

rupture originated (called the epicenter) is located near the station Caleta de 

Campos.  It was in this vicinity that the ground first began to shake.  It took 

tens of seconds for the rupture to propagate throughout the fault surface and 

stations to the south began to shake at later times; Zihuantanejo did not shake 

hard until 40 seconds after strong shaking at Caleta de Campos.  

 

 

Figure 2.7 North-south component of the ground acceleration for stations 

above the aftershock zone.  The vertical separation of the records is 

proportional to the NW-SE distance of the station location (along trench 

distance).  Time is measured with respect to the origin time of the earthquake 

(from Anderson and others, 1986). 
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Caleta de Campos records that were integrated into velocity and 

displacement are shown in Figure 2.8. 

 

Figure 2.8 (from Anderson and others, 1986) 
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Figure 2.9 (from Anderson and others, 1986) 

Permanent displacements of about 1 meter can be seen in the displacement 

records from Caleta de Campos.  Fortuitously, Caleta de Campos is next to 

the sea shore.  The shoreline at this location was permanently uplifted about 

1 meter (as derived from killed sea animals such as barnacles), which is in 

good agreement with the integrated vertical record. 
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Figure 2.9 shows a cross section view (perpendicular to the oceanic trench) 

that shows the approximate location of the thrust fault beneath the coast and 

the relative locations of the strong motion stations.  The motion on the thrust 

fault caused the stations to move upward and towards the ocean.  The north 

components of the derived displacement from the three stations above the 

faulting are also shown. 

 

As another interesting example of problems with recovering ground 

displacement, consider the Lucerne station records (station LUC) from the 

1992 M 7.2 Landers earthquake.  These were recorded on a digital tape 

system (Kinemetrics SMA-2) which is not widely deployed.  The ground 

velocities recorded for this earthquake are shown in Figure 2.10 (from Wald, 

Heaton, and Hudnut, 1994, BSSA).  The solid line is the surface trace of the 

faulting and the star is the epicentral location.  The recording occurred about 

1 km from the fault trace which experienced about 5 meters of strike-slip 

surface rupture.  This means that the east side of the fault moved about 2.5 

meters to the south and the west side moved 2.5 meters to the north.   

 

Standard processing was applied to the Lucerne records, and the acceleration, 

velocity and displacement are shown in Fig. 2.11 and 2.12 for the two 

horizontal components.  Notice that the maximum velocity and displacement 

that is indicated from these records are only 49 cm/sec and 9 cm, 

respectively.  The displacement is unreasonably small compared to the size 

of the nearby fault offset.  The maximum acceleration, 0.85 g (830 cm/sec) is 

actually quite large, however. 

 

Iwan and Chen carefully reanalyzed these records; they actually tested the 

instrument in the lab to see what motions would best reproduce the 

recordings of the instrument.  These motions are shown in Figure 2.13.  

Notice that the maximum velocity and displacement have increased to 143 

cm/sec and 255 cm, respectively.  The 255 cm displacement is similar to 

numbers derived from resurveys of Global Positioning Satellite geodesy 

network stations in this region. 

 

Figure 2.14 shows the motions of Iwan and Chen after they have been 

convolved with a 14-second high-pass Butterworth filter.  Since high-pass 

filters do have no response at very long periods, they always remove static 

offsets from Displacement records.  Most strong motion data has been 
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processed (i.e. filtered) in some way.  It is important to understand the 

processing in order to interpret ground displacement. 

 

Figure 2.10.  Ground velocity records from the 1992 M 7.2 Landers 

earthquake (from Wald, Heaton, and Hudnut, 1994). 

 

Figure 2.11. Longitudinal ground motions at LUC where the records have a 

strong band-pass filter to only allow frequencies between 0.4 Hz and 22 Hz. 
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Fig. 2.12 Same as 2.11 except for the transverse component. 

 

Figure 2.13.  Ground velocities and displacements for horizontal components 

of LUC derived by Iwan and Chen.  The top numbers are the peak values in 

inches or inches/sec, and the bottom numbers are in cm or cm/sec. 
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Figure 2.14.  Same as 2.13, except that a 14-sec high-pass Butterworth filter 

has been applied. 

 

As a final example of some of the issues involved with recovering ground 

displacement from acceleration records, consider the case of the 1999 M 7.6 

Chi Chi, Taiwan earthquake.  The locations of stations relative to the fault 

scarp of this east dipping thrust fault are shown in Figure 2.15 (from Boore, 

D., 2001, Effect of baseline corrections on displacement and response spectra 

from several recordings of the 1999 Chi-Chi, Taiwan, earthquake, Bull. 

Seism. Soc. Am., 91, 1199-1210). 
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Figure 2.15 from Boore (2001) 

 

Ground motions were digitally recorded by force-balance accelerometers and 

the net change in ground displacement was also geodetically recorded by the 

GPS sites shown in Figure 2.15.  In some cases, it was possible to simply 

doubly integrate the acceleration (after removing a bias) to obtain 

displacements that were compatible with nearby GPS observations as shown 

in Figure 2.16. 
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Figure 2.16 . From Boore (2001). 

 

 

In other cases, such as that shown in Figure 2.17, removal of the bias was not 

adequate to obtain a stable ground displacement.  Perhaps the site tilted, or 

perhaps there was some problem with the instrument.  In any case, additional 
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assumptions were necessary in order to derive a reasonable displacement 

history. 

 

 

Figure 2.17 from Boore (2001). 

 

Fortunately, the problem of integrating records is mitigated by modern digital 

instruments that have pre-event memories, force-balance seismometers, and 

high dynamic range instruments.  Nevertheless, it is often a good idea to 

obtain copies of raw digital records and to then integrate them yourself.  Try 

to understand the source of long period signals so you can decide what to 

remove from the records. 

 

High-rate GPS 

 

Global Positioning Satellite geodesy has been steadily improving over the 

past several decades to the point that it can now be used to describe long-

period ground motions in large earthquakes.  The current accuracy of 

displacement recording is several mm and numerous stations in the western 

U.S. and Japan record continuously at 1 sps (or sometimes as high as 20 sps).  
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Figure 2.18 (top) is from Jing Yang’s PhD thesis and shows the amplitude 

spectra of both a 1 sps GPS station and a 24-bit fba.  Notice that these two 

spectra cross each other near 0.1 Hz; the GPS is quieter than the 

accelerometer for lower frequencies, while the accelerometer is better for 

high frequencies.  In the bottom panel, the spectra of two nearby recordings 

of the 2003 M 8.2 Tokachi-Oki earthquake are shown.  Notice that in the 

frequency band from 0.25 Hz to 0.03 Hz, the accelerometer and GPS records 

are virtually identical.  The two signals can be combined in the frequency 

domain such that the high frequencies are from the accelerometer and the low 

frequencies are from the GPS.  Figure 2.19 shows an example of a very broad 

band record that was produced by combining the accelerometer and GPS 

records.  While this type of analysis is rare today, it eliminates the problems 

caused by tilting accelerometers and it’s sure to become more common in the 

future. 
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Another example showing the exceptional ability of GPS stations to record 

strong ground displacement is shown in Figure 2.20.  The GPS data is from 

the 2010 M8.7 Maule (Chile) earthquake published by Vigny and others.  

The figure is from Minson, Simons and Heaton (2011 AGU) and it shows the 

East component displacement.  These displacements occurred over tens of 

seconds and it would be almost impossible to recover these types of records 

using an accelerometer.  
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Figure 2.20 East component of 1 sps GPS data for the 2010 M 8.8 Maule 

earthquake (data from Vigny and others) 

 

Filters 

 

Several different filter types are commonly used in engineering seismology 

to remove either low-frequency noise (high-pass filter), high-frequency noise 

(high-pass filter), or both (band-pass filter).  In general, filters are designed to 

have a Fourier amplitude response that is approximately unity in the 

frequency band that is “passed” by the filter, and some small value in other 

frequency bands.   Before I describe the Fourier amplitude spectra of these 

filters, I will discuss the phase spectra of the filters.  Recall that the phase 

spectrum is related to the relative amplitude of the cosine and sine series.  If 

( )F  is the Fourier transform of some filter function ( )F t , then ( )F   is a 

complex function that can be described by either its real and imaginary parts, 

or by its amplitude ( )F  and phase, ( ) , where 
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 ( )
( )( )
( )( )

1tan
F

F






−
 
  
  

 (2.44) 

The phase function determines how the filter shifts energy with respect to 

time.  Recall the Shift Theorem of Fourier transforms. 

 

If ( )f t has the Fourier transform ( )f  , then ( )0f t t− has the Fourier 

transform ( )0it
e f

 −
. 

 

Since ( ) ( )0it
e f f

  −
= , we see that information about shifts in timing are 

carried by the phase spectrum, and not the amplitude spectrum.  Further 

notice that the shift rule can be written as  
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0

0
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
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



−
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−

   −
  = = = 

−    

 (2.45) 

That is, the phase spectrum associated with a time shift (convolution with 

( )0t t − ) is simply a linear relation between phase and frequency; a positive 

slope in frequency corresponds to a positive delay in time, and a negative 

slope corresponds to a negative time delay.  This example provides the 

motivation for a more general understanding of the delay caused by 

convolution with a filtering function.  In general, the phase of a filter is a 

nonlinear function of the frequency.  However, we can define the group 

delay ( )groupT   as  

 

 ( )
( )

group

d
T

d







  (2.46) 

 

In the case of filtering with a delayed impulse function, the group delay is a 

constant.  That is, all frequencies are delayed by an equal time shift.  In the 

more general case, the main energy is delayed by different amounts at 

different frequencies.  This time of the energy shift is called the group delay. 

 



 

58 
 

The principle of causality is a statement that effects never precede their 

causes.  That is, if ( )I t is the response of a physical system to an impulse 

applied at 0t = , then  

 ( ) 0   for all  0I t t=   (2.47) 

This is equivalent to saying that the Group delay must be positive at all 

frequencies if a filter is causal.  Or alternatively, filters with either zero, or 

negative, group delays cannot be causal; they create a response before the 

signal begins.  Non-causal filters are a mathematical construct.  While it is 

beyond the scope of this class, it is not too difficult to show that all causal 

filters ( )I t  can be written in the Fourier-frequency domain as 

  ( ) ( ) ( )I G iHT G  = +     (2.48) 

Where HT signifies Hilbert transform, which is defined as 

 

( )
( )

( )

1

1

G
HT G d

G

 
 

  






−

 −
    −

−
= 


 (2.49) 

 

Filters generally remove signals in a specified frequency range (usually 

called a frequency band).  For instance, the simplest filters you could think of 

would consist of a simple cut in frequencies, either above or below a 

specified frequency.  In particular, we could devise a very simple low-pass 

filter that consists of a rectangle function in the frequency domain. That is, 

consider convolving with low-pass filter ( )hpf t  that has a Fourier transform 

of  

 ( ) ( )
1 1

1
2 2

0 elsewhere
lpf


 

 
−   =  =

 
 

 (2.50) 

Since convolution in the time domain is identical to multiplication in the 

frequency domain, this filter simply eliminates frequencies higher than ½.  

Since ( )lpf   is a real number, its phase is zero at all frequencies.  That is, it 

is a non-causal zero-phase filter, which is equivalent to the operation 

( )sinc t .  Convolution with a sinc function will result in a signal that rings 

at a frequency of 1.  That is, our simple low-pass filter will usually produce a 

signal that looks as if it is dominated by harmonic waves with a frequency 

defined by our limiting frequency.  
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While a filter of the type defined by (2.50) is generally a very poor choice for 

a filter, it is actually commonly encountered.  In particular, there are several 

important techniques to solve the wave equation only up to a specified 

frequency.  That is, the solution does not contain its high-frequency terms.  

These solutions are often characterized by a waveform that looks harmonic at 

the cut-off frequency.  If a similar filter is used on data for comparison, then 

both the data and the synthetic look similar because they both look like 

harmonic waves at the chosen cut-off frequency. 

 

In a likewise manner, we could construct a simple rectangular high-pass filter  

( )hpf t , where 

 ( ) ( )
1 1

0
12 2

1 elsewhere
hpf


 

 
−   = = −

 
 

 (2.51) 

 

This filter would be equivalent to the time domain operation 

( ) ( )( )sinct t − .  That is, the filter is the same as subtracting a low-pass 

filtered version of the signal from itself.  It’s easy to see that this also will 

ring at the cutoff frequency. 

 

Finally, we could construct a band-pass filter ( )bpf   that is unity between 

between  specified frequencies or 

 ( )
1 1

1 2

1 2

2

0

1

0

bpf

  
 

   
 

 

−   
    

=   =  −    
     

 (2.52) 

 

This filter is the same operation as ( )1 2sinc sinct t  − . 

 

 Ormsby filters are sometimes encountered in engineering seismology.  The 

Ormsby filter is best described in the Fourier domain as having a trapezoidal 

shape for the amplitude spectrum and a phase spectrum equal to zero at all 

frequencies.  It is in the class of filters known as zero-phase filters.  We can 

write the Ormsby filter ( )O  as  
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 (2.53) 

 

This filter is an extension of our simple bandpass filter and it has the same 

undesirable features.  Fortunately, it is rarely used anymore.  However, it was 

heavily used in the 1970’s and you should be cautious interpreting records 

that were filtered with it. 

 

Butterworth filters are far and away the most common type of filter 

encountered in engineering seismology.  They are a type of causal filter that 

has a frequency amplitude response that is optimally flat.  The Fourier 

amplitude response of an nth order Butterworth is given by 
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1
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B 
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=

 
+  
 

 (2.54) 

This is a minimum-phase filter, which means that the group delay is the 

minimum possible for the shape of the amplitude spectrum.  It is beyond the 

scope of the class to derive the phase spectrum, but the entire filter is best 

described by its poles and zeros.  Two-pole Butterworth filters are most 

commonly used in seismology, and their response looks very similar to a 

71% damped SDOF.  A high-pass Butterworth is formed by taking the 

reciprocal of frequency or  

 ( )
2

1

1

hp
n

c

B 




=

 
+  
 

 (2.55) 

While Butterworth filters are causal filters, they are often applied as zero-

phase filters.  This is accomplished by filtering twice, once in the forward 

direction, and once again in the negative direction.  Time reversal is the same 

as taking the complex conjugate in the frequency domain, which is the same 



 

61 
 

as taking the negative phase.  Causal filters are useful if one wants to identify 

the first arrival of a signal.  However, if one is interested in the timing of a 

main group of energy, then causal filters introduce a group delay.  Zero-

phase filters eliminate this group delay, but they result in non-causal signals. 

 

Additional Resources    

 

A worldwide database of strong ground motions can be found at 

http://db.cosmos-eq.org/scripts/default.plx 

 

A worldwide seismic database of seismic data is available from IRIS 

(Incorporated Research Institutes for Seismology).  Iris also maintains a 

software download site for analysis of seismic data.  Many researchers use 

SAC to analyze seismic data. 

http://www.iris.edu/ 

 

Data from the California Integrated Seismic Network (Caltech, UC Berkeley, 

USGS, Calif. Geol. Survey) can be found at 

http://www.cisn.org/ 

 

Many researchers find it helpful to plot map data using GMT 

http://gmt.soest.hawaii.edu/ 

 

GPS data and resources can be found at UNAVCO 

http://www.unavco.org/ 

 

NGA-PEER processing 

In 2008. The Pacific Earthquake Engineering Research Center (PEER) 

published a set of ground motion prediction equations (gmpe’s) to 

describe the statistical properties of ground shaking as a function of 

earthquake magnitude, distance to the rupture, and characteristics of sites 

(shear-wave velocity near the site).  These gmpe’s are referred to as the Next 

Generation Attenuation (NGA) models.  The equations are formulated in log 

space and they have numerous terms to account for how ground motions vary 

with magnitude, distance, and site characteristics.  There are literally 

http://db.cosmos-eq.org/scripts/default.plx
http://www.iris.edu/
http://www.cisn.org/
http://gmt.soest.hawaii.edu/
http://www.unavco.org/
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hundreds of constants that are used cover the plethora of amplitudes that are 

used to describe the amplitude of shaking.  For example, peak ground 

acceleration (pga), peak ground velocity (pgv). and response spectral 

acceleration at 5 % damping and at least 10 different natural frequencies (see 

Chapter 6).  The PEER NGA project compiled a large set of strong motion 

records that can be accessed at Next Generation Attenuation Relationships for 
Western US (NGA-West) - Databases (berkeley.edu). 

This project has been updated to include a large set of strong motion records.  

Raw, unfiltered acceleration records are available.  However, most 

practitioners use records that are filtered with a zero-phase high-pass 

Butterworth filter.  This simplifies any analysis since it removes long-period 

trends in the data.  Unfortunately, it also means that these filtered records 

cannot be used to recover true displacements.  Most earthquake engineers 

argue that the bandpass of the filter is wide enough that dynamic analysis of 

buildings is unaffected by the filtering.  Unfortunately, this is not true since 

simulations of collapse of tall buildings is a highly nonlinear operation.  You 

can find more about this problem in a paper byBuyco, Roh, and Heaton 

(2020) who concluded that it’s generally best to use uncorrected acceleration 

records for structural analysis. 

 

https://apps.peer.berkeley.edu/ngawest/databases.html
https://apps.peer.berkeley.edu/ngawest/databases.html
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Homework  Chapter 2 

 

Problem 2.1   Explain why an L4-C seismometer that has its case filled with 

highly viscous oil has an output voltage that is approximately equal to a 

constant times ground acceleration. 

 

Problem 2.2   Find the poles and zeros of seismograph system that has a 20 

sec displacement transducer seismometer (70.7% damped) that is driving a 

100 sec galvanometer (also 70.7% damped).  Sketch the response. 
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Chapter 3   Waves in an Elastic Whole Space  

8/28/2022 

Equation of Motion of a Solid 

 

Hopefully, many of the topics in this chapter are review.  However, I find it 

useful to discuss some of the key characteristics of elastic continuous media.  

These concepts are critical for understanding both seismic waves in the Earth 

and also the response of engineered structures (e.g., buildings).  I will assume 

that you already know what stress and strain are and I will begin with the 

equation of motion.  I will use Einstein’s summation convention that any 

repeated index signifies summation over three spatial coordinates. 

 

In the first two chapters we considered dynamics problems in which time was 

the only dependent variable.  However, in a continuum, the motion is a function 

of both time and space.  Consider an infinitesimally small cube of elastic solid 

shown in Figure 3.1.  Although this cube is surrounded by a continuous solid, 

we can ask about the net forces on the cube.  This is called free-body analysis 

in engineering mechanics. 

 
Figure 3.1.  Distribution of tractions on the faces of an infinitesimal cube of matter.  

i

T  is the vector traction (force per unit area) on the 
thi  face of the cube. 
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We inquire about the net force F  on the cube.  We begin by noting that the traction 
vector on the ith face is given by   

 
i

ij j=T n  (3.1) 

 

where  is stress in cartesian corrdinates and ij j n  is a unit vector normal to the 

thj face of the cube.  For example, 

 
1

11 1 12 2 13 3  = + +T e e e   (3.2) 

We begin by assuming that there is no net torque on the cube, otherwise it 

would start to spin.  This condition is satisfied if and only if the stress tensor 

is symmetric; that is 

 
ij ji =  (3.3) 

 
We next employ Newton’s 2nd law to derive the rectilinear acceleration of the mass, 

 m= F P u  (3.4) 

The cube is assumed to have a density of 
1 2 3 and dimensions of , , .dx dx dx  The 

  becomes a true =  if we take u  to be the position of the center of mass of our 

infinitesimal cube. The 
thi component of net force on the cube is  

 

 
1 2 3

2 3 1 3 1 2i i i iF d T dx dx d T dx dx d T dx dx= + +  (3.5) 

 
Recognizing that  

 
j

ij
i j

j

d T dx
x


=


    (no summation) (3.6) 

we can rewrite Newton’s law (3.4)  for the 
thi component of net force and 

acceleration as  

 
1 2 3 1 2 3

ij

i

j

dx dx dx u dx dx dx
x





=


 (summation on j) (3.7) 

or using the notation where , i signifies differentiation with respect to the 
thi

coordinate, this can be written 

 
,ij j iu =  (3.8) 

 
We can obtain a slightly more general expression by allowing there to be some 
external “body” force f  that is acting on the cube (e.g., gravity) and we then obtain 
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,ij j i if u + =  (3.9) 

 
Equation (3.9) is the basic equation of motion of a solid continuum.  Although we 
derived it from Newton’s law, it is fundamentally different in that it contains a 
spatial derivative of forces in addition to the usual time derivative of linear 
momentum.  As we will see, this fundamentally changes the nature of the forces in 
the problem.  It says that acceleration at a point is not related to stress at that point 
(force per unit area), but to the spatial derivative of stress.  We can generalize (3.9) 
by noting that it can be written as 

   + =f u   (3.10) 

Where   is the divergence operator (operating on the stress tensor).  This 
operation is a 3-vector whose components are the divergence of the three columns 
of the stress tensor. 
 
 
Strain and Constitutive Laws 
 
In order to actually solve elasticity problems, we must have some relationship 
between the deformation of the body and the internal stresses.  If we consider our 
infinitesimal cube as shown in Figure 3.2, then we can describe the motion of the 
cube as a combination of a rigid-body motion and rotation and, internal strain.  We 
will keep track of the motions of our cube by characterizing the position u  and 
the diagonal vector R .  We will call the diagonal of the unstrained element R and 
the diagonal of the element after straining R .  We define the change in the 
diagonal element as 

  = −R R R  (3.11) 
If the motion of the infinitesimal cube is small, then in component form 

 
,i i j jR u dx =  (3.12) 

which can be rewritten in the form of 

 
i ij j ij jR dx dx  = +  (3.13) 

where 

 ( ), ,

1

2
ij i j j iu u = −  (3.14) 

and 

 ( ), ,

1

2
ij i j j iu u = +  (3.15) 

ij represents rigid body rotation and it is anti-symmetric.  
ij  is the infinitesimal 

strain tensor and it is symmetric. 
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Figure 3.2. Deformation of an infinitesimal element. 
 
The relationship between stress and strain is called the constitutive relation.  For 
small strains, most materials exhibit a linear relationship between stress and strain 
that can be generally written as  

 
ij ijkl klC =  (3.16) 

where there are 81 elastic coefficients 
ijklC .  However, due the symmetry of the 

stress and strain tensor, and due to the requirement for a unique strain energy, there 
are at most 21 independent elastic coefficients.  If the material is isotropic (no 
intrinsic directionality to the properties), then there are only 2 independent elastic 
coefficients.  Table 3.1 provides a handy conversion between several different 
elastic coefficients for an isotropic solid.  For our discussion, we will use the 

st nd1  and 2  Lame constants  and .    In this case (3.16) simplifies to 

 2ij kk ij ij   = +  (3.17) 

where 

 
0

Kronecker delta
1

ij

i j

i j


 
=  

= 
 (3.18) 
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Table 3.1.  Relationship between elastic constants for an isotropic elastic medium 
 
Navier’s Equation 
 
We are now able to write the equation of motion entirely in terms of displacement 
of the medium.  Combining equations (3.9), (3.15), and (3.17), we obtain 

 ( ), ,i i i jj j jiu f u u   = + + +  (3.19) 

This is Navier’s equation, and it is such an important equation that it is worth 
writing it out to see the terms more explicitly. 

 ( )
22 23

2 2
1

ji i
i

j j j i

uu u
f

t x x x
   

=

  
= + + + 

     
  (3.20) 

In Navier’s equation 2nd derivatives of displacements with respect to time are 
linearly related to 2nd derivatives of displacement with respect to space.  Everything 
that happens in an isotropic linearly elastic solid is a solution to this equation. 



 

69 
 

 
We can also write Navier’s equation in vector form as 

 ( ) ( )2    + +   + =u u f u  (3.21) 

Where Laplacian operator ( )2   u u  is the divergence (a 3-vector) of the 

gradient of the displacement vector (a 3-tensor).  The term  u  is seen to be the 

dilatation, or the net volume change of our infinitesimal element.  This vector form 
of the equation has the advantage that we can rewrite it in any type of coordinate 
frame for which we know the Laplacian operator, the gradient operator, and the 
acceleration vector.  In particular, we can write these operators for  
Cartesian coordinates   

 
i iu=u e  (3.22) 

 
,i iu =u  (3.23) 

 i

ix


 =


e  (3.24) 

 
2

2   (note the double sum on  and )i
i

j j

u
i j

x x


 =

 
u e  (3.25) 

 3 32 1 2 1
1 2 3

2 3 3 1 1 2

u uu u u u

x x x x x x

         
 = − + − + −     

         
u e e e

 (3.26) 
 
Cylindrical coordinates 
 

 r r zu u u = + +
z

u e e e  (3.27) 
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u u
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r r r z
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1

r z
r r z




  
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2 2
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2 2 2

1 1
r

r r r r z

    
 = + + 
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 (3.30) 
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r z
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 

 
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 (3.31) 
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Spherical coordinates 

 

 
r ru u u   = + +u e e e  (3.32) 

 ( ) ( )2

2

1 1 1
sin

sin sin
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 
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1 1

sin
r z

r r r z


 
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2
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2 2 2 2 2

1 1 1
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 (3.35) 
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( ) ( )
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e

 (3.36) 
 
There are infinitely many solutions to Navier’s equation and the solution to any 
individual problem is the one that has the correct initial conditions and boundary 
conditions for that particular problem.  In general, it is not possible for humans to 
analytically solve 3.18 for all classes of three-dimensional solutions to (3.20).  
However, there are a number of analytic solutions to (3.20) if the problem is 
assumed to be uniform in one direction (two-dimensional).  This is ultimately due 
to the fact that division is defined for two dimensional vectors (the same as division 
by complex numbers).  In contrast, division cannot be defined for higher dimension 
vectors.  Therefore, there are analytic (well mostly analytic) solutions to problems 
in which the elastic media is described by a stack of horizontal plane layer, but 
entirely numerical procedures (finite-element or finite-difference) must be used to 
solve problems in which the structure is truly three dimensional.  The techniques 
for solving general layer problems often rely on expressing the displacement vector 
field as the sum of potentials (Helmholtz decomposition).  That is, we can 
decompose the displacement as  

  =  +u  (3.37) 

where  and   are scalar and vector functions of time and space.  If we make this 

change of variables, then Navier’s equation separates into several wave equations 
as follows. 

 2

2

1
 


 =  (3.38) 

 
2

2

1
i i 


 =  (3.39) 

Of course, the boundary conditions must also be transformed into potential form.  
These potential forms can be used in any coordinate system if you know how to 
compute the Laplacian, the gradient and the curl. 
 
It is beyond the scope of this class to demonstrate general solution techniques for 
Navier’s equation (see Achenbach for a nice treatment), but we can demonstrate 
several simple solutions which have attributes similar to those of solutions 
encountered in the real world.  Since Navier’s equation is linear, any solution 
that is added to any other solution is also a solution.  Therefore, we can often 
build the appropriate solution by adding together known simple solutions in such 
a way that they produce the desired stresses or displacements on the boundary of a 
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domain; that is, they match boundary conditions.  When a domain contains layers, 
the solutions apply inside the individual layer, and they are constructed to produce 
continuous displacement at the boundaries and balanced tractions on the 
boundaries. 
 
 
Plane P-waves 
 
Suppose that we consider a motion defined by 

 ( ) 1
1 1 2 3, , ,

x
u x x x t f t



 
= − 

 
 (3.40) 

and 

 2 3 0u u= =  (3.41) 

then it is a simple matter of substituting (3.40) and (3.41) into (3.20) to show that 
this is a valid solution for any single-variable function f  that is twice differentiable, 
and provided that 

 
2 




+
=  (3.42) 

We could have alternatively chosen the potentials, 

 ( ) 1;
x

f d t
c

    = −  −  (3.43) 

  = 0  (3.44) 

 
It is a trivial matter to show that its gradient is the displacement field given by (3.40) 
and (3.41), and that it satisfies the wave equations (3.38) and (3.39). 
 

This is the equation of a planar P-wave traveling at velocity   in the positive 1x

direction.  Since the material is isotropic, this direction is arbitrary, and it could just 

as well be traveling in the negative 
1x  direction.  Note that the shape of the 

waveform is unchanged as it propagates through the medium.  This property is 
called nondispersive, and it contrasts with some other solutions that we will 
explore later where the wave velocity depends on the frequency of the oscillation. 
 
Since the equation is linear, we could write a more general solution that has different 
P-waves traveling in both positive and negative directions as 

 
1 1

1

x x
u f t g t

 

   
= − + +   

   
 (3.45) 
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where g is some other twice differentiable function.  P-waves are also called 
longitudinal waves since their particle motion is in the same direction as the wave 
propagates.  They are also called compressional waves, although they have both 
compressional and shear stresses as shown by the computing the strain and stress 
tensor for (3.40) as follows. 

 

1
11

1

1 1

1

u

x

x x
f t f t

x
u t



 

 






=


   
 − −   
   = − = −

 
− 

 = −

 (3.46) 

 

and all other strain components are zero.  Don’t be confused by the f   , it simply 

means differentiation with respect to the argument, 
1x

t


 
− 

 
 .  We see that the 

strain in this wave is proportional to the particle velocity divided by the wave 
speed.  This will be a recurring theme for other solutions of Navier’s equation. 
 
We can substitute (3.46) into (3.17) to obtain the stress, which gives 

  

 
( )

( )

11 11 22 33 11

11

2

2

     

  

= + + +

= +
 (3.47) 

and 

 22 33 11  = =  (3.48) 

 12 23 13 0  = = =  (3.49) 

Substituting (3.42) and(3.46) into (3.47) and (3.48) we find that 

 11 u = −  (3.50) 

and 

 22 33 11
2


  

 
= =

+
 (3.51) 

Equation (3.50) tells us that the stress in this wave is related to the particle 
velocity times the product of the density and the wave speed.  The ratio of the 

stress to the particle velocity 
u

 =  is called the mechanical impedance; it 
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measures the stress that is needed to make a particular ground motion.  In our 
particular example, 

 ( )11

1

mecahnical impedance 2
u


   = = = +   (3.52) 

Notice that although there are no explicit shear stresses in this coordinate frame 
(which is the principal coordinate frame for this problem), there are shear stresses 
in other coordinate frames.  The maximum shear stress is in the frame rotated 45 
degrees from the principal frame and in this frame the maximum shear stress is 

 ( )1 2 11 22 11

1 2

2 2


   

 
  = − =

+
 (3.53) 

Therefore, there are shear stresses associated with these P-waves. 
 

We can also calculate the power ( )1,P x t  associated with this wave as the energy 

flux in the 
1x  direction.  This energy flux is the rate of work per unit area done by 

the traction vector on a plane perpendicular to the velocity of propagation.  This 
rate of work (power P  ) per infinitesimal unit area dS  is the stress times the 
particle velocity, or   

 
( )1 2

11 1 1

,P x t
u u

dS
 = − =  (3.54) 

The energy per unit volume ( )1,E x t associated with the wave is just the energy 

flux divided by the wave velocity, or 

 
( ) 2

,E x t
u

dV
=  (3.55) 

As is the case for all linear dynamic systems, this energy is evenly divided between 
kinetic energy and potential (strain) energy if averaged throughout the system. 
 
Finally, we can inquire about the maximum accelerations that can occur in an elastic 
continuum.  We can differentiate equation (3.50) to obtain 

 ( )

1
11

1 1,

x
t

u x t






 
− 

 = −  (3.56) 

 
That is, the acceleration of a point scales like the time derivative of the compressive 
stress.  If a finite compressive stress is suddenly applied to a surface then it generates 
a P-wave whose acceleration is described by a Dirac-delta function, which has 
infinite acceleration.  That is, if 
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1

11 0

x
H t 



 
= − 

 
 (3.57) 

where H(t) is a Heaviside step function, then 

 
0 1

i

x
u t




 

 
= − 

 
 (3.58) 

Notice that the acceleration is infinite, whereas the stress is finite. 
 
Plane Shear Waves 
 
Another important solution to Navier’s equation can be expressed as 

 1
2

x
u f t



 
= − 

 
 (3.59) 

 
1 3 0u u= =  (3.60) 

It is a simple matter to substitute (3.59) and (3.60) into Navier’s equation (3.20) to 
find that this is a solution so long as  

 





=  (3.61) 

As before, we could have used the displacement potentials 

 0 =  (3.62) 

 1 2 0 = =  (3.63) 

 1
3

x
f t 



 
= − 

 
 (3.64) 

where the curl of   is the displacement and (3.64) solves the scalar wave equation  

(3.39). 
 

This is the description of a planar shear wave (S-wave) traveling in the positive 1x  

direction with velocity  .  The particle motion is in the 2x  direction and it is parallel 

to the wave front and perpendicular to the direction of motion.  As was the case 
with P-waves, f(t) is any function with a finite 2nd derivative.  Like the planar P-wave, 
planar S-waves are also nondispersive. 
 
Notice that the S-wave is slower than the P-wave and that the ration of the 
velocities is 

 
2  

 

+
=  (3.65) 
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This can be expressed in terms of Poisson’s ratio   by using Table 3.1.  In this 
case, 

 
2 2

1 2

 

 

−
=

−
 (3.66) 

So the ratio of P- to S-wave velocities depends only on Poisson’s ratio.  For many 

solids, 1, or 
4

    , in which case we call the solid Poissonian and 

3 1.717

 = .  The typical S- and P-wave speeds in the Earth’s crust are 4 

km/s and 6.5 km/s, respectively.  A handy trick is to estimate the distance   
between an earthquake and a seismic station using the following simple formula 

 ( ) ( )km7
sS Pt t  −    (3.67) 

There are important cases where the P-wave speed is much higher than the S-wave 
speed.  In particular, the types of water saturated muds found in coastal areas can 
have P-wave speeds that are more than 10 times the S-wave speed.  In this case 

Poisson’s ratio approaches its upper limit of 
1

2
 . 

We can also compute strain, stress, and energy flux for the S-wave wave as we did 
for the planar P-wave.  In this case, 

 
2

12

1

2

u



= −  (3.68) 

 11 22 33 13 23 0    = = = = =  (3.69) 

 12 2u =  (3.70) 

 11 22 33 13 23 0    = = = = =  (3.71) 

 
( )1 2

12 2 2

,P x t
u u

dS
 = − =  (3.72) 

 
Diagrams of the motion of Planar P- and S-waves are shown in Figure 3.3. 
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Figure 3.3. a) longitudinal P-wave, b) Transverse S-wave 
 

 
Harmonic Plane Waves 
 
While planar P- and S-waves can be expressed for any function of the variable,

x
t

c

 
− 

 
, where c is the wave velocity, it is instructive to investigate the solution if 

the function is harmonic, a sinusoid or cosinusoid.  That is, there are many instances 
in which the superposition of harmonic solutions can be used to construct solutions 
to more general problems.  To demonstrate, let’s consider the planar S-wave in the 
previous section, but we will assume that our function is a cosine. That is, 

 

( )

1
2

1

cos

cos

x
u t

kx t






  
= −  

  

= −

 (3.73) 

where k is spatial wavenumber given by 

 
2

k
 


= =


 (3.74) 

and   is the wavelength.  We can now consider what happens when two harmonic 
plane waves of identical strength and frequency, but traveling in opposite directions 
are added together.  We can use standard trigonometric identities to easily show 
that. 

 
( ) ( )

( ) ( )

2 1 1

1

cos cos

2cos cos

u kx t kx t

kx t

 



= − + +

=
 (3.75) 

Equation (3.75) is therefore a standing wave with the same frequency and 
wavenumber as the two traveling waves.  Since Navier’s equation is linear, and since 
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the waves traveling in each direction are solutions, then their sum (the standing 
wave) is also a solution of Navier’s equation.  Obviously, standing wave solutions 
are natural when identical waves are traveling in opposite directions.  This is a 
common occurrence when harmonic waves are reflected off of an interface.  It also 
happens in our spherical Earth when waves that travel around the Earth in opposite 
directions meet.  In this case the interference makes the free oscillations of the 
Earth. 
 
In a similar fashion, it is possible to add two harmonic standing waves together to 
produce a single harmonic traveling wave.  Again we can use standard trig identities 
to show that   

 
( ) ( ) ( ) ( )

( )

2 1 1

1

cos cos sin sin

cos

u kx t kx t

kx t

 



= +

= −
 (3.76) 

We have shown that we can represent any harmonic plane wave as either the sum 
of traveling waves or the sum of standing waves.  Obviously, it works for P-waves 
too since we use the same trig identities.  As it turns out, this duality of 
representations is far more general and can be applied to a variety of more complex 
problems.  These two solutions are sometimes referred to as characteristic 
solutions and mode solutions.  Figure 3.4 shows a schematic of how sinusoids 
traveling in opposite directions sum to make a standing wave. 
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Figure 3.4.  From “Vibration and Waves” by A. P. French. W.W. Norton and Co., 
1971. 
 
Spherical Waves 
 
Many problems that we encounter concern the radiation of waves from a point in 
the medium.  These waves spread spherically through the medium and their 
representation with Cartesian coordinates is awkward.  In a homogeneous whole 
space, it is usually most natural to solve these problems in spherical coordinates.  
However, if there are layers in the medium, then it usually is more convenient to 
solve these problems in cylindrical coordinates.  General solutions for these 
problems are quite complex and beyond the scope of this class.  However, we can 
consider the following potential in spherical coordinates.  This potential has radial 
symmetry. 

 ( )
1 1

,
r r

r t f t g t
r r


 

   
= − + +   

   
 (3.77) 

This solves the transformed form of Navier’s equation given by (3.35) and (3.38).  
When the problem is radially symmetric, this can be written as 



 

80 
 

 
2

2 2

1 1
r

r r r






  
= 

  
 (3.78) 

The displacement that results from this is 

 
2

2

1 1

1 1

r

r r r r
u f t g t f t g t

r r r

r r r r
f t g t f t g t

r r



    

    

 −           
 = = − + + − − − +          

           

−           
= − + + − − − +          

          

 (3.79) 
I have chosen a solution with waves that travels both radially outward (the f terms) 
and  inwards (the g terms).  Each of these has terms that decay with distance as 

both 
1 2 and r r− −

; these are called far-field and near-field terms, respectively.  They 
are both required to solve Navier’s equation for this radial wave problem.  Notice 
that the far-field term has a time dependence that looks like the time derivative of 

the near-field term.  Also notice that the far-field term is scaled by the factor
1 −
. 

 
We can enquire about the energy in the spherically symmetric P-wave by integrating 
the power that is exerted on a shell of radius, r  .  Recall that power per unit area 
is given by equation (3.54),  or  

 ( ) ( )2 24P t r u =   (3.80) 

Inserting the far-field term from (3.79) into (3.80), we obtain 
 

 ( ) ( )24P t f t





=   (3.81) 

That is, the energy in the radiated far-field P-wave is the same as it passes through 
any spherical shell at any distance; the wave energy of far-field waves is conserved. 
 
Pressure Step in a Spherical Cavity 
We can explore this difference between near-field and far-field terms by 
investigating the exact solution to the problem of a step change in pressure p0 inside 
a spherical cavity of radius a.  The derivation is somewhat lengthy and is given by 
Achenbach.  The answer for a Poisson solid is   

 ( )
3

ˆ

0 1 12

1
ˆ ˆ ˆ1 2 sin cos

4 2

bt

r

a r
u p H t t t e

r a
 



−   
= + − −   

   

 (3.82) 
where 

 ˆ
r

t t


 −  (3.83) 
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 1

2 2

3a


 =  (3.84) 

 
2

3
b

a


=  (3.85) 

At the surface of the cavity the displacement is  

 
0 1 1

1

1 sin cos
4

bt bt

r r a

a b
u p e t e t 

 

− −

=

 
= + − 

 
 (3.86) 

This looks like the pressure rate convolved with the solution of damped harmonic 
oscillator problem subjected to a step in force (see equation (1.39)).  The period of 
the undamped oscillator is given by (1.37), which when combined with (3.84) and 
(3.85) gives    

 2 2 2 2

0 1 3b b = + =  (3.87) 

The fraction of critical damping of this system is given by (1.5) and is equal to 

 
0

1
0.58

3

b



= = =  (3.88) 

So, the surface of the cavity is a 58% damped oscillator that settles about its new 
static equilibrium position.  With each harmonic swing, it radiates wave energy to 
the far-field term, which at large r become.  

 

2
ˆ

0 1
ˆ2 sin

4

bt

r r a

a
u p e t

r




−


  (3.89) 

The damping of the oscillating cavity is sometimes referred to as radiation 
damping and since it is linear and depends on the velocity at the source, it is very 
analogous to viscous damping discussed in the SDOF problem of chapter 1.  The 
concept of radiation damping can become useful when investigating the damping 
of an oscillating building that excites seismic waves as it oscillates. 
 
Of course, a spherical cavity has many other modes besides the radially symmetric 
mode just described.  Each mode has its own natural frequency, mode shape, and 
radiation damping. The mode shapes are best described with spherical harmonics.  
Since the pressure problem is radially symmetric, we only need the fundamental 
mode solution that is given by (3.82).  
 
 
Point Force 
 
The displacement in the i direction from a point force in the k direction with time 
history f(t) was given by Love (The mathematical theory of elasticity, Dover Pubs., 
1944) and is 
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( )
2

2 2 2

1 1 1 1 1

4 2

r
ik

i
r

i k i k

r r r r r
u f t d f t f t f t

x x r x x r r r






  

      

            
= − + − − − + −          

               


 (3.90) 
where 

 2

i ir x x=  (3.91) 

This is an important building point in seismology, since it allows us to calculate the 
wave field that results from distributions of forces.  Although this solution is 
relatively compact, it is written in terms of both Cartesian coordinates and radial 
distance.  It is easier to write the full solution in spherical coordinates in which case 
all of the spatial derivatives turn into a relatively complex set of sines and cosines 
of the angular geometric parameters.  This is called “radiation pattern” and an 
example will be given in Chapter 7 (Sources).  
 
 
Anelastic Attenuation of a Traveling Wave  
 
The solutions discussed above are for an elastic medium.  However, it is useful to 
introduce the concept that their energy slowly decays as they travel due to some 
inelastic response of the medium.  In addition, there are basic physical 
considerations that require that waves eventually attenuate.  One convenient 
approach to this problem is to break a waveform into its harmonic constituent parts 
and to then introduce the following definition of Q which is entirely analogous to 
the one that we used in Chapter 1 for the SDOF problem.  Recall that for a lightly 
damped oscillator (equation 1.30), 

 2
E

Q
E

 −


 (3.92) 

where  and E E  are the total energy and energy lost per cycle.  We can also define 
the logarithmic decrement of the amplitude lost per cycle as 

 1

2

ln
A

A


 
  

 
 (3.93) 

since energy is proportional to the square of amplitude, 

 
1

ln ln
2

A E=  (3.94) 

from which it follows that  

 Q



  (3.95) 

We can now write the expression for the amplitude A of a harmonic wave as a 
function of distance traveled r as  



 

83 
 

 ( )
( )2

0

r
Qc

A r A e
−

=  (3.96) 

 
where c is the velocity of the wave.  Sometimes the attenuation is described by the 

parameter t

 which is defined to be 

 
travel time

quality factor

r
t

cQ



= =  (3.97) 

  
 
Homework for Chapter 3 
 

1. Show that (3.40) and (3.59) are solutions to Navier’s equation. 
 

2. Show that (3.77) is a solution to Navier’s equation. 
 

3. If a plane harmonic wave with a frequency of 1 Hz and a propagation 
velocity of 3 km/sec is ½ the amplitude after traveling 100 km through an 

attenuating medium, then what is the * and Q t ? 
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CHAPTER 4  8/28/2022 

Planar Waves in Layered Media 

 
The behavior of planar P- and S-waves in a layered elastic medium is one of the 
most useful (and mercifully one of the easiest) problems in seismology.  There are 
many instances where the Earth can be approximated by plane layers and wave 
fronts are also approximately planar.  As an added bonus, these problems can also 
provide useful insights into the dynamic behavior of buildings. 
 
Unlike the last chapter in which there was no inherent coordinate frame for a 
homogeneous isotropic whole space, it is natural for the layered space problem to 
choose one of the coordinate axes to be perpendicular to the layering.  In most 

cases it is customary to choose this to be the 
3x  axis.  If the waves are approximately 

planar, we can use Cartesian coordinates which simplifies the problem 
considerably.  It is important to realize, though, that there is no physical situation 
in which truly planar waves exist.  If a full solution is desired to the problem of a 
point source in a layered medium, then cylindrical coordinates are the best choice.  
However, the problem becomes much more complex. 

 
Figure 4.1.  Natural Cartesian coordinate frames for planar waves in a layered 
medium 
 
For the moment, let us consider Cartesian coordinate frames.  There are two natural 
coordinate frames in the problem of planar waves in layered problems (see Figure 
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4.1).  The first coordinate frame ( )1 2 3
ˆ ˆ ˆ, ,x x x is that used in Chapter 3 and it is 

defined by the planar wavefronts, with ˆ
1

e  being in the direction of wave 

propagation.  The second coordinate frame is natural to the layers with ( )1 2 3, ,x x x  

perpendicular to the layering.  In the Earth, we can choose 
3e  as either up or down 

(both are used … entropy of the universe increases).  Because it is useful to have 
positive numbers for this coordinate and since the surface of the Earth at the top, 

it is most common to choose it as down.  Now we choose ˆ =
2 2

e e  to be the 

intersection of the plane of the layering with the plane of the wavefront.  
1

e  is now 

defined to be perpendicular to  and 
2 3

e e , which is the projection of  the 

propagation direction on the layering. Finally, ˆ
3

e  is chosen to be perpendicular to 

both 
2

ˆ ˆ and 
1

e e .    is the angle between ˆ and 
1 3

e e  and it is usually referred to as 

the incidence angle; it is 0 degrees for a wavefront traveling perpendicular to the 
layering (a wave coming straight up).  Using this coordinate frame, we see that 
planar P-waves can generally be written as 

 
1̂ ˆP x

f t


 
= − 

 
1u e  (4.1) 

and shear waves can be generally written as 

 
S SH SV= +u u u  (4.2) 

where 

 1
2

ˆ
ˆSH x

f t


 
= − 

 
u e  (4.3) 

and 

 1
3

ˆ
ˆSV x

g t


 
= − 

 
u e  (4.4) 

Therefore, it is natural to decompose S-waves, whose particle motion is a 2-
dimensional vector in the plane of the wavefront, into 1) the component that is 
horizontal (called the SH wave) and, 2) the component that has some vertical 
motion (called the SV wave). As before, f and g are independent functions with 
finite second derivatives. 
 
When the source of the wave is a point, then the approximately planar waves are 

traveling radially away from the source, and we identify  as the radial, 

transverse, and vertical directions, respectively. 
 
Now the solutions (4.1), (4.3) and (4.4) are written in the x̂ -coordinate frame.  
However, it is most convenient to write these solutions in the x-coordinate frame 
since the boundary conditions are more naturally described there.  Now for the 

1 2 3, ,  and e e e
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plane wave shown in Fig 4.1, which is traveling in the plus 
1x  direction and the 

minus 
3x  direction,  

 

 ( ) ( )1 3 1 3sin cosP f t p x x   = − + −u e e  (4.5) 

 ( )( )1 3 1 3cos sinSV f t p x x   = − + − −u e e  (4.6) 

 ( )1 3 2

SH f t p x x = − +u e  (4.7) 

 
Where  

 
sin

P-wave horizontal slowness  P-wave ray parameterp



=  

 (4.8) 

 
sin

S-wave horizontal slowness  S-wave ray parameterp




=  

 (4.9) 

 
cos

P-wave vertical slowness





=   (4.10) 

 
cos

S-wave vertical slowness





=   (4.11) 

 
 
SH-Waves in Two Welded Half-Spaces 
 
The simplest problem of a plane wave in layered media is that of planar SH-waves 
in two welded half-spaces.  The geometry of the problem is shown in Figure 4.3, a 
and b.  I show the location of a traveling wavefront in part a, and in part b, I show 
an equivalent ray diagram, which is a shorthand from optics that shows the vector 
directions of the normal to wavefronts. 
 
As in all of these problems, we have the correct solution when it 1) solves Navier’s 
equation, 2) has continuous displacements on either side of the boundary, and 3) 
has equal and opposite traction vectors operating on either side of the boundary.  
In this simple problem it turns out that, except for certain incidence angles, it is 
possible to match these 3 conditions by the appropriate sum of three planar SH-
waves, the incident wave in medium 1, the reflected wave in medium 1, and the 
transmitted wave in medium 2.  As we have seen, planar SH-waves already solve 
Navier’s equation.  We can write the solution as 
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 ( ) ( )1

1 1 3 2 1 3 2I RA f t px x A f t px x = − + + − −u e e  (4.12) 

 ( )2

1 2 3 2TA f t px x= − +u e  (4.13) 

 
 

 
Figure 4.2  SH plane wave from a faster to a slower medium 
 
The requirement of continuous displacements on either side of the boundary can 
only occur if the planar wave fronts travel along the boundary at the same apparent 
horizontal velocity c. This is simply a statement of Snell’s law.  Since apparent 
velocities are infinite for vertically incident waves, seismologists sometimes use a 
parameter called slowness, which is defined to be the inverse of velocity.  As it turns 
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out for vertically layered problems, the apparent horizontal velocity of the 
wavefront (or horizontal phase velocity) is constant in the problem.  The 
slowness of this horizontal phase velocity is called the ray parameter, p.  By the 
same token, we can define a vertical phase velocity and its corresponding vertical 
slowness , which is not the same in both media.  That is 

 1 1 2

sin sin sinI R T

c
  

  
= = =  (4.14) 

 
1

, the same in both mediap
c

  (4.15) 

 1

1 1

cos cosI R 


 
= =  (4.16) 

 2

2

cos T


=  (4.17) 

 
While (4.14) is a necessary condition for continuity of displacement, it is not 
sufficient.  To solve the problem fully, we need to use the boundary condition that 
tractions at the interface are equal, which can be stated as 
 

 ( ) ( )1 2

3 3, , 0 , , 0 , 1,2,3i ix y z x y z i + += = = =  (4.18) 

 

Because we have postulated a planar SH wave traveling in the 
1x -direction, the only 

stress involved is 23  , so 

 ( ) ( )1 2

23 23, , 0 , , 0x y z x y z + += = =   (4.19) 

and 

 ( ) ( ) ( ) ( )1 2 1 2

13 13 33 33, , , , , , , , 0x y z x y z x y z x y z   = = =

 (4.20) 
 
It can be shown that condition (4.18), together with the continuity of displacement 
is satisfied if 

 1 1 2 2 1 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2

cos cos

cos cos

SHR
SS

I

A
R

A

        

        

− −
 = =

+ +
 (4.21) 

and 

 1 1 1 2

1 1 2 2 1 2 1 2 1

2 2

cos cos

SHT
SS

I

A
T

A

  

        
 = =

+ +
 (4.22) 


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 are called the reflection and transmission coefficients, respectively. 

 
We can look at the special case of an SH plane wave that is reflecting off of a free 
surface.  There is no transmitted wave in this case and the reflection coefficient is 
+1. This means that, at the free surface the incident and transmitted waves sum 
together in phase, or from (4.12) we conclude that 
 

 ( ) ( )3 1 2; 0 2SH

It x A f t px= = −u e  (4.23) 

 
That is, the waves are twice as large at the free surface as they are inside the medium.  
Although the displacement is large, the stress is zero because of the free surface 
boundary condition. 
 
The astute reader will note that this solution cannot make sense if the horizontal 
phase velocity of the incident wave is less than the shear-wave velocity in the 

transmitting medium; that is, 
2 is the minimum possible horizontal phase velocity 

in medium 2, and therefore if  

 1
2

1sin
c





=   (4.24) 

then a purely plane wave solution is not possible.  This is called a post-critical 
reflection and it turns out that the wave is totally reflected, but as we will see in a 

later chapter, the solution is fairly complex.  1 1

2

sinc





−  =  
 

 is called the critical 

angle. 
 
It is instructive to investigate the amplitude of the transmitted  SH wave at vertical 
incidence, in which case (4.22) becomes 
 
   

  

 
1

1 2
0

1 2 2 1 2 2

1 1

2 2

1

SH

SST 

 

     

 

= = =
+

+

 (4.25) 

 
Therefore, as the density times the rigidity of the transmitted medium becomes 
small, the amplitude of the transmitted wave can become twice as large as the 
incident wave.  This may seem like a violation of conservation of energy, but it is 
not.  Recall from equation (3.68) that energy flux is  

 and SH SH

SS SSR T
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2 2

2 2 2 2 2 2P u u   = =  (4.26) 

While the maximum amplitude of the transmitted wave is twice that of the incident 
wave, we can achieve even higher amplifications by transmitting the wave through 
a stack of smoothly decreasing velocity.  In this case, there is very little reflection 
from each layer and most of the energy is transmitted through the entire medium.  
When this happens, the energy flux at the top is approximately that which is fed 
into the bottom.  So for a smooth velocity gradient, 
 

 
I TP P  (4.27) 

Or 

 
2 2

T I I I

T T

u u
 

 
  (4.28) 

 
where the indices T and I represent the material properties on the transmitted and 
incident sides of the gradient, respectively.  Therefore, the transmitted wave can 
become very large in amplitude with respect to the incident wave. 
 
 
P- and SV- Plane Waves 
 
The problem gets far more complex when we consider either a P-wave or an SV-
wave as the incident wave.  The motion now involves two components of motion, 
which must be continuous on the boundary, and there are now two components 
of stress to match across the boundary.   
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Figure 4.2 Ray diagram for a planar P-wave incident on a faster medium 
 
Let us first consider the case of an incident planar P-wave.  It turns out that the 
boundary conditions can be satisfied with the following superposition of plane 
waves.  The ray diagram for these waves is shown in Figure 4.2. 

 

( )( )

( )( )

( )( )

1

1

1

1

1 3 1 1 3 1

1 3 1 1 3 1

1 3 1 1 3 1

sin cos

sin cos

cos sin

IP P P

IP PP P P

IP PS S S

A f t px x

A R f t px x

A R f t px x







  

  

  

= − + +

+ − − −

+ − − −

u e e

e e

e e

 (4.29) 

 
The three terms represent incident P, reflected P, and reflected SV waves.  The 
solution in medium 2 has the form 

 
( )( )

( )( )

2

2

2

1 3 1 2 3 2

1 3 1 2 3 2

sin cos

sin cos

IP PP P P

IP PS S S

A T f t px x

A T f t px x





  

  

= − + −

+ − + +

u e e

e e

 (4.30) 
As in the case of the SH wave, all of these wavefronts have identical horizontal 
phase velocities or 

 1 2 1 2

1 2 1 2

1

sin sin sin sinP P S S

c
p

   

   
= = = = =  (4.31) 
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Two critical angles are now possible if 

 1 1

2

sincPP






−  
=  

 
 (4.32) 

 

 1 1

2

sincPS






−  
=  

 
 (4.33) 

 
The transmission and reflection coefficients are derived in such a way that the 
following boundary conditions are satisfied.  There are four non-zero boundary 
conditions for this problem 

 
1 1u u+ −=  (4.34) 

 
3 3u u+ −=  (4.35) 

 
33 33 + −=  (4.36) 

 
13 13 + −=  (4.37) 

The following Table from Lay and Wallace gives the values of the reflection and 
transmission coefficients. 
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From Lay and Wallace 
 
These coefficients are algebraically complex, and their behavior as a function of 
incidence angle is quite complex.  Ewing, Jardetsky, and Press (Elastic Waves in 
Layered media) shows several plots of the behavior of these coefficients. 

 
Figure 4.3  Ray diagram for a Planar SV wave incident on a faster medium. 
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The case for an incident SV-wave is very similar to the incident P-wave and the 
ray diagram for this case is shown in Figure 4.3.  However, now there are as many 
as three possible critical angles, depending on the wave speeds.  They can occur 
if 

 1 1

2

sincSS






−  
=  

 
 (4.38) 

 1 1

2

sincSP






−  
=  

 
 (4.39) 

 1 1

1

sincSP






−  
=  

 
 (4.40) 

 
SH Waves in a Plate 
 
We now address the problems of planar SH-waves in a plate.  We will first solve 
the problem where both top and bottom surfaces are free, and then we will solve 
the problem where the bottom surface is fixed. 
 
We begin with the problem where both the top and bottom surfaces are free.  In 
this case there will be an infinite series of planar SH waves that are shown 
schematically in Figure 4.4.  The boundary conditions are satisfied by the free 
surface reflection coefficient which, for SH waves is simply 1.  To keep things 
simple, we restrict ourselves to looking at a single point on the free surface that we 
will set to be the origin. 

 
Figure 4.4.  Geometry of a multiply reflecting SH-wave in a plate of thickness h. 
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In this case we can write the solution as  

 ( ) ( ) ( ) ( )2

t
; III

Tn

u t f t t nT f t


=−

 
= =  − =   

 
x 0  (4.41) 

where III is called the sampling function (or sometimes called a comb function) 
and is defined as 

 ( )
t

III
T n

t nT


=−

 
= − 

 
  (4.42) 

 
The sampling function (and several other related functions) is shown in Figure 4.4.   
The Fourier transform of a sampling function is also a sampling function (see 
Bracewell) and it is also shown in Figure 4.5.  In this case 

 FT III III
2

t T
T

T





    
=    

    
 (4.43) 

Therefore we can write the Fourier transform of the displacement as 

 ( ) ( ) ( )III
2

n

n

T
u f T T f


  





=−

 
= = 

 
  (4.44) 

for our purposes we will only consider non-negative values of n. 

 
2

n

n

T


 =  (4.45) 

Therefore we see in (4.44) the solution just picks off discrete values of the Fourier 
transform of our function f.  We can write the solution back in the time domain as 

  

 ( ) ( ) ( ) ( ) ( ) Re cos Im sinn n n n

n

u t T f t f t   


=−

   = +   

 (4.46) 

 
We call the discrete frequencies the modes of the solution.  However, notice that 
these modes represent traveling waves except at vertical incidence.  While they are 
modes, they are not normal modes. 
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Figure 4.5 (from Bracewell, The Fourier Transform and its Applications).  Notice 

that Bracewell uses the notation . 
 
Recall though, that our original problem only specifies the thickness of the layer 
and T is still undetermined.  From Figure 4.4 we see that  

2 s =
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 T
c


=  (4.47) 

Where 

 
sin

c



=  (4.48) 

 
Now 

 
2

2

2 cos 1 sin 1
2 2 2 1

tan sin sin sin

h
h h h

 

   

−
 = = = = −

 (4.49) 

 
substituting (4.48) into (4.49) gives 

 

22

2
1

2

c

h

 
= +  

 
 (4.50) 

Therefore the horizontal phase velocity depends on the wavelength of the 
propagating wave.  We can combine (4.45) and (4.47) to write 

 2
n

c
cT n


 = =  (4.51) 

substituting (4.51) into (4.50), and solving for c gives 

 
2

1
n

c

n

h







=

 
−  
 

 (4.52) 

 
We can interpret (4.52) in the following way.  We can choose any mode number n 

and then we can choose any frequency  and then we can use (4.52) to calculate 

the phase velocity.  The phase velocity as a function of frequency is called the 

dispersion curve for the 
thn mode of the problem. 

 

Notice that when the wave is traveling vertically
 
( )0 = then both the phase 

velocity and the wavelength become infinite.  However, we can still compute the 
modal frequencies for this case by recognizing that the periodicity of our sampling 
function in (4.41) is just twice the travel time through the layer or 

 0

2h
T 


= =  (4.53) 

n
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 and then using (4.45) we see that 

 0 ; 1, 2,3,...n

n
n

h



 = = =  (4.54) 

 

where we have dropped the 0th
mode, since it yields zero frequency and is not 

physically meaningful in this case.  Notice that when there is a 0th
 mode, it 

corresponds to any horizontally traveling SH wave.  The modes become true 
standing waves when the waves are traveling vertically.   
 
We can also inquire what the full spatial solution looks like for each of these modes.  
That is, we assume that the time history is a cosine wave having a modal frequency 
and use (4.12) to write 

 
( ) ( ) 

( ) ( )

1 3 1 3

1 3

cos cos

2cos cos

n n

n n

t px x t px x

t px x

   

  

= − + + − −      

= −  

1

2

2

u e

e

 (4.55) 
Therefore we see that this is a cosine traveling with a particular phase velocity and 
with a depth dependence that is a fixed cosine function.  We can now recognize 
that the vertical mode shapes must be such that the shear stress and shear strain are 
zero at the boundaries of the plate, or 

 
3 323 0 23 0 0x x = == =  (4.56) 

 
3 323 23 0x h x h = == =  (4.57) 

This must mean that 

 ( ) ( )
3 3 3

2
23 0, 0, 1 3 0,

3

2 cos sin 0x h x h n n n x h

u
t px x

x
     = = =


= = − − =  

 (4.58) 
This condition is only satisfied if the vertical distribution of the displacement has 
the forms shown in Figure 4.5. 
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Figure 4.5.  Depth dependence of horizontal displacement for the first 4 modes of 
harmonic SH-waves in a plate with free boundaries. 
 
Planar SH-waves in a Plate with a Rigid Base 
 
While the free plate problem is simple and useful to show modes and dispersion, a 
more important problem for us is one in which the base of the plate is fixed to a 
rigid medium. 
This problem is identical to the free-boundary problem, except that the reflection 
coefficient at the bottom of the layer is -1 instead of +1.  That is, the up- and down-
going waves in Figure 4.3 destructively interfere at the bottom of the layer so that 
there is no displacement here.  If the plane waves are impulse functions, then the 
ground motion at the origin is now an alternating series of positive and negative 
impulses as given by 

 

( ) ( ) ( )

( ) ( )

2 ;
2

t t 1 t 1
III III III sin

T T 2 T 2

n

T
u t f t t nt t nT

t
f t f t

T

 





=−

 
= =  − − − −    

 

        
=  − − =  −        

        

x 0

 (4.59) 
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Figure 4.4 shows the Fourier transform of this alternating comb function (the 
bottom function in the figure) is also an alternating comb function, which can be 
written 

 
t 1 T 1

III sin III sin
T 2 2 2 2

t T
FT iT

T

  



        
− = − −        

        

 (4.60) 
This solution is very similar to the free plate solution, except the frequencies of the 

modes have been changed.  There is no mode for , since that corresponds to 
uniform horizontal motion with depth, which cannot be possible if the motion at 
the bottom is zero.  The modal frequencies are given by 

 
( )2 1

; 1,2,3,...n

n
n

T




−
= =  (4.61) 

In this case the alternating comb function repeats itself only every other reflection, 
and so in this case  

 
2

T
c


=  (4.62) 

where  is the same as shown in Figure 4.4, and as before 

 
sin

c



=  (4.63) 

 
Just as before, 

 

22

2
1

2

c

h

 
= +  

 
 (4.64) 

However, in this case,  

 2 2
n

c
cT n


 = =  (4.65) 

Therefore, the horizontal phase velocity is  

 
2

1
2 n

c

n

h







=

 
−  
 

 (4.66) 

 
As before, if the wavefront is vertically incident, the phase velocity become infinite, 
and the interfering waves form a true standing wave with 

 0

4h
T 


= =  (4.67) 

0n =
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And 

 
( )

0

2 1
; 1,2,3,...

2
n

n
n

h



 =

−
= =  (4.68) 

 
 

 
Figure 4.6.  Amplitude as a function of depth for the first 4 SH modes of a plate 
with a fixed bottom and a free surface at the top. 
 
We can now compute the mode shape by noting that we must now add both 
positive and negative waves that are shifted by a quarter wavelength, so that 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) 

( ) ( )

1 3 1 3

1 3 1 3

1 3 1 3

3 1 1

3 1

cos cos

sin sin

2cos cos 2sin cos

2cos cos sin

2 2 cos cos

n n

n n

n n n n

n n n

n n

t px x t px x

t px x t px x

t px x t px x

x t px t px

x t px

   

   

     

   

  

= − + + − −      

− − + − − −      

= − − −      
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 (4.69) 

So we end up with a sum of a sinusoid and a cosine in the 1x  direction, and 

our familiar cosine in the vertical direction.  Because there are different 

natural frequencies, the mode shapes are different as is shown in Figure 4.6.  

Notice that the displacement is zero at the bottom boundary, but the strain 
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(derivative of displacement with respect to vertical position) is zero at the 

top. 

 

Comparing Figures 4.5 and 4.6, it is easy to see why free plates have mode 

frequencies that are integer multiples of the fundamental mode, whereas a 

plate with one fixed boundary has modal frequencies that are odd integer 

multiples of the fundamental mode frequency. 
 
Phase Velocity and Group Velocity 
 

We have seen that planar plate waves have horizontal phase velocities 1c
p

=  that 

vary with the frequency of the motion, or alternatively with the wavelength of the 
waves.  In particular, we can write them in generalized form as 

 
( )

( ) ( )

1
2 3

3 1

sin

sin

x
u g x t

c

g x t kx





  
= −  

  

= −

  (4.70) 

where ( )3g x  is a harmonic function of depth and c
T k

= =  , and k  is the 

horizontal spatial frequency which is commonly referred to as horizontal 
wavenumber.  That is for a harmonic traveling wave, the phase velocity can always 
be measured by taking the frequency divided by the appropriate wavenumber.  
Remember, though, this is just the apparent velocity of some particular phase in 
the harmonic wave.  Since harmonic waves have no beginning or end, they do not 
carry any information.  In order to carry information (or energy) the wave must 
vary in time and space; it must be possible to follow a wave packet.  The easiest 
way to understand a wave packet is to consider the case of two harmonic waves of 
similar (but different) frequencies.  That is, consider 
 

 

( ) ( ) ( )2 1 0 1 1 1 0 2 2 1

1 2 1 2 1 2 1 2
0 1 1

, cos cos

2 cos cos
2 2 2 2

group carrier

u x t A t k x A t k x

k k k k
A t x t x

u u

 

   

= − + −

− − + +   
= − −   

   

=

 

 (4.71) 

Where carrieru  is the sinusoid with the average frequency of the signals and it’s 

frequency is that of the “carrier signal.”  The two signals beat against each other 
and the beat frequency is the difference in frequencies of the two signals. Of course, 
there are similar carrier and beat wavenumbers.  As before the phase velocity of the 
carrier is just 
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1 2

carrier
carrier

carrier

c
k k k

  +
= =

+
  (4.72) 

And the group velocity of the amplitude envelope is just  
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1 2

group

group

group

d
c

k k k k dk

    − 
= = = 

− 
  (4.73) 

The wavegroup carries energy and information and its speed must not exceed the 
intrinsic velocity of the medium.  The phase velocity can be any number higher 

than the intrinsic wave velocity.  If you know ( )k  , then you can always obtain 

the group velocity by differentiating with respect to k.  For example, if we return 
the problem of a plane wave in a plate, the phase velocity is given by (4.52), or 
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  (4.74) 

Or  

 2 2 2 2

n k h n
h


 = +   (4.75) 

So 
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c h

dk k h n


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+
  (4.76) 

 

Or we can infer the group velocity as a function of   by noting that n

carrier

k
c


=  , 

so that (4.76) becomes 
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  (4.77) 

 
Substituting (4.74) into (4.77), we obtain 
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  (4.78) 

 
Planar SH-Waves in Layered Media 
 
The problem of horizontally-polarized S-waves in a vertically stratified space is one 
of the most fundamental problems in Engineering Seismology.  This is primarily 
because of the large changes in seismic velocity near the Earth’s surface.  That is, 
seismic velocities generally increase dramatically with depth as overburden 
pressures increase.  There can also be large velocity contrasts at the water table.  
Furthermore, the seismic velocity of loosely consolidated sediments can be much 
lower than that of crystalline rock.  Since the average S-wave velocity at the typical 
depth of earthquakes is 3.5 km/sec, most shear-waves are traveling nearly vertically 
as they propagate through the upper 100 meters of the Earth.  For near-vertical 
incidence, there is little distinction between SV and SH; they are both nearly 
horizontally polarized.  Therefore, it is of great interest to investigate how a 
horizontally polarized S-wave propagates through a series of horizontal layers. 
 
The following Figures are from “Borehole velocity measurements and geological 
conditions at thirteen sites in the Los Angeles, Californis, region,” by Gibbs, 
Tinsely, Boore, and Joyner (USGS Open File Report 00-470).  They provide a good 
idea of the nature of near-surface seismic velocities encountered at real-world 
construction sites. 
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Figure 4.7  Locations of boreholes for velocity profiles shown in following figures 
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Figure 4.8 Shear-wave velocities for boreholes at stations shown in Figure 4.7 
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Figure 4.9 and 4.10  Shear-wave velocities for boreholes at stations shown in Figure 
4.7 
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Thompson (Transmission of elastic waves through a stratified solid medium, J. 
Appl. Phys., 21, 89-93, 1950) and Haskell (The dispersion of surface waves on 
multi-layered media, Bull. Seism. Soc. Am., 43, 17-34, 1953) describe a clever 
method for solving the problem of a harmonic planar P-, SV-, or SH-wave through 
a vertically stratified medium.  The algebra of the problem is beyond the scope of 
these notes, but I will sketch out the solution for a planar harmonic SH-wave.  The 
methodology is known as Thompson-Haskell Propagator Matrices and it is the 
basis of a widely used computer program known as Shake.  The following is a 
modification of Haskell’s classic paper, “Crustal reflection of plane SH-waves” 
(JGR, 1960, 4147-4150). 

 
Figure 4.11 
 
Consider the stack of n-1 plane layers over an elastic half space with a planar SH-
wave incident from the half-space as is shown in Figure 4.11.  We will consider that 
the plane wave is harmonic.  This requirement can be relaxed later, since we can 
sum harmonic solutions to form the solution for any time history for the incident 
wave.   Motivated by the solutions for a planar SH-wave in a plate, we recognize 
that solutions to our problem will have some part that travels horizontally at the 
same phase velocity throughout the medium and another part of the solution that 
describes the depth dependence of the motion.  That is, the solution will be of the 
form  

 ( ) ( )3 1cosg x t px = − −   2
u e  (4.79) 
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where ( )3g x  is a function of depth that will allow us to match the appropriate 

boundary conditions, and   is a phase lag that may also be a function of depth. 
 
At each boundary, there are two important conditions, continuous displacement 
and stress.  Thompson and Haskell devised a clever solution method that writes 
these boundary conditions in matrix form.  If we denote the amplitude of the up-

going SH wave incident at the bottom of the stack as Ig , then the amplitude at the 

surface of the Earth 0g  can be written as 

 0

11 21

2I n n

n n

g g
A A

 

 

 
=  

+ 
 (4.80) 

Where 
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And 
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And 
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And 
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= = −  (4.84) 

Unfortunately, these equations become singular for vertical incidence.  That is, at 
vertical incidence, the horizontal phase velocity becomes infinite in which case, 
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and then 
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Thus,
21 0a →  at vertical incidence. 

 
We can gain some insight by considering the simple case of a single layer over a 

half space.  In this case, 2n =  and we need only consider one propagator matrix.  
Therefore, 

 
11 1cosA Q  (4.88) 
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Where 

 1 1

2 2

b
 

 
=  (4.91) 

we can write the amplitude of the amplification as 
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 (4.92) 

The nature of the amplification depends on whether or not b is greater than 1.  Let 

1c  be the phase velocity for which 1b = , then 
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If 
1,  then 1c c b   and the maxima of  occur at frequencies given by 

, with maximum values given by .  The minima occur at 

frequencies given by and the minimum amplifications are 2. 

 

If and the maximum amplifications occur when  and 

the maximum amplifications are 2.  The minima occur when and have 

values of . 

 
Figure 4.12 is from Haskell’s paper and shows the amplification of planar SH-waves 
as a function of incidence angle (0 is vertical incidence).  Amplification is given 
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relative to a half-space which always has a free-surface amplification of 2.  The 
model is layer of average crustal properties over a half-space with average upper 
mantle properties. 
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 (4.94) 

For vertical incidence, you can see that the maximum amplification occurs at 
periods given by 

 
( )

4
1,2,3,...

2 1
n

h
T n

n 
= =

−
 (4.95) 

 which is identical to the modal frequencies obtained from the plate with a rigid 
bottom in (4.68). 
 

 
Figure 4.10  Amplification of SH-waves relative to a half-space as a 
function of incidence angle and period of a harmonic SH-wave 
incident on the crust.  From Haskell (1960). 

 
 
For vertical incidence the maximum amplification at these frequencies is simply 
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I

g

g

 

 
=  (4.96) 

 
Whereas the maximum amplification of an SH-wave transmitted across an 
interface is 2 (see equation(4.25)), the maximum amplification of a harmonic 
wave can be very large at certain frequencies if there is a very low velocity 
layer over a half space. 
 
 
San Francisco Bay Mud 
 
Propagator matrix solutions are very important for analyzing problems where there 
is a layer of very low velocity material overlying a much higher velocity material.  
One of the most dramatic examples of this is on the margins of the San Francisco 
Bay where poorly consolidated Holocene mud deposits overly crystalline rocks.  
The following figure are from “Analysis of seismograms from a downhole array in 
sediments near San Francisco Bay” by Joyner, Warrick and Oliver (1970, BSSA, 60, 
937-958).  Figure 4.11 shows the location of a 186-m deep borehole adjacent to the 
Dumbarton Bridge. 

 
Figure 4.11 Map of southern part of San Francisco Bay showing location of the 
borehole.  From Joyner and others. 
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Figure 4.12  Schematic of the locations of seismometers in the borehole.  
From Joyner and others 

 
Four 3-component sets of velocity-transducer seismometers with a natural 
frequency of 4.5 Hz were installed at depths of 0, 12, 40, and 186 m below the 
surface.  The Bay mud is a Holocene mud whose mass is 50% water.  The Alluvial 
deposits are thought to be Pleistocene. 
 
Figure 4.13 show the estimated S-wave velocity in the borehole and Figure 4.14 
shows the seismograms from different levels for a M 3.1 earthquake.  Notice that 
not all of the channels were working.  However, as we would predict from the wave 
propagation discussion in this chapter, the signals are much larger at the surface 
than they are at the bottom of the hole. 
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Figure 4.12 Shows an estimate of shear-wave velocity as a function of 
depth.  The velocity model was developed by a combination of seismic 
travel-time data and from other studies of the properties of bay mud.  
The velocity in the bedrock is 2200 m/sec.  From Joyner and others. 

 

 
Figure 4.13 Seismograms from a M 3.1 at a distance of 79 km. 
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Figure 4.14  Seismograms from the 1971 M 6.7 San Fernando 
earthquake at a distance of 485 km.  From Joyner and others.  Notice 
the harmonic nature of the seismograms from the shallow sites.  This is 
caused by resonance of vertically propagating S-waves. 

 
There are actually several resonance periodicities that we expect since there are two 
strong velocity contrasts; one at the mud-alluvium interface (11 m) and another at 
the alluvium-bedrock interface (180 m).  The velocity of the bay mud averages 
about 70 m/sec (150 mph); the velocity of sound in air is 330 m/sec.  Equation 
(4.95) tells us that we expect to see amplification at frequencies of about 1.6 Hz, 
4.8 Hz, etc. for the mud layer.  The alluvium layer is faster, but much thicker and it 
has a resonance somewhere near 0.5 Hz. 
 
The mud-layer resonance can be seen in Figure 4.15 where the ratios of the Fourier 
amplitude spectra of the seismometers at the top and bottom of the mud are shown 
for a M3.6 earthquake.  Also shown are predictions of these amplifications using 
Thompson-Haskell propagator matrices and the velocity model shown in Figure 
4.12.  The computations were performed for several different values of attenuation 
Q.  
 
The resonance of the overall soil-mud column with the bedrock is shown in Figure 
4.16, where the spectral ratio of the surface vs. the bedrock is shown for the 1971 
San Fernando Earthquake.  Spectral ratios are shown for different segments of the 
record. 
 
Finally, Figures 4.17 and 4.18 show the basement and surface ground motions along 
with the ground motion assuming that most of the motion is due to vertically 
propagating S-waves, and that this motion can be computed using propagator 
matrices to “propagate” the motion from the basement to the surface. 
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Figure 4.15 from Joyner and others. 

 
Figure 4.16 from Joyner and others 
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Figure 4.17 from Joyner and others 

 

 
Figure 4.18 from Joyner and others. 
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One of the most famous of all soil resonances occurred in the soft sedimentary lake 
deposits on which Mexico City is built.  These deposits have S-wave velocities of 
about 80 m/sec and thicknesses of about 50 m.  Figure 4.19 shows acceleration 
records from the 1985 Michoacan earthquake (M8.2).  Notice how much larger the 
accelerations were in the sites in Mexico City. 

 
 
 
 
 
 
 
 
Homework 
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4-1.  Show that the reflection and transmission coefficients match the boundary 
conditions for an incident planar SH wave onto the interface between two 
Poissonian solids. 
 
4-2. Write the vector solution for an incident planar SV wave onto the interface 
between two Poissonian solids.  This is similar to equations (4.29) and (4.30). 
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  Surface Waves

 

 8/28/2022 

Post-Critical Planar SH waves 

In the last chapter I discussed how to solve the problem of a planar SH-wave 
incident from a half space onto the bottom of a layer welded on that half space. In 
this case, there were no post-critical angle reflections in the problem.  However, 
there are instances in which plane waves can travel horizontally such that there is a 
critical reflection of the wave at the boundary between the layer and the half-space.  
In this case the waves are totally reflected at the top and the bottom of the layer 
and it becomes trapped within the layer.  This problem is similar to the propagation 
of planar SH-waves in a plate that was also discussed in the last chapter.  However, 
this problem differs in that the plate problem had traction free boundaries above 
and below, while the current problem has an elastic half-space below.  In order to 
solve this problem, we must investigate the nature of critically reflected waves.  
Consider the problem of a planar harmonic SH-wave that is incident on the 
boundary of two welded spaces, as was shown in Figure 4.2 of the previous chapter.  
A general expression for such a wave can be written as 
 

 ( ) ( ), expt A ik ct= −  u x d x p  (5.1) 

 
where the motion is either the real or imaginary part of the right hand side of (5.1)
.  A is a complex number whose modulus is the amplitude of the wave, d is a unit 
vector in the direction of the particle motion, p is a unit vector in the direction of 
propagation (perpendicular to the wavefront), and c is the phase velocity in the 
direction of p.  k is the wavenumber, and it is related to the wavelength  , period 
T,  and angular frequency  ,  by 

 
2

kc
T


 = =  (5.2) 

 
2

k


=


 (5.3) 

 
Using this notation we can write the incident SH wave shown in Figure 5.1 as  
 

 ( )2 1 1 3 1 1exp sin cosI

I Iu A ik x x t  = + −    (5.4) 

The reflected wave is 

 ( )2 1 1 3 1 1exp sin cosR

R Iu A ik x x t  = − −    (5.5) 
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and the transmitted wave is 

 ( )2 1 2 3 2 2exp sin cosT

T Tu A ik x x t  = + −    (5.6) 

 

If the reflection is post-critical, then ( )2 2 1 1sin sin 1   =  , and since 

2

2 2cos 1 sin = − , then 
2cos  is imaginary.  In this case, the transmitted wave 

(5.6) is given by 

 ( ) ( )2 3 1 2 2exp exp sinT

T Iu A bx ik x t = − −    (5.7) 

where 
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22
2 1
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 
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 
 (5.8) 

 
(5.7) means that the disturbance into the second medium dies exponentially with 
the distance from the interface, with longer wavelength harmonic waves disturbing 
regions further into the medium than do short wavelengths.  The reflection 

coefficient 
RA  becomes complex with a modulus of 1 for post-critical reflections.  

That is, 
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   




   



 −  
 =
 +  
 

 (5.9) 

When 2cos  is imaginary (post-critical reflection), then the modulus of RA  is 1.  

The fact that RA  is complex means that a phase shift   is introduced in the 

reflected wave given by (5.5).  This phase shift is a number that depends on the 
velocity contrast and the incidence angle, but it does not depend on the wavelength.  
This means that the location of the crests of the incident waves at the boundary are 
offset by a constant percentage of the wavelength from the crests of the reflected 
waves as is shown in Figure 5.1.  In a sense, it almost looks as if the wave is reflected 
at some virtual point beneath the boundary, where the depth of the virtual bounce 
point increases with the wavelength of the wave. 
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Figure 5.2  Critically reflected planar SH-waves. 

 
Figure 5.3  This figure shows the effect of the phase lag introduced 
by the complex reflection coefficient on an incident wave that 
consists of a step in displacement.  The reflected wave has a very 
different time behavior.  At the time of the expected geometric 
reflection, the waveform locally looks like it is the time derivative of 
the incident wave. 
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While this constant phase shift is relatively easy to understand for a harmonic plane 
wave, things get more complex if we consider the case of an impulsive wave.  Such 
waves can be considered to be the superposition of harmonic waves.  However, 
the effect of phase-shifting the reflected harmonic waves can be rather dramatic.  
Figure 5.2 demonstrates the shape of the reflected wave for different phase lags; 
the top trace is the shape of the incident wave.  Notice the rather surprising fact 
that the reflected wave actually starts at minus infinite time (long before the incident 
wave begins its motion).  This is a rather unusual consequence of the fact that we 
have assumed a planar incident wave.  Such waves can never really exist in nature 
since they require infinite spaces with waves that travel throughout all time.  
Nevertheless, there is always a disturbance in the lower medium that precedes a 
critically reflected incident wave.  This is the inevitable result of the fact that there 
is no wave in the slower medium that can travel as slowly as the phase velocity of 
the incident wave along the interface. 
 
Diffraction vs. Refraction 
 
Waves that can be fully described by their ray paths (Snell’s Law) are generally 
referred to as refracted waves; this is really the same thing as saying that the waves 
can be considered to be plane waves that are propagating through a plane layered 
medium without any critical angle reflections.  In truth, nothing in the Earth actually 
does this, and in many cases wave propagation is very different from that of plane 
waves.  Waves that are not refracted are called diffracted.  In a sense, the phase 
lag introduced in a critically reflected wave is an example of diffraction. 
 
Love Waves 
 
If we now consider the case of SH-plane waves propagating in a low-velocity layer 
over a half-space, we see that we have a situation that is very similar to the plate-
wave problem of Chapter 4, except that we now have a critical reflection to deal 
with at the bottom of the layer.  Although the wave is totally reflected at the bottom 
of the layer, there is a phase lag associated with the critical reflection.  The 
wavefronts are sketched in Figure 5.3.  The phase velocity dispersion relation is 
similar to that given in the last chapter for a plate, but an additional lag must be 
introduced to account for the phase shift of the critical reflection.  Love waves can 
only occur if the surface layer has a lower velocity than the whole space.   
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Figure 5.3.  A love wave can be thought of as a plane 
wave that is trapped in a low velocity layer at the surface 
of the earth. 

 
Love waves were actually observed on seismometers long before they were 
explained, by A.E.H. Love.  Although it is possible to derive the solution as series 
of critically reflected SH waves, it is also possible to derive the solution to this 
problem by investigating solutions of the form given below.  As it turns out, the 

solutions for a harmonic Love wave traveling in the 
1x  direction in a layer of 

thickness H overlying a half space as shown in Figure 5.3, are given by 

 ( )
2

2 2 3 12

2

exp 1 exp
c

u A kx ik x ct


 
= − − −    

  

 (5.10) 

in medium 2 (i.e., z>0), and  

 ( )
2 2

2 1 3 1 3 12 2

1 1

exp 1 exp 1 exp
c c

u A kx A kx ik x ct
 

     
= − − + − −       

        

 (5.11) 

in medium 1 (the layer).  1 3 0u u= = everywhere in the medium.  Unfortunately, 

these motions seem rather complex to just pick out of a hat.  However, it can be 

shown that they do satisfy Navier’s equation.  If  2c  , then we have a solution 

that dies exponentially in amplitude with distance below the interface.  Now (5.10) 
and (5.11) are acceptable solutions to the geometry shown in Figure 5.3 if, i) the 

motion 2u  is continuous across the boundary at 3 0x = , and ii) the stress 23  is 

continuous across the boundary 3 0x = , iii), and if the stress 23 0 =  on the free 

surface at 3x H= − .  By imposing these conditions on (5.10) and (5.11), we can 

find conditions on 2 1 1, , ,  and c A A A  which provide an acceptable solution.  By 

following this procedure, one can show that for an acceptable solution, the phase 

velocity c depends not only on the intrinsic velocities 1  and 2 , but also on the 

frequency of the wave.  That is, the wave is dispersive.  It is also generally true that 
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1 2c   .  Furthermore, low frequency Love waves tend to have phase velocities 

that approach those of the high-velocity half space, whereas short period love 
waves tend to have phase velocities close that of the low-velocity layer (at least that 
is true for the fundamental mode Love waves).  As was the case for plate waves, 
there are also higher mode Love waves, but their derivation is more complex 
because of the critical reflection. 
 
Love waves can be generated by a source located at a point (called a point source).  
In this case, Love waves are observed on the transverse component of motion 
Since Love waves have their motions near the top of the elastic medium, their 
energy spreads as an expanding circle along the surface.  That is the energy flux 
associated with Love waves must be conserved for any outward traveling wave.  

Since the circumference of a circle grows as r , and since energy depends on 2u , 

the amplitude must decay as 1
r

 for Love waves radiated by a point source.  

Thus, as the observer distance becomes larger, the Love waves become larger 

relative to other waves whose amplitude decays as 1
r

.  It is generally true that at 

large distances, surface waves tend to be larger than body waves. 
 
Rayleigh Waves 
 
The Rayleigh wave is a special solution to the equation of motion; it has the 
characteristic that it allows zero traction along a boundary.  We will discuss the 
simplest example of a Rayleigh wave; that is, a two dimensional plane Rayleigh wave 

that propagates at velocity c in the 
1x  direction as is shown in Figure 5.4.   

 
Figure 5.4 

 

The material is an elastic half-space and the surface 3 0x =  is traction free, or 

3 3 3
13 23 330 0 0

0
x x x

  
= = =
= = = .  Consider the motion 

 ( ) ( ) 1 3 1exp expu A bx ik x ct= − −    (5.12) 
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 ( ) ( ) 3 3 1exp expu B bx ik x ct= − −    (5.13) 

 
2 0u =  (5.14) 

where b is a real constant, A and B are complex constants, and where   means to 
take the real part of the argument.  Keep in mind that 
  

 ( ) ( ) ( )exp sin cosik x ct k x ct i k x ct− = − + −            (5.15) 

 

This solution represents a sine wave of wavelength 2 k = , which travels in the 

1x  direction with a velocity of c.  For this to be a valid solution for our problem, 

we need to find the appropriate values of b, A, B, and c.  Since we are only 
considering the real parts of the solution in (5.12) and (5.13), we have four 

unknowns and two boundary conditions at the free surface(
3

23 0
0

x


=
=  is satisfied 

trivially because of (5.14)).  Therefore 

 
3

3 31
33 0

3 1 3

0 2
x

u uu

x x x
  

=

  
= = + + 

   
 (5.16) 

and 

 
3

31
13 0

3 1

0
x

uu

x x
 

=

 
= = + 

  
 (5.17) 

 
Furthermore, we must also satisfy Navier’s equations, or 
 

 ( )
22 2 2 2

31 1 1 1

2 2 2 2

1 3 1 1 3

uu u u u

t x x x x x
   

      
= + + + +   

        
 (5.18) 

and 

 ( )
2 2 2 2 2

3 3 3 3 1

2 2 2 2

1 3 3 1 3

u u u u u

t x x x x x
   

       
= + + + +   

        
 (5.19) 

 
It is actually a rather laborious process to find the appropriate values of  b, A, B, 
and c that satisfy these equations.  However, the following solution does satisfy the 
conditions if the solid is considered to be Poissonian (i.e., Poisson’s ratio

1 , or 
4

 = = ). 

 ( ) ( )3 30.8475 0.3933

1 10.5773 cos
kx kx

Ru D e e k x c t
− −

= − −    (5.20) 

and  
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 ( ) ( )3 30.8475 0.3933

3 10.8475 1.4679 sin
kx kx

Ru D e e k x c t
− −

= − + −  

 (5.21) 
where 

 0.9194 0.9194Rc





= =  (5.22) 

 
Figure 5.5 shows a schematic of the particle motion for a harmonic Rayleigh wave 
in a half-space.  
  

 
 

Figure 5.5  Snapshot in time of the particle motion for a harmonic 
Rayleigh wave in an elastic half-space. 

 
Notice that the particle motion at the free surface is an ellipse for this harmonic 
wave. That is, the vertical component, which is about 150% larger in amplitude 
than the horizontal component, is a sinusoid and the horizontal component is a co-

sinusoid.  That is, the vertical and horizontal components are out of phase by 2

.  Notice that, at the top of the ellipse, the particle is moving in the opposite 
direction from the direction of the wave propagation.  This is referred to as 
“retrograde particle motion,” and it is characteristic of Rayleigh waves.  Also, notice 
that horizontal motions reverse their direction at a depth of 0.192 times the 
wavelength  of the Rayleigh wave (or they have a node at this depth).  That is, the 

horizontal motion is zero at 0.192 and the particle motion is prograde at larger 

depths. 
 
Notice that Rayleigh wave velocities in a homogeneous half space are independent 
of the wavelength. That is, Rayleigh waves are non-dispersive in a homogeneous 
half-space.  This is different from Love waves, which are inherently dispersive.  
However, Rayleigh waves are only non-dispersive in a homogeneous half-space.  
Shear wave velocities generally increase with depth in the Earth.  Since long-
wavelength Rayleigh waves have motions at a significantly greater depth than do 
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short wavelength Rayleigh waves (remember they die as exp( )z−  ), the 

velocities of Rayleigh waves generally increase with wavelength for the Earth. 
 
Just as was the case for Love waves, Rayleigh-wave energy generally spreads 
circularly from a point source and the amplitude of Rayleigh waves generally 

decrease as 1 r  with distance from the point source.  In the case of point sources, 

Rayleigh waves are generally observed on both the radial and vertical components 
of a seismographic station. 
 
The solution demonstrated above is called a fundamental Rayleigh wave, and there 
are no nodes in the vertical motion as a function of depth (there is 1 node in the 
horizontal component with depth).  The fundamental Rayleigh wave is the only 
surface wave that can occur in a homogeneous half-space.  Love waves require at 
least one low-velocity layer to be present.  In addition to fundamental mode 
Rayleigh waves, there are solutions to the layered space that are similar to the Love 
wave case, but which involve P- and SV- waves.  If the velocity of the upper layer 
is low enough so that both P- and SV-waves can be completely reflected (all 
reflections are post-critical), then there can be plate modes in the P-SV system just 
as there are in the SH system.  These are referred to as higher mode Rayleigh 
waves.  Just as with the Love wave case, they can be simplified into a harmonic 
wave with a horizontal phase velocity that is constant as a function of depth and 
also another function of depth (pseudo-harmonic) that describes the depth 
dependence of the mode.  If some of the reflections (e.g. SV to SV) are post critical, 
but others are pre-critical (P to P), then there may be some wave energy that is 
continually radiated from the low-velocity layer.  The system is no long a perfectly 
trapped system.  These are referred to as leaky modes. 
 
Excitation of fundamental mode Rayleigh waves is rather difficult to imagine.  They 
cannot be generated by planar P- and S-waves incident on a planar free surface.  As 
it turns out, the curvature of either a wavefront, or a free surface is critical to the 
generation of fundamental Rayleigh waves; the tighter the radius of curvature, the 
broader the frequency band of Rayleigh waves that can be generated.  That means 
that deep earthquakes can only generate long-period fundamental Rayleigh waves, 
whereas shallow earthquakes generate broader-band surface waves.  However, it is 
also true that fundamental P- and S-waves are much larger at high frequencies than 
Rayleigh waves. 
  
 This fundamental Rayleigh wave has some mathematical similarities to the solution 
for gravity waves in the ocean (the type that make you sea sick).  However, oceanic 
water waves have prograde particle motions as is shown in Figure 5.6.  As is the 
case with any two identical wavetrains that are traveling in opposite directions, 
standing waves are formed.  The series of figures show long exposures of gravity 
water waves traveling towards the right.  The white streaks are white particles of 
neutral buoyancy.  The ellipses are their particle motions.  In each successive figure 
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more left-traveling wave is added to the mix.  In the final figure, one can see that 
there are purely standing waves.  In this case the particle motions are no longer 
elliptical, but instead become purely linear.  Notice that nodes for the horizontal 
motions are maxima for the vertical motions and vice versa. 
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Chapter 6 Building Response
 
 
 8/28/2022 

 
In this chapter I explore the nature of deformation and forces in buildings during 
earthquake shaking.  Of course, buildings are complex connections of columns, 
beams, floors and walls, the study of which, deserves an entire course in structural 
engineering.  However, as an introduction, it is instructive to investigate the nature 
of forces and deformations that would occur in a solid body whose properties are 
similar to the average properties of a building.  I begin with a simple description of 
different types of buildings and comment on their characteristics in earthquake 
shaking. In general, I will characterize buildings with the following parameters (refer 
to Figure 6.1). 
 

• Density is important because it is used to calculate inertial momentum.  
The density of buildings ranges from about 100 kg/m3 (tall flexible frame 
buildings) to 200 kg/m3 (stiff heavy shear wall buildings).  Earthquake 
loads in buildings generally increase with the density of the building.  
These average densities are small compared to material densities because 
buildings are primarily air. 

• Yield strength is the maximum horizontal load that can be applied to a 
building.  It is expressed in units of acceleration if the yield force is 
normalized by the weight of the building.  While increasing yield strength 
is generally desirable, it usually comes with the penalty of increasing 
stiffness. 

• Stiffness is the horizontal force distributed throughout a building divided 
by resulting lateral shear strain in the building (usually called drift). 
Maximum stresses in a building generally increases with stiffness, so 
making a building stiff can lead to high stresses.  While low stiffness has 
advantages, decreasing stiffness usually comes with the penalties of 
increasing shear strains and decreasing yield strength. 

• Ductility refers to the ratio of the horizontal shear strain at which a 
building collapses divided by the strain at which a building begins to strain 
inelastically.  Increasing ductility is always desirable, but it usually comes 
with the penalty of increasing cost. 
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Figure 6.1  Idealized building response. 

 
The following examples give some idea of different classes of buildings. 
 
Concrete Shear-Wall Buildings 
 
This is a common class of buildings that generally have at least some walls that 
consist of continuous slabs of concrete.  These concrete walls are very resistant to 
in-plane shearing forces.  Perpendicular shear walls are generally connected to each 
other through 1) the strong floor slabs, and 2) sometimes they are connected at 
corners of rooms.  When a building consists of a rectangular concrete box with 
interior columns supporting the floor slab, then this is generally referred to as 
box/shear-wall construction.  This type of construction is very common at Caltech.  
It has the advantage of very high yield strength.  Furthermore, if the walls are 
properly reinforced, the ductility is also high.  This type of construction has the 
disadvantages that it tends to lead to very stiff buildings with high average density.  
As we see later in the chapter, this can lead to high stresses in a building.  It also 
has the disadvantage that the architecture of the building is fixed.  That is, walls 
cannot be reconfigured once the building is constructed.  Furthermore, because of 
their stiffness, it is impractical to build shear wall buildings taller than about 10 
stories that also adequately resist earthquake loading. 
 
Figure 6.2 shows two versions of the Olive View Hospital in the San Fernando 
Valley.  The first version was a nonductile-concrete frame building that was 
completed just prior to its collapse in the 1971 San Fernando earthquake.  The 
hospital was rebuilt as a shear wall structure (some of the shear walls were solid 
steel) and it experienced heavy shaking in the 1994 Northridge earthquake.  In that 
case, there was no structural damage because of the very high yield strength of the 
building.  I have heard structural engineers criticize this building for being 
“overbuilt.”  That said, the overbuilt design ended up saving the County of Los 
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Angeles a lot of money during the violent shaking in 1994 (pga > 2 g recorded on 
the roof). 
 
Figure 6.3 shows an example of a Japanese concrete shear-wall apartment building 
after the 1964 M 7.5 Niigata earthquake (see the figure caption).  One-story 
concrete shear-wall buildings are quite common for construction of mini malls (e.g., 
7-11 stores).  They are simple to build (typically constructed with steel-reinforced 
concrete blocks) and they are inexpensive to build.  They are extremely resilient to 
earthquake damage, but they are generally disdained by architects.  
 

 
 

Figure 6.2.  Two versions of the Olive View Hospital in the San 
Fernando Valley.  The top picture shows the heavy damage that 

occurred to the first hospital (non-ductile concrete) in the 1971 M 6.7 
San Fernando earthquake.  The bottom picture shows the shear-wall 

structure that replaced the first one.  This strong building had no 
structural damage as the result of the violent shaking in the 1994 M 6.7 

Northridge earthquake. 
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Figure 6.3.  Japanese concrete shear-wall apartment buildings after the 

1964 M 7.2 Niigata earthquake.  Despite the fact that the foundations of 
the buildings failed due to liquefaction, the building structures were 
undamaged and the buildings were later jacked back to an upright 

position and they were reoccupied. 
 
The resilience of concrete shear-wall buildings was severely tested during the 2011 
M 7.2 Cucapah-El Major Earthquake.  Mexicali is a Mexican city of one million that 
is just south of the US border.  Strong motion records show that the city was 
strongly shaken.  Nevertheless, there were only four fatalities.  The excellent 
performance of Mexicali contrasts with the enormous tragedy of the 2010 M 7.0 
Haitian earthquake.  There are many similarities between these two events.  They 
were similar sized strike-slip earthquakes with shallow strike-slip ruptures that were 
about 15 km from densely populated cities.  In the case of the Haiti earthquake, 
more than 100,000 people died because of the extensive collapse of nonductile 
concrete frame buildings that were built by amateurs.  Although the Mexicali 
buildings were also constructed by amateurs using concrete, the Mexicali buildings 
were far more resilient because they made single-story reinforced concrete block 
shear wall buildings. 
 
 
 
 
Moment Resisting Frame (MRF) Buildings  
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This is a very common class of buildings, whose structural system generally consists 
of a rectangular latticework of columns and beams (the frame), together with the 
relatively rigid floor slabs, which are typically made of reinforced concrete.  The 
columns and beams can be either mild steel (SMRF) or reinforced concrete 
(RCMRF).  Figure 6.4 shows an example of a SMRF.  These buildings are popular 
with many architects since they are 1) inexpensive, 2) office space can be easily 
reconfigured, and 3) they can be quite tall (The Library Towers in downtown Los 
Angeles is 80 stories high).   
 

 

 
Figure 6.4.  Example of a steel moment resisting frame.  The 

connections between the beams and columns are typically welded (called 
a moment-resisting connection) to keep the elements perpendicular.  

Many of these critical connections were observed to fracture in the 1994 
Northridge earthquake. 

 
 
Figure 6.5 shows the basic physics of how an MRF resists lateral motion.  As the 
frame is deflected horizontally, the beams and columns must bend if their 
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connections remain perpendicular.  Note that in typical US buildings, not all of the 
beam-column connections are moment resisting. Many of the interior connections 
are simple connections, which act structurally more like a hinge.  Although simple 
connections are adequate to support the weight of the floor slabs, they do not cause 
flexural bending of the beams.   The moment-resisting beam-column connections 
are critical elements of a MRF since that is where the bending moment originates 
on a beam or column.  It is critical that the MRF failure strength exceeds the flexural 
yield strength of the beams, since a building’s ductility (high ductility is good) 
derives from the inelastic bending of beams (it’s not good to inelastically bend 
columns since they carry gravitational loads). 
 
 

 
Figure 6.5.  Cartoon showing how the flexural bending of beams and 
columns provides a resistance to lateral deformation for a moment-

resisting frame structure.  Note that only the connections on the 
exterior are moment frame connections, whereas the interior 

connection is a “simple” connection (unwelded) that acts more lie a 
structural hinge. 

 
In the case of Steel MRF’s, the moment resisting column-beam connections 
typically consist of welds between the flanges of the beams and columns (see Figure 
6.4).  These welded connections became popular in the 1960’s since they are 
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inexpensive to construct, and they were thought to have high strength.  However, 
many of these welded connections fractured during the 1994 M 6.7 Northridge 
earthquake, so many of the existing steel MRF’s are not as ductile as designers 
thought when buildings were constructed.  Figure 6.6 shows the design of moment-
resisting steel beam-column connections that were used prior to the 1960’s.  For 
the connection to resist bending, it is critical that the flange of the beam (the top or 
bottom of the I-section) is firmly connected to the flange of a beam.  For buildings 
with I-sections, that can only be accomplished at ½ of the connections  (the 
connections where the beam flanges abut the column flanges).  Prior to the 1960’s, 
the flanges were usually connected to each other using either rivets or bolts. 

 
Figure 6.6.  Schematic of a steel moment resisting connection that was 
common in older steel frame construction  (pre 1960’s).  Connections 

used either rivets, or later, bolts._ 
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Figure 6.7.  Schematic of a welded steel moment resisting connection 
that was common in steel frame construction  (1960’s to 1995). The 

web of the beam is simply connected using bolts.  In contrast the flange 
of the beam is welded to the flange of the beam. 

 
Beginning in the 1960’s welded, moment-resisting connections were introduced 
(Figure 6.7).  It was believed that welded connections had a higher strength than 
either bolted or riveted connections.  Importantly, welded connections were less 
expensive to construct than bolted connections. 
 
The switch from bolted connections to welded connections was partially justified 
on the basis of lab testing of the relative strengths of bolted and welded 
connections.  It was found that either type of connection was strong enough to 
cause ductile bending of a beam.   That is the desired behavior.  However, the lab 
testing was typically conducted using beams and columns that were significantly 
smaller than is seen for real high-rise buildings.  That is, it would have been very 
expensive to build a lab test to bend the very large-size steel sections of real 
buildings.  It was believed that the small-scale tests showed that the weld strength 
exceeded the bending strength. 
 
Critical real-world tests of the performance of welded-steel moment-resisting-
connections occurred during the 1994 Northridge and 1995 Kobe earthquakes.  
For the first time steel frame buildings were shaken strongly enough to cause 
inelastic structural response.  In both cases, inspectors expected to observe 
plastically bent steel beams.  To their horror, they did not find any bent steel, but 
they did find numerous examples of fractured welds (see Figure 6.8).  At first, 
researchers suspected poor welding.  However, when full-scale welded connections 
were tested in the lab, the full-scale tests showed that the welds fractured before 
there was enough force to bend the steel.  This result happened even when the 
welds were “high quality.”  
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Figure 6.8.  Example of a welded steel connection that fractured in the 

1994 Northridge Earthquake.  Notice that the weld between the 
flanges experienced a tensile crack that extended across the web of the 

steel column.  Prior to this earthquake, it was generally believe that 
mild structural steel would ductily bend, but that it would never 

fracture.  . 
 
It now seems that there is a size effect.  That is, the forces required to fracture the 
welds did not scale with the cross-sectional area of the beams and columns.  This 
size effect is complex and interesting.  I will come back to the effect of size on the 
failure of materials in Chapter 8. 
 
Steel moment-resisting connections were extensively modified in the latter 1990’s 
and Figure 6.9 shows an example of a modern bolted and welded moment-resisting 
connection.  Unfortunately, it is very expensive to “fix” brittle welds in existing 
buildings.  Some have argued that it is only necessary to fix welds if they have 
previously failed in some past earthquakes.  However, the fact that plastic yielding 
of steel was never observed for buildings in Kobe and Northridge indicates that all 
pre-1994 steel welds should be repaired since they are unlikely to survive the forces 
necessary to cause plastic bending of the beams.   
 
 

 



 

140 
 

 
Figure 6.9. Post Northridge Special Moment Resisting connection 
(welded and bolted) in  one direction and simple connection in the 

orthogonal direction 
 

 
While steel MRF’s have the advantage that they are very flexible, that comes with 
the penalty that they have very low lateral strength.  Figure 6.10 shows a pushover 
analysis (finite-element analysis by John Hall) of a 20-story SMRF building that 
meets the 1992 Uniform Building Code (UBC) code for California.  This analysis 
included numerous nonlinear effects on the deformation of the steel, as well as also 
explicitly including the effect of how gravitational forces act on the building for 
large finite displacements.  That is, when the drift of the building becomes large, 
then ever-increasing lateral loads are put on the building by gravity (kind of like the 
Tower of Pisa).  This is known as the P-  effect and it is an important collapse 
mechanism for buildings.   
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Figure 6.10 (from John Hall).  Finite-element pushover analysis of a 
20-story building that meets the 1992 US code standards for zone 4.  P 
refers to the assumption that the moment frame connections do not 
fracture, B assumes that weld fractures occur randomly at stresses 

compatible with what was observe in the Northridge earthquake, and 
T assumes that the welds had even less fracture resistance. 
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Figure 6.11. (from John Hall) Same as Figure 6.10., except for a 20-story 

steel frame building that meets Japanese codes in place in the 1990’s.  
Notice the higher yield strength compared to the US building. 

 
The curves U20P refer to a 20-story building that meets US 1992 zone 4 codes 
(highest code level), and for which the welded-moment resisting connections 
behave perfectly (no failures).  The curve that is designated as B refers to allowing 
failure of the moment resisting connections assuming weld behavior consistent 
with observations in the 1994 Northridge earthquake. T refers to the assumption 
of “terrible” performance of the welds.  Notice that weld failure significantly 
decreases both the yield strength and the ductility of the structure. Also notice that 
a horizontal force of only 7% of the weight of the building is necessary to push 
over a typical 20-story building in high seismic risk areas of the US. 
 
Figure 6.11 shows a similar analysis, but it assumes that the building meets the 
building code used in Japan in the 1990’s.  Japanese construction tends to put more 
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emphasis on the yield strength of a structure, and it is common that all connections 
in a Japanese structure are moment-resisting connection (more costly than the US). 
Japanese steel buildings are commonly constructed with box section columns.  This 
means that it is feasible to make all beam-column connections into moment-
resisting connections.  
As it turns out, the code required yield strength tends to increase as building height 
both increases and decreases from 20 stories.  This is because design forces for 
wind loads increase as the building becomes taller, whereas design forces for 
earthquakes decrease as the building becomes taller (we’ll visit this later).  So 
buildings shorter than 20 stories are designed for earthquake loads and buildings 
taller than 20 stories are designed for wind loads.  It is important that a building 
remains elastic for wind loads since wind loads are not oscillatory.  If a building 
began to yield in a strong wind, then the force would remain and the building would 
just blow over.  In contrast, it is assumed that earthquake loads are oscillatory; that 
is, the building deformation will reverse direction before the yielding becomes too 
large to survive P-  effects. 
 
Figures 6.12 and 6.13 show the pushover analyses of 6-story steel moment resisting 
frame buildings for 1990’s US and Japanese codes, respectively.  Notice that the 6-
story buildings are required to have a greater yield strength than the 20-story 
buildings. 
 

 
 

Figure 6.12 (from John Hall)  Same as Figure 6.10, but for US-code, 6-
story, steel-frame building. 
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Figure 6.13 (from John Hall).  Same as Figure 6.10, but for Japanese-

code, 6-story steel frame building 
 

Concrete Moment-Resisting Frame Buildings 
 
Moment resisting frame buildings can also be constructed with reinforced concrete 
beams and columns. Concrete mrf’s have similar flexibility to steel mrf’s and the 
code requirement for lateral yield strength is also similar.  Both types of mrf’s (steel 
and reinforce concrete) are required to have high ductility (approximately a factor 
of 10), but this is achieved in different ways with concrete.  While steel is naturally 
ductile in tensional strain, unreinforced concrete is naturally brittle in tension.  
Although it is common to speak of the shear strength of the solid parts of the 
Earth, beams and columns are slender and they generally carry only longitudinal 
forces.  In many cases, this can be axial tension or compression.  In other cases, the 
element is subjected to bending forces (think of the forces in a diving board).  In 
the case of bending, one side of the beam experienced tension while the opposite 
side experiences compression.  In order to construct concrete beams that support 
bending (e.g., a beam supporting a floor), steel reinforcing bars (rebar) are run 
longitudinally in concrete beams in order to greatly increase the tensional strength 
and ductility.  While longitudinal rebar is very important, it is not sufficient to make 
a beam adequately ductile.  This was discovered through the inspection of 
reinforced concrete beams and columns that failed in the 1971 San Fernando 
earthquake.  When a column experiences brittle failure, then the building collapsed 



 

145 
 

vertically (referred to as a vertical collapse mechanism).  An example of this type of 
failure is seen in Figure 6.14, which shows the failure of an 8-story concrete frame 
building in Mexico City from the M 7.2 1957 Acapulco earthquake.  A more 
revealing photo of non-ductile failure of a concrete column is shown in Figure 6.15, 
which shows a freeway bridge column that failed during the 1994 Northridge 
earthquake.  Notice that the column originally fractured because of horizontal shear 
loads on the column.  Although the failure was caused by shear stress in the column 
(this happens when the thickness of the column increases relative to its length), the 
failures actually consist of diagonal tensile cracks.  
 
Once the concrete in the column cracked, the concrete fell away from the column 
and the remaining rebar buckled into a mushroom shape.  This is an example of 
non-ductile concrete behavior.  This deficiency was rectified by requiring spiral 
reinforcing bars that serves to confine the concrete to the beam, even if it is 
fractured.  Figure 6.16 shows how a concrete column can continue to carry 
significant loads even though it has been strained well beyond its yield point.  
Unfortunately, this parking garage suffered significant collapse because the 
elements of the building were insufficiently connected to each other.  That is, the 
reinforcing bars must adequately tie the different elements together. 
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Figure 6.14.  Collapse of an 8-story non-ductile concrete moment-
resisting frame building in Mexico City from the 1957 Acapulco 

earthquake. 
 

Non-ductile concrete frame buildings are recognized as a class of particularly 
dangerous structures.  They have the particularly bad combination of having a low 
yield stress combined with a low ductility (they’re brittle).  The tremendous loss of 
life in the 1999 Izmet Turkey earthquake was an example of non-ductile concrete 
frame failures.  These failures are often very disastrous since the building often 
pancakes into a pile of floor slabs (referred to as a vertical collapse mechanism; very 
nasty).  Many concrete moment resisting frame buildings that were constructed in 
the United States prior to 1975 can also be classified as non-ductile concrete frames.  
Failures in the 1971 San Fernando earthquake resulted in a building code change in 
1975 that significantly enhanced the ductility of buildings built after 1975.  
Unfortunately, repair of non-ductile concrete frame buildings is so expensive that 
there are very few ordinances that force a building owner to strengthen these 
buildings.  Furthermore, most of the occupants of these buildings are not aware of 
the potential deficiencies of their building.  Notably, the cities of Los Angeles and 
Santa Monica have passed laws that direct the Building Departments to publish lists 
of these buildings in those cities.  Furthermore, the law directs owners to upgrade 
the buildings on a specified schedule that prioritizes actions according to the 
occupancy of the buildings.  This work is not required to be completed for several 
decades. 
 
It's important to distinguish concrete frame buildings from concrete shear wall 
buildings.  That is, there are many old concrete shear wall buildings that are very 
resistant to failure in earthquakes, while most older concrete frame buildings may 
perform poorly in strong shaking. 
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Figure 6.15.  Example of a nonductile concrete column failure on a 
freeway bridge during the 1994 Northridge earthquake.  The column 
was fractured by horizontal shear, the concrete fell away, and then the 

weight of the bridge deck caused the rebar to buckle.  This failure 
could have been avoided by adding more spiral reinforcing loops 

radially around the column to make it more ductile as is seen in Fig. 
6.16. 

 
 

 
Figure 6.16.  Schematic showing how the addition of additional 
circumferential reinforement increases the strength of concrete 

beams.  This is referred to as “detailing.” 
 
 
 

 
Figure 6.17.  Example of ductile deformation of concrete columns 
from the 1994 Northridge earthquake.  Adequate spiral reinforcing 
resulted in more ductile behavior than was shown in Figure 6.14.  
Unfortunately, the structure had other inadequacies that led to 

collapse as is shown in Figure 6.17. 
 



 

148 
 

 
Figure 6.18.  Despite the ductile behavior of the concrete columns, this 
parking structure collapsed because the floor slabs were not adequately 
connected to the rest of the structure.  That is, the beams and columns 

were ductile, but the connections between these elements were not. 
 
 
 
 
 

Braced Frame Structures 
 
The lateral yield strength of a building can be increased by adding diagonal braces 
to a structure, as is shown in Figure 6.19.  Recall that the restoring force of a beam 
is primarily bending.  In contrast the restoring force for a diagonal brace is primarily 
uniaxial compression (or tension, depending on the direction of the inter-story 
shearing). Beams are much stiffer in uniaxial deformation than they are in bending.  
In general, diagonal braces increase the pushover yield strength, while they also 
increase the overall stiffness of a building.  That is, there is a trade-off between the 
desired trait of high strength and the undesired trait of high stiffness.  Furthermore, 
it can be difficult to make a braced frame that has high ductility.  This is because 
the use of large bracing elements tends to result in very stiff braces that apply very 
large loads to their connections with the structure, thereby concentrating damage 
at these connections.  However, the use of small diameter bracing elements can end 
up with braces that tend to have ductile extension (good), but they buckle in 
compression (bad).  As a building undergoes cyclic loading, small braces become 
ineffectual, since they permanently extend for motions in one direction  and then 
they buckle for motions in the opposite direction (see Figure 6.20).  Caltech’s Broad 
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Center is one of the first buildings in the United States to use a new style of brace 
called an unbonded bucking-restrained brace (brb).  This consists of a small 
diameter steel brace that is jacketed in a concrete liner.  There is a lubricating 
element between the concrete and the steel.  The concrete jacket prevents the brace 
from buckling in compression and hence this brace is ductile in both extension and 
compression.   Figure 6.21 shows an example of Broad Center’s unbonded 
buckling-restrained braces. 
 

 

 
Figure  6.19.  Example of a braced steel-frame. 
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Figure 6.20 Large braces are stiff and they put large loads into a 

frame, but small braces can buckle in compression. 

 

Unbonded Brace in the Broad Center
 

Figure 6.21.  Broad Center bucking-restrained brace.  The steel is ductile in 
tension and compression since it is jacketed by concrete (yellow) to prevent 

buckling in compression. 
 

Base Isolated Structures 
 
Throughout my career (starting in 1972), I have been asked about a common folk 
lore that buildings (especially high-rises) are built on rollers.  I don’t know where 
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this story originated, but I have never encountered any buildings on rollers.  That 
said, the use of base isolators has become ever more popular (especially in Japan) 
since they were first introduced in New Zealand in the 1980’s.  The idea is simple; 
introduce a highly flexible layer between the ground and a building. Loads to the 
building are dramatically reduced by concentrated shearing at the isolators.   The 
first practical designs consisted of rubber disks placed between the foundation and 
the ground floor (see Fig. 6-22).  In order to ensure that the rubber disks could 
carry the vertical loads from the weight of the building, stainless steel disks were 
molded into the isolators.  In some cases, the disks also had a lead plug at their 
center to provide plastic damping.  As you can see in Fig.6-22, the diameter of the 
isolator must be comparable to the largest lateral design displacement.  The isolator 
of Fig 6-22 is relatively large (150 cm??) and it is intended to accommodate 
differential displacement of up to the size of the gap between the ground floor and 
the foundation.  It is typical to construct a massive reinforced concrete box that is 
buried one story into the ground.  The walls of the box prevent the differential 
motions from becoming so large that the isolator either tears or becomes 
gravitationally unstable. These walls are referred to as safety stops.  Obviously, it is 
undesirable for the building to exceed the gap displacement in a real earthquake. 
 
 

 
Figure 6-22.  Base Isolated structure.  The large black cylinder is one 

of many  rubber/steel plate composite isolators that supports the 
weight of the building.  The isolators are stiff in compression and 

flexible in shear.  The concrete wall behind the engineer is the safety 
stop.  The ground floor of the building is a massive reinforced 

concrete element that ensure that the ground floor moves as a rigid 
block.  
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There are some tradeoffs in the design of isolated buildings.  It is desirable that the 
isolators can withstand large isolator drifts, which means that the isolators should 
have large diameters.  However, such large rubber disks are surprisingly stiff and 
they come with the penalty that there is less isolation.  Making the isolators taller 
(thicker) means that they are more flexible, but it also means that they become 
vulnerable to P −  instability.   
 

 
 

Figure 6-24.  Simulation of a typical three-story base-isolated building 
in simulated near-source ground shaking from a hypothetical M 7.0  

thrust earthquake. 
 

 
The earliest generation of isolators typically had maximum differential 
displacements of about 35 cm.  Following a paper by Heaton, Hall, Wald and 
Halling (1995, Response of high-rise and base-isolated buildings to a hypothetical 
M 7.0 blind thrust earthquake, Science, V 267, 206-211) that pointed out that near-
source ground motions from M > 7 earthquakes could exceed these design limits 
(see Figure 6-23), there was a move to increase the design drift of isolated buildings 
(see Figure 6-24).  
  

 
Figure 6-24. Schematic of a friction-pendulum bearing for base 

isolation.  The sliding surfaces of the bearing are typically made of 
stainless steel that is coated to reduce sliding friction.  The lateral 

restoring force for this system is gravity.  The motion of the buildings 
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is identical to that of a pendulum of the length of the radius of 
curvature of the spherical surface.   

 
 
A new type of isolator was developed; a friction-pendulum isolator consists of a 
metal bearing that slides in a low-friction hemispherical cup.  If the radius of 
curvature of the isolator is large, then the isolator can accommodate large 
differential displacements.  Unlike the rubber base isolated buildings that only 
displace laterally, the motion of the pendulum-isolated building is the same as the 

motion of a pendulum whose length 
pl  is the radius of curvature of the isolator 

surface.  Recall that the free period of a pendulum is 0 2 2.0p
p

l
T l

g
 = , 

where the pendulum length is in meters and the period is in seconds.  Now the 

maximum lateral displacement of the pendulum is just
max max maxsinp px l l =  , 

where max is the maximum rotation of the pendulum in radians.  Therefore, 

max
0

max

2.0
x

T


 .  It is clear that the maximum rotation of the pendulum cannot 

be more than about 0.1 radians (1.57 radians corresponds to rotating the base to a 

vertical orientation).  Assuming that max 0.1 = , then 0 max6.3T x .   This means 

that designing for large bearing displacements implies that the isolator system has 
large natural periods; an isolator maximum displacement of 1 m has a free period 
of about six seconds.  As we will see in the next chapter, the maximum isolator 
displacement grows with isolator period for near-source ground motions in large 

earthquakes ( 210
M

pgd ).  In reality, it is difficult to estimate the maximum 

isolator displacement that is expected at a given site.  Nevertheless, it is currently 
common for practicing engineers to ignore this issue when discussing base isolated 
buildings with the public and policy makers. 
 
As long as the displacement of the ground is less than the maximum isolator 
displacement, then base isolated buildings are expected to have the benefit that the 
accelerations in the building will be substantially reduced compared to the ground 
acceleration.  This is especially beneficial for historic buildings that are both fragile 
and socially important.  In particular, the city halls of San Francisco, Los Angeles, 
Pasadena, and Salt Lake City have all been retrofitted with base isolation systems.  
Installing base-isolation in an existing building is remarkably expensive; it’s 
probably less costly to build a new replica than it is to isolate an existing historic 
structure.  Convincing political decision makers to commit public funds for these 
retrofits means that there is reluctance to admit that the systems will not survive 
large near-source ground motions. 
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Another benefit of base isolation is that the contents of isolated buildings (e.g., an 
expensive computer system) are less likely to be destroyed than for the same system 
in a traditional building since the peak accelerations in the building are typically 
reduced (that is, unless the building collides with its safety stops). 

 
 
Wood-Frame Structures 
 
Wood frame is the most common type of construction in California; most 
residences and many commercial structures are in this category.  Since wood is 
thought of as a “flexible” material, you might think of a very flexible building when 
you think of a wood frame structure.  This would be a mistake.  In fact, most wood 
frame construction is extensively braced.  Furthermore, continuous plywood 
panels, and sheetrock panels are typically fastened to either side of the wooden 
framing.  Such walls may be best described as shear panels.  These panels are 
geometrically connected into rectangular box shapes.  In this sense, most wood 
frame construction might be better described as a shell type of structure.  Another 
feature of wood frame construction is that the structure is relatively light; the dead 
load of the building is small compared with the weight of the contents (the live 
load).  Because of the higher stiffness to mass ratio, wooden houses have high 
natural frequencies (typically 5 to 7 Hz). 
 
Since it is not workable to construct houses that would crack their plaster walls 
when subjected to live loads (e.g., a piano, a graduation party), wood houses are 
also designed to have large yield stresses (compared to their weight).  In fact, the 
pushover yield stress of most houses exceeds the weight of house.  Furthermore, 
wood houses are designed to be stiff to limit the deflections caused by the live loads. 
 
Wooden houses are also relatively ductile (the framing is redundant, and nails must 
be pulled out to disconnect elements).  Because of these features (stiff, strong, and 
ductile), wood frame structures tend to perform very well in earthquakes.  Even 
though these structures have been located in areas of violent shaking in past 
earthquakes, collapse of these structures is exceedingly rare.  Figure 6.22 shows the 
Turnagain Heights housing development (wood frame) following the 1964 Alaskan 
Earthquake.  Despite the tremendous damage caused by a massive landslide 
beneath the development, the wood frame houses essentially remained intact. 
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1964 Alaska Earthquake, Turnagain Heights

 
Figure 6.22.  Wood frame houses that rode through the massive 

landslide triggered by the 1964 Alaskan earthquake. 
 

Quantification of ductility of wooden houses is a little tricky since it involves some 

understanding of how damage occurs.  When wooden houses do yield, the damage 

is most often concentrated in the region between the foundation and the floor of 

the first story.  In California, this region is often called a cripple wall.  I don’t want 

to get into the details of construction styles, so if you want to speak about any 

particular house, then you had better go to more detailed documents (like the wood 

retrofit report of the Calif. Earthquake Authority).   

 
Unreinforced Masonry  
 
In the earlier part of the 20th Century, many buildings were constructed of 
unreinforced brick; that is the exterior walls are several courses of brick and mortar, 
whereas the inner walls, floors, and roof are wood frame construction.   The 
exterior brick walls in this type of construction tend to be heavy and brittle.  That 
is, the walls cannot sustain tension. URM’s have the undesirable characteristics that 
they are heavy, stiff, and quite brittle. The inadequacies of unreinforced masonry 
(URM) became obvious in the 1933 Long Beach earthquake and many 
municipalities adopted building codes (between the mid 1930’s and 1950, 
depending on the city) that required that these masonry construction buildings 
should be reinforced with steel.  However, several cities have numerous examples 
of these historic structures.  Following serious damage to URM’s in the 1971 San 
Fernando earthquake, the cities of Los Angeles and Long Beach adopted 
controversial legislation that required that all URM should have some 
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strengthening.  At a minimum, this involved making stronger connections between 
the wooden floor trusses and the brick walls.  This tends to decrease the bending 
moments on the base of the brick walls for out-of-plane shaking.  Some buildings 
are also reinforced by building another structural system (often steel) within the 
building.  Although strengthened URM’s are an improvement on the pre-existing 
structures, there is a widely held belief that they are still lacking in strength and 
ductility.  Despite their obvious shortcoming, the interior walls of URM’s often 
prevent the catastrophic pancaking of the floors seen in non-ductile concrete frame 
buildings.  
 
While almost all un-retrofitted masonry buildings constructed prior to 1930 are 
probably dangerous for even moderate levels of shaking, modern steel reinforced 
masonry buildings are thought to be among the most resilient structures available.  
That is, if you see a brick building, don’t immediately assume that it is vulnerable.  
In California, most brick buildings constructed since 1950 are reinforced with steel 
and they are best classified as reinforced concrete shear wall structures. 
 
Table 6.1 is a list of different types of buildings along with a general assessment of 
the structural characteristics of each type.  This table is very generalized and 
qualitative.  The actual characteristics of real buildings vary tremendously (caveat 
emptor). 
 
 
 

 
Figure 6.23.  Example of an unreinforced masonry building (URM). 

 
 

Table 6.1 Qualitative summary of the characteristics of different 
building types. 
Building Type Stiffness Average 

density 
Yield 
Strength 

Ductility 
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Shear Wall high high high medium to 
high 

Wooden 
House 

high low high high 

Braced Frame medium low medium medium to 
high 

MRF (frame) low low low Medium to 
high 

Nonductile 
frame 

low low low low 

Unreinforced 
Masonry 

high high low low 

Base Isolated low variable variable Variable 

 
 

Understanding Building Response 
 
The next sections provide some methods for understanding the response of 
buildings in earthquakes.  This is an enormous field of study and the analysis in 
these chapters is simply an introduction to the subject. 
 
 
 
 
Building as a Rigid Block 
 
Buildings are not rigid blocks!  However, it is still instructive to investigate the 
forces in a rigid block that is subject to ground acceleration.  This example has some 
application if the lowest natural frequency of the structure is high compared to the 
predominant frequency of the ground acceleration. 
 
If both the building and the ground are considered to be rigid (how do you have 
earthquakes in a rigid earth?), then there are no waves and the problem can be 
solved by balancing force as follows.  Consider a rigid building of height h , length 

and width w,  and average density  that experiences a horizontal acceleration ( )u t  

as shown in Figure 6.24.   
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Figure 6.24.  Forces acting on a rigid rectangular building that is 

sitting on a rigid earth.  The cartoon on the right is known as a free 
body diagram.  There are both shear stresses to horizontally accelerate 
the building, and also a moment that is applied to the base to keep the 

building from rotating. 
  
The total momentum of the building is the sum of the translation of the center of 
mass of the building and also the rotational momentum of the building about an 
axis running through the center of the building.  Since the ground is rigid, the 
building cannot rotate and the total momentum of the building is just 

 ( ) ( )2

1P t hw u t=  (6.1) 

where ( )1P t  is the momentum in the 1x  direction (that’s all there is in this 

problem).  The total horizontal force on the bottom of the building is  

 ( ) ( ) ( )2

1 1F t P t hw u t= =  (6.2) 

Therefore the shear stress on the bottom of the building is just the force divided 
by the cross sectional area, or 

 ( ) ( )13 t hu t =  (6.3) 

So the shear stress at the bottom of a rigid building on a rigid earth just depends 
on the ground acceleration and the height of the building (assuming that the density 
is constant).   
 
However, there is more to this simple problem.  The shear stress at the bottom of 
the building would cause the building to rotate if there were no counteracting forces 
on the base of the building.  That is the total moment applied to the base of the 
building must be zero, or 
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 ( ) ( )
2

1 33 1 1 1

2

, 0
2

w

w

h
F t w t x gh x dx 

−

− − =    (6.4) 

where we assumed that the normal force on the base of the building consists of the 
weight of the building plus a moment that keeps the building form rotating.  If we 
assume that the normal stress consists of constant compressional stress from the 

weight of the building ( )gh  plus another stress that varies linearly with distance 

along the base, then 

 ( ) ( )33 1 1 1,x t c t x gh w x w = + −    (6.5) 

where ( )c t  is now only a function of time.  In this case  

 

 ( ) ( )
2

2

1 1 1

2

0
2

w

w

h
F t wc t x dx

−

− =  (6.6) 

Substituting (6.2) into (6.6) and performing the integration yields 

 
( )

( )
2 2 4

0
2 12

h w u t w
c t


− =  (6.7) 

or  

 ( ) ( )
2

33 1 1 1, 6
h

x t gh x u t w x w
w

  
 

= + −   
 

 (6.8) 

Therefore the normal stresses at the outer edges of the building are  

 

( ) ( )

( )

2

33 1 , 3

3

h
x w t gh wu t

w

h
h g u t

w

  



 
=  =   

 

  
=    

  

 (6.9) 

There are cases where engineering materials fail easily in tension.  Tensional stresses 
in our rigid building occur at the outer edge when 

 
3

w
u g

h
  (6.10) 

Therefore, rigid buildings that are tall compared with their width can result in 
tensional stresses in the exterior part of the building. 
 
If we can approximately model the dynamics of a building with a rigid block, then  
the stresses in the building are determined by the peak acceleration.  However, it 
has been long known that the peak accelerations observed in earthquakes are 
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considerably larger than the nominal lateral strength of buildings that have survived 
those ground accelerations.  As it turns out, the peak acceleration in most seismic 
records is strongly dependent on high-frequency parts of the motion (typically > 3 
Hz), and the assumption that the building’s fundamental frequencies are large 
compared to the ground acceleration does not apply. 
 
 
Rigid Building on a Flexible Foundation (Rocking) 
 
In this section I investigate what happens if we allow a rigid building to tilt due to 
flexibility of the foundation.  This is not a very realistic problem to consider the 
ground to be far more flexible than the building, but it does illustrate how forces in 
the base of a building can be modified by the elasticity of the soil.  This is called a 
soil-structure interaction (there are other effects that enter into this problem, but 
this is probably the most important).  The problem is sketched in Figure 6.25.    
However, for the current discussion, we only ask the simpler question of how the 
rotation of the building changes the forces on the base of the building as compared 
with the previous section of this chapter. 

 

 
Figure 6.25.  Sketch of a rigid building on a flexible foundation 

 
Solving for the forces in this problem involves separating the motion of the 
building into two parts; 1) the rectilinear motion of the center of mass of the 
building, and 2) the rotational motion about it axis of angular momentum.  This 
decomposition is shown in Figure 6.26. 
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Figure 6.26  The motion of the rigid building can be viewed as the 
sum of a translation of the center of mass together with a rotation 
about the principal axis of inertia. 

 

Let ( )u t  be the motion of the base of the building in an inertial frame, ( )xu t  be 

the linear motion of the center of mass, and ( )u t  be the motion of the base due 

to pure rotation of the building about the center of rotation which is located at the 
midpoint of the building.  Then 

 ( ) ( ) ( )xu t u t u t= +  (6.11) 

and  

 ( ) ( ) ( )xu t u t u t= +  (6.12) 

now 

 ( ) ( ) ( )sin
2 2

h h
u t t t    =   (6.13) 

then 

 ( ) ( )
2

h
u t t   (6.14) 

The force system on the base of the building is the sum of the a horizontal force 

( )1F t  (these are unbalanced) and a resisting moment ( )M t  caused by the 

distribution of vertical stresses on the base of the building.  The rectilinear 

momentum of the building ( )P t  is just 

 ( ) ( ) ( ) ( ) ( )2

3 3

0

1 1

2 2

h

P t w u t x t dx m u t h t  
   

= − = −   
   


 (6.15) 
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where 
2m hw=  is just the mass of the building.  The force on the base of the 

building is then 

 ( ) ( ) ( ) ( )1

1

2
F t P t m u t h t

 
= = − 

 
 (6.16) 

 
The shear stress on the base of the building is then 
 

 ( )
( ) ( )

( ) ( )1

13 2 2

1

2

F t P t
t h u t h t

w w
  

 
= = = − 

 
 (6.17) 

At this point, we do not yet know the shear stress, since we do not know ( )t .  We 

can calculate the rotation of the building as follows, 

 ( ) ( ) ( )1
2

h
M t F t I t+ =  (6.18) 

where I is the moment of inertia.  For a rectangular prism,  

 ( )2 21

12
I m h w= +  (6.19) 

Combining (6.16), (6.17), and (6.19) yields 

 ( )
( )

( ) ( )
2 2

12

24

mh
t M t u t

m h w


 
= + +  

 (6.20) 

Now the moment at the base of the building is 

 ( ) ( )
2

33 1 1

2

w

w

M t w t x dx
−

=   (6.21) 

If we assume that the normal stress is proportional to the vertical deflection, then 

 ( ) ( )33 1 12 2
w wt k t x x = −    (6.22) 

where k  is a type of stiffness with units of stress per unit of displacement ( it differs 
from a regular spring constant, which has units of force per unit displacement).  
Therefore, 

 ( ) ( ) ( )
2

2 4

1 1

2

1

12

w

w

M t wk t x dx w k t 
−

= =  (6.23) 

Combining (6.20) and (6.23) gives us the equation for a single degree of freedom 
forced oscillator 

 ( )
( )

( )
( )

( )
4

2 2 2 2

6

4 4

kw h
t t u t

m h w h w
 − =

+ +
 (6.24) 
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We immediately recognize that this is an un-damped forced linear oscillator with a 
natural period of 

 
2

0 2 2

1

4

k
w

h w m
 =

+
 (6.25) 

The full solution to this force oscillator is given in Chapter 1 (see equation 1.40 
with damping equal to zero) as 

 ( )
( )

( ) ( ) 0

2 2
0

sin6

4

th
t u t H t

h w






 
=   

+  
 (6.26) 

While we have modeled the building as an un-damped sdof, the full solution to this 
problem is quite complex, since the oscillations of the building would excite waves 
in the elastic medium.  The excitation of the waves would cause kinetic energy in 
the building to be radiated as wave energy into the surrounding medium.  This 
would be a form of radiation damping of the oscillations of the building.  
Substituting (6.26) into (6.17) gives  

 

( ) ( )
( )

( ) ( )

( ) ( ) ( )

2 2

0
13 22 2

0

2 2

022 2 2

sin3

4

3
sin

4

th
t h u t u t H t

th w

h m
hu t t H t t

k tw h w


 



  

  
 = −    +   

 
=  −     + 

 (6.27) 
We can also calculate the vertical compressive stresses at the outer edges of the 
building by substituting (6.26) into (6.22). 
 

 

( ) ( )

( )
( ) ( )

( ) ( )

33 1

0

2 2
0

0
2 2

;

sin6

4

6
sin

4

t x w gh kw t

th
gh kw u t H t

h w

h
gh mku t H t t

w h w

  






 

=  = 

 
=    

+  

=     
+

 (6.28) 
These are fairly complex relationships.  However, we can get some idea of the effect 
of building tilting by investigating the initial response of the building to a impulse 

in acceleration, maxu .  In this case (6.27) becomes 
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( ) ( )
( )

( ) ( )

( )
( )

( ) ( )

( )
( )

( ) ( ) ( )

( )

2 2

0
13 max 22 2

0
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0
max 02 2

0
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0
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0
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sin3
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4

sin3
2 cos sin

4

6
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4

I th
t hu t t H t

th w

th
hu t t H t t

th w

th
hu t t t t H t t

h w

h
hu t

h


   




   




      



 

  
 = −    +   

  
 = − +  +   

  
 = − + −  +   

= −
( )

( )0 max 0 02 2
cos sint hu H t t

w
   

 
  −
 +
 

(6.29) 
 
Or we can write the shear response for an arbitrary acceleration as 

 ( ) ( )
( )

( ) ( )
2

13 0 0 02 2

6
1 cos sin

4

I h
t hu t t hu t H t t

h w
     

 
 = − − 
 +
 

 (6.30) 
Therefore, the shear maximum shear stress is decreased for a rocking 
building compared with a rigid base (that is, for an impulse of acceleration).  To 
fully understand the effect of this rocking, we would have to know the actual 
ground acceleration time history.  If the ground motion was harmonic with the 
same period as the natural frequency of rocking, then the rocking building would 
resonate with the ground.  If the duration of the ground motion was large enough, 
then the rocking building would develop even larger shears than the rigid building 
on the rigid foundation. 
 
Notice that the acceleration impulse response for the outer edges of the building 
can be derived from (6.28), and is  

 

( ) ( ) ( )

( ) ( )

33 1 max 0
2 2

0
2 2

6
; sin

4

6
sin

4

h
t x w gh mku t H t t

w h w

h
gh mku t H t t

w h w

   

 

=  =     
+

=     
+

 (6.31) 
 

Notice that as 0k → , a very, very flexible foundation, then 
 

 ( )33 1 0;t x w gh t  =  =  (6.32) 
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That is, as the foundation becomes more flexible, the normal stresses on the 
columns from the overturning torque decrease.  However, depending on the 
convolution term, there may be resonances and the compressive stresses may 
actually increase. 
 
 
Building as a single-degree-of-freedom oscillator; Response Spectra 
 
In the previous discussion, I discussed stresses in very stiff buildings that could be 
approximated as accelerating rigid blocks.  Of course, buildings cannot be damaged 
if they do not deform.  In reality, all buildings are flexible and more complex models 
are required to understand the vulnerabilities of flexible buildings.  I now discuss 
the properties of a building modelled as a single-degree-of-freedom linear oscillator.  
This is identical to the problem of a simple seismometer that was discussed in 
Chapter 1 (Figure 1.1).  I will shortly describe how this problem can be generalized 
to multi-degree-of-freedom linear oscillators.  For now, though, I will discuss the 
dynamics of a base-isolated building.  In particular, I will assume that the building 
is approximately rigid and that it sits on a linearly elastic isolator that also has 
viscous damping (linear damping).  Real isolators are nonlinear at large offsets, but 
I’ll ignore that for now. Consider the sdof shown in Fig. 2.27. 

 

 
Figure 6.27 Building modeled as a single-degree-of-freedom damped 

oscillator.  This model is useful for base-isolated buildings. 

 

The system in Fig. 6.27 is exactly analogous to that shown in Fig. 1.1, except that 
the motions are horizontal.  In particular, the ground moves horizontally with 

displacement ( )u t ; the horizontal motion ( )x t  of a mass m  is resisted by a spring 

of stiffness 𝑘; and there is a viscous damper that resists the relative velocity �̇� of 

the mass with respect to the ground with force −𝑏�̇�.  The force on 𝑚 is −𝑘𝑥 −

𝑏�̇� and the inertial force on m is ( )m u x+ .  The equation of motion of the system 

is then 
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 ( ) 0m u x bx kx+ + + =  (6.33) 

which can be rewritten as 

 2

02x x x u + + = −  (6.34) 

where 0
k

m
 =  (the undamped natural frequency) and 

2

b

m
   (the 

damping constant), which is related to the fraction of critical damping,  , by 

𝛽 = 𝜔0𝜍.   

 

It’s important to recognize that ( )u t  is motion with respect to an inertial 

frame, but ( )x t  is a noninertial coordinate.  However, ( ) ( )x t u t+  is an 

inertial coordinate for the mass. 

 

(6.34) can be easily solved using techniques in either the time domain, or 

alternatively, the frequency domain (see Chapter 1).  For example. we can 

find the response to any ground motion by use of the convolution operator, 

which is defined as follows. 

 ( ) ( ) ( ) ( ) ( )x t u t G t u G t d  


−

=   −  (6.35) 

where 

 ( ) ( ) 1

1

1
sintG t H t e t 



−=  (6.36) 

where 

 
2 2

1 0   −  (6.37) 

G(t) is a Green’s function for this system; it is the response of the system to an 
impulse of ground acceleration.  An impulse of acceleration induces a step in inertia, 
so this solution is identical to the transient response of the system with initial 
conditions of zero displacement and initial velocity of 1 m/s.  The Green’s function 
for 20% damping is shown in Figure 6.28.   
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Figure 6.28.  Response of a 20% damped sdof to an impulse of acceleration. 

 

If there was no damping in the system, then the mass would move as a sinusoid 

indefinitely.  Interestingly, the amplitude of the Fourier spectrum of x  at 0  is 

identical to the amplitude of the steady state harmonic motion that persists after 

the ground acceleration is over. 

When analyzing the dynamic response of elastic buildings, we are more interested 

in understanding the maximum deflections and forces than we are in the steady 

vibration.  Furthermore, there is always dissipation (damping) in real structures.  

Suppose that we are interested in estimating the maximum isolator displacement 

for a base-isolated building.  Then this is simply the response spectral 

displacement, which is defined as 

 ( ) ( )0 0, max ; ,d
t

S x t        (6.38) 

where   and 0  are the % critical damping and undamped natural frequency, 

respectively.  Similarly, the response spectral velocity is defined as 

 ( ) ( )0 0, max ; ,v
t

S x t        (6.39) 

and finally the response spectral acceleration is defined as 

 ( ) ( )0 0, max ; ,a
t

S x t u    +    (6.40) 

Notice that spectral acceleration is defined with respect to the inertial coordinate 

x u+ , which means that the response spectral acceleration measures the maximum 

force applied by the spring and damper (normalized by the mass).  Figure 6.29 

shows an example of response spectral velocity for a range of frequencies and 

damping.  Response Spectra are ubiquitous in earthquake engineering, but please 

pay attention to the units.  Tragically, even today it is common to see British units 

(inches and feet), which complicates any discussions between engineers and 

scientists.  While any damping can be used, 5%  damping is most commonly 

assumed; this is a pernicious mistake that I will discuss later. 
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Figure 6.29.  A very old figure (circa 1960’s) showing 

response spectral velocities for a variety of damping (0, 

2%, 20%, and 40%). 

Response spectra are similar to Fourier spectra since they both characterize the 

amplitude as a function of frequency.  Figure 6.30 compares the ( )0vS  = (solid 

line) with the Fourier amplitude spectrum (dotted line) of a ground motion record.  

Notice that while theses spectra are similar, there are differences.  In particular, the 

response spectrum is always greater than, or equal to the Fourier amplitude 

spectrum.  That is because the response spectrum measures the maximum transient 

amplitude, while the Fourier spectrum measures the undamped steady state 

amplitude after the ground has stopped moving.  The difference between these two 

spectra becomes more pronounced as the damping is increased.  This difference is 

obvious in Figure 6.29, where it is seen that the response spectral amplitude 

decreases with damping. 
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Figure 6.30.  Comparison between 0%-damped response 
spectrum (solid line) and the Fourier amplitude spectrum (dotted 

line) for a strong motion record. 
 
It is important to recognize that although the Fourier transform is a linear operator, 

the response spectral operator is not.  That is because response spectra involves 

requires finding the maximum amplitude; there is no phase (timing) information in 

response spectra.  Recall that linear operators have the property that they can be 

performed in any order.  This is not the case for response spectra. 

 

Response spectra were first introduced in the 1930’s by Romeo Martel, who was a 

Caltech Professor of Mechanical Engineering.  The application of response spectra 

was expanded by George Housner who was a Caltech Professor of Civil 

Engineering; Housner has been referred to as the “father of response spectral 

analysis.”  

The development of response spectral analysis preceded the development of digital 

computers and the calculation of spectra like that shown in Fig. 6.29 required many 

hours of human effort.  Accordingly, researchers employed approximations that 

decreased numerical calculations.  For example, when calculating ( )max
t

x , the 

velocity 0x  when x is a maximum.  Substituting into (6.34) gives 

 
( )

max
max 2

0

u x
x



+
  (6.41) 

This means that 2

0a dS S .  Also notice that when x  is a maximum, then 0x 

, so  

 
( ) ( )

max max
max

02 2

u x u x
x

 

+ +
 =  (6.42) 

which means that 02a vS S .  These approximations mean that you only need 

to calculate one of these response spectra (typically vS ) and then the other spectra 

can be approximated by simple multiplication or division with 0 .  In the 1960’s it 

was common to determine response spectra using these simple approximations.  In 
this case, the approximated spectra are called pseudo response spectra.  For 

example, 
0

2
d vPS S


  and 02a vPS S .  Figure 6.31 shows how these 

approximations can be used display all three response spectra on a single plot which 

is called a tripartite diagram.  It starts with a log-log plot of vS .  Diagonal 

logarithmic axes are added so that aPS  and dPS  can be read off of the vS  curve.  
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This is a very clever way to show lots of information.  Unfortunately, it is rarely 

used these days.  It is most common to see aS since it measures the maximum base 

shear force ( )amS . 

 
Response spectral analysis is the language of modern earthquake engineering.  It is 
useful to determine the excitation of the modal vibrations of buildings and it is used 
extensively in structural design.  It’s important to remember that although this 
theory works exceedingly well for buildings that have linearly elastic force-
deformation, it must be modified to provide realistic answers for buildings that 
experience damage.  Before I deal with the issue of inelastic, nonlinear behavior, I 
will introduce the theory of normal modes, which is a crowning achievement of 
applied mathematics.  Furthermore, response spectra play a central role in this 
theory. 

 
Figure 6.31. Tripartite diagram showing , ,v a vS PS PS for a single 

strong motion record and a variety of damping. 
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Modal Coordinate Frame 
 
There are several different methodologies to analyze the deformations of buildings 
that are subjected to earthquake shaking.  The situation is analogous to different 
approaches for solving the forced, single-degree-of-freedom, linear oscillator 
problem that I discussed in Chapters 1 and 2.  In particular, I showed how the 
system responds to harmonic forces (frequency domain) or alternatively to 
temporal impulses (time domain).  While these two approaches provide identical 
solutions (provided that all parts of the solutions are included), the two approaches 
can provide different insights into the behavior of the system.  To begin, look at 
the displacements that were obtained by double integration of accelerations 
recorded in the 19-story Factor Building (UCLA, SMRF) for a M 3.6 earthquake 
that happened nearby in the Santa Monica Bay (Figure 6.32).  Notice that the 
displacements in the building are primarily harmonic in nature.  This is typical of 
all motions in buildings that experience weak shaking that can be modeled as 
linearly elastic. 

 

 
The Factor building (a) and its seismic array (b). Arrows show polarities of the single component sensor. 
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Figure 6.32 (from Kohler and others, 2007) Displacement 

records for the 16 December 2004 Santa Monica Bay(ML 3.6) 
earthquake. The figure shows the north–south components for 

sensors on the east and west walls (left), and east–west 
components for sensors on the north and south walls (right) 

except for the subbasement sensor which is on the west wall. 1 
for location of sensors. Vertical numbering on the right indicates 
floor number with “A” for basement and “B” for subbasement. 

 
If you look closely, you will see that the motions are harmonic in both time 
(dominated by 3 Hz) and space (nodes at floors 1, 8, and 14).  The Factor Building 
is unusual in that it has continuously recording 24-bit accelerometers at every floor 
of the building.  The Fourier amplitude spectra of the one-day recordings of 
ambient vibrations recorded on each floor are shown in Figure 6.33 (from Kohler, 
M. D., T. Heaton, and C. Bradford, Propagating waves recorded in the steel, 
moment-frame Factor building during earthquakes, Bull. Seis. Soc. Am., 97, 1334-
1345, 2007).  Notice that the noise at the roof level is largest in amplitude at 0.6, 
1.8, and 3.0 Hz.  These are the first three modes of the building.  That is, the 
building resonates at these frequencies.  Furthermore, the amplitude response of 
the spectral peaks is reminiscent of the amplitude response of an under-damped 
linear oscillator (see Chapter 1).  Just as the width of the resonant peak 
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Figure 6.33.  Fourier amplitude spectra of 24 hours of ambient vibrations 

recorded at each floor of the UCLA Factor Building. 
 
of a sdof can be used to measure its Q (or more commonly, its fraction of critical 
damping), the width of the spectral peaks can be used to measure the damping of 
each mode of the building. 
 
Figure 6.34 shows the amplitude of the spectral peaks as a function of the floor on 
which it was recorded.  Notice that the first mode’s amplitude as a function of 

height ( )1A z  is approximately ¼ of a wavelength of a sinusoid with a total 

wavelength that is four times the building’s height h .  That is  

 ( )1 sin 2
4

z
A z

h
  (6.43) 

Furthermore, this can be generalized to the higher modes ( )nA z , 

 

 ( )
( )2 1

sin 2
4

n

n z
A z

h


−
  (6.44) 

where the resonant frequency n  of an overtone is related to the of the 

frequency of the first (aka, fundamental) mode by 

 ( ) 12 1n n  −  (6.45) 
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These relationships are exact for the modes of a uniform beam that experiences 

pure shear.  While they are useful for quick estimates of actual buildings, real 

buildings are neither uniform, nor do they experience pure shear; there is always 

some degree of overall bending. 
 

 
 

Figure 6.34.  Mode shapes determined from narrowband filtered 

displacements recorded from the 16 December 2004 Santa Monica Bay 

earthquake. Filled circles represent actual sensor locations along the 

height of the building that contributed to the modeshape measurements. 

 

We can gain insight into the response of a simple two-story mrf by using the 

simple model shown in Figure 635.  I will assume that the horizontal motion of 

the base is ( )u t  and that the first floor and the roof are rigid bodies of mass m .  

I will assume that the motions of the 2nd floor and the roof with respect to the 

base of the building is given by ( )1x t  and ( )2x t , respectively.  Now assume 

that the columns have negligible mass and that when the 2nd floor moves relative 

to the base, then the columns flex and then create a horizontal restoring force of 
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1kx .  Similarly, assume that when the roof moves relative to the second floor, 

then there is a restoring force of ( )2 1k x x− .  I can now use Newton’s 2nd law 

to write the equations of motion as 

 

 
( ) ( )

( ) ( )

1 1 2 1

2 2 1

m x u kx k x x

m x u k x x

+ = − + −

+ = − −
 (6.46) 

Which can be rewritten 

 
1 1 2

12 2 1

2mx kx kx mu

mx kx kx mu

+ − = −

+ − = −
 (6.47) 

 

This gives us two 2nd order coupled linear differential equations together with 

forcing terms mu−  and mu− .  Just as was the case for a linear sdof, we find that 

the solution is comprised of the solution to the homogeneous equations plus the 

particular solution for the forcing terms.    The homogeneous equations are  

 
1 1 2

12 2 1

2 0

0

mx kx kx

mx kx kx

+ − =

+ − =
 (6.48) 

It is convenient to rewrite (6.48) as a 2-vector equation as follows.  

 

 + =Mx Kx 0  (6.49) 

where ( )1 2,x xx , and 

 
0 2

0

m k k

m k k

−   
    

−   
M K  (6.50) 

 

 
Figure 6.35.  Simple model of a two-story building with lateral 

springs providing the restoring force of the concrete floors. 
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I can now guess that there are harmonic solutions.  That is, assume that there is 

a solution in which both masses are oscillating with frequency  , or assume 

that  

 
i te =x a  (6.51) 

where ( )1 2,a aa is a 2-vector that describes the amplitude.  Differentiating 

(6.51) twice with respect to time gives 

 
2 i te = −x a  (6.52) 

Inserting (6.51) and (6.52) into (6.49) gives 

 
2 i t i te e − + =Ma Ka 0  (6.53) 

This simplifies to  

 ( )2− + =M K a 0  (6.54) 

We now have two coupled linear equations with two unknowns.  This is an 

eigenvalue problem that can be studied in most texts on linear algebra.  (6.54) 

has nontrivial solutions if and only if 

 ( )2det 0− + =M K  (6.55) 

This equation is known as the characteristic equation which can be used to 

find the resonant frequencies.  Inserting (6.52) into (6.55) gives 

 
2

4 2 2 2

2

2
det 3 0

k m k
m k m k

k k m


 



 − −
= − + = 

− − 
 (6.56) 

The quadratic formula can be used to solve (6.56) for 
2 .  This gives 

 
2 3 5

2

k

m


 
=   
 

 (6.57) 

The fundamental mode is the lowest frequency solution and it is 

 
1 0

3 5
0.618

2

k

m
 

−
= =  (6.58) 

   
The 2nd frequency, the overtone frequency is  

 
2 0

3 5
1.628

2

k

m
 

+
= =  (6.59) 
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where 0
k

m
  , which is the frequency of a simple sdof using the same spring 

and mass.  (6.58) can be inserted into (6.54) to solve for 
1a , which tells us the 

relative motion of the two masses when they are in free vibration (homogeneous 

solution) at 
1 .  That is, 

 ( )2

1 1− + =M K a 0  (6.60) 

or  

  
2

1

11 122

1

02
,

0

k m k
a a

k k m





 − −  
=   

− −   

 (6.61) 

substituting (6.58) into (6.61) gives 

  11 12

3 5
2

02
,

03 5

2

k k k

a a

k k k

 −
− −   

  =  
 −  

− − 
 

 (6.62) 

So  

 11 12 11 12

1 5
0.618

2
a a a a

 +
= =  

 
 (6.63) 

Which means that, when the system is resonating at the first mode, the amplitude 

of the top floor is 1.6 times larger than the 2nd floor;  the amplitude of the base 

is, by definition zero.  Since 1a is real, there are no phase lags between the floors 

and the floors move completely in phase.   

 

The second mode can be found in a similar way.  Inserting (6.59) into (6.54) 

gives 

 

  21 22

3 5
2

02
,

03 5

2

k k k

a a

k k k

 +
− −   

  =  
 +  

− − 
 

 (6.64) 

or  

 21 22 21 22

1 5
0.618

2
a a a a

−
= − =  (6.65) 

Which means that the 2nd floor moves opposite to the roof.  Notice that  

 1 2 11 21 12 22 0a a a a• = + =a a  (6.66) 
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Which tells us that the amplitude vectors (the eigenvectors) are orthogonal.  This 

is a general property that is true as long as the system is purely elastic.  I can 

now write the general solution to (6.49) 

 ( ) ( ) ( )1 1 1 2 2 2

1 0.618
cos cos

1.618 1
t a t a t   

−   
= − + −   

   
x

 (6.67) 

where 
1 2 1 2, , ,a a    are four constants that allow the solution to fit the initial 

conditions (velocity and displacement for each mass).  Notice that I can define 

a new coordinate system ( )1 2,  where  

 
( )

( )

1 1 2

2 1 2

0.851 0.618

0.851 0.618

x x

x x





 +

 −
 (6.68) 

  is called the modal coordinate frame and it decouples two coupled ode’s for 

( )1 2,x x  into two uncoupled ode’s.  These coordinates have been normalized to 

have unit length and they are are orthogonal, which means that they are basis 

vectors.  Using this new modal coordinate frame results in two equations that 

are a linear sdof that is extensively discussed in Chapter 1.   

 

Of course, a model of a building that consists of two identical floors is of limited 

practical value.  However, the approach to the problem can be generalized to 

cover any system of n point masses that are connected by linearly elastic springs 

and linear viscous dampers.  In this case, the problem is written as 

 u+ + = −Mx Cx Kx M  (6.69) 

Where x is a Cartesian n-vector that describes the motion of the discrete masses, 

M is the n n  mass matrix, C is the n n  damping matrix, and  K is the n n  

stiffness matrix.  In many cases, the mass and stiffness matrices can be 

constructed using induction from simpler problems.  However, sometimes these 

matrices are not obvious.  In these instances, it is best to use a Lagrangian 

(kinetic energy minus the potential energy) to derive these matrices. 

 

Once the building is described as an n-degree-of-freedom linear system (i.e., 

(6.69)), then there are several methods to solve the eigen-value problem for the 

homogeneous solution.  Since the damping forces are not known a priori, it is 

best to begin with the approximation that C 0 .  The eigenvalues ( )1,..., n 

are then computed.  Since there is no damping, these eigenvalues are all real 

valued, which means that all of the masses vibrate in phase (except for possible 
 phase shifts).  Once the n eigenvalues (modal frequencies) are found, then the 

n corresponding eigenvectors (the mode shapes) can be determined.  These eigen 

vectors are then normalized to have a length of 1. The set of eigenvectors are all 

orthogonal to each other and the normalized eigen vectors can be used as a set 
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of basis vectors ( )1,..., na a  to describe any solution to the problem.  At that 

point, the problem is then transformed into 

  

 ( ) ( )Re ii t

i it e


=x a  (6.70) 

where 
ia is an 1n  vector that satisfies 

 ( )2

i i− =K M a 0  (6.71) 

There is always a rotation matrix ,Q , that will transform 2

i−K M  into a diagonal 

matrix  

 ( )

1

2
.

.

T

i i

n







 
 
 − =
 
 
 

Q K M Q a  (6.72) 

If this equation is rotated into the modal coordinate system, then the n coupled 
equations transforms into n decoupled equations.  
 

While the mass and stiffness can be derived from the dimensions of the structural 

elements, the damping is far more problematic.  If a building is driven by an 

impulse to its free vibrations, then the building would oscillate forever if there 

was no damping.  Obviously, there is damping in real buildings.  The simplest 

way to estimate building damping is using the modal coordinate frame. In 

particular, the width of the modal resonant peaks gives an estimate of the 

damping for the mode.  This is fairly straightforward for the fundamental modes 

whose resonant frequencies are well separated from the higher modes.  

Unfortunately, it can be tricky to identify the characteristics of the resonant 

peaks of higher modes since these frequencies may be closely spaced. 

 

The use of normal modes to simulate building vibrations assumes that damping 

can be described as linear viscous.  That is, we assume that there is a damping 

matrix C .  The introduction of this damping matrix complicates the eigenvalue 

problem.  While it’s still a problem in linear algebra, the eigenvalues (resonant 

frequencies) are now complex numbers, which means that motions decay 

exponentially in time.  Unfortunately, the eigenvectors also have complex 

amplitudes, which means that there are phase lags between the masses that 

oscillate at an eigenfrequency.  However, if 1 2c c= +C M K , then the 

eigenvectors are real-valued even though the eigenvalues are complex.  The 

assumption that the damping matrix can be written as a linear sum of the mass 

and stiffness matrices is common and it’s referred to as Rayleigh damping.  
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Although damping is an important issue, it is rarely measured.  In particular, the 

small-amplitude damping of the fundamental modes of tall buildings is probably 

about 1% to 2%.  However, it is standard that 5% damping is assumed for almost 

all design calculations.  The general idea is that damping increases with the 

amplitude of the excitation, and that 5% is a reasonable approximation of reality.  

I will shortly show that 5% is a gross underestimate for a building that undergoes 

significant damage.  Unfortunately, underestimated damping is an endemic error 

with profound implications for the design of buildings.  I will cover this issue 

when I discuss the behavior of inelastic, nonlinear systems.  Before I get to that 

problem, I want to discuss another method to analyze elastic linear buildings.  

This technique is based on propagating waves and it’s more familiar to 

seismologists. 
 

 
Flexible Building as a Continuous Cantilevered Beam 
 
The problem of the dynamic motions of a continuous prismatic beam can give us 
some insight into the deformation of buildings.  To solve such a cantilevered beam 
problem in full generality is exceedingly complex.  To begin with we recognize that, 
if the building is considered as a continuum, it would often be anisotropic.  For 
example, consider a moment-resisting frame (e.g., Fig. 6.5).  Assume that the 1 and 
2 axes are horizontal and that the 3 axis is vertical,  The building stiffness associated 

with inter-story drift ( )13 23 and   would be much less than the stiffness associated 

with in-plane shearing of the actual floor slabs 
12 .  Likewise the stiffness 

associated with extension along columns ( )33  is different than for extension along 

the floor slabs ( )11 22 and   .  However, we will assume that only the parts of the 

strain tensor that are important to describe the deformation of the building are the 
inter-story shear strain and the extensional strain along the columns.  We can thus 
approximate the building as being isotropic since the other elastic moduli are not 
important.  We must also recognize that the material in our imaginary continuous 
beam may have a very unusual Poisson’s ratio.  That is, the building is very stiff in 
compression along the columns and very flexible in inter-story shear.  That is, 

E  .  In fact, for a tall mrf (either concrete or steel), the velocity of longitudinal-

waves up the building 
eff

E


 
 
 

is 10 to 20 times more than the inter-story S-

wave velocity
eff

eff




 
  
 

. 

 
While the complete solution for an isotropic elastic cantilevered beam is itself quite 
complex, there are two end-member cases where the solution is more tractable (see 
figure 6.36). 
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The first is the case in which the height of the building is large compared to the 
length of the base (a tall skinny building).  In this case the building deforms 
primarily by bending, which is the term used for extensional strains in the columns 
(extension and compression in the columns at the opposite sides of the building).  
There is a well-developed theory that allows beam problems to be solved with the 
assumption that the shear strains are approximately zero (the technical theory of 
bending).  This is called a bending beam.  The stiffness of a bending beam is 
determined by its flexural rigidity, EI, which scales with dimension as 

 2 4

1 1 2

0 0
3

w w
E

EI E x dx dx w= =   (6.73) 

where E is the Young’s modulus and the building is assumed to have a square cross 
section of width w.  The building becomes very stiff against flexure as w becomes 
large.  It’s easier to bend a thin rod than it is a pipe having the same total mass per 
unit length. 
 
In the second case the building is assumed to be much wider than it is tall.  When 
the ground beneath the building moves horizontally, this is identical to the problem 
of having an SH wave propagate vertically in a layer of building; the bending is 
approximately zero in this case.  This is called a shear beam.  In this case the total 
stiffness against shear is just the shear modulus times the cross sectional area 

( )2w .  Therefore, it is easy to see why a wide building is dominated by shear and 

not by bending. 
 
While actual buildings are neither a true bending beam nor a shear beam, we can 
gain some useful insight by looking at these approximate modes of deformation. 

 

 
Figure 6.36.  Sketch on the left is a bending beam (negligible inter-story 

shear strains).  Most of the deformation occurs because of 
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compression and extension of the outer columns.  Sketch on the right 
is a shearing beam (negligible extension/compression on the columns).  

The floor slabs remain horizontal. 
 
 
Flexible Building as a Shearing Beam 
 
Figure 6.37 shows the horizontal accelerations that occurred on different floors of 
a 52-story steel mrf building in downtown Los Angeles during the 1994 Northridge 
earthquake.  Notice the prominent pulse of acceleration that occurs at the base of 
the building at about 14 seconds into the record.  This pulse can be observed to 
propagate up the building and it arrives at the top about 1.5 seconds later.  Also 
notice that the pulse is twice as large on the roof as it is in the rest of the building.  
You can even see a hint that the pulse travels back down the building after it reflects 
off the top.  This type of behavior is exactly what we expect from a shear beam.  It 
is identical to the problem of a vertically propagating SH wave in a plate with a rigid 
boundary at the bottom and a free boundary at the top.  I already extensively 
discussed this problem in Chapter 4. 
 

 
Figure 6.37.  Horizontal accelerations in a steel mrf during the 1994 Northridge 

earthquake.  Notice the vertically propagating pulse. 
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Figure 6.38 shows four other examples of SH-waves propagating vertically in a 
steel-frame building.  The motions recorded at the ground level have been 
deconvolved from all of the records to show the response of the building to an 
impulse of horizontal displacement at the base.  
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Figure 6.38.  Individual impulse response functions for four earthquakes recorded in the UCLA Factor 

Building.  (a) 14 February 2004, (b) 21 February 2004 (3:39 UTC time), (c) 16 December 2004, and (d) 6 

January 2005. See Table 1 for more information about these earthquakes. Each earthquake’s pair of plots 

shows the north–south components for sensors on the east wall (top) and east–west components for sensors 

on the south wall, except for the subbasement sensor which is on the west wall. For clarity, we show only 

those walls that had a subbasement sensor. 
 
In chapter 4, we saw that the solution to this problem can be written as a sum of 
reflecting SH-wave pulses.  The motion in the building is given by 

 

( ) 3 3 3
1 3 1 1 1

3 3
1 1

2 2
,

4 4
....

g g g

g g

x x xh h
u t x u t u t u t

c c c c c

x xh h
u t u t

c c c c

     
= − + − + − − −     

     

   
− − + + − − +   

   

 (6.74) 

where c is the shear-wave velocity in the building and ( )1

gu t  is the horizontal 

motion of the ground at the base of the building.  Notice that this sequence repeats 

with periodicity 
4h

c
 , which is the fundamental period of the building oscillation.  

We are particularly interested in the drift in the building 
13 , which we can calculate 

from (6.74). 

 

( ) 3 3 3
13 3 1 1 1

3 3
1 1

1 2 2
,

4 4
....

g g g

g g

x x xh h
t x u t u t u t

c c c c c c

x xh h
u t u t

c c c c


      

= − − + − + + − −     
     

   
− − + − − − +    

    

 (6.75) 

We are especially interested in the drift at the base of the building ( )3 0x = , or 

 ( ) ( )13 1 1 1

1 2 4
2 2 ....b g g gh h

t u t u t u t
c c c


    

= − + − − − +    
    

 (6.76) 
That is at the base of the building, the up- and down-going waves interfere 
destructively to give zero displacement (remember it’s a rigid base), but the 
associated strains interfere constructively to give twice as large a drift.  Notice that 
the drift at the top of the building is zero, even though the motion is twice as large 
as in the rest of the building. 
 
The actual drift in the base of our shear beam depends on the nature of the ground 

velocity ( )1u t .  Although strong shaking in earthquakes can take a wide variety of 

forms, it is common that ground displacements near large ruptures have motions 
described by a pulse of displacement (sometimes referred to as the “killer pulse”), 
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or in other cases they may be dominated by the permanent offset of the ground 
with respect to an inertial reference frame.  Consider the simple ground motions 
shown in Figure 6.22.  The ground accelerations consist of a sequence of positive 
and negative constant steps.  This results in ground velocity that consists of a 
number of linear ramps.  The solution to this problem is simple as long as the 
duration of the pulse is shorter than the time required for the wave to travel up the 

building and then return 
2h

c

 
 
 

.  Things get more complex when the duration of 

the ground motion becomes large.  Of interest is the maximum shear strain at the 
base of the building, which we can write as 

 max
13 max

gb
u

A
c

 =  (6.77) 

where A is an amplification factor.  For ground motions A and B, A depends on 

1pT T , where 
1 4T h c=  is the fundamental period of the building.  The factor A 

reaches 2 for ground motion A (when 
1pT T ) and 4 for ground motion B (when 

1pT T= ).  Plots of ( )13

b t  for 
1pT T=  are shown in Figure 6.39.  The configurations 

of the building at different times are shown in Figure 6.40. 
 
 

 
Figure 6.39.  Simple ground motions that consist of a simple static displacement 

(case A) and a pulse of displacement (case B). 
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Figure 6.40. Shear strain in the base of the building.  One unit on the vertical axis 

corresponds to a strain of 
( )13

max

b

g

c t

u


. 



 

187 
 

 
Figure 6.41.  Configuration of a multi-story building at time intervals of 4pT  for 

the case 
1pT T= .  a) Elastic shear beam building for ground motion A. b) Elastic 

shear beam building for ground motion B.  c) Inelastic shear beam building for 
ground motion B (qualitative depiction). 

 

The shear strain 13 max

b  can be large enough to be well into the inelastic range.  

With 
max

1m sgu = , and 100m sc =  (a typical value for a tall building), we can 

use (6.77) and Figure 6.39 to calculate that 13 max
0.02b =  for ground motion A and 
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0.04 for ground motion B, when 
1pT T= .  These are large values and can greatly 

exceed the yield strain at the base of the building (e.g., check out Figure 6.10). 
 
The dynamics problem becomes far more complex when the building experiences 
yielding.  That is the governing equations are no longer linear and it is generally 
necessary to perform a careful finite-element analysis to understand the 
deformation of the structure.  Such an analysis was performed by Hall and others 
(1995), and the typical results are shown in Figure 6.41.  Figure 6.42 shows the 
location of weld failures (moment resisting connections) in the structure. 
 
When the building yields, it tends to develop a permanent bend in the structure.  
Once a tall frame building is permanently bent, there is really no practical way to 
straighten it again, and it is a total loss.  Furthermore, if the bending exceeds several 
percent locally, then there may be a real fear of collapse due to P- effects. 
 
 

 
Figure 6.42 From Hall and others (1995). 

 
One way to gain some insight into the behavior of a yielding beam is to consider 
the building as if it were linear, but with a local stiffness that changes with the 
amplitude of the local drift.  For example, the slope of the force-drift curve in 
Figure 6.6 is called the tangent stiffness, and it rapidly decreases when the building 
begins to yield (it even changes sign). Since the stiffness is critical in determining 
the velocity at which a deformation propagates up a building, loss of stiffness due 
to yielding means that deformations tend to slow their propagation up a building.  
That is, once yielding begins, deformations tend to localize in these yielding zones.  
Perhaps an example of this is shown in Figure 6.44 in which an 8-story building 
lost the 6th story during the 1995 Kobe earthquake.  That is, when ground motions 
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are propagating in a building, then once yielding begins at a particular place, then 
that is where the majority of the strain will occur. 

 
Figure 6.43.  Distribution of weld fractures in a 20 story building caused by a 2 
meter displacement pulse as reported by Hall and others (1995). A dark triangle 
locates a cracked column-flange weld at a column splice due to tension in the 

column.  These can be very serious, since if the column separates in tension, but 
does not come back together properly, the column may fail to carry the weight of 
the building (very bad).  Open triangles locate failed moment-frame connections, 
which causes a loss of ductility, but is not as serious as failure of a column splice. 

 

 
Figure 6.44.  Once yielding begins at some location, then the loss of stiffness at 
that location can tend to localize the deformations to that location.  This may 
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have been the cause of the collapse of the 6th floor of this 8-story building in 
Kobe in 1995. 

 
Prediction of the collapse of structures is extremely difficult.  That is, the failure of 
a critical component (such as a weld) may cause loads carried by a structural element 
to be transferred to others structural elements, which may cause a cascade of 
failures.  Assessing the likelihood of failure means obtaining an accurate 
understanding of all of these interrelations (highly nonlinear and perhaps chaotic).  
Consider the three identical 21-story steel mrf towers in Mexico City that 
experienced the 1995 Michoacan earthquake (Figure 6.45 and 6.46).  This was not 
a failure due to the propagation of a displacement pulse.  Instead, it was due to 
amplification of 2-second ground motions by the shallow sediments beneath 
Mexico City (see Chapter 4). 
 

 
Figure 6.45. Three 21-story steel mrf’s that were designed to be identical.  The left 
tower collapsed, the middle tower had a 1-meter permanent drift of its roof, and 
the right tower suffered no apparent damage.  (Mexico City following the 1985 

Michoacan earthquake). 
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Figure 6.46.  Close-up of the left tower in Figure 6.45. 

Although the three towers were designed to be the same, their behavior was quite 
different, despite their close proximity to each other.  The tower on the right 
suffered no apparent damage as a result of the shaking.  The tower on the left 
collapsed, while the tower in the middle had a permanent roof drift of about 1 
meter.  It would be very difficult to explain this difference by current state of the 
art in numerical modeling of these buildings. 
 
 
Soil-Structure Interaction for a Shear Beam 
 
As long as we are treating the shear-beam building as if it was a low-velocity, low-
density layer on the top of the Earth, we can gain some insight into how the building 
interacts with the soil layers.  For instance, we can ask 1) how much does the 
presence of the building change the ground motion at its base compared to the 
ground motion that would have occurred without the presence of the building (a 
free field site), and 2) how much of the motion of the building is transmitted 
through the base of the building when a wave reflects off the top of the building 
and then transmits through the base of the building? 
 
From Chapter 4 we know that for an SH-wave vertically incident on the base of a 
layer of buildings, 
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 (6.78) 

where T

BA  is the amplitude of the wave transmitted into the building and I

GA  is the 

amplitude of the incident wave from the ground.  Let us suppose that the shear 
wave velocity in the soil is approximately twice that in the building (a fairly soft 
soil), and that the density of the building is 5% of the density of the soil, then 

 ( )2 1 0.025 1.975
T

B

I

G

A

A
 − =  (6.79) 

But the amplitude of the motion without the building is 2.0 because it is an SH 
reflection off of the free surface.  Therefore the building causes the amplitude of 
the motion to be decreased by 1 ¼ % relative to the ground motion that would 
have occurred without the presence of the building. This soil-structure interaction 
effect seems to be far less important than the effect of allowing the building to rock 
on its foundation (discussed earlier in this chapter). 
 

We can also compute the size of the wave reflected off the base of the building R

BA  

compared with the amplitude of the down-going wave in the building I

BA .  That is 

 
2 2

2 2 2

R

B G G BB

I

B B G G B

G B G B G B

G B G B G B G B G B G B

A

A

   

   

     

           

−
=

+

−
=

+ +

 (6.80) 

If the density of the ground is large compared to the building ( )G B  , then 
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Therefore, most of the wave is reflected off the base of the building.  For the 
previous case, the reflected wave is 99.94% the amplitude of the incident wave. 
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Bending Beam 
 
It is not possible to solve the bending beam problem in the same way that we did 
the shearing beam.  For the technical theory of bending, the horizontal 
displacements of the building obey the Bernoulli-Euler equation, which is 

 
( ) ( )4 2

1 3 1 3

4 2

3

, ,u x t u x t
EI S

x t


 
= −

 
 (6.82) 

where S is the cross-sectional area of the building (
2w=  if the building has a square 

cross section).  Whereas Navier’s equation was a second order equation, the 
Bernoulli-Euler bending beam equation is a fourth order equation.  Fortunately, 
this is still a linear equation.  However, it is no longer true that there is a unique 

velocity such that ( )1 3u f t x c= −  solves this equation.  We can try a traveling 

harmonic wave; that is assume that 

 ( )1 sin n nu k x t= −  (6.83) 

Direct substitution indicates that  (6.83) is a solution to (6.82) if   
 

 4
n

n

EI

k S





=  (6.84) 

 

But n n
k  is just the phase velocity nc of this traveling harmonic wave.  Therefore, 

we see that the phase velocity of a traveling harmonic waves increases as the square 
root of the frequency of the wave.  Since (6.82) is linear, we can form a more general 
solution of the form 

 ( )1 sinn n n

n

u C k x c t= −  (6.85) 

where the 'snc  are constants.  Since the different frequencies travel at different 

velocities, the waveform will change as the wave propagates.  This is known as 
dispersion.  There is probably some dispersion that occurred in the propagation of 
the pulse in the building shown in Figure 6.37.  This may explain why it becomes 
difficult to distinguish the pulse after it has propagated a long distance in the 
building. 
 
 
Misunderstanding of modal damping 
 
As can be seen in Fig. 6.29, the amplitude of a response spectra varies strongly with 
the assumed damping.  While undamped response spectra are similar to Fourier 
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amplitude spectra, they grow ever more different with increasing damping.  
Remember that there is no information about the arrival of phases contained in 
Fourier amplitude spectra.  Even if the time-domain record has the arrival of a 
pulse that has a broad frequency content, the spectrum of the entire record usually 
continues to vibrate for a long time (we call it coda).  This coda is often comprised 
of resonances in the low-velocity materials near the Earth’s surface.  As the 
damping increases, the response spectrum becomes more sensitive to the largest 
transients (e.g. pulses).  Attempts to measure the small amplitude damping of tall 
buildings indicates that 2 % is typical (reference).  However, it is widely believed 
that inelastic dissipation (i.e. damping) increases when a building vibrates in the 

nonlinear range (inter-story strain above 
310−
).  I don’t know why, but it is 

commonly assumed that 5 % damping is a good assumption when designing an 
earthquake resistant building.  In fact, the current standard relationships to predict 
response spectral amplitude as a function of distance and earthquake magnitude 
assume 5 % damping. 
 
Damping of wooden houses 
 
In order to see how damping affects the analysis of a building, I will consider the 
problem of a wooden house. I discussed wooden houses earlier in this chapter and 
I argued that they are very resilient in strong shaking.  I argued that they are 
lightweight and that they have high stiffness to minimize deflections from the 
gravity load of contents (often called the live load).  Forced vibration tests of 
wooden houses typically show that their fundamental mode resonance is about 7 
Hz. 
 
The California Earthquake Authority (CEA) sponsored a quantitative study of the 
vulnerabilities of wooden houses in earthquakes.  They tested key structural 
elements to understand their yielding properties.  There are numerous observations 
of wooden houses in strong shaking and collapse of foundation cripple walls is 
probably the most important class of failures.  Cripple walls are short walls between 
the concrete foundation and the first-story floor (Figure 6.47 shows an example).  
Prior to building code updates in the mid-20th century, cripple walls were designed 
to provide a crawl space beneath a house, and they were designed to support the 
vertical weight of a house; their lateral strength was often low.  New houses are 
required to have cripple walls that are braced against shear forces.  Typically, cripple 
walls include plywood panels that resist in-plane shearing.  
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Figure 6.47.  Example of a cripple wall on an old wooden house.  The left end of 

the cripple wall has been retrofitted with plywood that resists shearing that is 
parallel to the wall.  The solid wooden floor is strong and rigid and it ensures that 

there is no weak direction as long (as all the cripple walls are retrofitted). 
 
 

 

 
Figure 6.48. Force vs shear displacement for a cripple tested by the Pacific Earth 
Engineering Research Center (PEER) for the California Earthquake Authority 

(CEA). A hydraulic ram forces the cripple wall through a series of back and forth 
displacements whose amplitude grows with each cycle.  As the wall is sheared, the 

force is also recorded. This shows the force displacement relationship for an 
unretrofitted cripple wall. 

 
Figure 6.48 is the force/deflection curve for an unretrofitted cripple wall based on 
experimental test data.  Note that the system is very far from elastic for any 
deflections more than 1.0 cm.  While this system is also far from perfectly plastic, 
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it can be thought of as an elasto-plastic system (very approximately) with strains up 
to about 10% (deflection of 7 cm).  
 
Before delving into nonlinear dynamics, I just want to remind everyone that the 
relation between maximum acceleration  and maximum displacement of a 7-Hz 

harmonic oscillator is ( )
2

max max2 7Hzu u=  .  So if the maximum acceleration is 

1 g then the maximum displacement is 0.5 cm.  That is, if the structure was 
oscillating at 7 Hz with a maximum displacement of 2.5 cm (about 1 inch), then the 
maximum associated acceleration would be on the order of 5 g.  Clearly, the natural 
frequency of 7 Hz cannot apply to cripple walls that are deforming by an inch or 
more. 
 
Figure 6.49 shows the envelope of the force/deflection cycles shown in Figure 1, 
and it is probably a good approximation to a static pushover analysis of the 
unretrofitted cripple wall.  Since the point of the analysis is to characterize the 
vulnerability of old unretrofitted houses, I will focus on the dynamics of 
unretrofitted test specimens. 

 

 
Figure 6.49 is also copied from the report of Working Group 4 and it shows that 

envelope of the force deflection curve in Figure 6.48. 
 
Although an important objective of this study was  to use experimentally consistent 
hysteretic models of force/deflection for dynamic analysis of wooden structures, I 
can gain some insight into the physics of the in-plane deformation of this cripple 
wall by using a very simple model of an elasto-plastic single degree of freedoom 
oscillator (sdof) that is driven harmonically (see Figure 6.50). 
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Figure 6.50.  Definition of parameters for an elasto-plastic single-degree-of-

freedom oscillator. 
 
Consider an elastic-plastic single-degree-of-freedom oscillator with mass m , and a 

yield force 
YF that occurs when the deflection exceeds 

YD  (see Figure 6.50).  The 

elastic period of the sdof is 
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Let 
UD represent the maximum displacement of the system.  If the deformation is 

large enough to yield the system, that is, if 
U YD D , then the approximate period 

of the plastic system is 
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 (6.87) 

where Pk is the equivalent (secant) stiffness of the elastic-plastic system.  Now 

define the ductility of the system to be 
U

Y

D
R

D
 , which is also sometimes called 

the “R-factor” in the design of elastic-plastic structures.  In this case, UD , is the 

maximum stable (i.e., ultimate) deflection of the system.  Substituting into (6.87) 
shows that, 

 
1

2

Y
P E

Y

RD
T m T R

F
 =   (6.88) 

That is, the plastic period increases as the square root of the ductility.  In the case 
of Figure 6.49, the system shows strong strain-weakening behavior (progressive 
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loosening of the nails) and the secant stiffness is more than a factor of 4 lower than 
for a perfectly plastic case.  That is, for deflections greater than 4 cm (drift about 
6%), the effective stiffness drops by more than a factor of 16, which would increase 
the natural period by a factor of 4.  In the case of the PEER-CEA structures and 

drifts larger than 6%, 
p ET T R .  That means that the effective period of these 

houses would drop from 0.15 s. to about 0.6 s.  Or put in another way, when a 
typically stiff house is shaken strongly enough to produce damage, then its effective 
period lengthens to be similar to that of a typical six-story elastic building.   
 
Although the change in effective period is important, the change in the effective 
damping is even more important.  Linear damping is most commonly interpreted 
as viscous damping; it’s a kind of energy dissipation where the total system energy 
steadily decreases by a fixed fraction with every cycle of vibration.  In that case, the 
fraction of critical damping  of an sdof can be approximated by estimating the 

energy lost to dissipation in a cycle (See Chapter 1). 

 

1 Energy dissipated in a cycle

4 Elastic energy in cycle

1 plastic work in a cycle

4 Elastic energy in cycle

1 plastic work in a cycle

4 maximum kinetic energy










=



 (6.89) 

Using the perfectly plastic model  of Figure 3, I can estimate the plastic work 

in a deformation cycle as four times the product of the yield displacement, 

( )U YD D− , with the plastic yield force YF .  I can also approximate the sum 

of the kinetic and potential energies in the cycle to be the maximum kinetic 

energy during the cycle (this is strictly true for a linearly elastic system in 

free vibration).  I will estimate the maximum kinetic energy by assuming that 

the maximum velocity of the mass is approximately the maximum 

displacement divided by the plastic period, or 
max 2 U

P

D
x

T

 

  
 

.  (6.89) can 

then be rewritten as 
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Figure 6.51. Response curves for different damping.  There is no resonant peak 

for damping greater than 71% of critical.  Notice that the slope of the log 
(acceleration response) vs log (period) is approximately linear with increasing 

driving period.  This means that amplitude of the displacement response (i.e, the 
drift) scales linearly with ground velocity.  Also, notice that when the damping is 
very large, the natural period of the oscillator is not very important.  That is, the 

higher the damping, then the broader the frequency range that response measures 
velocity.   

 

As we go to large ductility and long driving period, the fraction of critical 

damping goes way up.  In fact, for the hysteretic loops shown in the CEA 

Wood report, the system is effectively overdamped.  If the ductility in a 
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damaging earthquake is 6.0, then the effective plastic period of a 0.2-s house 

would increase to about 0.8 s.  That means that driving periods longer than 

0.5 s would have the most importance to cause plastic drift.  In this case the 

fraction of damping would be about 400%.  While I admit that this is a very 

crude approximation, it seems clear to me that the effective damping is very 

large.   
 
Lightly-damped systems (e.g. 5%) have peak responses that are relatively insensitive 
to the phase spectrum of the driving force (the ground acceleration); that is, for 
lightly damped response spectra, it doesn’t matter too much whether all of the 
energy arrives in one pulse or whether the energy arrives randomly throughout the 
time period. Of course, the phase does have some influence response spectra; 
otherwise, we would use Fourier amplitude spectra. 
 
Figure 6.51 shows the response curves of linear sdof’s for different damping.  As 
an example of the importance of damping, consider that modern seismometers are 
designed to be 71% damped sdof’s.  This is chosen so that there is no resonance at 
any period, thereby optimizing the bandwidth of motions that the seismometer 
records.  This 71% damping also means that seismometers do a good job of 
recording seismic phases, which tend to arrive as pulses.  Here is the thing about 
time-domain pulses, a pulse is inherently a broad-band phenomenon; pulses occur 
when a wide range of frequencies arrive in phase. 
    
The use of highly damped response spectra to characterize motions that damage 
ductile buildings was suggested by Shiyan Song in his 2013 Caltech PhD thesis.  
Figure 6.52 is taken from his PhD thesis (Song, S., 2013, A New Ground Motion 
Intensity Measure, Peak Filtered Acceleration (PFA), to Estimate Collapse 
Vulnerability of Buildings in Earthquakes, Ph.D. Thesis, California Institute of 
Technology, Pasadena, CA.) and it shows a comparison between a variety of 
parameters and the base shear force in a simulated 6-story Steel MRF that is 
experiencing strong plastic yielding.   This figure was the outcome of incremental 
dynamic analysis.  That is, the input ground acceleration was scaled to be just large 
enough to cause collapse ( P − instability).  The top five traces are all on the same 
scale (force/weight, or % g).  The second (yellow) trace is a 2%-damped sdof at the 
natural frequency of the building; the peak of this trace is identical to the response 
spectral acceleration for the record that is shown in the top (blue) trace.  The true 
base yield force is the red trace.  Notice that this base shear looks like a low-pass 
filtered version of the acceleration.  Further, notice that the amplitude of the base 
shear (the red trace) is limited to be less than 23% of the weight of the building 
(this is the plastic pushover yield stress).  Finally, the purple trace is a linear sdof 
with a natural period of 1.5 times the elastic period and with 71% damping.  Notice 
that the purple and red traces are very similar when there is significant structural 
yielding.  This result is anticipated by equations (6.86) and (6.88).  This example 
shows why strong damping is a better way to parameterize strong shaking than is 
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5% damping.  Coincidentally, the procedure for calculating a 71 %-damped 
response spectrum is identical to finding the maximum amplitude of a ground 
motion record that has been low-pass filtered with a 2-pole Butterworth filter (see 
Chapter 2).  Therefore, Song referred to his damage parameter as peak filtered 
acceleration (pfa)    
 
 

 
Figure 6.52.  Is from the PhD dissertation of Shiyan Song (2013, 
Caltech) and it compares different time series that describe the 
response of a 6-story steel MRF building that experiences large 
plastic deformation (just smaller than P − collapse).  Whenever 
appropriate, all traces are on the same acceleration amplitude scale.  
The second (yellow) trace is the mass acceleration of a 2% damped 
linear sdof with the elastic free period of the building.  The red 
trace is the base shear force of the yielding building given as a % 
of its weight.  This base shear stress is limited to 23% of g, which 
is the plastic yield stress derived from push-over analysis. 
 

 
Based on this insight, Song developed a procedure to predict the P −  collapse 
of buildings using parameters derived from a pushover analysis.  Using full 
nonlinear analysis of steel mrf’s, tested which simple parameters best predicted 
collapse reported by the complex analysis,  He used a procedure called incremental 
dynamic analysis.  In this procedure, a ground motion is used to compute the 
nonlinear response of a building model.  The ground motion is then increased by a 
scale factor and the nonlinear response is calculated again.  This procedure is 
repeated until the ground motion is large enough to cause simulated P −  
collapse.  This subject is more completely described in a recent paper by Buyco and 
Heaton (2019, 70%-Damped Spectral Acceleration as a Ground Motion Intensity 
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Measure for Predicting Highly Nonlinear Response of Structures, Earthquake 
Spectra 35 (2), 589-610). 
 
 

 
Figure 6.53  Procedure to predict the P −  collapse of a building from a 

nonlinear pushover analysis.  The procedure is slightly different for motions that 
are dominated by a step in ground displacement. 

 
 
 
 
 

 
Figure 6.54  From Song’s PhD dissertation.  Vertical axis is horizontal 

acceleration in g.  The red dots are peak accelerations of records that were just 
large enough to cause P −  collapse.  The blue dots are the peak accelerations of 
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the same records after filtering with a 2nd order low-pass Butterworth with a 
corner period of 1 ½ times the natural period.  This is identical to 71% damped 

response spectral acceleration.  The graph on the lower right shows the nonlinear 
pushover curve for the building.  Notice that the amplitudes of the filtered 

accelertions that cause collapse are close to the peak static pushover acceleration 
of the building 

 
 
 
 
. 

 
 

Figure 6.55.  Dispersion of intensity measures that caused simulated 
collapse of a 6-story steel MRF.  The intensity measures are ordered 

from best performance to worst.  Increasing the damping to 71% (Peak 
Filtered Acceleration, PFA) decreases the dispersion by almost a factor 

of 2.  is the standard deviation of the log normal distribution fit to 
each correlation. 

 
 

Although 71% damped 
aS  at 1.5 times the natural period is the best predictor, pgv 

is a reasonable alternative to 71% damped spectra.  This is verified in Song’s study 
of collapse parameters (Figure 6.55).  That is, pgv is the second-best intensity 
measure. 
 
The correlation of damage (primarily to wooden houses) and pgv was also studied 
by Wald, Quitoriano, Heaton, and Kanamori  (Spectra 1999).  Modified Mercalli 
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intensities (MMI) determined from observations of damage at particular sites was 
plotted against both pga  (Figure 6.56) and  pgv (Figure 6.58) for accelerograms 
recorded less than 3 km from the damaged structure.  There is a lot of scatter in 
these plots and one could easily despair that there is nothing important to see.  
However, from the point of view of understanding structural damage, I believe that 
there is something to be learned from the sites that experienced MMI of VIII or 
greater.  Sites that experience significant cripple wall damage would be assigned 
MMI’s of VIII or greater.  Notice that in Figure 6, the median pga for VIII and IX 
is virtually the same (about ½ g).  Importantly, ½ g is the level of saturation of pga 
for all crustal earthquakes and it occurs primarily in the very near-source region 
(Joyner-Boore distance < 10 km) of earthquakes larger than M 6.  For example, 
Figure 6.57 shows all available pga’s from very near-source stations in M>6 
earthquake (as of about 2005).  These data are well described by a log-normal 
distribution with a geometric mean of 47% g. 

 
 

Figure 6.56.  This is copied from Wald, Quitoriano, Heaton, and 
Kanamori (Spectra, 1999). 
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Figure 6.57.  This is copied from Yamada, Olsen, and Heaton and it 
shows the pga for all near-source recordings (JB distance less than 10 
km)  of earthquakes larger than M 6 for all available data at the time of 
publication (2004).  The grey histogram includes all data prior to the M 
7.7 1999 Chi-Chi earthquake, and the black histogram includes the Chi-

Chi data.  Notice that the addition of Chi-Chi data had a neglibable 
effect on the geometric mean.  That is pga saturates at a geometric mean 

of about ½ g;  It seems likely that near-source pga from  future 
earthquakes will also be log-normally distributed about ½ g. 

 

 
Figure 6.58.  Same as Figure 6.56, but for pgv. 
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In contrast, Figure 6.58 is the same as Figure 6.56, but for pgv.  Notice that the 
median pgv for intensity IX is about 100 cm/s, whereas it is about 40 cm/s for 
intensity VIII.  This is clear evidence that pgv is a better predictor of damage to 
wooden houses than pga is (or 7 Hz response spectral acceleration). 
 
Reason for the Importance of pgv 
 
During the early part of my career, peak ground acceleration (pga) was considered 
to be the most important measure of shaking intensity.  There were lengthy debates 
about whether or not pga could exceed 1 g.  We now have numerous well 
documented cases where the acceleration was substantially larger than 1 g.  
Interestingly, the damage to buildings adjacent to high acceleration records has 
typically been minor.  It has long been noted that high peak ground velocity (pgv 
greater than 1 m/s) is very damaging to buildings.  This observation has often been 

viewed as counter intuitive;  doesn’t f ma= ?  Not really; f ma= only applies to 

rigid bodies (or alternatively it applies when a is the acceleration of the center of 
mass).   
 
I will now describe another way to understand why pgv is important for damaging 
buildings. Start with the equation of motion for a linear sdof    

 2

0 02 0u x x x  + + + =  (6.91) 

Where u is the ground motion (displacement), x is the motion of the mass relative 

to the base of the spring,  is the fraction of critical damping, and 
0 is the natural 

frequency of the undamped oscillator.  When the damping becomes large, then the 
dissipation energy becomes large compared with the elastic energy in the spring. 

That is 2

0 x becomes smaller than other terms and (6.92) can be approximated 

(very roughly)  as 

 02 0u x x + +   (6.92) 

Integrating with respect to time gives 

 02 0u x x + +   (6.93) 

Now we want to find the maximum of x over time (the maximum drift).  When x
is a maximum, then 0x  , and so 

 max 0 max2 0u x +   (6.94) 

Or  

 max max

0

1

2
x u

 
  (6.95) 
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That is, we expect the maximum drift of the plastic sdof to approximately 
scale with peak ground velocity.  This is consistent with my remarks in Figure 
6.51 about the characteristics of the response of a linear sdof. 
 
It amazes me that there still seems to be considerable attention given to pga and its 
related parameter, high-frequency response spectral acceleration.  These parameters 
are widely thought to be important for nuclear power stations.  Nuclear power 
stations are usually comprised of massive reinforced concrete shells and 
diaphragms that are exceedingly stiff.  Although these structures are designed for 
much larger loads than what happens in earthquake shaking, the mechanical 
equipment that controls the station (e.g., pipes, pumps, motors, etc.) could be 
vulnerable.  Personally, I think that it is best to invest in quality bushings and shock 
mounts that isolate critical equipment from high frequency shaking.  That is, I am 
very skeptical that high frequency shaking is a significant problem for the design of 
nuclear power stations. 
 
Figures 6.59 and 6.60 show the median behavior of near-source (rupture distance 
less than 5 km) pga and pgv as a function of earthquake magnitude.  A variety of 
different studies are shown.  It seems pretty clear that near-source pga saturates 
fully as a function of magnitude.  In contrast, pga shows a change in the magnitude 
scaling at about M 6 ½, but it does not appear to fully saturate.  
 
As is often the case, the things that matter the most are also the things that we 
know the least about.  Since the time of the creation of the ground motion 
prediction equations (gmpe’s) shown in Figures 6.59 and 6.60, there have been a 
number of new large earthquakes around the World.  Table 6.2 shows pga, pgv, 
and pgd from near-source records from recent large earthquakes.  Clearly, future 
earthquakes will provide a new wealth of records with impressively large pgv and 
pgd.  The column labeled as tilt is the size of a step in tilt during strong shaking that 
makes the double integration of acceleration a stable procedure (see Chapter 2). 
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Figure 6.59.  A variety of ground motion prediction equations (gmpe’s) that 

show the best fit of near-source pga data as a function of magnitude.  The 

Cua-Heaton and relationships with a 14 are the most recently published. 
 

 
Figure 6.60.  A variety of ground motion prediction equations 

(gmpe’s) that show the best fit of near-source pgv data as a function 
of magnitude. 
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Design Response Spectra 
 
5 % damped response spectra are typically very complex functions of period (or 
frequency).  They are thought to provide estimates of the base shear stress for the 
fundamental mode.  The fact that the spectra vary so strongly makes it difficult to 
determine a shear strength that is appropriate for the design of buildings.  In reality, 
the narrow-band peaks really only apply to linear oscillators; nonlinear oscillators 
shift their resonance frequency as the amplitude increases.  Furthermore, it’s low 
damping that makes for resonant peaks in the first place. 
 
In order to actually use response spectra for the design of buildings, seismic 
building codes use response spectra that are smoothed version of actual spectra.  
These spectra are not only smoothed, but they are decreased in amplitude because 
designers believe that buildings can withstand drift displacements that far exceed 
the displacement at which the building will begin to yield.  Designers used this 
principle to introduce the R-Factor (or reduction factor) into building codes.  They 
argued that buildings could survive drifts that were up to ten times larger than the 
drift at which the building begins to yield.  Since the designws were based on linear 
modal analysis, they argued that response spectrum that should be assumed for 
design should not only be a simple smooth function, it should also be much less 
than observed response spectra that assume linear sdof’s. 
 
Figure 6.61 shows the response spectra of ground motions that were just large 
enough to cause  P −  of a simulation of a six-story steel mrf.  These spectra are 
shown for both 5 % damping (red) and also 71 % damping (black), which is the 
same as a low-pass Butterworth filter.  This figure is from Song’s dissertation and 
it shows that use of 71 % damping produces spectra that are much more similar to 
the standard design spectrum (blue).  When comparing the 71 % damped spectra 
to the standard design spectrum it’s important to remember that the building’s 
effective period should be 1.5 times that of the period used for the standard design 
spectrum. 
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Figure 6.61 These are the response spectra of the 50 scaled records 
that were just large enough to cause P − collapse in Song’s study 
(see Fig. 6.54).  The red curves assume the industry standard of 5 % 

damping, whereas the black curves assume 71 % damping.  The 
heavy lines are the geometric means of the individual curves.  The 

solid blue line is the spectral acceleration specified for the design of 
California buildings in high hazard regions. 

 
Role of Peak Ground Displacement 
 
There is yet another way to understand the vulnerability of buildings to P −

collapse.  That is, there are two conditions that must occur for collapse.  First, the 
building must experience inter-story plastic yielding, and second, the inter-story 
displacements must be large enough that the building is P −  unstable. In 
particular, we can anticipate that 1) pgv must be large enough to cause elastic waves 
with large enough strains to cause yielding and 2) that simultaneously pgd must be 
large enough to make the building unstable.   
 
As an example, I will return to the models of six- and twenty-story steel frame 
buildings.  Pushover curves for variations of these buildings (e.g., US code and 
Japanese code) are shown in Figure 6.62.  Notice that the Japanese code buildings 
have considerably larger yield strength than the comparable US code buildings.  
Also notice that the largest roof drift of both 20-story buildings is a little over 2 m.  
That is, these buildings are gravitationally unstable if the roof moves more than 2 
m with respect to the base. 
 
Anna Olsen did a full nonlinear finite element analysis on these buildings using 
45,000 synthetic records of ground shaking that assumed a variety of rupture 
models for earthquakes as large as M 7 ¼ (Olsen, Heaton, and Hall, Spectra). These 
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simulated ground motions were the result of a large collaborative project by the 
Southern California Earthquake Center (SCEC).   The SCEC motions were low-
pass filtered at 0.5 Hz (these were band-limited finite element models).  Actual 
records with similar low-frequency amplitudes have pgv’s that are about 50 % larger 
than those in this study. 

 

Figure 6.62. Pushover curves of the six- and twenty-story steel mrf 

buildings used by Olsen and Heaton to determine the nature of ground 

motions that cause damage and collapse. 

Each of the 45,000 nonlinear simulations of the 20-story, US-buildings is 

represented by a dot in Figure 6.63.  The location of each dot shows the filtered pgv 

and the broad-band pdg for each record.  If the beams in the simulations have a 

permanent plastic strain of less than 8x10-3 then the building is represented by a grey 

dot and it is called repairable.  If the building experiences a side-sway collapse, then 

the dot is red.  Finally, if the building is permanently bent more than 8x10-3, but it 

doesn’t collapse, then the dot is black and the building is called unrepairable. 
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Figure 6.63 Data from simulations of the U20P building model 

response to long-period ground motions The building responses are: 

“standing” or “collapse” (left column) and “repairable” or 

“unrepairable” (right)responses are: “standing” or “collapse” (left 

column) and “repairable” or “unrepairable” (right).  32,000 

simulated near-source ground motions are represented. 

Notice that the red dots are generally in the upper right of the plot.  Most collapses 

happen when pgv>60 cm/s and pgd > 60 cm.  Remember that when an upward 

traveling shear wave reflects off the roof, the amplitude of the roof displacement is 

twice that of the ground displacement.  That is, a pgd of 60 cm should produce a 

roof drift of about 120 cm, which is getting the near limit for P −  stability.  The 

diagonal dotted line called elastic resonance is 0pgv pgd= , where 

0
0

2 radians1.8
T s

 = = .  Notice that most of the collapses occur to the right of 

this line.  That is, pgd is a very important parameter when it comes to collapse of tall 

buildings. 
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Figure 6.64.  Contours where the probability of “collapse” (left) or 

“unrepairable” (right) is 30%. The gray points are the PGD and PGV 

values of the long-period (top) and broadband (bottom) ground 

motions. The equivalent PGVbb is approximately 1.5·PGVlp with a 

standard deviation of 0.24 m/s. The diagonal lines in the top plots are 
2

lp lp1.7
PGV PGD

T



= , where T is the fundamental elastic period of the 

J20P or U20P building model. 

 

Anna Olsen ran this same analysis for the Japanese code buildings and also for 

buildings with brittle welds.  Figure 6.64. shows lines of pgv vs pgd that separate 

regions of collapse from regions of no collapse.  The diagonal resonance line for the 

Japanese buildings are slightly steeper because the Japanese code results in a stiffer 

building ( 0 3.0T = s for the Japanese design as opposed to 0 3.5T = s for the US).  

Notice that brittle welds greatly decrease the collapse resistance of both US and 



 

214 
 

Japanese designs.  Also notice that the Japanese code results in a substantially better 

building than the US design.   

I really like the clarity provided by Figure 6.64.  It allows us to see what is the better 

design.  Throughout much of my professional life, there was a debate about the 

merits of the Japanese building code vs the US building code (the Uniform Building 

Code, UBC).  Many of my colleagues argued that while the Japanese code seems to 

produce a stronger building, it comes with the penalty that it is so stiff that it has 

higher forces than comparable US code buildings.  Figure 6.64 seems to clearly 

settle that debate; you are more secure in Japanese code buildings.  Unfortunately, 

most Japanese steel frame buildings built before 1995 suffer from the same type of 

brittle welds for steel buildings constructed prior to the 1994 Northridge and 1995 

Kobe earthquakes. 

The bottom panels of Fig. 6.64 how the comparable analysis, but the buildings are 

all 6-story steel mrf’s.  Because the 6-story buildings are shorter period, the pgv 

values are increased by 50% to account for the fact that actual pgv from broadband 

records are larger than the pgv’s from low-pass filtered records.  Although both pgv 

and pgd are important for collapse of the 20-story buildings, pgv is the key 

parameter for the 6-story building.  Again, the Japanese code building performs 

better than the US code building. 

It’s one thing to compare simulations of buildings that comply with different 

building codes and quite another thing to compare the actual performance of 

buildings in real earthquakes.  I have visited Japan many times and I am always 

impressed when I see Japanese buildings that are under construction.  They appear 

quite different to US buildings.  In particular, Japanese steel construction often uses 

rectangular box sections for columns.  This means that all sides of a column are 

flanges that can be used to construct a moment-resisting connection.  It is common 

to see Japanese buildings in which all beam-column connections are moment 

resisting.  In contrast, US construction typically uses I-sections for columns.  That 

means that moment resisting connections can only be constructed in one direction.  

The net result is that there are far fewer moment resisting connections in a US 

building than in a comparable Japanese building. 

Part of the story of the difference between US and Japanese buildings has to do with 

the building code.  You might think that these codes are written similarly, but with 

different constants in the code.  In fact, these codes are a set of complex rules and 

it’s difficult to anticipate the characteristics of the resulting building until you go 

through the process of checking a design to ensure that it meets all of the code 

requirements.  Personally, I find the details of building codes to be impenetrable.  

Fortunately, I have collaborated with colleagues (Prof. John Hall, Prof. 

Swaminathan Krishnan, Dr. Kenny Buyco) who have the patience and skill required 

to produce models that meet building codes.  In the US, most structural engineering 

firms that design earthquake-resistant buildings aspire to produce designs that meet 

code requirements, but they also try to minimize construction costs by specifying 

designs that exceed code requirements.  Importantly, US cities have not been 
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subjected to large near-source shaking (large pgv, pgd) since the 1906 San Francisco 

earthquake.  In contrast, Japan experiences earthquakes at a rate that is roughly ten 

times higher than the west coast of the US.  This means that Japanese buildings have 

been tested in the real world more frequently than US buildings.  As a result, 

Japanese engineers are usually more cautious than US engineers. 

In my view, the most important difference is that Japanese buildings are typically 

developed by companies that coordinate all aspects of building construction; 

architecture, geotechnical engineering, structural design, construction, and long-

term maintenance is often handled by the same company.  For example, Shimizu 

and Kajima are large construction companies that take a building from design to 

operation.  These companies are proud of their buildings and they openly show the 

buildings that are their product.  If one of their buildings was destroyed by an 

earthquake, then this would be viewed as an embarrassment that would damage the 

reputation of the company.  It is my view that many Japanese buildings exceed the 

required code to ensure the long-term viability of these construction companies. 

Near-Source Ground Motions and Frame Buildings 

Table 6.2 is copied from Buyco, Roh, and Heaton.  This paper discusses how 

standard signal processing of accelerograms can decrease the likelihood that the 

record will cause simulated collapse of long-period building designs.  The table lists 

records from many large earthquakes as well as estimates of the true pgv and pgd.  

Notice that there are numerous examples of recorded pgv > 1 m/s and pgd > 1 m. 
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Table 6.2.  This table is copied from Buyco, Roh, and Heaton (2020, 

Spectra) and it lists the pga, pgv and pgd for near-source observations of 
earthquakes larger than M 7. 

 

Figure 6.65 is from a study by Aagaard, Heaton, and Hall and it shows the median 

pgd as a function of distance from the surface projection of the rupture area of 

simulate M 7 earthquakes.  This figure shows that a good rule of thumb is that the 

area directly above the rupture has a median pgd that is about 2/3 the average slip on 

the fault. The vertical scale is pgd per unit of average slip on the fault.  Average slip 

scales as 

1

210
M

.  That is, average slip increases by a factor of 3 for every unit 

increase in M.  While table 6.2 has some very large pgd values, there are numerous 

examples of historic earthquake fault scarps that imply much larger pgd’s.   
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Figure 6.65.  Summary of the amplitude of near-source pgd as a function 

of distance from rupture on simulations of long ruptures (from Aagaard, 

Heaton, and Hall).  The x-axis is distance from the surface projection of 

the up-dip limit of rupture.  The y-axis is the pgd for a spatially averaged 

slip of 1 m.  pgd scales linearly with the slip. 

 

Simulation of a repeat of the 1906 San Francisco earthquake 

Figures 6.66 through 6.70 show simulations of M 7.8 earthquakes on 

the San Andreas fault in the San Francisco Bay region.  Fault slips are 

inferred from real geodetic data from the M 7.8 1906 San Francisco 

earthquake.  In addition, there are extensive observations of the offset 

of roads and fences that spanned the fault trace.  These indicate that the 

average fault slip was about 7 m on the rupture north of the Golden 

Gate.  In contrast, the section of the rupture south of the Golden Gate 

had an average slip of about 3 ½ m.  The simulated ground motions are 

from finite-element models of a slip pulse (see Chapter 8) propagating 

at 85 % of the average S-wave velocity in the crust.  This produces 

strong pulse-like ground motions for locations within 10 km of the 

rupture.  The maximum near-source displacement are on the order of 

2/3 the average slip, which is consistent with Fig. 6.65. 
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These figures chow that the expected motions from such an event 

exceed the capacity of flexible frame buildings and base-isolated 

buildings that are constructed in California.  The figures also show that 

pre-1994 steel frame buildings (brittle welds) are expected to collapse 

in the near-source region of such an event. 

 

Figure 6.66  Peak Ground Displacement from simulations of San 

Francisco Bay area earthquakes.  The upper left panel is based on a finite 

fault model of the 1989 M 6.9 Loma Prieta earthquake.  The other panels 

show simulations of a M 7.8 earthquake on the San Andreas fault.  The 

fault slip distribution is the derived from geodetic data from the M 7.8 

1906 San Francisco earthquake, which indicates that the average fault 

slip was 7 m for the segments north of the Golden Gate and 3.5 m to the 

south.  The scenarios are identical except for the location of the 

epicenter.  That is, directivity effects are the only difference in these 

simulated motions (from Aagaard, 2007).   
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Figure 6.67.  Peak ground velocities for simulated earthquakes in the San 

Francisco bay region.  The figure is the same as Fig. 6.66, except that 

pgv is shown. 
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Figure 6.68.  Response spectral displacement at 3 s for simulated ground 

motions shown in Fig. 6.66.  The panels on the left assume an epicenter 

in Bodega Bay and the panels on the right assume an epicenter in San 

Jauan Bautista.  The top panels and bottom panels assume 10 % and 20 

% damping, respectively.  Typical building isolators are expected to fail 

for spectral displacements of more than 50 cm (the yellow contour).  

Figure is from (Olsen, Heaton, and Aagaard, 3007). 
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Figure 6.69.  Peak inter-story drifts on nonlinear simulations of 20-story 

steel frame buildings that meet the UBC (1994) UA code (right panels) 

and the 1994 Japan building code (right panels).  The top panels assume 

brittle welds and the bottom panels assume ductile welds that never fail.  

The simulated motions assume an epicenter to the north of the bay area.  

Building simulations are performed for all grid points in the finite 

element simulation (from Olsen, Heaton, and Aagaard, 2007).   
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Figure 6.70.  The same as Fig. 6.69, except that the epicenter is assumed 

to be in the Golden Gate.  Directivity effects are less than those from a 

northern epicenter (Bodega Bay, see Fig.6.69) 

 

US Building Code through the years 

“Is my building safe in an earthquake?”  I am frequently asked this 

question and I often reply with another question; “when was it built?”  

After Santa Barbara suffered significant earthquake damage in a M 5.9 in 

1925, the first building codes were developed.  Steel reinforcement of 

concrete structures was introduced about the turn of the 19th century; the 

reinforced concrete U.S. Mint building performed better than other 

nearby buildings in the 1906 San Francisco earthquake.  It is natural that 

the first codes focused on un-reinforced brick structures, and the first 

codes emphasized strength.   
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The simplest approach was to specify that buildings were approximately 

rigid and that the loads increased scaled with the pga. However, there 

was too little data to characterize the pga in damaging earthquakes.  It 

was more practical to estimate the strength of buildings that had survived 

strong shaking.   In this case the strength was defined to be the ratio of 

the maximum horizontal load, v, to the weight of the building, w.  The 

1946 Uniform Building Code (ubc) specified that v/w should not be less 

than 0.12, independent of the height of the building.  Modal analysis was 

introduced in the next decade and the building’s fundamental period was 

used to specify the minimum base shear.  In particular, longer period 

buildings were allowed to have lower v/w.  The El Centro strong motion 

recording of the M 7.1 1940 Imperial Valley earthquake was the first and 

only near-source recording of a major earthquake and it was considered 

to be representative of the strongest shaking possible.  Unfortunately, we 

have since learned that this El Centro record was atypically small 

compared to other near-source records. 

Figure 6.71 is from John Kenny Buyco’s PhD thesis and it shows how 

v/w has evolved over time. 

 

Fig. 6.71 is a simple representation of building code strength 

requirements.  From 1946 through 2005, California cities used the 

Uniform Building Code that was developed by the Seismology 

Committee of the Structural Engineers Association of Southern 

California.  In an effort to unify building codes throughout the US, 

FEMA coordinated a new code in 2007 (sometimes called the 

International Building Code, IBC) that was published by the 

American Society of Civil Engineers. 
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Of course, building codes are complex documents that have evolved over the 

decades and Figure 6.71 does not fully describe building design through the 

years.  For example, building designers must consider horizontal wind loads.  

In addition, a new type of building code known as Performance Based 

Earthquake Engineering (PBEE) has mostly replaced prescriptive codes since 

about 2010.  Currently, most California cities allow designers to choose 

between the current prescriptive code (ASCE 7-10) and Performance Based 

Engineering.  PBEE is intended to create structural designs that give acceptable 

performance in nonlinear analysis for suites of ground motions that are derived 

from site specific probabilistic seismic hazard analysis (psha).  For example, a 

structural design begins with the creation of a 5 % damped design spectrum that 

is a composite model of hazard that is based on a statistical model of seismicity 

(what is the likely distribution of earthquakes on known faults?) and ground 

motion prediction equations.  The PSHA is typically performed by a 

geotechnical consulting company that writes a report that is used by the 

structural engineers that design a building.  The suite of design ground motions 

and the associated structural design are reviewed by a design review committee 

that is comprised of experts in engineering seismology and structural 

engineering.   

When PBEE was being developed, it was often argued that it would provide the 

analysis that would moticvate developers tp design buildings to a higher 

performance standard than that required in the existing codes.  For example. 

Recent building designs for downtown Los Angeles state that the buildings 

should survive most examples of the strongest shaking to be expected in 2,500 

years.  This makes it appear that PBEE designs are better than older standards.  

I admit that I am agitated when a colleague describes the strength of a building 

in years.  I want to see the nonlinear pushover analysis for individual buildings.  

Unfortunately, PBEE design procedures require that the technical reports that 

describe the actual capacities of buildings are proprietary.  Since most recent 

buildings have been designed using PBEE, it is very difficult to know how the 

capacity of buildings has changed over time.  Furthermore, many academic 

structural engineers are chosen to be paid members of the review panels for 

important buildings.  This means that the academic institutions that are 

responsible for basic research in earthquake engineering have key faculty who 

have signed reports that conclude that current designs are appropriate for 

thousands of years. 

Chapter 5 of John Kenneth Buco’s Caltech PhD thesis shows how the collapse 

capacity of simple nine- and twenty-story steel moment resisting frame 

buildings have changed over decades of different building codes used for 

downtown Los Angeles.  Buyco used the different codes to vary the designs 

and he then subjected the different building designs to incremental dynamic 

analysis for four different recorded ground motions that were among the largest 

available.  Buyco’s analysis is thorough and difficult to summarize.  I suggest 

that you read his excellent thesis if you want to understand what he found.  

Figures 6.72 and 6.73 are a summary of his finding. 
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Buyco’s analysis clearly shows that steel frames with brittle welds are 

significantly more vulnerable to collapse.  If all moment resisting connections 

performed as intended, then there appears to be similar performance by the 

different codes through the decades.  Even the performance based designs seem 

to be comparable to older designs.  I have often wondred why the new PBEE 

designs have chosen 2,500 years as a basis for design.  I suspect that this choice 

ensured that the transition from rule-based codes to performance-based codes 

was designed to ensure that construction costs did not jump when the new 

design procedures were adopted. 

It should be obvious that I oppose the adoption of PBEE.  My objections are: 

1) Current understanding of earthquake rupture physics is inadequate to 

calculate the size of infrequent ground shaking (see Chapter 8), 2) PBEE design 

procedures are so complex that almost no one really understands what the 

capacity is, and 3) stating that we know how to design for 2,500 year motions 

gives the impression that earthquake engineering is a solved problem.  That is, 

research universities should prioritize other societal problems (e.g., climate, 

energy, conflagrations, pandemics, etc.) since earthquake engineering is well 

enough understood to reduce it to a statistics problem. 
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Figure 6.72  Collapse resistance of simple steel MRF buildings designed 

to different codes in downtown Los Angeles.  The vertical scale is the 

amount that an individual strong motion record was increased by to 

cause P-delta collapse.  Four different records were used for this 

incremental dynamic analysis.  The analysis assumes that welds never 

fracture.  PBD-LL and PBD-WG signifies Performance-Based designs 

for the LA-Live and Wilshire-Grand buildings respectively. 
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Figure 6.73.  Collapse resistance of simple steel MRF buildings designed 

to different codes in downtown Los Angeles.  This is the same as Figure 

6.72, except that welded moment resistant connections are assumed to be 

brittle for designs prior to 1995.. 

 
Chile – a different approach 
 
Following the realization that flexible buildings had lower forces than similar sized 
stiff buildings, U.S. codes bifurcated.  That is, a designer could choose either a 
strong building or, alternatively, a flexible building.  If a strong design was chosen, 
then it resulted in a stiff building with a lower fundamental period.  Since most 
design response spectra have their peak at periods nears 1 s., strong buildings are 
required to be very strong.  If a designer chooses a flexible design, then this comes 
with advantage that the building is longer period and the design spectral 
acceleration is decreased.  When it comes to tall US buildings, almost everyone 
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chooses designs that are flexible.  As I have argued throughout this chapter, making 
a tall building flexible makes it vulnerable to P-Δ collapse in near-source ground 
motions. 
 
Chile is a country that has a long history of major subduction earthquakes.  For 
example, the M 9 ½ 1960 Chilean earthquake is recognized as the largest earthquake 
in the past several centuries (see Chapter 8).  Unfortunately, there were no strong 
motion recordings of the 1960 eaerthquake.  Despite the paucity of 20th century 
Chilean strong motion records, it was clear that Chile experienced large long-period 
ground motions.  Chilean structural engineers responded by developing a robust 
building code that emphasizes high shear strength.  Figure 6.74 shows the skyline 
of Valparaiso, which sits 20 km above the Chilean subduction zone.   
 
Although the multi-story concrete buildings may look similar to US designs, they 
are actually very different.  In particular, extensive reinforced concrete shear walls 
are typical for Chilean buildings For example, Figure 6.75 shows the floor plan for 
a typical Chilean high rise.  Notice that almost all of the walls are shear walls. 
 

 
Figure 6.74.  Skyline of Valparaiso, Chile, shows many multi-story 
reinforced concrete shear wall buildings that performed well in the 
2010 M 8.8 Maule earthquake that ruptured 20 km directly beneath 
the city. 
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Figure 6.75.  Floor plan for a typical Chilean high-rise building.  The 
infilled lines represent reinforced concrete shear wall, whereas the 
open lines represent non-structural walls.  Notice that most wall are 
shear walls.  This is very different from typical US high rises where 
most walls are not structural. 

 
Figure 6.76 shows the horizontal ground acceleration in Concepcion during the 
2010 M 8.8 Maule earthquake.  Concepcion is also 20 km above the rupture.  The 
long duration of shaking is caused by the very long rupture (see Fig. 8.41).  The 
duration of the record is 90 seconds, which tricks the eye into believing that this is 
high-frequency shaking.  However, this record is dominated by low-frequencies as 
can be seen in the ground displacments in Figure 6.77. 

 
Figure 6.76. Gound acceleration recorded in Concepcion, Chile, during 
the M 8.8 2010 Maule earthquake.  Notice the very long duration of 
long-period shaking. 
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Figure 6.77.  Ground displacement in Concepcion during the 
acceletation shown in Fig. 6.76.  Continuously recording GPS satellite 
positioning is combined with the acceleration data to derive the 
displacment time history,  Notice that the ground moved more than  2 
½ meters during the 20 second period that a slip pulse was propagating 
beneath the city (see Figure 8.41). 

 
Although Chilean buildings performed well in the Maule earthquake, there were 
examples where the shear walls were severely damaged.  Figure 6.78  shows a 
concrete shear wall in Santiago that was heavily damaged.  As is often the case, 
Chilean real-estate developers have pushed for very tall buildings.  The failure 
shown in Fig. 6.78 seems to be the consequence of pushing the height of shear wall 
buildings beyond practical limits.   

 

 
 

Figure 6.78.  Shear failure in a new 25-story shear wall building in 
Santiago during the 2010 Maule earthquake. 

 
Figure 6.79 shows the collapse of a 15-story shear wall building in Concepcion.  
Post collapse inspection shows that the exterior concrete shar walls were destroyed 
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by longitudinal compression that occurred as the building rocked laterally.  
Amazingly, the building toppled sideways like felling a tree when the exterior walls 
lost compressional strength at the building’s base.  The building fell on top of a 
neighboring 5-story building.  The 15-story building broke into two pieces, but 
most of theliving spaces remained in tact, saving the lives of residents in the toppled 
building. 

 

 
Figure 6.79.  Collapse of a shear wall building in the 2010 Maule 

earthquake.  Notice that although the building collapsed, the high 
strength of the shear walls preserved the integrity of most of the 

interior rooms.  Fortunately, the area on which the collapsed 
building landed was unoccupied. 

 
 
 
 
Core wall buildings 
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The Home Insurance Building – Chicago, IL, 1885, 
an early skyscraper 
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Figure 6.4,   The 12-story Home Insurance Building (demolished in 1931) is considered to be 
the first skyscraper.  A steel frame is the primary load bearing system in this building.  There are 

also masonry infill walls that seal the building against the weather.  Since the weight of the 
building is carried by the steel frame, the masonry walls are much thinner than is required to 
support such a tall building.  The use of steel frame masonry infill walls was common in Los 

Angeles and San Francisco until the 1950’s.  

 
Figure 6.5.  Typical early moment connection for steel frame buildings constructed prior to the 

1950’s.  , consisting of heavy triangular 
gusset plates, angles, and rivets connecting built-up columns and beams. 

 

 
Steel frame buildings in downtown San Francisco performed well in the 1906 earthquake. 

 

 
 
Homework Chapter 6 
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1. Assume that the base of a shear-beam (neglect bending deformations) with 

rigidity   and density  is subject to tangential displacement that given by ( )xu t

.  Assume that the top of the shear beam is a free surface. 
  

( )
0, 0

, 0
x

t
u t

t t

 
=  

 
 

 
a) Write the motion of the free end of the beam as a function of time. 
b) Write the shear stress at the forced end of the beam as a function of time. 
c) How would this problem change if you were to allow bending 

deformations in the beam? 
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5/7/2024 
Chapter 7.  Earthquake Sources 

 
 

Earthquakes are primarily caused by spontaneous dynamic slippage on a surface in 
the Earth (a fault).  It turns out to be quite difficult to solve elasticity problems in 
which there is an arbitrary cut in the medium (a slipping fault).  One common 
approach is to create a finite-element model of the volume that contains the fault 
slippage.  Brad Aagaard’s PhD thesis has an excellent description of this problem 
(Finite-element simulations of earthquakes, Aagaard, B, 1999, Finite-element 
simulations of earthquakes. EERL Report, 99-03. California Institute of 
Technology , Pasadena, CA., 
https://resolver.caltech.edu/CaltechEERL:1999.EERL-99-03).   
 
Specialized elements that have split nodes create lateral offsets within the finite 
element grid.  Except for these specialized split elements, all other elements are 
assumed to deform elasticly.  The slips at the fault elements can be determined in 
two ways, 1) the slip vector can be prescribed as a function of location and time 
(this is usually called a kinematic source), or 2) a prestress and a friction law is 
prescribed, and the slip vector is calculated (this is called a dynamic source model).  
Since both modeling approaches obey the laws of linear continuum mechanics, the 
motions that occur in their volumes are identical as long as the slip time histories 
are the same.   
 
One of the difficulties with kinematic sources is that the modeler can choose slip 
vectors that are inconsistent with classical dynamics; for instance, one could choose 
a slip that reverses direction, or a slip that jumps instantaneously from one position 
to another.  It is up to the modeler to decide what slip distribution is reasonable. 
 
In contrast, dynamic models use the continuum equations to determine the slip 
history and therefore, they are often referred to as physics-based models.  Of 
course, there is no free lunch; that is, the modeler must specify the prestress and 
the friction law.  I will argue in Chapter 8 that neither of these quantities are known.  
Furthermore, dynamic modeling is considerably more difficult to interpret, and it 
is computationally expensive.  Therefore, there are many applications that are more 
efficient using kinematic models.  This is particularly true for source inversions, 
where the object is to find source slip histories that best simulate recorded seismic 
information.  Seismograms are linear functions of slip, whereas they are highly 
nonlinear functions of prestress and friction.  Linear inversions are typically fast, 
and more importantly, their solutions are unique. 
 
Although finite element models are versatile, they can be cumbersome for 
problems with large spatial domains.   There have been attempts to extend the 
domain of finite-element solutions by using the motions on the boundary of the 

https://resolver.caltech.edu/CaltechEERL:1999.EERL-99-03


 

237 
 

discrete domain as boundary conditions for analytic solutions, but that subject is 
beyond the scope of this class.  
Seismologists simulated earthquakes decades before the advent of finite-element 
modeling.  My favorite papers on this topic were both printed in the same 1964 
issue of the Bulletin of the Seismological Society of America. Haskell (1964) 
described a method to simulate the far-field waves from dislocations (a truly 
profound paper), and Burridge and Knopoff (1964) described how different types 
of seismic sources could be simulated using equivalent forces.  Reading these early 
papers provides the background to understand the meaning of the terms used in 
earthquake studies. 
 
It is important to understand that researchers sought a methodology to modify 
known solutions to continuum mechanics so that they simulate earthquakes.  An 
important example is shown in Figure 7.1. 
 
 

 
Figure 7.1  Mathematical idealization of an “earthquake fault.”  In this case 
we have an elastic material in which we induce a shear strain inside a tabular 
body.  The opposing surfaces of the tabular body are offset by the induced 
shear strain.  We then shrink the thickness of the tabular body to zero, but 
increase the shear strain so that the net offset is constant; that is, we make 
the shear strain an impulse in the z-coordinate. 

 
 
It is usually assumed that the Earth is linearly elastic everywhere, except in the 
immediate vicinity of the failure surface.  It is very difficult to find analytic equations 
to a continuum that has a surface with discontinuous displacement (fault slip).  To 
find analytic solutions, it is convenient to draw a tabular box around the failure 
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surface as is shown in Figure 7.1.  In fact, it is usually far easier to solve problems 
in which we apply stresses in such a manner that the medium deforms “as if” it had 
a cut along some plane. Now if strains are small and if the material is isotropic, then 
the strain anywhere in the medium can be related to stress by 

 
3

1

1
ij ij ij kk

kE E

 
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=

+
= −   (7.1) 

 

where  and E  are Poisson’s ratio and Young’s modulus, respectively. We can also 
write (7.1) in terms of the Lame constants, where  
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A little algebra gives 
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Now if we were God, then we could apply a stress ( )0 , ,x y zσ  within the tabular 

box.  Now the stress at any point inside the box will be the sum of the stress that 

we applied at that point ( )0 , ,x y zσ plus the stresses 0
σ̂ at ( ), ,x y z  that are caused 

by application of  stress ( )0 ˆ ˆ ˆ, ,x x y y z z  σ at all other points than ( ), ,x y z .  

That is, the stress anywhere in the medium can be decomposed as 
 

 ( ) ( ) ( )0 0ˆ, , , , , ,x y z x y z x y z= +σ σ σ  (7.5) 

 

The terms ( )0ˆ , ,x y zσ  are actually very complex and, for each point in space, they 

involve integrating Green’s functions for stress over the entire box.  However, we 
will assume that our box becomes vanishingly thin.  In fact, we will assume that 
 

 ( ) ( ) ( )0 0, , , ,0x y z x y z=σ σ  (7.6) 

 

where ( )z  is an impulse function in z.  Now as it turns out, the Green’s function 

for stress at ( ), ,x y z  caused by applying another stress at ( )ˆ ˆ ˆ, ,x y z  is a complex 

function with a scaling of ( ) ( ) ( )
3

2 2 2 23 ˆ ˆ ˆr x x y y z z
−

−  = − + − + −
 

.  This 
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means that if (7.6) is true, then within the box, the stresses are completely 
dominated by the impulsive stress applied at each point within the box (that is, 
stress decays as the inverse cube of the distance from the point at which the stress 
is applied) and 
 

 ( ) ( ) ( )0, , 0 , ,0x y z x y z σ σ  (7.7) 

 

Now if we are interested in the relative displacement vector z
D  of the two opposite 

faces (perpendicular to the z direction) of the tabular box, then we can integrate the 
strain from one side of the box to the other. The strain in the box is just 
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Since we are interested in the jump in displacement ( ),x yD  that occurs from the 

top to the bottom of the box, we can write that 
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 (7.9) 
Here we have used the fact that the spatial integral of a delta function is a step 
function. 

  
If we assert that an earthquake is the horizontal sliding along a fault surface, we find 
that we can produce a jump in shear displacement across our thin tabular box by 
applying a shear stress equal to  
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We can also produce a jump in the displacement normal to the tabular box (e.g. 
opening of a crack) by applying extensional stresses inside the box. 

 
I have just described a clever method for deriving the elastic response of a medium 
to inelastic deformation across some surface.  Instead of solving for the continuum 
response of that inelastic slipping region, we replace it with a region that is assumed 
to be linearly elastic.  We introduce singular stresses on that surface (delta functions 
in space) that stretch the elastic surface so strongly that there is a net displacement 
across the stretched region. Of course, this is a physical fiction; we are using 
infinitesimal linear elasticity to calculate the response of infinitely large strains 
within the box.  However, we don’t really care about what is exactly happening 
inside the box.  We just want there to be an offset of one side of the box relative 
to the other.   
 
If we can calculate the response of the rest of the medium to the introduction of 
the applied stresses in the source region, then we can calculate the response of the 
rest of the medium (outside the box) to a jump in the boundaries of the box.  This 
source modeling trick is sometimes referred to as a “dislocation source.”  This trick 
of applying singular stresses to produce slip is also often used in finite-element 
modeling.  That is, forces are applied to grid points in such a way that they produce 
jumps in displacement.  This can save effort by eliminating the need for split nodes. 
 
It is customary to parameterize the “size” of the dislocation source by integrating 

the applied stress tensor ( ), ,x y z 0
 over space.  This integrated stress is called the 

Moment tensor; that is stress integrated over a volume has units of stress times 
volume, or units of force times length.  These are the units of torque.  That is, 
sources are often described by a torque (hence the origin of the word, moment).  
DO NOT MISTAKE SEISMIC MOMENT FOR AN ENERGY.  Although 
torque and energy seemingly have the same units, torque is a force and 
energy is … well it’s energy. 

 ( )
0 0 0

, ,

l w h

x y z dxdydz   
0

0M  (7.11) 

If the source is a simple shear dislocation across a boundary then we can substitute 
(7.10) into (7.11) to obtain 

 ( ) ( ) ( )
0 0 0 0 0

, ,

l w h l w

x y z dxdydz x y dxdy   =    0M D D  (7.12) 

The size of the moment tensor is often described with the simple scalar 

“seismic moment,” defined by 

 
0M SD  (7.13) 
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where S is the rupture area and D  is the average slip on the rupture surface.  

As we will see in a second, the seismic moment is the size scaling factor for 

long wavelength waves.  The key elements in the scaling factor are the 

average slip, and the rupture area.  This makes physical sense since our 

medium is assumed to be linear.  Double the slip and we expect to double the 

ground motions.  Also, for long wavelength waves, doubling the rupture area 

should also double the ground motions. 
 

Confusions about seismic moment 
 
While we expect ground motions to scale linearly with rupture area and average 
slip, there is great confusion about the meaning of including rigidity in our size 
scaling factor called seismic moment.  In particular, the   is the value of rigidity 

inside our infinitesimally thin box.  It has no real physical meaning, since we only 
use it to determine the size of the infinite elastic strain that is calculated using 
infinitesimal elasticity inside of our thin source box (a true oxymoron).  
Unfortunately, it has become common to hear the phrase “moment release.”  
However, earthquakes do not release moment.  When people talk about how much 
moment is released, what they really mean to convey is the slip D integrated over 
the rupture area S.  This quantity has been called Potency P by Ben Menahem and 
Singh (1981, Seismic Waves and Sources, Springer-Verlag, New York, 1108 pp) and it 
has units of strain integrated over a volume, which is units of volume. 

 ( ) ( ) ( )
0 0 0 0 0

, ,

l w h l w

P x y z dxdydz x y dxdy SD = =    D D  (7.14) 

We can also define a Potency History ( )P t  as follows. 

 ( ) ( )
0 0

P , ;

L W

t D x y t dxdy=    (7.15) 

 
 

Point Sources 

 

Although it is clear that earthquake sources occur primarily as slip on a 

surface (a fault), it is often convenient and adequate to approximate the 

source as having infinitesimal rupture area, but finite Potency or Seismic 

Moment.  The solution for this problem is much simpler than that of a source 

with a finite rupture area.  Furthermore, the point-source solution can be used 

as a Green’s function to construct the solution to more complex sources since 

the medium is considered to be linear away from the fault surface. 
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This type of source was first introduced by Love in his classic book, A 

Treatise on the Mathematical Theory of Elasticity in 1927.  He used the term, 

nucleus of strain, for such a point source.  By that, he meant a singular strain 

could be introduced at a point in a medium.  In order to produce finite 

displacements at points away from the source, it is necessary for the source to 

have units of volume (potency).  If the material is considered to be linearly 

elastic, then we can also introduce a point source defined by the stress tensor 

at the source point, which is called the Moment tensor.  Of course, this is 

even more fictitious than before since we are using infinitesimal strain theory 

to describe triply singular stress and strain.  However, at distances large 

compared to the rupture lengths of a particular earthquake, and at frequencies 

that are low compared to times required by seismic waves to travel across the 

source region, a point approximation of the source is adequate for simulating 

earthquakes in elastic media. 

 

It is helpful at this point to realize that the Moment tensor is simply a spatial 

integral of a stress tensor that is applied to the medium.  Like any stress 

tensor, it can be decomposed into an isotropic stress 
Hσ  (sometimes called 

hydrostatic stress) and a deviatoric stress σ . 

 
H

σ = σ -σ  (7.16) 

where 

 H 
1

3ij kk ij  =  (7.17) 

In stress tensors, the hydrostatic stress gives a measure of the pressure at a point 
and the deviatoric stress is used to describe the shearing in the medium.  In a similar 
way, we can decompose the moment tensor into an isotropic component and a 
deviatoric component.  Now, if an earthquake is composed of unidirectional slip 
on a plane, then the shear strain and stress necessary to simulate that slip is very 
simple in the coordinate frame of the fault (see equation (7.10)).  It is given by 
 

 

0 0

0 0

0 0 0

o

SD

SD





 
 

=  
 
 

M  (7.18) 

Transforming this stress to the principal coordinate frame, which is oriented at 45o 
to the fault coordinate frame, the stress is written as  
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0 0

0 0`

0 0 0

o

SD

SD





 
 

= − 
 
 

M  (7.19) 

 
A point source of this type is commonly called a double-couple source.  
Unfortunately, this term has also created tremendous confusion.  That is, the word 
non-double-couple source is common in geophysical literature, and it is often 
taken to mean sources that are not well described as slip on a plane (e.g., an 
explosion).  However, the word non-double-couple source technically means a 
source that is not fit with a simple shear at a point as given in (7.18) or (7.19).  
Earthquakes can be non-double-couple in the following ways.  1) if the earthquake 
has one fault plane, but the slip vector changes direction from one location to 
another, 2) The earthquake consists of more than one fault plane where the planes 
are neither parallel nor perpendicular 3) The fault is too large to be approximated 
as a point.  In this sense, almost all earthquakes are non-double-couples.  It is usually 
best to think clearly about what is really meant when someone tells you that the 
source was non-double-couple. 
 

Reciprocity for a point force 
 
At this point, I would like to discuss the property of reciprocity.  Roughly speaking 
it says that the source and receiver can be interchanged for any linear continuum. 
Let us begin with a static deformation problem.  Suppose we have a linearly elastic 
medium that is surrounded by a boundary that is either traction free or rigid (this is 
known as a homogeneous boundary condition and it implies that no work is 
done at the boundary). Now suppose that we apply point forces at two locations, 

 and x , as is shown in Figure 7.2.  While the direction of the force is arbitrary, 

let us assume that the force at x is applied in the ith direction and that an equal 
amplitude force is in the jth direction at ξ .  That is assume that 

 
i

x

j

F

F

 =

=

F e

F e
 (7.20) 
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Figure 7.2.  The displacement time history observed in the ith direction at 
x due to a point force in the jth direction at ξ  is identical to the 

displacement time history in the jth direction observed at ξ due to a point 

force in the ith direction at x.  The amplitude of the two point forces are 
assumed to be identical.  In this example i=2 and j=3.  

 

Assume that the displacement due to the application of this force is  and 
xF F

U U

.  We first apply 
F at ξ and since the medium is linearly elastic and no work is done 

at the boundary, the work done by this force is just the force dotted with the 
displacement at ξ , or 

 
( )

( )

1

2

1

2

F

j

F

j j

W F

F U





 



=

=

F U

ξ

 (7.21) 

We now apply the second force x
F at x .  The work done by application of the 

second force is now the change in displacement ( )
xF

U x  at x  dotted with x
F , but 

now plus the additional work done by 
F through the displacement ( )

xF U   at ξ

.  That is, 
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( ) ( ) ( ) ( )

( ) ( )( ) ( )

1 1
 then 

2 2

1

2

x x

x x

x F x F F

F x F F

j j i i j j

W

F U F U F U





  

 

 

 

= + +

= + +

F F F U F U x F U

x

 (7.22) 

Now if, instead, we first applied x
F at x , and then we apply 

F at ξ , then we 

can calculate the total work as 

 
( ) ( ) ( ) ( )

( ) ( )( ) ( )

1 1
 then 

2 2

1

2

x

x

x x F F x F

F x F x F

j j i i i i

W

F U F U F U

 

 

 







= + +

= + +

F F F U F U x F U x

x x

 (7.23) 
 
Now since the total energy of the system is independent of the order in which we 
apply the forces, 

 ( ) ( ) then  then x xW W =F F F F  (7.24) 

We conclude that  

 
( ) ( )

( ) ( )

x

x

F x F

F x F

j j i iF U F U













=

=

F U F U x

x
 (7.25) 

Now since the forces at the two sites are equal in amplitude, this means that the 
displacements at the two sites must also be equal in amplitude.  That is, the 
displacement in the ith direction at x  due to a force in the jth direction at ξ is the 

same as the displacement in the jth direction at ξ  due to a force in the ith direction 

at x .  This can be generalized to the dynamic displacements that occur in a linear 
medium.  For derivations see Chapter 2 of Aki and Richards (Quantitative 
Seismology, second edition) or see section 15.6 of Fung (Foundations of Solid 
Mechanics).   

Now if we write the displacements using Green’s functions ( ), ;ijG tx ξ for a point 

force in the jth  direction at ξ  that produces a displacement time history in the ith 

direction at x. 

 ( ) ( ) ( ), , ; *F

i ij jU t G t F t
 =x x  (7.26) 

No summation convention!  If we switch the locations of the source and observer, 
but we now assume that the point force is in the ith direction (the direction of the 
observed ground motion at x) and that the observed motion at ξ  is in the jth 

direction (the direction of the applied force at ξ ) we obtain 

 ( ) ( ) ( ), , ; *
xF x

j ji iU t G t F t=ξ ξ x   (7.27) 
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Since the system is linear, the virtual work obtained by the product of the force and 
the displacement must be the same if the same amplitude force is applied along the 
displacement at the source and observer points.  That is, similar to the static case, 
but now the work is the integral over time 

 ( ) ( ) ( ) ( ), ,
xF x F

j j i iF t U t dt F t U t dt


 

− −

= ξ x  (7.28) 

Where  

 ( ) ( )x

j iF t F t =  (7.29) 

Since (7.28) is true for any time history for the force, it must be true that 

 ( ) ( ), ,
xF F

j iU t U t


=ξ x  (7.30) 

 Substituting (7.26) and (7.27) into(7.30), we get 

 ( ) ( ) ( ) ( ), ; * , ;x

ji i ij jG t F t G t F t= ξ x x ξ  (7.31) 

From which we can conclude that 

 ( ) ( ), ; , ;ji ijG t G t=ξ x x ξ  (7.32) 

This is the usual statement of reciprocity.  If we substitute (7.32) into (7.27), we get 

 ( ) ( ) ( ), ; , ; * x

j ij iU t G t F t=ξ x x ξ  (7.33) 

 
Reciprocity for force couples 
 
Suppose that we consider the displacement at x caused by a force couple (see figure 
7.3). 

 
Figure 7.3. Displacement observed at x due to a force couple at ξ .  

Specification of the orientation of the force couple requires two vectors, the 
direction of the force and the direction of the moment arm. 
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Now if the source is a force couple, ( )
( )j

jk

k

F t
M t











, and if our observer is 

measuring displacement at x, then 

 ( )
( ), ;

,
ijM

i jk

k

G t
U t M

x

 


= 


x
x  (7.34) 

In this case, we cannot exchange the source and the receiver.  To begin with, one 
cannot derive the virtual work done by a torque operating on a displacement.  In 
addition, the orientation of the force couple requires two vectors, the orientation 
of the force and the orientation of the gradient. However, the displacement only 
describes one orientation.  In the case of force couples, reciprocity must be stated 
in terms of displacement gradients as shown in Figure 7.4.  

 
Figure 7.4.  Reciprocity for a force couple at ξ  involves observing a 

displacement gradient at x.  The resulting time history of the displacement 
gradient is the same as the time history of a displacement gradient 
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observed at ξ , but with the force couple at x, and with the orientation of 

the observation of the displacement gradient. 
 
 In this case the principle of virtual work is stated in terms of a torque times a 
rotation (similar to strain energies) at the source and receiver.  That is, 

 ( )
( ) ( )

( )
, ,

xM M

j i x

jk il

k l

U t U t
M t dt M t dt

x







 

− −

 
=

  
ξ x

 (7.35) 

Where ( ) ( )x

jk lmM t M t = , and as before this implies that 

 
( ) ( ), ,

xM M

j i

k l

U t U t

x





 
=

 

ξ x
 (7.36) 

where 

 ( )
( )

( )
, ;

,
ijM

i jk

k

G t
U t M t

 





= 



x
x  (7.37) 

And 

 ( )
( )

( )
, ;

,
x jiM x

j il

l

G t
U t M t

x


= 



ξ x
ξ  (7.38) 

Substituting (7.37) and (7.38) into (7.36)  we obtain 
 

 
( )

( ) ( )
( )2 2, ; , ;ji ijx

il jk

k l l k

G t G t
M t M t

x x




 

 
 = 

   

ξ x x
 (7.39) 

 
Since the moment time histories are all assume to be the same, reciprocity for force 
couples can be written as 

 
( ) ( )2 2, ; , ;ji ij

k l l k

G t G t

x x



 

 
=

   

ξ x x
 (7.40) 

This same result could have been obtained from the force statement of reciprocity.  
That is, if we differentiate (7.32)  with respect to the kth direction at the point the 
force is applied, then 

 
( ) ( ), ; , ;ij ji

k k

G t G t

x

 



 
=

 

x x
 (7.41) 

Similarly, if we differentiate (7.41) with respect to the lth direction at the point of 
observation, we obtain 

 
( ) ( )2 2, ; , ;ij ji

l k l k

G t G t

x x

 

 

 
=

   

x x
 (7.42) 
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Which is identical to the result obtained in (7.40).  Fung shows that this result also 
applies to any linear visco-elastic material. 
 
 
 
Point Double-Couple in an isotropic Whole Space 
 
Consider a point double-couple source whose orientation is shown in Figure 7.5.  
Since we are using a point source in a homogeneous space, we expect to see radially 

spreading waves and we use spherical coordinates ( ), ,r   to describe the location 

of the observer.  However, it is customary to describe the orientation of the fault 
with respect to a local coordinate system that is North, East, and up.   
 
 
To describe the orientation of the rupture, we use Euler angles, and proceed in the 

following way.  1)  Determine the dip angle   of the fault.  This is always between 

0o (a flat plane) and 90o ( a vertical plane).  2)  Determine the strike angle   of the 
fault.  This is between 0o and 360o and it is the angle between geographic North 
and the surface projection of the fault plane.  A 0o strike designates a fault that dips 
to the East, a 90o strike dips to the South, a 180o strike dips to the West, and a 270o 
strike dips to the North.  3)  Determine the rake angle of the slip on the fault plane.  
A rake angle of 0o signifies a left-lateral slip (usually called left-lateral strike-slip), 
in which case the opposite side of the fault moves horizontally and to the left when 
looking across the fault.  A rake of 90o signifies that the “hanging wall” moves 
vertically upward over the “foot wall,” which is usually referred to as thrust type 
of motion and which produces crustal shortening.  Hanging wall and foot wall are 
mining terms used for dipping seams of coal.  When walking down the dipping 
surface of the mine, the hanging wall is the overhead surface (the ceiling), and the 
footwall is the floor.  A rake of 180o signifies right-lateral strike-slip motion.  A rake 
of 270o means the hanging wall moves downward with respect to the footwall.  This 
is usually referred to as a normal fault and it results in stretching of the Earth’s 
crust. 
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Figure 7.5.  Shows the spherical coordinate system used together with the 
angles that describe the orientation of the fault and slip vector. 

 

While the strike angle   is defined with respect to geographic north, the observer’s 
azimuth   in Figure 7.2 is defined with respect to the strike line of the fault plane.  

We assume that the motion on a fault of area S (a very small area) is given by 
 

 ( ) ( )
0 0

H
0

t
D t D t

D t

 
= =  

 
 (7.43) 

 
In this case the solution can be found by differentiating the point source solution 
(Equation 3.85) with respect to the appropriate source coordinate (this gives us a 
shear-couple of forces).  This solution is then summed with the solution for a 
perpendicular force couple which gives a double-couple solution.  The solution for 
displacement is  
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(7.44) 
and 
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
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 

 


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 

  

= +    
 


−

 + 


 (7.45) 

Where  signifies either the  or the  direction   .  The notation  and RG G
 are 

used to signify that this is the Green’s function for a point dislocation in a whole 
space, and they signify displacements in the corresponding directions.  Notice that 

everything is linearly scaled by SD  , which is the Potency.  It is common to write 

this solution using the Seismic Moment OM  , but these expressions always end up 

being written as OM


. 

 

I apologize for the complication that   is used to signify both the first Lame 
constant and also the rake angle.  The factors 

( ) ( ), , , ,  and , , , ,R            signify the Radiation pattern and they 

are given by 
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( ) ( )

( )

2

2 2 2

, , , , cos sin sin sin 2 cos sin 2 cos

sin sin 2 cos sin sin cos 2 sin 2 sin

R            

       

 = −

 + − +
 

 (7.46) 

 

 
( ) ( )

( )2

1, , , , cos sin sin 2 sin 2 cos cos 2 cos
2

1sin sin 2 sin 2 1 sin cos 2 cos 2 sin
2

            

      
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 − + −
 

 (7.47) 
 

 
( ) ( )

( )

, , , , cos sin sin cos 2 cos cos sin

1sin cos 2 cos cos sin 2 sin sin 2
2

            

      

 = +

+ −

 (7.48) 
 
Since the problem is linear, we can find the solution for any potency rate history by 
convolving solutions (7.44) and (7.45) with any potency rate function 

( ) ( )SD
P t

t





. 

 
While this solution may look complex, it is the simplest solution that approximates 
an earthquake and it is important to gain some physical intuition about the different 
parts of this solution.  Let’s start with the radial displacements given by equation 
(7.44).  In Figure 7.6, I sketch the nature of the solution at several different 
distances.  Notice that there is an impulse function in the radial component that 

arrives at the P-wave time, and its amplitude decays with distance as 1
r

.  This is 

the far-field P-wave and its time history is the time derivative of the Potency on 
the fault.  Its amplitude is also scaled by the inverse of the P-wave velocity  .  That 
is, the far-field waves are the transient part of the solution, and they carry the 
radiated energy in the wavefield.  These radiated waves become smaller as the 
stiffness of the medium increases or as the density decreases.  The amplitude of the 
far-field P-wave is different at different take-off angels and this amplitude is 

determined by R .  Since the power flux through a surface depends on surface 

integral of 2
2

1u
r

, the power flux of far-field waves through any sphere centered on the 

source is independent of the radius sphere.  Hence, in the absence of anelastic attenuation, 
the energy of the radiated wave is constant in time. 
 
Now notice that after the arrival of the far-field P-wave, there is a term that is 
constant in time up until the S-wave arrives.  This term is part of the near-field P-



 

253 
 

wave and its amplitude decays with distance as 2
1

r
.  There is also a second near-

field term that begins after the P-wave arrives.  It grows in time as 2t and decays 

with distance as 4
1

r
.  While this tern may look like a very near-field term, notice 

that by the time of the S-wave, its amplitude has grown to order 

( )
2 2 1 1

S Pt t r
 

 
− = − 

 
 ,  so it is actually of the same order as the other near-field 

terms. This very-near-field term (which behaves like the second time integral of the 
Potency time history) only exists up until the time of the S-wave arrival.  After the 
S-wave arrival, the radial displacement is simply a constant in time; this is the static 

offset and it decays in distance as 2
1

r
. 

 
The tangential components of the motion (equation (7.45)) are also of interest.  
Notice that there is a near-field P-wave static term that starts at the P-wave arrival 
time (yes there truly are P-waves on the tangential component).  This is also 
accompanied by a very-near-field term that exists only between the P- and S-wave 
arrival times.  The far-field S-wave then arrives and the solution then becomes the 
static displacement in the tangential directions.  Notice that the far-field S-wave 

is larger than the far-field P-wave by a ratio of 
3

3



 (this is a factor of 5.2 for 

a Poisson solid).  Figure 7.6 shows the nature of the solution at different distances. 
 

 
Figure 7.6  Cartoon showing the characteristics of the displacements 
generated by a point double couple source in a whole space.  Far-field P- 
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and S-waves have a time history that is the first time derivative of the 

potency time history and they decay as 1
r

.  Near-field terms have the 

same time behavior as the potency history and they decay as 2
1

r
.  Very-

near-field terms only occur between the P- and S- arrival times, they have 
a time behavior that is the 2nd time integral of potency, and they decay as 

4
1

r
. 

 
Radiated energy from a point source 
 
Normally, we consider the radiated energy to be the part of the energy that is 
associated with the waves long after the earthquake is over (assuming that there is 
no anelastic attenuation).  In this case, we consider only the far-field terms and the 

radiated energy is the integral over time of power ( ),p r t  through an enclosing 

surface at large distance r.  That is, 

 ( )2 ,

endtime

R

starttime

E r p r t dt  (7.49) 

 
The power through any point on the surface is particle velocity times the stress 
associated with the traveling wave, or 

 ( ) ( ) ( ), , ,p r t u r t r t=  (7.50) 

In a traveling far-field S-wave (which contains most of the radiated energy), the 
stress scales as 

 
( ) ( )P Pt t

u
r r

 
 


=  (7.51) 

Therefore, the power scales as  

 ( ) ( ) ( )
2

2
2

2

P P
,

t t
p r t u

r r


 

 

 
= 

 
 (7.52) 

Therefore, the radiated energy scales as  

 
( )2P

endtime

R

starttime

t
E dt

  (7.53) 

 
This interesting result says that the radiated energy scales as the 2nd time derivative 
of the Potency history.  That is, there is no radiated energy when the source is rupturing at 
a steady rate. 
 
Radiation Pattern 
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In addition to the time behavior and distance decay, there are a number of 

geometric factors ( ), ,r      given by equations (7.46) to (7.48) that determine 

the amplitude and direction of the particle motions of the solution.  These factors 
are particularly important to engineering seismology, since they determine where 
the S-wave is going to be large.  Unfortunately, these factors are complex enough 
that it is very hard to gain intuition simply by looking at equations (7.46) to (7.48).  
I like to use a simple tool to remind myself of the radiation pattern.  This tool is 
called a focal sphere and an example of one is shown in Figure 7.7.  I strongly 
suggest that you construct one for yourself (a softball and a magic marker work 
well), and that you learn how to use it. 

 
Figure 7.7.  A Focal Sphere.  This is an idealization of the far-field waves 
from a point shear at the center of the sphere.  The two planes that cut 
the sphere are the conjugate fault planes and the sense of slip on these 
two planes are shown by the arrows at the intersection of the planes. 

 
The surface of the sphere represents an outgoing far-field wavefront (either a P- or 
an S-wave) from a point double couple.  The sphere is cut by two perpendicular 
planes that represent the two conjugate slip planes.  While real earthquakes occur 
on only one of these planes, when the source is approximated by a point double-
couple, then the two conjugate planes produce identical deformations everywhere 
in the medium.  Remember that the source is basically a point shear strain and that 
both stress and strain are symmetric tensors. 
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Notice that the conjugate slip planes divide the sphere into four quadrants, two of 
which are light colored and two are dark.  This pattern is commonly referred to as 
a beach ball and seismologists commonly use it to show the orientation of the 
earthquake rupture (the strike, dip, and rake).  The dark quadrants are used to show 
locations on the focal sphere where the P-wave is compressional (or radially 
outward from the source) and the light quadrants show where the P-wave is 
dilatational (or radially inward towards the source).  While there are some 
exceptions, it is traditional to display the lower hemisphere of the focal sphere as it 
would be projected on a horizontal plane and viewed from directly above the 
source. 
 
The far-field S-wave radiation pattern is denoted by the arrows on the focal sphere.  
That is, the arrows give the directions of the particle motion for the far-field S-
waves.  The points of intersection of the two planes turn out to be nodes for all 
motions (far-field P- S-, near-field motions, everything).  These “super nodes” turn 
out to be 1) directly above a vertical strike slip rupture, 2) directly along strike for a 
dipping thrust or normal fault.  At 90o from these super-nodal points, and along 
both fault planes, the far-field S-wave attains its maximum value.  Somewhat 
surprisingly, the direction of this maximum far-field S-wave is perpendicular to the 
fault plane.  I could draw many sketches trying to show what this radiation 
pattern looks like, but it is really better for you to make yourself a focal 
sphere and learn how to use it. 
 
Figure 7.8 shows some very interesting accelerograms recorded on SMA-1’s for a 
M4.9 earthquake in the Imperial Valley, CA.  The Imperial Valley is a deep basin 
filled with the sediments of the Colorado River delta.  Seismic velocities in this 
basin increase continuously with depth; the overburden pressure compacts the 
sediments.  This velocity gradient means that seismic rays are nearly vertically 
incident near the Earth’s surface.  Hence the P-waves are exclusively observed on 
the vertical component of the motion and the S-waves are observed on the 
horizontal components.  Well, that is except for near-field P-waves that can be seen 
as the long-period ramp that precedes the S-wave arrival on several of the 
horizontal records.  Notice that the far-field P-waves are much higher frequency 
than the S-waves.  This is surprising since equations (7.44) and (7.45) indicate that 
the P- and S-wave Green’s functions have the same behavior for the far-field waves; 
that is, they are both delta functions for a step function in potency.  As it turns out, 
if the P-waves in these records are low-pass filtered then they do look similar to the 
S-waves (except that they are smaller, as they ought to be).  So one explanation for 
this difference in frequency content of the P- and the S-waves is that both start the 
same at near the earthquake, but by the time they get to Earth’s surface stronger 
anelastic attenuation of the S-wave causes the S-wave to be more attenuated than 
the P-wave. In Chapter 8, I suggest an alternative explanation; perhaps there are 
high-frequency dilatations happening on the rupture surface (acoustic fluidization). 
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While differences in anelastic wave attenuation may help to explain the different 
frequency contents of P- and S-waves, there is more to this problem.  Figure 7.9 
shows a polar plot of the amplitude of the far-field waves.  That is the amplitude 
of the far-field waves are first corrected to be at the same distance, and then their 
amplitude is plotted as the radial distance from the origin for the appropriate 
direction to the observer.  The expected amplitudes are the clover leaf pattern.  
What we see is that the amplitude of the low-pass filtered motion behaves as it 
should (according to our solution).  However, the high-frequency waves do not 
have any apparent correlation with the expected radiation pattern.  It is my 
experience that radiation pattern is clearly observable when the frequency is 

approximately 
( )

1
duration of the earthquake

 but that radiation pattern is 

generally not observable for frequencies higher than 

( )
10

duration of the earthquake
. 

 
While there are several speculations about why the radiation pattern “disappears” 
at high frequencies, I am not aware of a compelling study that explains this 
observation.  Some have suggested that the breakdown in radiation pattern is due 
to short scale complexity in the source’s geometry (a non-planar fault), others have 
suggested that there may be something happening other than pure shear sliding 
(dilatation?), and others have suggested that it has nothing to do with the source, 
but is caused by scattered waves.  We will come back to these high-frequency waves 
in Chapter 8.  At this point though, I think that it is sufficient to say that low-
frequency waves can be explained by shear faulting on a plane in an elastic medium.  
High-frequency waves are usually best modeled as sources of random noise without 
any systematic azimuthal variation in amplitudes. 
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Figure 7.8.  These are four near-source accelerograms recorded 
from a M 4.9 earthquake in the Imperial Valley, which is a large 
basin with deep horizontally layered sediments.  Notice that the P-
wave, which is observed on the vertical components, is much 
higher in frequency than the S-wave, which is seen on the 
horizontal components.  Also notice the very-near-field waves seen 
on the horizontal accelerations before the S-wave arrives. 
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Figure 7.9.  Polar plot of P-wave amplitudes (radial 
distance is amplitude at different azimuths) for a vertical 
strike slip earthquake in the Imperial Valley.  The 
amplitudes are all corrected to the same distance and the 
“clover-leaf” pattern is the expected amplitude variation 
of far-field P-waves as a function of station azimuth.  The 
raw acceleration records are dominated by high-
frequency motions (> 5 Hz) and they show no apparent 
systematic variation with azimuth.  However, when the 
records are low-pass filtered at 1 Hz, then there is a 
reasonable correspondence between the observed and 
predicted amplitudes. 
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Finite Sources 
 

 
Figure 7.10.  Simplified geometry of a finite fault model. 

 
 
Of course, there are no true point sources in nature.  Point sources can be useful 
approximations when the observer is at large distances compared with the source 
dimension and when the period of interest is long compared to wave travel times 
across the source region.  However, it turns out that for many interesting problems, 
this approximation is not valid.  While general seismic sources may involve inelastic 
deformations within a volume, it seems that many earthquakes can be simulated as 
slip on a plane.  In this case we can write the solution at a point X (bold capital x is 
the vector location of the observer) by integrating the Green’s function over the 
rupture surface.  That is,  

 ( ) ( ) ( )
0 0

, , , , ; ;

L W

t x y t x y t dydx=  u X D G X  (7.54) 

Where x and y are coordinates on the rupture surface, and ( ), ; ;x y tG X  is the 

vector Green’s function for a point dislocation (a vector in the x,y plane) at (x,y) as 
observed at X.  The * operator signifies a kind of generalized convolution in which 
each of the components of D and G are convolved.  Since the source is finite, it is 
no longer convenient to choose spherical coordinates.  In fact, since the source is 
located on a plane, it may be convenient to choose Cartesian coordinates.  
However, it is important to realize that the expression for the Green’s function may 
become a very complex expression.  Of course, it is a fairly straightforward 
procedure to solve (7.54) numerically once we know what G looks like, which is a 
difficult problem.  However, if we are interested in the characteristics of the far-
field waves, then we can approximate the Green’s function as a sum of rays.  Each 
ray represents either a P- or S-wave that travels to the receiver by a combination of 
refractions and reflections off of layer boundaries (see Chapter 4).  That is, we can 
approximate the Green’s function as 

 ( ) ( )
1

, , , ,i

i

x y t x y t


=

=G G  (7.55) 
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Where we have dropped the coordinate of the fixed receiver, X, for convenience.  
For the case of a homogeneous space, there are only two rays to consider, direct P 
and Direct S.  In the case of a homogeneous half-space, there are 6 rays to consider 
P, pP, sP, S, pS, and sS.  pP is a ray that travels upwards and then reflects at the 
free surface to become a down-going P-wave.  The pS is a ray that travels upward 
from the source as a P-wave and is then converted into an SV-wave when it reflects 
off of the free surface.  Likewise, sP leaves the source as an S-wave and then is 
converted into a P-wave when it reflects off the free surface.  When the medium 
has more complexity than a half-space (e.g., a layer over a half space) then there are 
an infinite number of possible rays, although many of them are very small since 
they involve multiple reflections, each of which may involve a significant loss of 
energy. 
 
If we are observing the source at a distance, then make the following 
approximation. 

 ( ) ( )0 0, , , , ,i i ix y t x y t T x y −  G G  (7.56) 

Where ( )0 0,x y  is some point on the fault plane (arbitrarily choose one), and 

( ),iT x y  is the difference in the ith ray’s arrival times for two point sources located 

at ( ) ( )0 0,  and ,x y x y .  We can rewrite (7.56) as  

 ( ) ( ) ( )0 0, , , , ,i i ix y t x y t t T x y  −  G G  (7.57) 

Where   is a Dirac delta function.  Substituting (7.56) into (7.55) into (7.54), we 
obtain 
 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0 0

10 0

0 0

1 0 0

0 0
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, , , , ,
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L W
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i

L W

i i

i

i i

i

t x y t t T x y x y t dydx

x y t x y t T x y dydx

x y t t




=



=



=

  −   

=  −  

= 

 

  



u G D

G D

G F

 (7.58) 
 
Where  

 ( ) ( )
0 0

, , ,

L W

i it x y t T x y dydx −   F D  (7.59) 

( )i tF  is called the far-field time function for the ith ray, and it is a function of 

time that is controlled by the spatial and temporal pattern of slip on the rupture 
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surface.  If we ignore the travel time difference in (7.59), then we obtain the 
moment rate function, which is defined as 
 

 ( ) ( )0

0 0

, ,

L W

M t D x y t dydx    (7.60) 

In (7.59) we kept track of the fact that slip is a vector quantity whose orientation 
(rake angle) can change with position on the fault.  It is customary to define the 
moment rate function as a scalar quantity that depends on the integral of the 
amplitude of the slip vector over the rupture surface. 
 
If the seismogram at a station is dominated by a particular ray (for instance the 
teleseismic P-wave from a deep earthquake), then the ground displacement at a 
station is largely determined by the far-field time function and anelastic attenuation 
that occurs during wave propagation.  As an example, consider a simple Earth 
model in which P- and S-waves travel through a homogeneous half-space.  Of 
course, the actual Earth is a spheroid with a complex structure.  However, when P- 
or S-waves are observed at distances between 30o to 90o from the source, they 
appear to propagate without dispersion and the Green’s functions for the P- and 
S-wave portions of the seismogram can be written as 

 

( ) ( ) ( ) ( )  ( ), , , ,P p P pP pP sP sP P Px y A t T x y A t T x y A t T x y Q t    − + − + −        G e

(7.61) 

 

( ) ( ) ( ) ( )  ( ), , , ,S S S pS pS sS sS S Sx y A t T x y A t T x y A t T x y Q t    − + − + −        G e

(7.62) 
 

Where the phases P, pP, sP, etc.are shown in Figure 7.9.   andp Se e  are unit vectors 

in the direction of the P- and S-wave particle motions at the receiver.  , ,P pP sPA A A

, etc. are amplitude factors that depend on the distance of the source (geometric 
spreading of the wavefront) and on the radiation pattern for the ray as it leaves the 

source [see equations (7.44) through (7.48)].  Finally ( ) ( ) and P SQ t Q t  are Q 

operators for the P- and S-waves, respectively.  That is, they are a kind of low-pass 
filter.  Substituting (7.61) and (7.62) into (7.58), we find that the teleseismic P- and 
S-waves are approximately given by 
 

 

( ) ( ) ( ) ( )  ( )0 0 0 0 0 0, , , ,P p P P pP pP pP sP sP sP P Px y A F t T x y A F t T x y A F t T x y Q t  − + − + −        u e

 (7.63) 
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( ) ( ) ( ) ( )  ( )0 0 0 0 0 0, , , ,S S S S pS pS pS sS sS sS S Sx y A F t T x y A F t T x y A F t T x y Q t  − + − + −        u e

 (7.64) 
 

 
Figure 7.11  Idealization of the rays that comprise the P-wave group 
observed at teleseismic distances. 

 
I show some examples in Figure 7.12 of how teleseismic P-waves are generated 
from (7.63).  I assume a vertical strike-slip fault with a circular rupture whose 
diameter is 12 km and whose center is located at a depth of 7 km.  The observer is 
located at a distance of 58o directly along the strike.  The rupture velocity is assumed 
to be 2.8 km/sec, and the fault slip is assumed to be uniform everywhere with a 
time history that is an isosceles triangle of 1-second duration.  In Figure 7.10, I 
show the far-field time functions and the final response of individual rays as well as 
the total final vertical long-period P-waveforms for models that differ only in the 
location of their hypocenters.  It is assumed that the motions are recorded by a 
long-period WWSSN seismometer (15-s seismometer, 100-s galvanometer). 
 
An inspection of the synthetic seismograms in Figure 7.12 yields insight into the 
role of rupture on a finite fault.  The difference in the durations of the far-field time 
functions for the individual rays is due to a Doppler effect that is called 
directivity by seismologists. 
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Figure 7.12.  Illustration showing the effects of directivity on 
teleseismic P-waves from five earthquakes that are identical except 
for the location of their hypocenter.  The ruptures are all on a 
circular, vertically-dipping strike-slip fault.  FP, Fp, Fs, and FS, are the 
far-field time functions that are appropriate for the corresponding 
ray (see equation (7.59)).  The seismograms on the right are those 
same time functions after convolving with a Q filter and an lon-
period instrument response.  The final seismograms are shown in 
the lower right.  Notice that the effect of directivity is more 
important for hypocentral locations C (top of the fault) and E 
(bottom of the fault), since the P-waves leave the source region at 
near-vertical angles.  The directivity effect is particularly evident 
when comparing FS and Fs, since the rupture velocity is close to the 
shear wave velocity. 
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To provide insight into the solution to (7.54), I will begin with simple sources and 
then generalize to more complex sources.  Let us first consider a line source.  Of 
course, there are no true line sources in nature, but they demonstrate some 
important concepts in a simple way.  Furthermore, they can be used to approximate 
ruptures whose along-strike length, L, is large compared to the down-dip width, w.  
For example, the 1906 San Francisco earthquake (M 7.8) has a rupture length of 
several hundred km and a width of less than 20 km. 
 
 

 
Figure 7.13.  An idealized long and narrow fault. 

 
To keep things simple, consider an observer in a homogeneous elastic whole space 
who is at a distance that is large compared to the fault length.  Further consider the 
rupture geometry shown in Figure 7.13.  The rupture is assume to be unilateral, 
which means that the rupture starts at one end and rupture to the other end.  Some 
earthquakes rupture in both directions from the hypocenter and then they are called 
bilateral.  Further assume that the slip at any point is given using a dimensionless 

along strike distance x
L

 = . 

 

 ( ) ( ),
r

L
D t DLf g t

V


 

 
= − 

 
 (7.65) 

Where Vr is the rupture velocity, ( ) is the average slip on the fault,D f   is a 

dimensionless function that describes the amplitude of the slip as a function of 

distance that is normalized by the average slip (i.e., ( )
1

0

1f d  = , 
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( )
1

0

D d LD  = , and g(t) is the time behavior of the slip at each point normalized 

so that ( )
0

1g t dt



= .  By writing slip on the fault in this way, we are assuming that 

the time dependences of the slip histories are the same for every point on the fault 
except for a delay due to the rupture velocity.  While it is not really possible to 
decompose the slip history in this way, it is convenient for our purposes so that we 
can demonstrate several phenomena that appear in finite ruptures.  Now let’s 
assume that we are only interested in the far-field S-wave, since this is the wave that 
produces the largest particle velocities.  Then for any point on our rupture, we can 
approximate the response from a Heaviside step in slip as (see equation (7.45)) 
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 (7.66) 
 

where ( ),G x t  has units of displacement per unit slip, 
( )r x

t


 
− 

 
 has units 

of inverse time, and where 

 ( ) ( )0 1 cosr x r x  −  (7.67) 

 
(7.66) and (7.67) can be written in terms of dimensionless along strike distance   

and dx Ld=  as 
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w Ld
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and 

 ( ) ( )0 1 cosr r L   −  (7.69) 

 

Since we are assuming an observer at a large distance, we assume that 0  , and 

we assume that the effect of distance on the amplitude (the r in the denominator) 
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is negligible, and we can assume that the radiation pattern is approximately constant 
as a function of position along the rupture so that  
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 (7.70) 
 
Now we can write the response of the finite fault as 
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 (7.71) 
where 
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T is actually the difference in shear-wave arrival times from a point at the 

hypocenter ( )0x = and a point at the end of the rupture ( )x L= , including the 

time it takes the rupture to get from one end of the fault to the other. 
 
Equation (7.71) tells us that if the rupture velocity is constant on a line source, then 
the ground displacement from the far-field shear-wave is the same function of time 

( )tf
T

 that the slip was as a function of distance along the fault ( )xf
L

 (see 

equation (7.65)), but with an amplitude that is scaled by the 1
T

.   In Figure 7.14, I 

show how the far-field S-wave displacement depends on receiver location, 
assuming that the slip at each point is instantaneous (i.e., assuming that 
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( ) ( )g t H t= ).  Notice that the area under the pulse is identical for every receiver, 

except for the radiation pattern and the geometric spreading.  This solution tells us 
that spatial variations in slip map into temporal variations in the seismic waves. 
 

 
Figure 7.14.  Schematic showing the relationship between the far-filed S-
wave displacement time history and the spatial variation in slip along a line 
source in which the rupture proceeds from left to right at a constant 
velocity.  The slip is considered to be a Heaviside function with time.  
Notice that the temporal variation of the far-field S-wave is identical to the 
spatial variation in the slip, except for a time contraction factor.  This time 
contraction factor is specified by the time difference between the arrival of 
S-waves from each end of the fault.    

 
If the slip at each point on the fault is very short (approximately a step function), 
and if you know the rupture velocity and fault geometry, the equation (7.71) tells 
us that we can derive the along-strike slip amplitude by a simple deconvolution 
process.  Of course, we do not a priori know the rupture velocity and the duration 
of slip at each point.  However, if we know the far-field S-wave at several stations 

then we can simultaneously determine ( ), ,  and r

x
f g t V

L

 
 
 

. 

 
I won’t go through the derivation here, but it can be shown that spatial variations 
in the rupture velocity also map into temporal variations in the far-field S-wave 
displacement.  That is, complexity in the far-field S-wave can be caused by either 
spatial complexity in the amplitude of the slip, or in complexity in the rupture 
velocity. 
 
At this point, it is useful to look at the characteristics of seismic waves that are 
produced if the slip on the fault is assumed to be spatially uniform, that is assume 
that 
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In this case equation (7.71) becomes 
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We can now enquire about the energy flux of a radiated far-field shear wave through 

a patch of area 2

0r d d  .  We obtain this by integrating the energy flux per unit 

area 2P u=  with respect to time (see equation 3.51).  In this case 
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 (7.75) 
At this point we see that the density of radiated energy depends strongly on the 
duration of the far-field S-wave T.  In order to evaluate (7.75), we will assume that 

the slip at every point is a ramp of duration r , which is usually called either the 

“rise time” or the “slip duration.”  That is assume that  
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In this case, 
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 (7.77) 

There are two cases to consider; i) r T  , and ii) r T  .  The first case, r T  , 

corresponds to a case in which the duration of slip is short compared to the rupture 
time.  This type of rupture model is often referred to as a Haskell-like model 
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(Haskell, 1964, BSSA, 1811-1841) and it has sometimes been criticized since the 
slipping at any point on the fault arrest without any inherent knowledge of the ends 
of the rupture.  However, more recent work suggest that rupture may propagate as 
a solitary wave of slip that is called a slip pulse (also sometimes referred to as a 
Heaton pulse, Heaton, T.H., 1990 Evidence for and implications of self-healing 
pulses of slip in earthquake rupture, Phys. Earth Planet Int., Vol 64. 1-20).  The 

second case 
r T   has rupture durations that are longer than the rupture time and 

they are referred to as “crack-like” models since the amplitude and duration of the 
slip are controlled by the dimension of the rupture.  We will come back to further 
discuss these two models later in Chapter 8.  Figure 7.15 shows a sketch of  

( ) ( )g t g t T− −  for these two cases. 

 

 
 

Figure 7.15 Schematic showing ( ) ( )g t g t T− − , which is used for 

evaluating energy in equation (7.75) for a slip pulse model (case i) 
and for a crack-like model (case ii). 

 
Let’s first see what happens for the slip pulse model (case i). 

http://www.its.caltech.edu/~heatont/papers/Heaton_slip_pulse_1990.pdf
http://www.its.caltech.edu/~heatont/papers/Heaton_slip_pulse_1990.pdf
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 (7.78) 
 

We see that the radiated energy flux is very sensitive to 
r and T  .  We can 

substitute (7.72) into (7.78) to obtain 
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 (7.79) 

Notice that the length of the fault drops out of this expression.  This is because the 
only part of the radiated far-field S-wave is from the beginning of the rupture (a 
starting phase) and the end of the rupture (a stopping phase).  As we have noted 
before, there is no far-field radiation from a rupture that is propagating in a 
steady state.  Of course this does not mean that there is no motion in the medium, 
it just means that the far-field terms (which comprise the radiated energy) are zero.  
The rest of the motion is comprised of the near-field terms. 
 
We can now evaluate our crack-like model (case ii) in a similar way to obtain 
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 (7.80) 
As before we can substitute (7.72) into (7.80) to obtain 
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Notice that fault length is back in the expression, and that the radiated energy 

becomes very small as the rise time becomes large.  In general, pulse-like 

ruptures radiate far more energy than do crack-like ruptures given the same 

fault dimensions and slip (that is the same potency).  
 
Static Offsets from Finite Faults 
 
The last section covered the problem of radiated waves, that is, they obey the 
homogeneous form of Navier’s equation.  However, there are other important 
terms to the solution for ground motions close to a finite rupture.  Although it is 
common to use the word “near-field” for any site close to a rupture, I personally 
like to reserve the word “near field” to refer to the non-radiated parts of the 
solution.  I suggest using the word “near-source” when the observer is close to a 
fault.  Of course, the definition of close is subjective, but generally speaking it refers 
to sites that are less than a fault width away from the rupture (assuming that rupture 
width is the shorter of the two principal axes that span the rupture surface).  As 
mentioned earlier, there are several types of near-field terms (see Figure 7.4), but 
the combination of terms that comprise the static solution are generally the most 
important.   
 
Chinnery (The deformation of the ground around surface faults, Bull. Seism. Soc. 
Am., 1961, v. 51, 355-372) described the static solution for a rectangular strike-slip 
finite fault in a homogenous half-space with uniform slip.  Figure 7.16 shows the 
geometry of the fault.  Please note that the notation is different here; D is the 
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bottom depth of the fault and not the fault slip.   Figure 7.17 schematically shows 
the displacements (in units of 10-3 times the fault slip) at the free surface assuming 
a fault that extends to the surface, i) and a bottom depth of 0.1 times L, and ii) a 
bottom depth that is 2.0 times L (a square fault).  The motion right at the fault 
surface is symmetric about the fault plane and it is ½ of the fault slip, which would 
correspond to a contour of 500.  This contour is not seen in the plots since this 
only occurs right at the fault.  If d=0, L>>y1, y2, and D, then 
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 (7.82) 

By fitting (7.82) to geodetic data close to fault slips, we can approximately determine 
the bottom depth of slip.  At distances that are large compared to the fault 
dimensions, the source can be approximated as a point-source, and the amplitude 

of the static displacements then decrease as 2R− .  Coincidentally, since strain is 
proportional to spatial derivatives of displacement, the static change in strain (and 

also stress) decreases as 3R−  when the distance is large compared to the rupture 
dimension. 

 
Figure 7.16.  Chinnery’s (1961) description of a vertical strike-slip fault 

embedded in an elastic half space. 
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Figure 7.17.  Map of the static displacement vectors from a vertical 
strike-slip fault with uniform slip that extends to the earth’s 
surface and as observed at the free surface.  The directions of the 
displacement vectors are parallel to the dotted lines and in the 
direction of the arrows.  The contours give the amplitude of the 
vectors in units of 10-3 times the uniform slip assumed on the fault.  
The top panel shows a fault with a width that is 5% of its length 
and the bottom panel shows a fault with a width that is equal to 
its length. 

 
Because of the symmetries in Chinnery’s problem, the static deformation for a 
vertical strike-slip fault that extends to the surface of a half space is the same 
solution as for a vertical fault in a whole space, but with the width of the fault 
doubled.  The problem becomes a little more complex for a dipping fault in a 
homogeneous half-space.  Mansinha and Smylie (1971, The displacement fields of 
inclined faults, Bull. Seism. Soc. Am., 61, 1433-1440) presented the closed-form 
solution for a uniform slip on a dipping fault in a half-space. Figure 7.18 shows the 
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geometry of the fault that they assumed.  Figure 7.19 shows the displacements at 
the free surface along a line that is perpendicular to the fault strike and that bisects  

 
Figure 7.18.  Mansiha and Smylie (1971) derived the static displacement field 

caused by a uniform slip on a dipping fault in an elastic half space. 

 
Figure 7.19.  (from Mansinha and Smylie, 1971). Static ground 
displacements (one unit is fault offset) as a function of distance along 
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the axis x2 (line perpendicular to the fault strike) where one unit is L, 
and the fault length is 2L.  Panel A is fault parallel motion from a 
dipping fault with strike slip motion.  Panel B is fault-perpendicular 
horizontal motion for with dip-slip motion.  Panel B is vertical 
motion for dip-slip motion.  
 

the middle of the fault. Panel A is horizontal fault-strike-parallel static motion for 
a dipping fault with strike-slip motion (the other components of motion are 
identically zero along this line). Panel B is horizontal fault-strike-perpendicular 
motion for a dipping fault with dip-slip motion. Panel C is the vertical motion for 
a dipping fault with dip-slip motion.    
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Chapter 8   Earthquake Scaling

 

 

  

 
Earthquake Intensity  
 
Earthquakes occur in many different places in the Earth, some are shallow in 
the continental crust, others are along the interface between a subducting 
oceanic plate and a continental margin, and yet others are deep within the Earth 
(up to 650 km).  Before the invention and deployment of seismographs, these 
earthquakes were largely described by their perceived maximum shaking 
intensity.  There have been several shaking intensity scales developed through 
the years; the Rossi-Forel was defined in 1883 and it was the most common 
scale until the Mercalli Intensity scale (MI) was defined in 1902.  This scale 
was modified in 1931 (intensities XI and XII were added to describe very 
damaging shaking and the definition of Modified Mercalli Intensity scale 
(MMI) is given in Table 8-1.  Earthquakes are sometimes characterized by the 
maximum MMI reported.  However, since large MMI values are based largely 
on observed damage to structures, maximum MMI is not a consistent way to 
characterize the size of earthquakes.  In particular, the strongest shaking from 
an earthquake most commonly occurs in areas that do not have a sufficient 
density of buildings to characterize the intensity of the shaking.  Furthermore, 
building construction changes dramatically with time and from region to 
region. 
 

Modified Mercalli Intensity Scale 
 

I. People do not feel any Earth movement. 
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II. A few people might notice movement if they are at rest and/or on the upper 

floors of tall buildings. 

  

III. Many people indoors feel movement. Hanging objects swing back and forth. 

People outdoors might not realize that an earthquake is occurring. 

  

IV. Most people indoors feel movement. Hanging objects swing. Dishes, windows, 

and doors rattle. The earthquake feels like a heavy truck hitting the walls. A few 

people outdoors may feel movement. Parked cars rock. 

  

V. Almost everyone feels movement. Sleeping people are awakened. Doors swing 

open or close. Dishes are broken. Pictures on the wall move. Small objects move or 

are turned over. Trees might shake. Liquids might spill out of open containers. 

  

VI. Everyone feels movement. People have trouble walking. Objects fall from 

shelves. Pictures fall off walls. Furniture moves. Plaster in walls might crack. Trees 

and bushes shake. Damage is slight in poorly built buildings. No structural damage. 

  

VII. People have difficulty standing. Drivers feel their cars shaking. Some furniture 

breaks. Loose bricks fall from buildings. Damage is slight to moderate in well-built 

buildings; considerable in poorly built buildings. 

  

VIII. Drivers have trouble steering. Houses that are not bolted down might shift on 

their foundations. Tall structures such as towers and chimneys might twist and fall. 

Well-built buildings suffer slight damage. Poorly built structures suffer severe 

damage. Tree branches break. Hillsides might crack if the ground is wet. Water 

levels in wells might change. 

  

IX. Well-built buildings suffer considerable damage. Houses that are not bolted 

down move off their foundations. Some underground pipes are broken. The ground 

cracks. Reservoirs suffer serious damage. 

  

X. Most buildings and their foundations are destroyed. Some bridges are destroyed. 

Dams are seriously damaged. Large landslides occur. Water is thrown on the banks 

of canals, rivers, lakes. The ground cracks in large areas. Railroad tracks are bent 

slightly. 

  

XI. Most buildings collapse. Some bridges are destroyed. Large cracks appear in the 

ground. Underground pipelines are destroyed. Railroad tracks are badly bent. 

  

XII. Almost everything is destroyed. Objects are thrown into the air. The ground 

moves in waves or ripples. Large amounts of rock may move.  
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Table 8.1.  Definition of the Modified Mercalli Intensity Scale.  
Full descriptions are from: Richter, C.F., 1958. Elementary 
Seismology. W.H. Freeman and Company, San Francisco, pp. 
135-149; 650-653. 
 

U.S. earthquakes that occurred from the 1920’s into the 1970’s were assigned MMI’s by the 
U.S. Coast and Geodetic Survey (merged with the USGS in 1978).  The USCGS conducted 
routine surveys to prepare MMI intensity maps that were published regularly in a series called 
U.S. Earthquakes.  The practice of compiling these data was largely discontinued in the 
1980’s (too much manpower), and earthquakes were primarily described by other parameters 
(magnitude, pga, spectral acceleration).  However, the widespread use of the Internet has 
allowed MMI compilations to be automatically managed through a USGS project known as 
“did you feel it?” https://earthquake.usgs.gov/data/dyfi/.  In addition to shaking intensity 
observations, it has become common to characterize shaking intensity with observations of 
pga and pgv derived from strong-motion seismic data.  In particular, relationships between 
reported MMI’s and nearby recorded pga’s and pgv’s were used to derive quantitative 
relations that predict MMI from pga and pgv (Wald, D., V. Quitoriano, T. Heaton, and H. 
Kanamori, 1999, Relationships between peak ground acceleration, peak ground velocity, and 
Modified Mercalli Intensity in California, Earthquake Spectra, 15, 557-564 pdf ).  This is 
now referred to as Instrumental  Modified Mercalli Intensity (IMM), which is given by 

 
( )

( )

3.66 1.66 for V IMM VIII

3.66 1.66 for V IMM

IMM Log PGA

IMM Log PGV IX

= −  

= −  
 8.1 

 2.2log( ) 1IMM pga IMM V= +    8.2 

 

 IMM  uses the principle that smaller intensities are based on human perception of 

shaking.  In these cases, humans seem to be better at discriminating pga than they are 

pgv.  In contrast, higher levels of intensity are based on observations of structural 

damage; this seems to correlate best with pgv (see Chapter 6). 
 
Japan has a long history of important earthquakes, and a Japanese intensity scale has evolved 
through time.  The Japan Meteorological Agency (JMA) intensity scale (aka, Shindo scale) is 
summarized in table 8.2 

https://earthquake.usgs.gov/data/dyfi/
http://www.ecf.caltech.edu/heaton/papers/Wald_intensity.pdf
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Figure 8.1.  JMA intensity scale 
 
 
Shaking intensity scales measure ground shaking at a point, BUT there must be structures 
to characterize the damage, and locally intense shaking may not reflect the overall size of 
an earthquake.  One method to measure overall size using intensity data has been to 
estimate the area that experienced at least a given level of intensity.  In particular, the area 
that experienced MMI   IV  has been helpful in quantifying the size of earthquakes for 
which only intensity data is available (pre 20th century).  Intensity IV is convenient, since it 
is small enough to occur over a large area while still large enough to be reported in 
newspapers. (Estimating Earthquake Location and Magnitude from Seismic Intensity Data, 
1997, Bakun W. and C. M. Wentworth, Bulletin of the Seismological Society of America, 
Vol. 87, No. 6, pp. 1502-1521). 
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Earthquake Magnitude 
 
Charles Richter is usually identified as the designer of the first practical earthquake 
magnitude scale, which is now referred to as ML (or local magnitude).  When a seismologist 
tells you the “Richter magnitude” of an earthquake, he or she often intend to mean “local 
magnitude.”  Unfortunately, the non-seismologists seems to think that earthquakes are only 
assigned Richter magnitudes, which is definitely not true.  Richter’s magnitude scale was 
designed in the 1930’s to assign a relative size to earthquakes that were recorded on the 
seismic network operated by Caltech’s Seismological Laboratory in southern California.  
This network was comprised of horizontal-component, optical, torsion, seismometers 
designed by Harry Wood (Caltech seismologist) and John Anderson (an astronomer with 
the Hale Observatory).  This instrument has a natural period of 0.8 s.; 80% damping, a 
displacement transducer (it recorded light deflected by a mirror onto photographic paper 
on a rotating drum) with a maximum gain of 2,800 (see chapter 2).  The definition of ML 
is 

  

 0

0

log log logL

A
M A A

A

 
 = − 

 
  8.3 

  
 Where A is the maximum amplitude (in mm) of a Wood-Anderson seismogram.  The 
original definition only applies for a seismogram recorded at an epicentral distance of 100 
km.  Richter arbitrarily chose M = 3.0 to correspond to a peak seismogram amplitude of 1 

mm.  That is he defined that ( )0 100 km 3.0A  = =  .  Since earthquakes were recorded at 

a range of distances, Richter derived a distance correction factor, ( )0A  , to correct the 

amplitudes to the standard distance of 100 km (see Fig. 8.2).   
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Fig. 8.2  Distance correction factor for Richter’s local magnitude 
scale, ML.  The solid line shows Richter’s definition, while the 
dotted line is from a later study by Kanamori. H. and Jennings, 
P.C., 1978. Determination of local magnitude, M, from strong-
motion accelerograms. Bull. Seismol. Sot. Am., 68: 471-485.  

 
Since a Wood-Anderson seismometer is a linear single-degree-of-freedom oscillator, the 
measured peak amplitude is identical to a 0.8 s, 80 % damped displacement-response 
spectrum.   Since the damping is much larger than is typically used in structural engineering, 
the amplitude used in ML correlates well with pgv, which also seems to be a good measure 
of shaking intensity; there is a detailed discussion of the relationship between pgv and 80% 
damped response spectra in Chapter 6.  ML was used from the 1920’s through the 1980’s 
as the standard magnitude to prepare catalogs of seismic activity in California (it has been 
adopted in other countries as well).   
 
There were some important limitations to the use of ML; in particular, earthquakes larger 
than ML 5, tended to over-drive Wood Anderson seismometers.  In response, low 
amplification versions of this seismometer were deployed.  However, it was expensive to 
maintain a set of instruments that recorded only during the rare occurrence of  ML > 5.  An 
even more serious limitation was that the local magnitude scale was only defined for 
California earthquakes that were recorded in California; it was not possible to compare the 
size of earthquakes worldwide. 
 
In 1945 Beno Gutenberg (Caltech) introduced the Surface Wave Magnitude MS which is 
defined as  

 ( )20LogS RM A A −    8.4 
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20RA  is the maximum amplitude (in microns) of the 20-s Rayleigh wave (typically on the 

vertical component) recorded at distances exceeding 20o (about 2,200 km).  Table 8.2 
contains the values of A for a variety of distances 
 

 
Table 8.2.  Distance correction factors for determination of MS . 

 

Rayleigh waves are often the largest wave group at these distances. Thus,
20RA  is relatively 

easy to obtain using a photographic paper record, a meter scale and the response curve of 
standard seismographs (see Chapter 2).  In principle, the measurement should be made 
after the record is narrow-band filtered at 20 s.   Filtering these records would have been 
impractical in the 1940’s; but fortunately 20 s Rayleigh waves are typically easy to identify 
on records (this arises from strong velocity dispersion in this period band).  It’s important 
to recognize that MS is a measure of the Fourier amplitude spectrum at 20 s, while ML is a 
maximum of the transient response of a 0.8-s sdof; that is these two scales measure different 
things.  Nevertheless, Gutenberg and Richter adjusted A so that the two scales gave similar 
magnitudes for earthquakes where they could estimate both ML and MS.  This meant that 

the scales converge at about 6S LM M   .  This can be seen in Figure 8.3, where ML and 

MS are plotted against each other.  In particular, it appears that 2
3L SM M  , or since 

these magnitude scales are logarithmic, 
2

3
20Wood Anderson RA A−  .  That is, ML and MS are 

fundamentally different measures of an earthquake. 
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Fig. 8.3.  Comparison of ML and MS for earthquakes reported for both 
scales.  MS is defined so that it gives comparable magnitude to ML for 
earthquakes of about 6. From Heaton, T.H., Tajima. F., and Mori, A.W., 1986, 
Estimating ground motions using recorded accelerograms, Surveys in 
Geophysics, V. 8, pp 25-83. 

 
Surface wave magnitude was a successful and commonly used scale for a large catalog of 
global earthquakes recorded in the 20th century (many older events were assigned 
magnitudes based on historic recordings.  However, since the excitation of surface waves 
decreases exponentially with the depth of an event, MS is not appropriate to characterize 
the size of earthquakes deeper than 20 km.  To deal with this problem, Gutenberg, Richter, 
and Hugo Benioff (yet another famous Caltech seismologist) devised the body wave 
magnitude scale, mB.  This scale is based on teleseismic body waves (especially the P-wave 
between 30o and 90o).  In this case, the maximum amplitude of the P-wave AP and the 

duration of the pulse with the maximum amplitude TP are measured.    

 
( )

log
,

P
B

P

A
m

T A z

 
    

  8.5 

Where  ( ),A z  is a complex correction that depends on distance and source depth; it was 

calibrated to give comparable magnitudes to MS  for magnitudes near 7.  Notice that the 
amplitude is normalized by the pulse duration.  Richter says that this is a measurement of 
particle velocity which is used in the computation of kinetic energy.   
 
The short-period body wave magnitude mb is also commonly encountered in catalogs of 
earthquakes.  This magnitude is also logarithmic and it depends on the maximum amplitude 
of teleseismic P-wave amplitudes as  measured in the first 3 seconds of a short-period 
standard vertical seismometer (1-s natural period).   mb was designed to help discriminate 
the seismic signals from underground nuclear explosions from seismograms of natural 
earthquakes.  That is, nuclear explosions happen very quickly and they have very impulsive 
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P-waves, whereas earthquakes are typically more emergent; they take some time to get going; 

that is events with high b

S

m
M

 were marked as possible underground nuclear tests. 

 
The development of magnitude scales has a long and complex history.  There have been 
many other magnitude scales that have been devised.  Unfortunately, they all suffer from the 
fact that they are unit less; they measure relative size, but they are not related to physical 
parameters of the earthquake.  Hiroo Kanamori (yet another Caltech Seismologist) defined 
energy magnitude MW to be  

 0Log 4.8

1.5
W

W
M

−
   8.6 

Where 
0W  is the total radiated energy in joules (the W is for work).  Kanamori defined MW 

in this way so that it would be compatible with the energy-magnitude relation developed by 
Gutenberg and Richter (1956, BSSA, 32, 163-191).  Unfortunately, estimation of radiated 
energy is a difficult problem, which makes the use of MW cumbersome in practice.   
Kanamori noted that on average 

 0
0 4 42 10 2 10

eff eff

M DS
W DS P


  = = =

 
  8.7 

Where   is the average crustal rigidity, about 40 GPa, which means that 2eff MPa  .  

eff  is the effective stress that converts slip per unit rupture area into radiated energy per 

unit rupture area.   By substituting 8.7 into 8.6, Kanamori was able to approximate MW as 
   

 

0log 9.1

1.5

log 1.5 2
log 1

1.5 3

W

M
M

P
P

−


+
 = +

  8.8 

Coincidentally, Thatcher and Hanks (1973, JGR, 78, 8547-8576) derived a general relation 

between 0M  and LM  for southern California earthquakes 

 0log 9

1.5
L

M
M

−
   8.9 

Hanks noted that the ML relation (eq.8.9) is very similar to Kanamori’s approximate relation 
for MW (8.8), and he convinced Kanamori to collaborate on a new definition of magnitude 

they called moment magnitude M defined as 

 0log 9.05

1.5

M −
M   8.10 

Where the 9.05 was obviously a political compromise (Hanks and Kanamori, 1979, JGR, 84, 
2348-2350).  The choice of the distinctive bold script M meant that it was awkward to find 
the appropriate symbol on word processors and hence many researchers began to call MW 
moment magnitude.  Unfortunately, some have mistakenly confused energy and moment 
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(see Chapter 7).  On a personal note, it drives me crazy that one of the most referenced 
papers in geophysics (Hanks and Kanamori, 1979) is just a simple 2-page paper to define 

moment magnitude, but most researchers who cite it use it incorrectly; 
WM  is defined to be 

Energy Magnitude. 
WM   is NOT Moment Magnitude.   

 
The easy form for moment magnitude (technically it’s Potency Magnitude) is that given in 
8.8 

 
2

1 log
3

SD +M   8.11 

Where the units are in meters.  I have assumed that the average crustal rigidity is 35 GPa in 
deriving 8.11.  This can cause some confusion, since some researchers use 40 GPa and others 
use 35 GPA.  However, since the rigidity is not really a source parameter (see Chapter 7), 
this is not a significant issue.  Since it makes the definition of magnitude simple, I suggest 
using 35 GPa.   
 
As a convenient rough rule of thumb, a 30 km by 30 km rupture with a 1-m slip gives a 
potency of about 1 cubic km, which corresponds to a moment magnitude of about 7.   From 
now on, I will refer to Potency Magnitude as simply magnitude.  While it is, for all intents 
and purposes, the same as moment magnitude, potency is a much simpler concept and its 
use simplifies the math.  
 
Figure 8.4 is a comparison of a variety of different magnitude scales (Heaton, Tajima, Mori, 
1986, Surveys in Geophysics, 8, 25-83).  It shows the average relationship between these 
scales and moment magnitude.  This plot clearly shows that most magnitude scales saturate 
with increasing total energy (or potency).  The scales based on shorter-period measurements 
saturate at smaller magnitudes and the scales based on long-period measurements saturate 
at larger magnitudes. 
Unfortunately, magnitude saturation was poorly understood prior to the 1980’s and there 
are important inconsistencies in reporting the sizes of older large earthquakes.  For example, 
the 1906 San Francisco earthquake was assigned a surface wave magnitude, MS, of 8.3 based 
on teleseismic recordings.  In comparison, the 1964 Alaskan earthquake was assigned an MS 
of 8 ¼ .   However, modeling of geodetic data from these earthquakes has indicated that the 

1906 earthquake was  M  = 7 ¾, while 1964 was  M = 9 ¼ ; that is the Alaskan earthquake 

was 1.5 units greater, or 
3 1.5

210 180=  times larger.  The use of the moment magnitude scale 
revolutionized the understanding of the sizes of the greatest earthquakes.  You can find a 
table listing the largest historic earthquakes sorted according to their moment magnitudes at 
https://en.wikipedia.org/wiki/Lists_of_earthquakes.  
 
 

https://en.wikipedia.org/wiki/Lists_of_earthquakes
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Figure 8.4.  Comparison of a variety of magnitude scales 
(Heaton, Tajima, Mori, 1986, Surveys in Geophysics, 8, 25-83). 

 
At this point, you should be asking yourself about this factor of 2/3 that shows up in 
definition of moment magnitude; is there some physics behind this factor?  One way to 
think of this problem is to consider a far-field P- or S-wave pulse of duration T and 
amplitude A.  The potency (or moment) of the earthquake is then related to the area of the 

pulse, i.e., P AT  (see Chapter 7).  This implies that PA
T

 .  The assumption that 

most magnitude scales are logarithmic in amplitude, A, means that the definition of potency 

magnitude is consistent with other scales if 3P T  , in which case 
2

3A P  , which implies 
that  

 2log log
3

A PM   8.12 

 

As we will see in the following discussion, there are other ways to derive the 2
3

 . 

Furthermore, this factor was in the relationship between magnitude and radiated energy 
that was derived by Gutenberg. 
 

 
Gutenberg-Richter Relationship 
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Since the earliest days of compiling catalogs of earthquake magnitude, it has been noted 
that the number of earthquakes decreases with increasing magnitude and can be described 
as a power law known as the Gutenberg-Richter frequency-magnitude relationship (often 
shortened to just “Gutenberg-Richter”). 

 

 
log( ) or

10 10A bM

N A bM

N −

= −

=
  8.13 

 
This can be rewritten in natural logs as 
 

 
( ) ( ) ( )

( ) ( )

ln log log log log

or exp log exp log

N e N A e b e M

N A e b e M

= = −

=   

  8.14 

 
Where N is the number of earthquakes larger than M, and A and b are constants that are 
typically called “the A value” and the “b value”.  This equation is the first form of 
Gutenberg-Richter and it is called the “cumulative form of Gutenberg-Richter” .  A second 

form of this relationship describes the statistics of the number of events N M  with 

magnitudes between M and M M+   .  In this case, 
dN

N
dM

 = .  Now differentiating 8.13 

with respect to M  , 
( )logd N

b
dM

= −  . However, we also know that  

( )log 1d N dN N

dM N dM N


= =  , so 

log

bN
N

e

−
 =   from which it follows that 

log log log 0.362N N b = − −  which provides the second form of the Gutenberg-Richter 

relation (called the interval form) that is written 
 

 ( )log N a bM = −   8.15 

 

where 0.362 log loga A b M= + + +  .  Notice that the two forms, 8.13 and 8.15, only 

differ by a constant.  If a large data set exactly fits the G-R relation, then the a- and b- values 

can be estimated using a visual inspection of a log-linear plot ( log N  vs M  ).  However, it 

is more common to encounter catalogs that do not precisely fit this law, in which case it is 
easier to estimate the constant when plotting the first form.  Most commonly, people use 
the first form.  However, if you wish to visually judge whether a data set fits G-R, it is 
probably best to use the second form; it reveals the details better. 
 
Interpreting the meaning of the G-R relation has been the subject of a huge number of 
papers, but to this day, there still seems to be a wide variety of speculative explanations.  
The a-value is a constant that gives the overall rate of activity.  The b-value describes the 
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relative frequency of large and small events.  Later in this chapter, I argue that the b-value 
arises from the chaotic dynamics that are caused by the low dissipation energy in 
earthquakes. 
 
It is important to understand that, given a suite of earthquakes, the estimates of the a- and 
b- values is dependent on the magnitude scale that was used to parameterize the events.  

For example, I argued that 2
3L SM M  .  This means that using LM  to determine b-

value will give a different estimate than if the catalog uses SM  .  Fortunately, most networks 

that prepare earthquake catalogs attempt to enforce the use of moment magnitude.  
Unfortunately, many catalogs of historic earthquakes contain a variety of different 
magnitude estimates. 
 
The G-R relation is also referred to as a Pareto Distribution.  This name is common in 
economics, where it has long been observed that personal wealth is described by a Pareto 
distribution; a few people have most of the overall wealth in society.  Pareto distributions 
often arise in self-organizing systems.  I have found a very nice overview lesson on power 
laws by Mark Newman (U. of Mich.) which can be found at  
http://www-personal.umich.edu/~mejn/courses/2006/cmplxsys899/powerlaws.pdf   
 
We can use the Gutenberg Richter relation to investigate the following common question.  
Which magnitude earthquakes are responsible for most of the motion of the Earth’s 
tectonic plates? Is it the infrequent large events, or the far more numerous smaller 
earthquakes?  To estimate the total inelastic strain integrated over the volume, total Potency 

or totalP  , resulting from suite of earthquakes between magnitudes min max and M M  , we 

perform the following integral 

 ( )
max

min

M

total

M

P N P M dM=    8.16 

Where ( )
( )3 1

210
M

P M
−

=  (see 8.8) and N   is given by 8.15.  Performing the 

integral, we obtain 
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( )
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min

(1.5 )( 1)
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M

a b M
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M
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M
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−

=

 =
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
  8.17 

If minM = −  , then 

 
( )

( )
( )

max

max

1.5
1.510

10
1.5 ln10

a b M
b M

totalP C
b

+ −
−

=
−

  8.18 
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Analysis of the global catalog of earthquakes provides estimates that 1b   , so 

max
1

210
M

totalP C  .  This means that the total slip increases by a factor of 3.16 for every 1-

unit increase in maxM  ; clearly the large earthquakes account for the majority of the 

deformation.  This fact means that it is difficult to use historic seismicity catalogs 
to estimate tectonic deformation rates.  The largest events dominate the total 
deformation estimate, but they are so infrequent that there are too few events to do 
statistics.  Furthermore, Gutenberg Richter converges to a finite tectonic rate only 
in the event that the power law is truncated at the largest events. If there is no largest 
size event, then 8.18 is divergent.  Although attempts have been made to estimate 
the maximum event, there is currently no accepted methodology to truncate the 
Gutenberg-Richter Relation.  As you read further in this chapter, I think that you will 
see that estimation of a largest event is not a solvable problem. 
 

Notice that if 1.5b   , then the situation reverses and more of the deformation is caused 

by the small events.  Taken literally, 1.5b  means that there is so much deformation from 
the smallest events that there does not need to be any larger events, that is, the plate 
boundary is creeping. 
 
One notable aspect of the G-R relation is the way it scales rupture area.  In particular, it has 
been observed that seismic moment scales with rupture area as 

 
3

15 2
0 1.2 10M x S   8.19 

Where S  is rupture area in 2km  , and moment is in N-m see Figure 8.5 from Kanamori 
(1980).  Writing this in terms of potency, 

 
3

4 23 10P x S   8.20 
 
Where S is still in km2.  Converting S to m2, we obtain.  
 

 
3

5 23 10P x S−   8.21 
 
This allows us to infer the total rupture area of an ensemble of earthquakes as a function 
of M.  Combining 8.21 and 8.11, we obtain  
 

 
( )

3
5 22 21 log 1 log 3 10

3 3

log 2.02

M P S

S

− +  + 

= −

  8.22 

Or 

 2.10 10MS    8.23 
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This means that the sum of the rupture areas of earthquakes with magnitudes between 

 and M+ MM   is 

 ( ) ( )12. 2.10 10 10 10
b Ma bM M aS N MS M

−− + + =  = =   8.24 

 

This means that S   is a constant if 1b =  .  That is, the total rupture area is the 

same for all earthquakes in a magnitude interval M  .  That is, if the b-value 
is 1, then the total rupture area is the same for integrated area of each magnitude.  
That is the sum of the rupture area of all 2’s is the same as the rupture area of all 
3’s, is the same as all 4’s, etc.  What this means is that given a b-value of 1, and 
given that a point has just experienced slip, then it is equally likely that it could have 
come from any magnitude earthquake.  Given that different magnitude earthquakes 
have different slips, any slip is as likely as any other.  This is only true in a 
logarithmic sense.  That is, a fault is equally likely to experience slip between D and 
C x D, regardless of the value of D and a constant, C (e.g. given, slips between 1 
and 2 mm are just as common as slips between 4 and 8 m. 
For example, if you sum the rupture areas of 10 M 6 earthquakes, they would equal the 
rupture area of a M 7.   This allows us to answer the following question.  “Given that a 
point on a fault experiences a rupture, what is the most likely magnitude of earthquake that 

caused the rupture?”  Apparently, if 1b =  , then all magnitude earthquakes are equally likely 

to have been the cause of the rupture.  If 1.0b  , then the given rupture is most likely 

caused by a large event, whereas if 1.0b  , then it’s most likely that the event was caused 
by a small event. 
 
From the previous discussion, we can conclude that if there is a point on a fault that fails 
in an earthquake, then it is equally likely that the causative event was any magnitude.  Later 

I show that the average slip in an event increases as 
1

210
M

(see 8.74 ), which means that, 
“Given that a point on a fault experiences a rupture, then all values of slip at that 
point are equally likely.”   
 
  

Stress Drop and Strain Change 
 
The term, stress drop, is often used in seismology and unfortunately, it has been defined in 
many ways (often confusing).  In the following discussion, I will define stress drop to be 
the change in shear traction on a fault that is the result of shear displacements that 
occur in an earthquake.  That is, 

 ( ) ( ) ( )0 1, , ,x y x y x y    −   8.25 

Where 0  is the initial stress (often called the prestress) and 1  is the final stress.  This 

definition of stress drop is often referred to as the static stress drop.  As far as I am 
concerned, this is the only unambiguous definition for stress drop, although it seems that 
many (perhaps most) of my colleagues use other definitions.   
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The easiest way to think of static stress drop at a point on a fault is that it is the change in 

elastic strain time the rigidity, or ( )0 1      − =   , where   is the amplitude of 

the change in shear strain in the volume immediately adjacent to the rupture surface.  

Unfortunately, things are not quite so simple since   and   are actually tensors that 

vary over space such that they satisfy the equations of static equilibrium ( , 0ij j = ).  

However, in these class notes, I am not very interested in the details and I will use 
appropriately simple definitions.   In particular,  I assume that the average stress drop 
of spatially complex ruptures is approximated by rectangular faults with 
homogeneous stress drop.  The adequacy of this approximation is discussed by Das 
(1988, Relation between average slip and average stress drop for rectangular faults with 
multiple asperities, BSSA, 78, 924-930) and Noda et. al. (2013).   
 
Notice that all stress and strain changes scale linearly with slip.  That is, whatever average 
stress drop corresponds to a particular distribution of slip, the average stress drop doubles 
when we double all of the slips. 
 

I will use the relations between average slip, D  , rupture length, ,L  and rupture width, W  

, for a rectangular fault in a homogeneous half space as reported by Parsons (Parsons, Ian 

Dennis, 1988,  The Application of the Multigrid Method to the Finite Element Solution 
of Solid Mechanics Problems. Dissertation (Ph.D.), California Institute of Technology. 
doi:10.7907/MVMM-ED69. https://resolver.caltech.edu/CaltechETD:etd-08102006-
090020et. al.  This is actually a difficult solid mechanics problem and there are several 
flawed solutions that are in use.  I believe that the Parsons solution is reliable. 
 
In these discussions I will assume that the rupture surface can be approximated by a 

rectangle with a long dimension of L  and a short dimension of W  .  In many cases, L 
becomes the along-strike dimension, whereas W is the down-dip dimension.  Further, I will 
assume that  
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  8.26 

Or alternatively, 
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
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 
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  8.27 

 

https://thesis.library.caltech.edu/3088/
https://thesis.library.caltech.edu/3088/
https://resolver.caltech.edu/CaltechETD:etd-08102006-090020
https://resolver.caltech.edu/CaltechETD:etd-08102006-090020
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Where P LWD=  is the Potency (the volume integral of inelastic shear strain in an 

earthquake, see Chapter 7), C  is a dimensionless constant that depends on the aspect ratio 

of the rupture, L

W
 , the  depth of burial of the rupture topz  , and the rupture dip and rake 

angles.  Of course, since I am assuming a homogeneous half-space, it is a trivial change to 

write 8.26 in terms of seismic moment 0M P= .  Parsons (1988) shows that for a fault 

with rupture that reaches the Earth’s surface,  

 ( )1

1.39 2.3 0.65
L

WC
− 

 +
  

  8.28 

And for a deeply buried fault  

 ( )1

1.27 2.3 1.28
L

WC
− 

 +
  

  8.29 

For ruptures with shallow burial depth, C changes quickly as a function of 
topz

W
 
 
 

 ; C is 

within 95% of its value for deeply buried when 0.16topz

W
 

= 
 

.  This rapid change in C 

with burial depth is caused by the fact that, in an elastic model, there are very large strains 
and stresses in the region between the top of the fault and the free surface.  In reality, it is 
highly questionable whether such large stresses develop in the shallow region just above a 
rupture that does not quite reach the surface.  For simplicity, I classify events as either 
“surface rupturing” or “deeply buried”; that is, I assume that C is described by 8.29 for any 
earthquake that did not have surface rupture.  I assume a uniform rigidity of 35GPa   , 

which is taken to represent average properties in the upper Crust.  
 
Notice that 8.21 can be rewritten as 

 
5 53 10 3 10D S LW− −  =    8.30 

If I assume that ruptures are geometrically similar, then L a
W

 , where a   is the aspect 

ratio between rupture length and rupture width.  In this case,  
  

 
53 10D W a−    8.31 

If typical ruptures are as long as they are wide, then 
53 10D

W
−   .  That is, the typical 

slip to length ratio of earthquakes is about 3 parts in 100,000.  Substituting this into 
8.26 gives 

 
53 10C  −      8.32 

And  

 
57.6 10 −      8.33 
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If the rupture is deeply buried and if the aspect ratio is about 1, then 2.55C  .  If 

35GPa   , then we conclude that 2.7MPa   and  53 10C −    .  While most 

current analysis uses stress drop as a parameter, I find that it’s easier to use strain drop since 
1) it’s directly related to the observables (Potency and Rupture area), and 2) it is a unitless 
quantity. 
 
If you inspect Fig. 8.5, you will see diagonal lines with labels of different stress drops given 
in bars.  A bar is defined to be mean atmospheric pressure at sea level, and it is 
approximately equal to 100 kPa.  The use of bars to describe stress was common decades 
ago, but almost all research journals now require the use of Standard International (SI) 
units, where stress has units of Pascals, Pa=N/m2. 
 

 
Figure 8.5.  This is a copy of a Figure in Heaton, Tajima, and Mori,1986,  
Surveys in Geophysics, V. 8, pp 25-83, which is a copy of a very famous 

figure by Kanamori, 1980. 
 

 
 
 

Earthquakes modeled as Brittle Cracks 
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In the discussion in the previous section about stress drop, we approximated an 
earthquake as having a constant change in stress on a planar area.  This problem is 
almost identical to the problem of introducing a frictionless crack into a uniformly 
stressed elastic material.   This allows us to borrow the extensive research developed 
to describe the failure of brittle materials.  Crack-like models of dynamic rupture 
were common in the 1960’s and 70’s (e.g., Kostrov, 1966, Self-similar problems of 
propagation of shear cracks, J. App. Math. Mech., 28, 1077-1087; Madariaga, 1976,).   
 
In Chapter 3, I described the solution of an instantaneous pressure change in a 
spherical cavity (3.82).  In that solution, the cavity expanded when the pressure 
increased.  In addition, the expansion looked like the solution to an impulse of 
momentum on a 58% damped sdof.  That is the cavity oscillated about its new 
static equilibrium and it radiated wave energy as it oscillated.  In the case of a 
frictionless crack with a step change in shear traction, the crack also oscillates about 
its new equilibrium.  I don’t know any closed form solution to this problem, but 
Brad Aagaard made some finite element simulations of a frictionless crack and he 
found that it had radiation damping of about 20% (unpublished research).  Fault 
friction differs from the frictionless case in that once the slip drops to zero, the 
friction returns and presumably the motion stops.  Thirty years ago there was 
discussion about whether the slip would stop at its dynamic maximum, or whether 
it would stop at its static equilibrium.  This was referred to as the “overshoot” 
problem. In the past few decades, researchers construct numerical simulations of 
faults with very specific friction laws that are more complex than simple 
instantaneous change in traction.  
 
True analytic solutions of spontaneously propagating ruptures are rare.  One simple 
approach to the problem of a steadily propagating semi-infinite crack (shown in 
Figure 8.6) is to start with the spatial solution for a static semi-infinite crack.  To 
obtain the solution for a propagating crack, merely move the observer at a steady 
rate opposite to the direction of the crack propagation; the transforming velocity is 
scaled by the shear-wave velocity (similar to a relativistic Lorentz transformation).   
 
The static solution for a semi-infinite shear crack with a constant stress drop is  

 ( )xz xz

K
f

r
    8.34 

Where K is the stress intensity factor (a measure of the sharpness of the crack 

tip), r  is distance from the crack tip, and ( )xzf   is a scalar function to account 

for the polar coordinate   , which is the angular position of the observer as 

measured with respect to the rupture plane.  This solution assumes that everything 
is uniform in the y direction.  That is the crack extends infinitely in y direction.  For 

a mode III crack, 2IIIK G= , where G  is the fracture energy, which is the 
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energy per unit length required to extend a semi-infinite crack. If the fracture energy 
becomes small, then the tip of the crack approaches the linearly elastic solution, 
which has infinite stress at the crack tip.  That is, if the crack tip is linearly elastic, 
then even small applied stresses will cause very large stresses at the crack tip.   
 

The work expended on the crack of length L  by slippage D  is just 

1

2
fDL  

 
+  

 
 .  In a true crack, the sliding surface is frictionless ( )0f =  and 

the total change in potential energy is  
 

 ( ) ( ) 2 21

2 22
potential

C CE DL L L L   
 

 
      =  

 
 

 8.35 
 
When a mode III crack is extending in a steady-state way (constant rupture 
velocity), then the rate change of potential energy is balanced by the rate of change 

of fracture energy, or fracture potentialE E= .  The rate of change of fracture energy is 

just 

 fracture RE GV=   8.36 

where RV  is the rupture velocity. The rate of change of potential energy  is calculate 

by differentiating 8.35 with respect to time, or 
 

 ( ) ( )2 2

potential R
C CE LL LV 
 

   =    8.37 

 which means that 

 ( ) 2CG L 


=     8.38 

 
For an equilibrium crack, the shear stress on the fault plane scales as 
 

 xz

L

x





  8.39 

For a propagating crack, this transforms to 
 

 xz

L

x







  8.40 

 

Where x  is time-transformed distance given by 
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 ( )
2

1

1

R

R

x x V t

V



 = −

 
−  
 

  8.41 

 
As the rupture velocity approaches the intrinsic shear wave velocity, the solution 
appears to be compressed in space.  Stress at the equilibrium crack tip is singular.  
When the crack runs at the shear-wave velocity, it becomes very singular. 
 
In crack theory, an expanding crack under uniform load tends to continue to 
expand indefinitely.  That is, once it becomes unstable, the only way to stop it is 
with high fracture energy.  The longer the crack length, the harder it is to stop, since 

the required fracture energy increases as ( )
2

L   .   

 
The laboratory-measured values of fracture energy of materials depend strongly on 
the brittleness of the material. Although mono-crystalline diamond is the hardest 
known material, it is also extremely brittle and only 5.5 J/m2 is required to propagate 
a mode I fracture along a cleavage plane.  This means that diamond is very strong 
at the microscale, but you wouldn’t want to construct anything large out of a single 
diamond crystal; if a crack was initiated, then it would not take much average stress 
to propagate a crack through the rest of the material.  Glass is another brittle 
material and its measured fracture energies range from 3.5 to 5.5 J/m2.   
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Figure 8.6.  Simplified view of an earthquake as an expanding 

crack.  This is often called a semi-infinite crack since it is 
uniform in the y coordinate. 

 
Polycrystalline materials tend to have higher fracture energies because the fracture 
surfaces are complex and more molecular bonds must be severed than for a similar 
dimension of single crystalline material.  Concrete has a fracture energy of about 
190 J/m2, and most polycrystalline rocks (e.g., granite) have fracture energies 
between 100 and 1,000 J/m2.  
 
In contrast, earthquake energies are much, much larger than measured values of G.  
For example, 8.7 gives estimates of radiated energies of 
 

 22 MJmR
eff

E
D D

S
 −    8.42 

That is, the radiated energy for a typical 1-m slip is about 2 MJ/m2, which is at least 
1,000 times larger than measured fracture energies measured in a laboratory.  Or, 
alternatively, a 10 km by 10 km rupture with a stress drop of 3 MPa has a fracture 
energy of 30 MJ/m2 (see 8.38). 
 
This is a MAJOR PROBLEM with interpreting earthquakes using simple 
constant-stress-drop cracks.  That is, constant stress drop cracks are NOT 
SCALE FREE since they imply that fracture energies (the work to stop 

ruptures) increases as L  .   The notion that the earthquake dynamics are 
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controlled by fracture energy processes at the crack tip that can be 10’s of km away 
seems totally implausible to me.  Unfortunately, this idea is central to many popular 
earthquake physics studies as I will discuss shortly. 

 
 
Earthquake Similarity 
 
Notice that Fig. 8.5 shows that the average stress drop of 2.7 MPa is a kind of universal 
relation that applies over a very wide range of earthquake sizes.  In essence, the observation 
is that average slip correlates with rupture dimension as stated by 8.31.  The apparent 
universality of this relationship was the motivation for a class of earthquake scaling relations 
that are often referred to as “self-similar rupture models.”  The use of the term, self-similar, 
has created significant confusion, and I recommend using it only when you mean it.  
 
Self-similar is usually used in physics and mathematics to describe objects that look 
similar, independent of the magnification at which the object is observed.  In particular, 
fractal objects that have similar complexity at all scales are referred to as self-similar.  
That is, they look like themselves independent of the magnification.  In contrast, two objects 
are called similar when they look identical after an appropriate scale change.  For 
example, squares are all geometrically similar; all squares are identical if the length of a side is 
normalized to unity (remember similar triangles that you learned in high school). 
   
Another related term that you might encounter is self affine.  Objects that are mapped in 
multiple dimensions are typically called self-affine when linear scale changes in some of the 
dimensions result in objects that are self-similar. Again, this term is common in the study of 
fractals. 
 
Aki (1967, Scaling law of seismic spectrum, JGR, 72, 1217-1231) proposed that all 
earthquakes were similar; he did not call then self-similar.  That is, he suggested that different 
ruptures could be seen to be identical except for the length of the rupture.  Aki’s argument 
was simple and compelling.  He argued that all earthquakes were fundamentally controlled 
by the same 3 MPa sudden drop in shear stress on the fault surface.  That is, he argued that 
the stress drop is a fundamental (and universal) description of the friction on the fault.  The 

initial stress 0  is assumed to be the strength of the fault, and the sliding friction, f  , is 

assumed to be equal to the final stress 1 .  Later this general model has been called “self-

similar ” [sic] constant-stress-drop model of earthquake ruptures.  It has been the basis of 
numerous models to explain seismic data (especially the shape of Fourier amplitude spectra).  
According to Aki’s conjecture, the primary difference between different earthquakes is the 
area and aspect ratio of a rupture.  That is, once the rupture length is chosen, then all other 
dynamic parameters can be inferred.  That is, all of the dynamics are controlled by physics 
that is independent of the scale length of the earthquake.  In this way these models are scale 
invariant (not really, though, because fracture energy increases with rupture dimension).  
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In the following pages I will describe the standard “self-similar” [sic] source model so that 
you will understand the origin of numerous terms that are commonly used.  However, I warn 
you now that I view that these models are seriously flawed, and their use typically decreases 
real understanding.  Furthermore, I will develop arguments that show that earthquakes are 
not scale invariant. 
 

As we saw in Chapter 7, the displacements ( )u t  from far-field S-waves radiated by a sliding 

fault is proportional to the potency rate, P  .  Now so long as ( )P t  is monotonically 

increasing with time, then ( )P t  is a strictly positive function.  Now we can conclude that 

 
0 0

T T

P Pdt udt=     8.43 

Where T is the total duration of the earthquake.  While we could evaluate P by a simple 

integration of ( )u t  in time, it has become customary to perform this integration in the 

Fourier transformed domain.  In particular,  

 ( ) ( )
0

lim u u t dt P





→
−

=    8.44 

That is, the earthquake potency is proportional to the zero-frequency-amplitude of the 
Fourier transform of the far-field S-wave.  Of course, one must correct for radiation pattern 
and path effects (e.g., transmission and reflection coefficients and geometric spreading).  In 
fact, the seismograms of what we usually call the S-wave are actually comprised of a 
combination of many different rays that sum together to comprise the “S-wave group.”  In 
order to deduce potency, P, from this data, one should really account for all of these different 
rays.  However, it’s far simpler to just take a Fourier transform of the S-wave group and to 
then find the amplitude at zero frequency.  It’s usually assumed that the complexities from 
many rays serves to make the phase spectrum look random while there is little systematic 
effect on the overall amplitude spectrum.  While this assumption is pervasive, I am unaware 
of any study that provides convincing evidence to support it.  For the purposes of the 
following discussion, though, I will assume that the spectra of real earthquakes are the same 
as the spectra of far-field waves radiated from a shear fault located in a homogeneous, 

isotropic whole space (caveat emptor).  

 

Suppose that ( )u t  is a strictly positive function of time and having a duration of cT  , then 

( ) ( )
0

0
cT

cu f f u t dt P  =   and ( ) ( )c cu f f u f   , 

where 1
c

c

f
T

=  is the “corner frequency.”  As an example, consider a far-field S-wave that 

consists of a simple rectangle, or 
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 ( ) ( )

1
0

2

1 1
1

2 2

1
0

2

t

u t t t

t

 
 − 

 
 =   −  
 
 
 
  

  8.45 

(see chapter 1 for discussion of the rectangle function).  Now ( ) ( )
sin

sinc
f

u f f
f

=   . 

( )0 1u f = =  , which is the integral of the rectangle function.  Furthermore, 

( )
1

1u f
f

→  .  The high-frequency asymptote, 
1

u
f

=   intersects the low-frequency 

asymptote, 1u =  , at the corner frequency, 1cf =  , which is the reciprocal of the duration 

of the rectangle function.  While cf  is well known for a rectangle function, it is something 

that must be determined when it is used to characterize an S-wave group.  It is customary to 
plot the amplitude spectrum of the wave group on a log-log graph and to fit straight lines to 
the low frequencies and the high frequencies.  The intersection of the two lines provides a 
measurement of the corner frequency.  
 
We can use the corner frequency measurement to estimate the rupture dimension, 

 
1 1

2 2

R
c R

c

V
L T V

f
 =   8.46 

 where I have assumed that the earthquake duration is approximately twice the time it takes 
for a rupture front to sweep across the rupture surface.  The factor of two is to account for 

the average duration of the slip.  Assuming that L W  , 2.55C  ,  and applying 8.26 we 
obtain 

 

3

20 c

R

f
P

V
 

 
   

 
  8.47 

Or alternatively, 

 

3

20 c

R

f
P

V


 
   

 
  8.48 

 
Notice that we made a questionable assumption that the rupture velocity is a constant, 
independent of the earthquake size1.  Furthermore, the stress drop is very sensitive to our 

 
1 This is an important assumption of the Brune source model, but the evidence is that the duration of slip at 

any point is small compared to the time it takes a rupture to propagate on a rupture surface. 
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funky measurement of the duration of the S-wave, 
1

cf
−

 , since the stress drop depends on 

the cube of the corner frequency; if your measurement of corner frequency is off by a factor 
of two, then your stress drop estimate is off by a factor of eight.  Although I don’t recommend 
it, 8.47 can be used to estimate average stress drop (or strain change)  by simply measuring 
the asymptotic behavior of Fourier amplitude spectra.  If you are genuinely interested in stress 
drop, then I strongly recommend that you obtain it from the types of finite-fault slip models 
that were described in Chapter 7.  In particular, finite-element models can be used to calculate 
the spatial distribution of stress drop (or strain change) based on the spatial distribution of 
slip. 
 
Aki’s conjecture of universal similarity (1967) suggested that all earthquakes were identical 
dynamic processes except for the rupture dimension.  That is, he suggested that all events 
had the same stress drop and that everything else could be deduced from this stress drop and 
the rupture dimension.  In terms of the Fourier amplitude spectrum, this means that 
everything is controlled by the corner frequency, which is a description of the rupture 
dimension.  Now if there is only one variable in our dynamics problem (the rupture length), 
then the shape of the Fourier amplitude spectrum must be described by only one variable, 

cf  .  In this case, length is mapped to corner frequency through the rupture velocity.  Aki 

argued that the spectrum must be of the following form 

 
1

1
c

P
u

r f

f

  
+  
 

  8.49 

 
where   is a constant that is determined by the dynamics of the rupture process.  Note that 

Aki used M0 instead of P, so his equations look a little different. The 1r−  is to account for 

geometric spreading of a far-field body wave, and the 
1 −
 is an impedance factor that tells 

the size of radiated waves relative to the near-source term (look back at the far-field terms in 

7.45).  We can now estimate the energy in the radiated wavefield as follows.  The power RE  

flowing through an increment of area S  in the radiated S-wave is (see Chapter 3, eqn 3.55) 

    

 
2RE

u u
S

 = =


  8.50 

 
Since this energy is traveling radially to great distance, We can calculate the radiated energy 

traveling through an element of surface area dS  by integrating 8.50 with respect to time.  
That is, 
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 ( ) ( )
2 22 2

0 0 0

2RE
u dt u df fu df

S
   

  

= = =
      8.51 

Our integral over time is transformed to an integral over frequency using Parseval’s theorem.  
The integral over frequency can be broken into two separate integrals, the first over the 

constant amplitude at frequencies less than cf  , and the second over the frequencies higher 

than cf  .  Combining 8.49 and 8.51, we obtain 

 

 ( )
2

2 2

22

0

2

1

R

c

E f
P df

S r
f

f










=
   

 +  
   

   8.52 

Unfortunately, the solution to this integral is a hypergeometric function, which is 
not very useful for this discussion.  Fortunately, the integral can be solved in closed 

form if 2 =  (the commonly used 
2f −
 model).  In this case 

 

 
3

2 3

2

R
c

E
P f

S r

 


=


  8.53 

provided that 3
2

   ; the energy at high-frequencies is infinite for any 1
2

   .  Notice 

that 8.47 can be used to conclude that  

 

1
33

20

R
c

V
f

P





 
  
 

  8.54 

Or even more conveniently,  

 
3

3

20

R
c

V
Pf     8.55 

or 
 

 
3

3

20 c

R

Pf

V
    8.56 

so 8.53 can be written 
 

 

2

3 R
R R

V
E V P  



 
  

 
  8.57 
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While the issue of spectral scaling for cf f  is well studied and non-controversial, the 

spectral characteristics for cf f  have been the focus of a huge number of studies, and 

unfortunately there is a depressing lack of consensus about spectral scaling for radiated high 

frequencies.  Aki (1967) presented both an 2 =  model and also an 3 =  model.  He 
argued that the apparent geometric similarity of ruptures (approximately scale independent 
stress drop) was a sign that models should be appropriately simple, which he interpreted to 
mean that spectral scaling should have power-law scaling with a simple integer in the power 

law.  He said he did not know whether 
2f −

 or 
3f −

 was more appropriate (
1f −
 leads to 

infinite energy), but based on sparse data, he had a preference for
2f −

(often called the omega 

squared model) .  Figure 8.7 shows Aki’s two hypothesized spectral models. 
 
While Aki’s hypothesized model was scale independent in many ways, it is clearly not scale 
independent when it comes to fracture energy.  That is, Aki’s model is essentially a constant 
stress drop crack model.  This is the class of models that require a fracture energy that 
increases with rupture dimension.  Later I will show that slip-pulse models can be constructed 
in a way that they produce scale-independent stress drop and also scale-independent fracture 
energy. 
 

 
Figure 8.7 Aki’s spectral models.  The 

2f −
 model on the left is 

often referred to as a self-similar (sic.) model. (Aki, K., 1967, J 
Geophys. Res. Scaling law of Seismic Spectrum, v. 72, 1217-1231) 
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Brune’s Spectral Scaling Model 
 
Brune’s 1970 paper, Tectonic stress and the spectra of seismic shear waves from earthquakes 
(J. Geophys. Res., v.75, 4997-5009) is one of the most cited papers in all of earthquake 
research (approximately 5,000 citations according to Google Scholar). This paper is basically 
an extension of Aki’s 1967 paper on universal scaling.  In this paper, Brune argues that the 

dynamics of earthquake slips are controlled by an effective shear stress, e , that accelerates 

the faces of an earthquake fault.  That is, he argued that the fault appears as if it’s a free 

surface with an instantaneously applied shear traction that is equal to e .  Brune then 

introduced the slip history for a fault that experiences an instantaneous step in shear traction.  
He uses this solution to infer the spectral characteristics of radiated far-field waves.  That is, 
Brune argues that he introduced dynamics into the types of spectral models developed by 
Aki. Brune argues that one can derive the effective stress by appropriate modeling of the 
envelope of the Fourier amplitude spectra of seismograms.  Notice that in the previous 
discussions, I was careful to describe the solutions using either change in strain, or in terms 
of stress drop.  If the material is linearly elastic, strain and stress are linked by the shear 
modulus.  The seismograms used to construct spectra only measure lengths and time, so the 
parameter strain change is natural.  In contrast, Brune’s analysis is formulated in terms of 
stress drop.  In Brune’s model, the stress drop is defines the shear tractions that accelerate 
the sides of the fault. 
 
I will now try to describe Brune’s 1970 spectral model, although that is a difficult task.  In 
particular, what is currently called the Brune model is different from what is presented in his 
1970 paper.  In addition, Brune’s induction about rupture physics has some rather glaring 
errors that are seldomly acknowledged.   
 
I will begin by saying that the spectral envelopes of a wide range of seismograms can be 
approximately described with the Brune model; this is what makes this model so popular.  
Unfortunately, the glaring physics errors also make this paper confusing; there have been 

countless misuses of this paper (caveat emptor). 
 
Brune relies heavily on a particularly simple solution for the displacements that occur due to 
a step in shear traction on a free surface.  This problem was described back in Chapter 3 (see 

3.58).  In particular, if an instantaneous change in shear traction, ( )x eT H t=  occurs 

uniformly on the surface of a uniform half space, where the plane is described by 0z =  , 
then a uniform shear stress propagates into the medium (in the z direction) at the shear-

wave velocity.  That is, the solution is just xz e

z
H t 



 
= − 

 
 .  This means that 
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e x
xz

uz
H t

z




 

  
= − = 

 
.  In equation (3.68), we derived that 

1

2

x
xz

u



=  .  So 

2
2x xz e

z
u H t


 

 

 
= = − 

 
.  This can be integrated to give the displacement,   

 
2

x e

z z
u t H t




  

   
= − −   

   
  8.58 

This is a simple linear ramp in time that starts at 
z

t


=  .  The Fourier amplitude spectrum 

of this displacement can be easily deduced by recognizing that a linear ramp is the second 
time integral of an impulse.  Now recall that integration in the time domain is the same as 

dividing by 2i if =  in the frequency domain.  Now since ( ) 1f =  ,

2

2 1

2
x eu

f




 

 −
=  

 
 .  That is, a simultaneous step in stress on the fault should 

produce ground displacement with an 
2f −

 spectrum.  Brune argued that the 

accelerations experienced adjacent to the rupture were a measure of the effective stress 
accelerating the sides of the fault.   
 
The solution that Brune used assumes uniform stress applied instantaneously on an 
infinitely large fault, and the resulting fault slip increases linearly with time indefinitely.  
That is, the slip trends to infinity.  Brune reasoned that the final slip should approach the 
slip expected from fault dimensions and the appropriate stress drop (similar to Aki’s 
argument).  He hypothesized that, in the very near-source region,  

 1
t

e
x

z
u e H t




 

   
 − −   

  
  8.59 

where r


=  , and r  is the radius of an approximately circular rupture area.  This leads 

to particle velocities given by 

 
t

e
x

z
u e H t




 

−  
= − 

 
  8.60 

The Fourier amplitude spectrum of 8.59 is 

 
2

1

1 2

e
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c
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f







=
 + 
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  8.61 

 

As before, this spectrum is 
2f −

 , which is the inevitable result of the discontinuous 

jump in particle velocity at the start of the motion.  Brune argues that this jump is 
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fundamental to the dynamics of earthquakes.  Furthermore, he argued that the dynamic 
stress controls the particle accelerations in the very near-source region.  Notice that the 
particle acceleration that is derived by differentiating 8.60 is 
 

 
1

zt

e
x

z z
u e H t t





 

   

−
−      

= − + −      
      

  8.62 

     
The impulse function comes from differentiation of the step function.  This indicates 
infinite accelerations at the arrival time of the shear wave.   Brune argued that 
structural heterogeneity scattered these high-frequency waves and that the result is 
random white noise whose amplitude is determined by the effective stress.   
 

For frequencies between 0f =  and cf f=  , Brune’s spectrum 8.61 is similar to the Aki 

spectral model.  Brune’s argument about instantaneous stress drop led him to conclude that 

the high-frequency decay was naturally 
2f −

 and that the accelerations had a white-noise 

spectrum whose amplitude scaled linearly with the effective stress.  When Brune imagined 
this model, he was aware that earthquake engineers were simulating recorded near-source 
accelerograms as Gaussian white noise modulated by an envelope function in time.  Brune 
then appealed to conservation of radiated energy (through different enclosing 

spheres) to conclude that if the high-frequency S-wave is  
2f −

 in the near-source 

region, then it must also be 
2f −

 in distances that are large compared to the source 

dimension. 
 
At this point, Brune had used inductive reasoning to describe a Fourier amplitude spectrum 
for a distant observer.  This spectrum had a long-period amplitude that is scaled by the 
potency (he used moment), a corner frequency that described the dimension of the rupture 

(used to determine stress drop), and an  
2f −

 high-frequency radiation whose overall 

amplitude is controlled by the effective stress.  In his 1968 paper, Brune stitched these 
different features together to hypothesize that the displacements in seismograms observed 
at distances large compared to the rupture dimension should be of the form 

 ( ) ( )exp
r

u f t t H t
R


 



 
 
 

  8.63 

and that the distant spectral scaling should be 
 

 ( ) ( ) 2 2 2
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R f
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where R  is a radiation pattern, r  is the radius of the rupture area, R  is the distance of the 

observer, 
2.21

r
 =  (the corner frequency). and 

e







  , which Brune called the 

fraction of the stress drop.  ( ) ( ) ( )
1

2
22.42

2 2 1 cos
f

F
  


  

= − − +    
 ; this factor 

joins the high-frequency levels to the corner with a section of the spectrum that decays as 
1f −
 .  The effect of partial stress drop ( 1   ) is shown in figure 8.8.   

 
 
 

 
Figure 8.8.  From Brune (1970).  This is the “Brune far-field 

spectral model.”  If the stress drop is the effective stress then it’s 

an 
2f −

 with a single corner.  If the stress drop is less than the 

effective stress, then there are both 
2f −

 and 
1f −
 falloffs with 

two corners. 
 

Although Brune introduced the concept of partial stress drop, it is very rarely used, 
and most researchers use a simpler version of the Brune spectrum as given by 
 

 ( ) 2

1
c

P
u f

f

f

 
+  
 

  8.65 

 
This simplified form assumes that the effective stress (which regulates high-frequency 
radiation) equals the final change in stress (which is controlled by the rupture dimension 
and the Potency).  This simplified form of the model links the high-frequency near-source 
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radiated energy to the overall size of the earthquake (P) and the stress drop.  This can be 
seen in the following argument, which I developed in 2013. 
 
Alternate Derivation of Brune Spectral Scaling.   
 
Although I read Brune’s paper many times, I find that its logic is difficult to follow.  To 
better understand the “essence” of the Brune model, I devised an alternate derivation of 
his spectral law for waves observed at distances larger than the rupture distance.  My goal 
is to start the derivation with a minimum number of simple assumptions.  The following is 
my derivation.  It begins with several key assumptions that may be stated somewhat 
differently than Brune did.   
 

1) Assume that the duration of the S-wave group is proportional to the 

dimension of the fault (that is, assume constant rupture velocity), this 

assumption can be restated 
1

c

R

f
V S

.  Brune also made this assumption. 

2) Assume size similarity of the form  
3

2P SD S  , or alternatively 
2 2

3 3LW P 
−

  .  Brune also made this assumption. 

   

3) Assume that the Fourier amplitude spectrum is a constant at low 

frequencies and 
2f −
 at high frequencies as shown by equation 8.65.   

 

Assumptions 1 and 2 imply that 
1 1

3 3
cf P 

−
 .   Substituting into 8.65, we obtain 

 
 
 

( ) 2

1 1
3 3

1

P
u f

f

P 
−

 
 +
  

 

 
 
 8.66 
Which has asymptotes 
 
 
 

( ) 1 2
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c
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 8.67 
 
This is an alternate form of Brune’s spectrum that is written as an explicit function of stress 
drop.  Variations of Equation 8.66 are so often used (aka, assumed) that I will refer to this 
as the Standard Source Model.  Now the radiated energy spectrum scales as the square 
of the Fourier amplitude spectrum, or at high frequencies 
 
 

( ) ( )
2

2 4 3 42 3
23 3 32c cf f f f

R RE U P S S      =   8.68 

 
That is, Brune’s spectral model predicts that high-frequency radiated energy scales 
with the rupture area and the square of the stress drop.  This is consistent with the 
notion that the amplitude of very high frequencies close to the rupture are a constant that 
is related to the effective stress.  This is a key feature of Brune’s spectrum; the near-source 
acceleration should scale with stress drop.   That is, at very close distances, pga should 
be independent of the earthquake magnitude, but it should scale linearly with stress 
drop.  As I will shortly show, near-source pga is indeed independent of magnitude (M > 6).  
However, near-source accelerograms show that near-source pga is also independent 
of stress drop. This turns out to be a fundamental flaw of the Standard Source 
model.  
 

 
 
 

Stress Drop and Near-Source Ground Motions  

 
I will now discuss the scaling of near-source ground motions and how they scale with 
magnitude and stress drop.  The work in this section is modified from an unpublished 
manuscript by Tom Heaton and Masumi Yamada.  This is work from 2013. 
 
Brune (1970) hypothesized that near-source pga correlates linearly with effective stress, 

e  . Since it’s not currently feasible to measure e independently from measures of 

radiated seismic waves, it is not feasible to independently verify Brune’s hypothesis. It is, 
however, possible to investigate the correlation between near-source motions (less than 
10 km from the surface projection of the fault rupture) and spatially averaged static stress 

drop,  ; this is a meaningful test since the most common form of Brune’s model 

assumes that e  =  .  In this study, we show that there is no significant correlation 

between near-source peak ground accelerations (pga’s) and spatially averaged static stress 

drop  .  In contrast, near-source long-period motions do correlate with stress drop.    
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Our current study investigates the relationship between static stress drop and the intensity 
of near-source ground motion as measured by peak ground acceleration (pga), peak 
ground velocity (pgv), and peak ground displacement (pgd).  This work is a follow-on to 
our previous study of the statistical characteristics of near-source motions, where we 
reported that there is no apparent correlation between near-source pga and pgd (Yamada, 
Olsen, and Heaton, 2009, Statistical Features of Short-Period and Long-Period Near-Source Ground 
Motions, Bulletin of the Seismological Society of America, 99 (6). pp. 3264-3274. ISSN 
0037-1106).  In this earlier study, we hypothesized that pgd should correlate with stress 
drop; if all other source parameters are equal, then larger slips are associated with both 
larger near-source pgd’s and also with larger stress drops.  However, the lack of correlation 
between near-source pga and pgd seems to imply that pga and stress drop are also 
uncorrelated.   
 
In this study, we estimate the average static stress drop for 20 earthquakes for which there 
are also near-source strong motion accelerograms.  We then investigate the relationship 
between measures of shaking intensity and earthquake potency and stress drop.   
 

We estimate average static stress drop using the relations between average slip, D  , rupture 

length, ,L  and rupture width, W  , for a rectangular fault in a homogeneous half space as 

reported by Parsons et. al. (1988) and presented in equations 8.26 through 8.29.     In 
particular, we assume that   

 

2

D
C

W

P
C

LW

 



 
   

 

 
=  

 

  8.69 

Where P LWD=  is the Potency (the volume integral of inelastic shear strain in an 

earthquake), C  is a dimensionless constant that depends on the aspect ratio of the rupture 

L

W
 , the  depth of burial of the rupture topz  , and rupture dip and rake angle.  

Approximations for C are given in the section on stress drop. 

For ruptures with shallow burial depth, C changes quickly as a function of topz

W
 
 
 

 ; C is 

within 95% of its value for deeply buried when 0.16topz

W
 

= 
 

.  This rapid change in C 

with burial depth is caused by the fact that, in an elastic model, there are very large strains 
and stresses in the region between the top of the fault and the free surface.  In reality, it is 
highly questionable whether such large stresses develop in the shallow region just above a 
rupture that does not quite reach the surface.  For simplicity, we classified events as either 
“surface rupturing” or “deeply buried”; that is, we assumed that C is described by 8.29 for 
any earthquake that did not have surface rupture.  We assume a uniform rigidity of 

35GPa =  , which is taken to represent average properties in the upper Crust.  
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Table 8.1 lists the source parameters for the earthquakes in this study.  Most of these models 
are described in the ETH source data base.  For some of the events there are multiple 
source models and, in these cases, we assume that the models are log-normally distributed 
about the geometric mean of the models.  Figure 8.10 shows the relationship between 

average static stress drop and Moment Magnitude, 21
3

LogP + .  In order to show 

the distribution of the different models, each of the earthquakes is assigned a single   that 
is based on the geometric mean of the Potencies of the different models.  In a similar 
manner, the static stress drop values for each event are the geometric mean of the static 
stress drops for multiple models for each earthquake.  Of course, it’s difficult to estimate 
the uncertainty in these values (especially stress drop), but we have included an error 
estimate that is based on the standard deviation of all of the models about their mean.  We 
calculate the standard deviation using Bessel’s correction for small number statistics.  
Earthquakes with only one source model are considered to be more uncertain than those 
that represent the geometric mean of multiple models 
 

 
Table 8.1.  Earthquakes used in this study have finite source 
models tabulated by the SRCMOD project (Mai, ETH). NS is 
the number of stations.  All statistics are computed assuming 
log-normal distributions and Bessel’s correction for small 

samples is assumed to calculate the standard deviation of  . 

Earthquake Year Date NS mean(Mw) mean(Δσ) std(Δσ)

Imperial Valley 1979 10/15 12 6.53 1.00 0.33

Loma Prieta 1989 10/17 6 6.99 5.47 1.27

Landers 1992 6/28 1 7.25 2.89 1.00

Northridge 1994 1/17 7 6.79 3.17 1.15

Kobe 1995 1/17 4 6.96 1.25 0.50

Izmit 1999 8/17 3 7.51 2.01 0.88

Chi-Chi 1999 9/20 38 7.68 2.39 0.47

Western Tottori 2000 10/6 5 6.84 2.11 0.42

Denali 2002 11/3 1 7.91 2.97 1.66

Parkfield 2004 9/28 48 6.05 0.15 0.02

Mid Niigata 2004 10/23 6 6.72 0.97 0.00

Noto-Hanto 2007 3/25 1 6.74 1.63 0.00

Niigataken-Chuetsuoki 2007 7/16 2 6.81 2.17 0.00

Wenchuan 2008 5/12 6 8.00 1.67 0.00

Iwate-Miyagi 2008 6/14 6 6.96 2.43 0.00

Surugawan 2009 8/11 1 6.43 1.19 0.00

Darfield 2010 9/4 7 7.00 0.83 0.00

Christchurch 2011 2/22 15 6.36 2.83 0.00

Northern Nagano 2011 3/12 4 6.35 1.92 1.08

Fukushima-Hamadori 2011 4/11 3 6.69 1.13 0.00

Total 176
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Figure 8.9.  The values of     plotted as a function of  .  
Each dot represents a finite-source model compiled in the ETH 
database of finite source models.  The circled points represent 
the mean model for a given earthquake.  The “error bars” are 
the standard deviations for earthquakes that have more than 

one model. 
We collected strong motion records from twenty earthquakes in table 8.1 from sites in the 
near-source region. We define the near-source region to be within 10 km of the surface 
projection of the fault rupture (often called the Joyner-Boore distance). We choose this 
number because it is small enough to demonstrate the source scaling, but large enough to 
include a sufficient number of records to characterize the statistics. To determine the PGA, 
PGV and PGD of a recorded ground motion, we processed each time history.  We first 
remove the bias from the acceleration record by subtracting the mean. Then we integrate 
once and remove the long-period component with a fourth-order high-pass Butterworth 
filter (13.3 sec corner period) to generate the velocity time history. The displacement 
records are obtained from the integration of velocity waveforms. Peak values are obtained 
from the square root of the sum of the squares of the north-south, east-west and up-down 
components at each time step of the record. 
 
Figure 8.10 shows a log-log plot of near-source pga as a function of static stress drop.  

Figure 8.10 also shows a linear regression of log pga as a function of and log   .  
Compatible with the conjecture of Yamada and others (2009), we do not observe a 
significant correlation between near-source pga and either stress drop or Potency (Moment 
Magnitude).  Notice that there is no magnitude dependence to the near-source pga.  This 
is because we constrained the magnitude dependence to be positive only. Allowing 
decreasing near-source pga with increasing   actually provides a marginally better fit to 
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the data, but including this possibility requires us to propose non-intuitive models that only 
fit highly scattered data marginally better. 
 

 
Figure 8.10.  Near-source pga vs stress drop for all records 

used in this study.  The dotted line represents the least-squares 

linear regression, ( )log 0.0 0.07 log 2.63pga M = +  +  .  

This seems to indicate that near-source pga is independent of 
magnitude (as Brune hypothesized) and also independent of 
stress drop (very different from Brune’s hypothesis which is 

represented by the blue diagonal line). 
 

Figures 8.11 and 8.12 are similar, but they are for near-source pgv and pgd, respectively. 
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Figure 8.11. Near-source pgv vs stress drop for all records used in this study.  The 
three dotted lines represent M 6, 7, and 8 in the linear least-squares regression 

( )log 0.12 0.21log 0.88pgv M = +  +   

 
Figure 8.12. Near-source pgd vs stress drop for all records used 
in this study. The pgd is from high-pass filtered records with a 
13 s corner.  The three dotted lines represent M 6, 7, and 8 in 
the linear least-squares regression 

( )log 0.35 0.29log 1.13pgd M = +  − . 
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We can anticipate the following asymptotic behavior for any ground motion 
prediction equations.  When the distance is large compared to the source 
dimension, and when the predominant periods of the ground motion are large 
compared to the source duration, we expect the ground motion amplitudes to scale 
with the seismic potency, or  
 
 
 
  

 
&

3log log
2far lowfreqU P M  8.70 

 
For very near-source long-periods (e.g. displacement), we expect the peak 
amplitude to scale with the size of the slip on the nearby fault segment, or 

 
P
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=   8.71 

and 
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  8.72 

So 

 
1 2

3 3D P    8.73 
So 

 

1 2
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1 2 log
2 3

near lowfreqU D P

M





+ 

+ 
  8.74 

 
Relationship 8.74 can be compared with Figure 5 that is derived from the ground 
motions and stress drop models  
 

 log 0.35 0.29lognearpgd M +    8.75 

 

This can be compared with the 10-s response spectral acceleration, 10sa  , scaling 

reported by Campbell and Borzorgnia (2014). 
 

 ( )10 0.333Log sa M   8.76 

 
Cua and Heaton (2009) also produced a gmpe for pgd using data from both small- 
and large-magnitude earthquakes (see Figure 8.18).  Their near-source pgd scales as  
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 ( ) 1log
3

pgd M   8.77 

 

Interestingly, Campbell and Borzorgnia (2007, PEER report) recognized that  10sa  

should approximately mimic the scaling of pgd, and that near-source pgd is 

controlled by average slip, which in turn, scales with   .  However, they state 
that “the resulting PGD ground motion model is intended for evaluation purposes 
only at this time and should not be used for engineering design until further 
empirical and theoretical verification becomes available.”  That is, the requirement 
that long-period near-source motions should scale with slip somehow seems to 
have never made it into the NGA2 gmpe’s that were used to calculate the National 

Probabilistic Hazard Models.  It seems quite clear that  has a 1st order effect 

on near-source long-period motions.   should be included in the gmpe’s 
for long-period motions.  The current practice of only using magnitude and 
observer distance to predict long-period motions is flawed and is likely to 
seriously under predict the maximum motions from a suite of plausible 
events. 
 
As an example of how these relations work, consider the implications for pga and 
pgd for a large strike-slip earthquake similar to the 1906 San Francisco earthquake.  
This event has been assigned a moment magnitude of M=7.8.  If we were to assume 
that the rupture dimensions in a future earthquake were the same, but that the slip 
in the event was doubled, then the Potency and the stress drop would both double.  
Doubling the potency increases the moment magnitude by 0.2 units and inserting 
these values into 8.75 gives a 0.3 unit increase in log u, which corresponds to a 
doubling of u. 
 
Figure 8.13 clearly shows how differently near-source pga scales with size than does 
pgd.  This figure is from Yamada, Heaton, and Olsen (2009) and it shows a log-log 
plot of pga vs. pgd for every strong motion record for earthquakes of M>6 that 
was available at the time of the study.  The light grey points are for sites at JB 
distances > 10 km, whereas the bold circles are for JB distances<10 km.  Although 
there is a lot of scatter in in the relationship between pga and pgd, it is obvious that 
pga and pgd have a linear correlation for distances>10 km, whereas there is 
absolutely no correlation for distances < 10 km.  This observation is compatible 
with the hypothesis that near-source pga is unrelated to stress drop. 
 
Figure 8.14 is also from Yamada and other (2009) and it shows the frequency 
distribution of near-source pga.  This figure clearly shows that near-source pga for 
M > 6 is approximately log normal with a geometric mean of 4.64 m/s2.  The grey 
line shows the distribution without including a large number of records recorded 
in the 1999 M 7.6 Chi-Chi, Taiwan earthquake, whereas the bold solid line includes 
Chi-Chi data.  Notice that the distribution of near-source pga for smaller previous 
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events seems to fit the data that was observed in Chi-Chi.  Again, this is convincing 
evidence that near-source pga completely saturates with magnitudes greater than 6. 
 
  
 

 
 

Figure 8.13.  Pga vs. pgd for all strong motion records available 
as of 2008 (from Yamada, Heaton, and Olsen, 2009.   
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Fig. 8.14.  Histogram of the number of near-source records as a 
function of log pga for earthquakes M.6.  The figure is also from 
Yamada, Heaton, and Olsen (2009). 

 
The saturation of near-source pga can also be clearly seen in the ground motion 
prediction equations (gmpe’s) of Cua and Heaton (2009, Characterizing Average 
Properties of Southern California Ground Motion Amplitudes and Envelopes. Earthquake 
Engineering Research Laboratory, Earthquake Engineering Research Laboratory , 
Pasadena, CA.  EERL report 2009-05).  These gmpe’s were created for use in 
earthquake early warning systems that require the ability to predict over a very wide 
range of magnitudes.  Most gmpe’s in engineering seismology are intended for use 
in predicting damaging motions (M > 5).  The Cua and Heaton gmpe was created 
using a large data set recorded by the Southern California Seismic Network.  In 
addition, strong motion data compiled by PEER was also included.  The solid lines 
are gmpe’s derived using only sites on rock, whereas the dotted red line was derived 
using only data from soil sites. 
 

 
Figure 8.15.  Relationship between pga and magnitude 
as observed at different Joyner-Boore site distances.  

From Cua and Heaton (2009) 
 
Notice that the 0-distance gmpe seems to indicate that pga saturates for M>5 and 
the saturation level is consistent with Fig. 8.14.  This saturation becomes less 
apparent for larger distances.   This is most likely caused by the fact that near-source 
pga is primarily the result of frequencies greater than 3 Hz, whereas the important 
frequencies become lower the further away that you are.  Similar plots are shown 
for pgv and pgd in Figures 8.16 and 8.17, respectively.  Notice that log(pgd) scales 
approximately linearly with magnitude for near-source and M < 5, whereas it scales 

as approximately 
1

2
M  for M > 5; this is consistent with 8.75.  The linear scaling 

https://authors.library.caltech.edu/58095/
https://authors.library.caltech.edu/58095/
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of log(pgd) with M seen at either smaller magnitudes or larger distances is 
consistent with  8.12. 
 

 
Figure 8.16  Same as 8.15, except for pgv. 

 

 
Figure 8.17  Same as 8.15, except for pgd. 

 



 

321 
 

 
Fig. 8.18.  Same as Fig. 8.14, except for peak ground 

displacement (from Yamada, Olsen, and Heaton, 2009).  The 
solid lines are the distributions with and without Chi-Chi data.  

The dotted line includes synthetic data at existing strong 
motion stations for a re-enactment of the 1906 San Francisco 
earthquake.  The analysis in equation 8.24  suggest that this 

distribution may be log-uniform. 
 

Figure 8.18 shows the number of strong motion records vs. log (pgd) as of 2009.  
Notice the contrast with log (pga) (see Fig. 8.15).  Whereas the log (pga) data 
appeared to be log normally distributed about ½ g, the log(pgd) data is clearly not 
a normal distribution.  As was argued in eq. 8.24, this distribution may be log 
uniform.  The smaller pdg’s are mostly from relatively frequent earthquakes of 6 
< M < 7. Notice that including the data from just several large earthquakes (i.e., 
Chi-Chi and a re-enactment of 1906 San Francisco) can significantly alter this 
distribution, including the mean.  Figure 8.18 is an example of a heavy-tailed power 
law distribution.  Later I will present a more extensive development of the physics 
associated with probabilities that are defined by a power law.  A common feature 
of power-law distributed data is that the mean of the data typically increases as more 
data is added; this is certainly the case for the data set shown in Figure 8.18. 
 
A log uniform distribution is an example of Benford’s law, which is also 
sometimes referred to as the first-digit law.  Benford’s law was reported in 1938 
and it is based on the observation that the first digit of numbers in tables of physical 
constants are often distributed logarithmically; numbers that start with the digit 1 
are much more common than numbers that start with a 9.  The formal definition 
of Benford’s law is 
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( ) ( ) ( )
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1 log

1 1log log 1

P N Log N N
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= + −
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  8.78 

 

Where N  is the first digit of the numbers in tables of physical measurements.  To 

derive that this is, in fact, a power law, we can begin by assuming that ( ) 1P N
N

=  

, then the probability of digits between N  and 1N +  is 
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1 1

1
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N N

N N

dN N
P N d N

N N

+ +
+ 

= = =  
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    8.79 

    
 which is Benford’s law as given by 8.78.  
  
 
It may seem surprising that pga, which is a measure of high-frequency motions, is 

more or less independent of both   and  .  However, as I will now show, 
saturation of high-frequency near-source motions with  is compatible with the 
well-known Brune (1970) spectral scaling model.  Unfortunately, it seems that Brune 
scaling is fundamentally inconsistent with the observation that near-source pga’s that are 

independent of    . In the next section, I will show that it is not possible to formulate 
a simple spectral scaling law (single power law with one corner frequency) that has 
near-source pga that is independent of magnitude and which is also independent of 
stress drop.   
 
In the variation of the Brune model where the static stress drop is assumed to be 
the effective stress, stress drop becomes the fundamental parameter that links 
statics and dynamics.  However, many of the kinematic rupture models used in the 
Yamada and Heaton study actually reported slip pulse models.  That is, the slip is 
already known at most points long before the rupture has stopped propagating.  In 
slip pulse models, there is no correspondence between effective stress and stress 
drop.  Two ruptures could be identical up to the point that one stopped and the 
other continued.  The radiation from the ruptures would also be identical up to that 
point.  However, since the rupture that continued would have a longer rupture 
length, it would have a different stress drop.  Stress drop is not a fundamental 
parameter in slip pulse models; it’s just a statistical accident that some ruptures 
continue on for long distances and have a lower stress drop. 
 
In his 1970 paper, Brune assumed that the slip velocities (and accelerations) scale 
linearly with effective stress.  He also hypothesized that near-source peak 
accelerations (pga) should scale linearly with effective stress.  When using the Brune 
model, it is common to assume that effective stress is equal to stress drop.  This 
logical construction is self-consistent only if 1) near-source pga’s saturate with 
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magnitude (they do), and 2) near-source pga’s  also scale linearly with stress drop 
(they seem to be independent of stress drop).   

 
The conclusion of this discussion is that 1) the 1970 Brune model 
is incompatible with observed seismograms, and 2) there is no 
scale-free model similar to Aki’s conjecture that fits available 
data.   
 
Although Aki’s conjecture is appealing, the most serious issue is 
that in order to maintain constant stress drop in crack-like 
ruptures, the fracture energy must grow as L (see 8.35).  Clearly 
this violates the basic assumption that material properties are 
independent of scale. 
 
Brune’s spectral model has been an appealing and powerful conceptual framework to 
interpret seismic data.  This framework consists of: 1) fit power-law envelopes to the 
Fourier amplitude spectrum , and 2) then derive the dynamic stresses in an earthquake.  
Unfortunately, there are many major problems with Brune’s approach.  I have already 
mentioned many of these problems in the previous discussion.  I now gather these issues 
together in one list. 
 

Problems with the Brune Spectral Model 
I now list a number of specific objections that I have discovered.  The first 
four objections are mistakes in continuum mechanics that are included in 
Brune’s paper.  The next five objections are descriptions of how earthquake 
observations are inconsistent with the Brune model. 
 

1. Near-field energy vs far-field energy   

Perhaps the most fundamental error in the Brune paper is the use of the 

solution to an instantaneous traction applied to the surface of a half-space 

(equation 8.58) to infer 
2f −
 spectral amplitudes for the far-field motion 

(equation 8.62).  It’s true that 8.58 is the solution to an instantaneous step in 

shear traction on the boundary of a half-space, but this solution is entirely 

comprised of near-field terms (see Chapter 7).  In fact, the assumption of an 

infinitely large rupture surface means that there is no far-field radiation for 

this somewhat pathological problem.  While it is true that energy is 

conserved for radiated far-field energy (except for anelastic attenuation), 

there is no such energy conservation between near-source ground motions 

(comprised of both near- and far-field terms) and far-field radiation (see 

Chapter 7).  Also, recall from Chapter 7 that far-field terms are the time 
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derivative of the near-field terms.  That is, if the motion is a ramp in the near 

field (
2f −

 ), then it is a step in the far field (
1f −
 ). 

 

2. Infinite rupture velocity is impossible 

Brune argued that “the particle velocities are always much smaller than the 

rupture propagation velocity (since the stresses are much less than the shear 

modulus), and thus the interaction of particle motion velocity with the 

rupture velocity will always be small, i.e., the average energy spectrum for 

instantaneous application of stress will be approximately valid.”  Later 

analysis showed that the ratio of the rupture velocity to the shear wave speed 

is of interest to mode III ruptures, and the ratio of the rupture velocity to the 

Rayleigh wave speed is of interest for mode II ruptures.  Since typical 

observations of rupture velocities are in the range of 0.8  to 0.9  , the 

approximation of RV    is clearly inappropriate.  In fact, rupture velocity 

plays a key role in almost all models of dynamic rupture. 

  

3. Ramp-like slip produces 
3f −

 far-field radiation.   

This objection is related to objection 1.  In Chapter 7, I demonstrated that a 

line source with an instantaneous step in slip produces a rectangular far-field 

time function, which has a 
1f −
 high-frequency spectrum.  A rectangular 

source with an instantaneous slip has a far-field time function that is the 

convolution of two rectangles, which is a trapezoid that has a high-frequency 

decay of 
2f −

 (one for timing associated with length and the other with 

width).  A rectangular source with fault slip that is a linear ramp has a far-

field time function that is the convolution of three rectangles (
3f −

 ).  The 

third rectangle is associated with Brune’s slip function.  The solution 

describing the displacements from an instantaneous change in stress on a 

circular fault (the problem Brune claimed to be solving) is actually a difficult 

mechanics problem and I am not aware of any closed-form solutions.   

Madariaga (1976, Dynamics of an Expanding Circular Fault, Bull Seisms 

Soc. Am, 66, 639-667) used finite elements to simulate this problem and he 

concluded that the far-field radiated S-waves have a high-frequency spectral 

decay of 
2.5f −

 .  In Madariaga’s study, most of the high frequencies were 

radiated at the circumference of the rupture. 

 

4. The Brune model is a uniform stress drop crack model.  

I have already mentioned this important issue several times.  Constant stress 

drop cracks produce stress concentrations at the crack tips that grow linearly 

with the rupture dimension.  These models are not scale independent.  

 

 



 

325 
 

5. Slip is not ramp-like.  

Ruptures that propagate at sub-shear rupture velocities produce slip functions 

that are similar to a time-transformed version of slip on a crack.  The slip 

near the tip of a static shear crack increases as K x  , where x  is the 

distance from the crack tip and K  is a stress intensity factor.  For a steadily 

propagating crack, x  transforms to Rx V t−  .  This means that for any fixed 

point on the rupture, D K t  .  To obtain the far-field time function, 

you need to differentiate to slip velocity, or KD
t

  . Convolving with 

1
t

 is equivalent to multiplying with 
1

2f
−

 .  This is sometimes called a 

fractional integral. 

 

6. Predicted slip durations much longer than observations. 

The Brune model predicts that slip in the near-source region is given by 8.59, 

which predicts that slip continues until shear waves arrive from the outer 

edge of the rupture.  That is, the slip at any point is comparable to the entire 

duration of an earthquake.  As I will describe shortly, there is convincing 

evidence that the duration of slip at a point is short (less than 10%) compared 

to the overall rupture time; this is known as a slip-pulse model. 

 

7. Real earthquake far-field time functions are much more complex than 

Brune’s model. 

Brune’s far-field time function (8.63) predicts a relatively smooth single 

pulse (see Figure 8.19).  In contrast, observed far-field time functions are 

typically very complex.  See the far-field time functions shown in Figure 8.7 

as an example. 
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Figure 8.19 (from Brune, 1970)  This is the time 

behavior of Brune’s far-field time function.  It has the 

same ramp-like beginning as his near-source ground 

motion and it has a
2f −

 spectral decay. 

 

Hartzell and Heaton (1093, Bull. Seism. Soc. Am. 73, 1553–1583) compiled far-

field time functions from large earthquakes.  More recently, Meier, Ampuero, and 

Heaton, (2017, The hidden simplicity of subduction megathrust earthquakes. 

Science, 357 (6357). pp. 1277-1281. ISSN 0036-8075) investigated characteristics 

of a compilation of time functions for large earthquakes and these are shown in 

Figure 8.20.  The time functions are scaled to have the same total durations.  The 

red curve at the bottom is the median of all of the time functions and it has a simple 

triangular form.  However, the individual time functions are very complex and do 

not resemble Brune’s time function. 

 

https://authors.library.caltech.edu/81791/
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Figure 8.20. Teleseismic time functions from large 

subduction earthquakes.  Notice the temporal 

complexity which contrasts with Brune’s time 

function shown in Figure 8.7.  The red line at the 

bottom is the median of all of the functions above it. 

This is an unpublished figure from the study of 

Meier, Ampuero, and Heaton (2017). 
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8. Observed far-field spectral decays of large earthquakes (M > 6) are close to
1.5f −

 

. 

Although it is widely assumed that far-field radiated energy is characterized by 
2f −

 spectral decay, recent studies using far more data than was available in the 

1960’s indicate that the average spectral decay between cf  and 0.5 Hz (the 

highest frequency observable at Teleseismic distances) is actually 
1.5f −

 as shown 

in Figure 8.21 from Hartzell and Heaton (1988, Failure of self-similarity for large 

(Mw > 8 1/4) earthquakes. Bulletin of the Seismological Society of America, 78 

(2). pp. 478-488. ISSN 0037-1106).  Brune’s conjecture that Fourier amplitude 

spectra of near-source high-frequency motions (frequency band from 2 Hz to 15 

Hz) is approximately 
2f −

 seems to be consistent with a very large volume of 

strong motion data.  As I will discuss later, the physics of near-source radiation of 

high frequencies is still an unsolved problem and Brune’s model is not a plausible 

explanation of the observation that near-source acceleration look like Gaussian 

white noise.      

 

https://authors.library.caltech.edu/35609/
https://authors.library.caltech.edu/35609/
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Figure 8.21.  These are the Fourier amplitude spectra 

of Teleseismic P-waves from large subduction 

earthquakes.  The average spectral decay is 
1.5f −

  for 

the frequency band between 0.5 Hz and 0.08 Hz.  

Anelastic attenuation prevents study at frequencies 

higher than 0.5 Hz using Teleseismic records.  From 

Hartzell and Heaton (1988)  
 

9. There is no correlation between stress drop and pga 

Brune hypothesized that the spectral amplitude of near-source accelerations 

should scale linearly with effective stress, e , which is equal to stress drop 

in the most commonly used form of Brune’s model .  This is an important 

issue since current predictions of strong shaking often use variations in 

regional stress drops to predict corresponding variations in high-frequency 

shaking.  More fundamentally, I show in Appendix A that there is no 



 

330 
 

possible power law with a single corner frequency that produces bear-source 

pga’s that both saturate with magnitude and which are also independent of 

stress drop. 

 

 
Simulating ground motions using records from smaller 
earthquakes. 
 
As much as I dislike the Standard Source model, it is simple and easy to use.  For example, 

it allows us to use the record, ( )1u t , from a smaller potency magnitude 1M earthquake to 

simulate the motion, ( )2u t , from a larger 2M  earthquake. The expected ratio of the 

amplitude spectra of the two events can be estimated from 8.66 . 
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 8.80 

 

Assuming stress drop invariance (that is 1 2    ), we can use 8.54 to estimate 

the corner frequencies of the two events.  Or, 
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Substituting 8.81  into 8.80 gives 
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Therefore, if we have recorded the motion ( )1u t  for a magnitude 1M , then we 

can obtain an estimate of the motion expected at  the same site from a 2M  event 

at the same source location using the following approximation 
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This approximation assumes that the observing distance is large compared to 

the source dimensions; that is, both events are approximately point sources.  

This requirement can be relaxed by assuming that a large rupture is 
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approximately described by the appropriate sum of smaller ruptures.  The 

responses of the smaller ruptures are assumed to describe the response of 

different parts of the finite fault.  This technique is referred to as the 

Empirical Green’s Function technique.  I will not go through the details 

here (it’s considerably more complex  than what I’ve just derived), but it is 

discussed in detail in Appendix B of Heaton and Hartzell, 1989, Estimation 

of strong ground motions from hypothetical earthquakes on the Cascadia 

subduction zone, Pacific Northwest, Pure and Applied Geophysics, 129, 131-

201.  

 
Self-Healing Slip Pulses 
 
Early in my research career, I investigated the physics of strong ground motions 
from significant earthquakes.  In the 1970’s this was a new field of study.  Although 
there had already been strong motion recordings of several earthquakes, the 1971 
M 6.7 San Fernando earthquake was the first earthquake with dozens of near-
source strong motion records.  Furthermore, there was an extensive project at 
Caltech to digitize the analog film accelerometer records and to integrate these 
records into ground velocity and displacement.  One of the most significant records 
was from the Pacoima dam site that was directly up-dip from the hypocenter.  This 
record had two key features of great interest to earthquake engineering (see Figure 
8.22).  The first was a peak acceleration of 1.15 g that occurred relatively late in the 
record.  The second key feature was a distinct velocity pulse with an amplitude of 
1.25 m/s.  The acceleration records were too high-frequency to be interpreted using 
a deterministic model of rupture on a finite fault.  However, the ground velocity 
pulse was very different.  I interpreted it as a far-field S-wave that was strongly 
enhanced by directivity.  Rather remarkably, the duration of this pulse was less than 
1 s.  Since the duration of the S-wave from slip on any point on the rupture is the 
duration of the slip at that point, the implication is that the duration of slip would 
need to be less than 1 second as well.  When the rupture is propagating towards the 
receiver at close to the S-wave velocity, then all of the far-field S-waves arrive 
simultaneously, thereby producing this velocity pulse. 
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Figure 8.22. North component of ground motion from the Pacoima 
Dam recording of the 1971 San Fernando earthquake.  The strong 
velocity pulse at 3 seconds is interpreted as a directivity enhanced 
far-field S-wave.  Modeling of this pulse indicates that the duration 
of slip was less than 1 second at individual points on the 15-km 
length rupture, which took more than 5 seconds to occur. 

 
One of my colleagues, Steven Hartzell, was also working in this same research 
direction and we collaborated on constructing finite-fault models of the ruptures 
to explain the near-source strong motion data from a number of earthquakes.   All 
of these models shared the common feature that the duration of slip at any point 
was short compared to the time it took for the rupture to propagate over the 
rupture surface.  For example, Figure 8.23 shows our preferred rupture model of 
the M 6.5 1970 Imperial Valley Earthquake.  The hatched region shows our 
estimate of the part of the fault that was rupturing at a particular instant.  

 
 

 
Fig. 8.23.  Final slip distribution used to match strong motion 
and teleseismic data for the 1979 Imperial Valley Earthquake.  
The stippled region shows the area inferred to be slipping at 
just one instance in time (from Heaton, 1990). 

 
It was only later in 1988 that I realized that our rupture models were fundamentally 
inconsistent with crack-like models, which were the prevailing models for 
earthquake dynamics.  In crack-like models, slip at a point starts when the rupture 
arrives and then continues until S-waves arrive from the end of the rupture.   
 
Fig. 8.24 shows the slip histories for a uniform stress drop on a circular fault 
embedded in a homogeneous whole space (from Madariaga, 1978).  The rupture 
expands radially from the center of the circle with a rupture velocity of 0.9 .  

Notice that the slip at every point continues until a shear wave arrives from the 
circumference of the fault (sometimes referred to as a stopping phase). This shear 
wave contains the information that causes points on the fault to stop slipping.   In 
general, uniform stress drop ruptures in which the slip duration is determined by 
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the end of the rupture have slip durations that are on the order of 2
3 R

S
V

 .    

These long slip durations contrast sharply with much shorter slip durations used to 
model seismic data from significant earthquakes.   
   

 
Figure 8.23.  Crack-like rupture.  Slip histories for a variety of 
points on a circular fault in a homogeneous whole space. The 
upper diagonal is near the hypocenter (also the center of the 

circle) and the lower right history is near the outer edge of the 
circle.  The stress drop is homogeneous and the rupture 
velocity is 0.9  .  The arrows represent the time that a 

stopping phase comes from the perimeter of the rupture and 
the dots represent the cessation of rupture.  (from Madariaga, 

1976). 
 
The primary question was to explain why slipping would stop before the rupture 
stopped propagating. This issue was the subject of my 1990 paper, Evidence for 
and implications of self-healing pulses of slip in earthquake rupture (Phys. Of Earth 
and Planet. Int., 64, 1-20).  In addition to the source modeling of seismic records, 
there were also eyewitness reports of relatively short times for surface fault scarps 
to develop.   
 
My paper was extremely controversial.  In fact, I eventually withdrew it from the 
BSSA since the reviewers would not accept it without a wide range of fundamental 
changes.  Since the time of the publication, there have been many other well 
recorded earthquakes and I think it’s safe to say that it is now relatively well 
accepted that earthquake rupture durations at a point are small compared to the 
overall duration of the rupture.   
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I coined the phrase self-healing pulses of slip.  I suggested that dynamic friction 
was strongly rate weakening.  I argued that, similar to crack models, there is very 
high shear stress at the propagating crack tip and that this led to very high slip 
velocities just behind the propagating tip of the pulse.  I suggested that the slip 

velocity decreased as 1

px
 , where px  is the distance from the leading edge of 

the propagating pulse (see Figure  8.24).  I hypothesized that the shear stresses in 
the vicinity of the crack tip were comparable to Byerlee friction and that the 
dynamic friction was very low in the high-slip velocity region just behind the 
rupture front.  I hypothesized that as the slip velocity decreased with distance from 
the crack tip, the dynamic friction increased.  I suggested that this increase in 
dynamic friction caused the slip to arrest. 
 
At the time of my paper, one of the most robust observations of earthquake scaling 
was the observation that average slip scales linearly with the rupture dimension (e.g., 
see Figure 8.5).  In the slip-pulse model, slip at most points on the fault was already 
complete long before the final dimension of the rupture was determined.  I 
suggested that there was a causal relationship between the amplitude of a slip pulse 
and the distance that the pulse was likely to propagate.  That is, large earthquakes 
with long ruptures should have large slips that show up rapidly after the origin of 
the event.  However, further study has shown that the characteristics of the early 
part of ruptures is not systematically different for larger ruptures.   
 
I have now abandoned the hypothesis that larger earthquakes start with 
larger slips, and I now favor the notion that the correlation between slip and 
rupture length comes from the statistical properties of suites of spatially 
complex slip distributions. In order to adequately discuss slip pulses, it is 
necessary to discuss friction and the larger problem of maximum shear stress in the 
Earth’s Crust.  I will get to that shortly, but in the meantime, I have some comments 
about my hypothesis of strong rate weakening friction. 
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Fig.8.24. Sketch from Heaton (1990) of a slip-pulse rupture mode.  I proposed 
that fault friction decreased with slip rate.  This implied that dynamic friction is 

low just after the passage of a rupture.  The dotted line is meant to show the 
friction necessary for sliding.  This friction is comparable to standard friction 
(60% of the confining stress) when the fault is not sliding.  This model has 

instantaneous restrengthening. 
 
 
When I first suggested strong rate weakening friction, I discussed the situation with 
SDSU Prof. Steven Day who was a leading expert in finite element simulations of 
dynamic shear rupture simulation.  Steve was intrigued by the hypothesis and he 
attempted to simulate slip=pulse ruptures that arose from velocity weakening 
friction.  He reported to me that he found it difficult to tune his friction and 
prestress in such a way that it would produce stably propagating slip pulses.  In 
particular, they tended to either grow without bound as they propagated, or 
alternatively, they tended to die out fairly rapidly without propagating very far. 
 
In retrospect, his finding was prescient, and should have been anticipated.  That is, 
a velocity weakening friction law produces a positive-feedback dynamic system.  In 
particular, the faster the sliding, the lower the friction.  Lower friction produces 
faster sliding which leads to even lower friction. Conversely, slow sliding produces 
high friction, which causes even slower sliding.  In fact, it has been shown that 
while strong velocity weakening can produce slip pulses, the pulses are inherently 
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unstable.  That is, there are no steady-state slip pulses caused by strong rate 
weakening friction (Elbanna, Lapusta, Heaton). 
 
Since there are no stable steady-state solutions to strong rate-weakening slip pulses, 
they can only be studied using numerical techniques, such as finite elements or 
boundary-integral-elements.  The fact that there are strong positive feedbacks in 
the dynamics means that the numerical solutions are sensitive to the details of the 
rupture dynamics, which means that high precision is required to make reliable 
numerical simulations. 
 
Before I can discuss the dynamics of slip pulses, it is important to understand the 
characteristics of shear stress in the Earth’s crust.  I will shortly describe how 
understanding the characteristics of chaotic dynamics is key to understanding how 
it’s possible to have 1) a static coefficient of friction of about 0.6, 2) low crustal heat 
flow and a paucity of frictional melts, 3) average static stress drops of about 1.5 
MPa (1% of the overburden pressure), 4) radiated energy of about  

2

slip

MJ2
m -m

D . 

 
 
ESTIMATING SHEAR STRESS IN THE CRUST 
 
An enduring problem in geophysics focuses on estimating the size of shear stress 
that causes earthquakes.  This problem has been approached in several ways.  One 
approach is to estimate the stress necessary to cause shear failure.  This approach 
typically leads to the conclusion that the frictional stresses at the depth of 
earthquakes are a substantial fraction of the pressure from the weight of the 
overburden rocks.  As it turns out, these stresses far exceed any of the shear stresses 
that are estimated using seismic shaking data.  This inconsistency has been debated 
for decades.  
 
 I have given numerous lectures about this issue and I often frame the problem as, 
“why are earthquakes so gentle?”  Although this may at first sound like an odd 
question, it is a rather serious issue when one is asked to estimate the maximum 
shaking that may occur in an earthquake. 
   
In particular, laboratory test equipment that causes frictional sliding of surfaces that 
are forced together with the overburden pressure that occurs 10 km deep in the 
earth (about 200 MPa) are large and powerful machines.  In the laboratory, yielding 
at these stresses can be dangerous even for relatively small samples; for safety, 
operators typically go to the next room to control these experiments.  If you scale 
these experiments up to the size of significant earthquakes, then none of us would 
survive earthquakes, the ground motion would be too violent.   
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To better describe this problem, I will assume that earthquakes can be understood 
in terms of an expanding frictional crack.  This will allow me to demonstrate 
fundamental inconsistencies that arise from this view.  I will then present an 
alternate view that describes earthquakes as propagating slip pulses.  Unfortunately, 
there are no analytic dynamic solutions to the slip pulse problem; by its nature, it is 
fundamentally a chaotic system. 
 
A simple analysis of energy partitioning is appropriate at this point.  Noting that an 

earthquake is the process of removing potential energy, WE  , from the crust and 

converting it into radiated seismic energy, RE  , frictional heat, fE  ,  and fracture 

energy, GE .  Conservation of energy dictates that 

 

 W R f GE E E E = + +   8.84 

 
We can express the change in potential energy by integrating the traction on the 
fault over the slip, or 
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 
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Where ( ),D x y  is the final slip as a function of position on the fault plane, and 

( )0 1

1

2
  = +  is the average shear stress between the initial state, ( )0 ,x y  and 

the final state ( )1 ,x y .  Remember that the continuum is considered to be linearly 

elastic except on the slip surface.  Therefore, the introduction of a reverse slip from 
the final state back to the original state would take the final stress back to the 
original stress.  Since the system is linear, the average stress during that transition is 
the traction that the slip works against. 
 
8.85 can be rewritten as 
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  8.86 

 

Where ( ) ( ) ( )0 1, , ,x y x y x y    −  .  At this point, it is tempting to assume 

that the initial stress and the stress drop are approximately constant as a function 
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of x and y.  In fact, Kanamori and Heaton (2002) made this assumption.  I will 
make it now because it helps to provide context for many other researcher’s work.  
However, I warn you strongly that this is a critical assumption that is almost certainly very 
wrong.  Because this is a key assumption (and probably wrong), I will introduce a 

notation for the energy estimated in this way.  I will call it 
crack

WE  , which I define 

as 
 

 

( ),

0

0

1

2

D x y

crack

W

S

E dD dxdy 
  

  −      
    8.87 

 
Where the overbars signify spatial average over the rupture surface.  Stress drop 
and slip are both spatially smooth (except at the crack tip) for crack models, so the 
approximation is appropriate for cracks.  In contrast, the slip in actual earthquakes 
is typically heterogeneous.  Heterogeneous slip implies that prestress and stress 
drop are also spatially complex.  Furthermore, the spatial complexity correlates 
between these quantities that specify the net energy change caused by an 
earthquake.    
 
Examination of once-active faults that have been uplifted and exhumed by erosion 
shows that there is a paucity of frictional melting along rupture surfaces.  This 
observation allows us to provide upper limits on the energy of frictional heating.  
In addition, seismic data allows us to estimate the radiated energy in earthquakes.  
 

Note that ( ),D x y can be inferred from modeling seismic data.  Knowing the 

spatial distribution of slip allow us to also infer ( ),x y  .  Now if we assume that 

slip amplitude is spatially smooth for crack-like ruptures, then ( ),crackD x y D ; 

note that the averaging in this case is spatial averaging over the rupture surface .  
Using these assumptions allows us to integrate 8.87 to obtain 
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We can now estimate the average prestress as 
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crack
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
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At this point, we can use 8.84 to estimate 
G

crack crack crack

W f RE E E E = + +  .  Although 

we need to assume spatial smoothness of stress and slip to estimate friction and 
fracture energy, radiated seismic energy is directly inferred from seismograms; 
assuming spatial smoothness is not necessary for this calculation.  Although friction 
energy cannot be inferred from seismograms, we can nevertheless put upper limits 
on its size.  The same goes for fracture energy. 
 

FRICTION 
 
Sliding friction during an earthquake is often called dynamic friction, f  .  Friction 

is a dissipative process; it cannot add energy into the mechanical system. In the case 

of a uniform crack, 0f  = − .  Laboratory measurements of sliding friction 

for materials found in fault zones typically indicate that f f n    , where f  is 

the coefficient of friction and n  is the compressive stress normal to the fault.  

Most fault materials have measured coefficients of friction between 0.6 and 0.8.  
The normal stress on the fault is typically thought to be comparable to the pressure 
from the weight of the rocks above the earthquakes; this is referred to as lithostatic 

pressure and it is estimated to be n gz  where z  is depth beneath the Earth’s 

surface.  Assuming, the average density of crustal rocks (about 2,700 kg per cubic 

meter), this can be approximated as 
30MPa

km
n z    .  Lithostatic pressure 

contrasts with hydrostatic pressure (the pressure of water in an open well) which is 

10MPa

km
H z   .  If a material is porous and saturated with water, then the 

effective pressure is eff n Hp  = −  .  The bottom line is that laboratory friction 

measurements indicate that the friction is on the order of 
20MPa

km
f z    . That 

is, at 10 km, we expect that frictional stress is on the order of 200 MPa.  This 
expected frictional stress is much larger than the average measured stress drop of 
earthquakes (3 MPa).   
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Figure 8.25.  Shear stress of frictional yielding of a large range of 
experiments on different rocks and different normal stresses as 

reported by Byerlee.  Although there are some notable 
exceptions (especially clay materials), most rocks have an 

apparent coefficient of friction of about 0.6.  Note that the stress 
is given in units of kilobars (= 100MPa). 

 
Figure 8.25 is a famous figure that shows the apparent coefficient of friction for a 
wide range of Crustal rocks subjected to a large range of confining stresses.  This 
observation leads to one of the most fundamental unanswered questions in 
geophysics.  What is the average shear stress in the seismogenic crust?  Is it near 
the laboratory observations (  200 MPa), or is it comparable to the stress drop in 
earthquakes (  3 to 10 MPa)?   
 
One clear observation that crustal rocks can sustain high shear stress comes from 
the fact that there are deep mines (up to 3 km in South Africa).  At 3 km, the 
overburden stress is about 100 MPa.  On the other hand, the interior surface of a 
mine is traction free.  The calculation of stress around a mine is a complex problem, 
but it is clear that the shear stresses associated with deep mines are at least 50 MPa, 
which is consistent with Figure 8.21.  Deep mines cannot remain open unless there 
are high shear stresses in the vicinity of the mine faces.  Tragically, sometimes these 
faces fail violently in a phenomenon known as rock bursts.  Rock bursts kill many 
miners in the deep gold mines of South Africa. 
 
Figure 8.26 shows a popular view of the strength of the Earth’s crust.  This cartoon 
is often called the “Christmas tree.”  The maximum shear stress before frictional 
sliding is often called the “Byerly limit;” when you hear this, it is intended to refer 
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to the Christmas tree strength model.  I have often heard earth scientists use the 
term that the shallow crust is both brittle and strong, but the lower crust is ductile 
and weak.  If you remember our discussions about the properties of buildings 
(Chapter 6), you should be confused that brittle is used together with the word 
strong.  Remember that in structural engineering, the goal is to avoid brittleness 
since local flaws can cause global collapse.  Most structural engineers try to make 
their buildings ductile. 
 
 

 
Figure 8.26 shows a simplified picture of the “strength” of the 

crust and is often called the “Christmas tree.”  The linear 
increase in the top 10 km assumes a constant coefficient of 
friction taken together with the assumption that pressure 

increases linearly with depth.  The decreased stress in the lower 
crust is assumed to be the result of ductile yielding of rocks at 

high temperatures present in the lower crust. 
 

 
Interestingly, mechanical engineers who work on fracture mechanics often describe 
the strength of brittle materials with either the fracture energy, or alternatively the 

stress intensity factor, 2IIIK G= .   Note that fracture energy has units of 

_

force length

rupture area


 , whereas yield stress has units of 

_

force

rupture area
 .  That is, these 
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two different descriptions of strength differ in units by a length scale.  Interestingly, 

brittle materials typically fail on thin surfaces (length scale of 2L ), whereas failure 

in ductile materials is typically distributed in a volume (length scale of 3L ).  In many 
real-world cases, faults are complex at all length scales (apparently fractal).  That is 
we can anticipate that the complexity of fault surfaces implies that we will have to 
resort to descriptions of strength that are somewhere between brittle and ductile.  
These laws will have units of stress times length to a fractal power.  If the power is 

zero, 0L  , then the material will have a simple yield stress (like a plastic material).  If 

the power is 1, 1L  , then the material is brittle and its strength is described with a 
fracture energy.  That is, we can already anticipate that there will be length 
dependencies to strength  and that spatial complexity will be part of the story.  

 
 
Friction Laws 
 
Earthquakes appear to be due to shear sliding along fault planes; that is, inelastic 
strains associated with earthquakes occur in very narrow regions, which are often 
simplified as a planar interface.  Although the inelastic strains almost certainly occur 
over a finite width, this width may be very small compared to other rupture 
dimensions.  In order to construct simple models of fault rupture dynamics,  we 
often assume that there is indeed slipping on a plane and that the shear stress on 
the plane is governed by a friction law.  If the shear traction on a fault plane is less 
than the sliding friction, then the boundary is assumed to be a welded contact for 
which all displacements are assumed to be continuous across the fault plane.  As 
long as the amplitude of stress is less than the friction law, the stresses on the fault 
plane are described by the standard laws of continuum mechanics (Chapter 3).  
However, the stresses cannot exceed the friction law; once the deformations are 
large enough, then the displacements on the fault are no longer continuous across 
the fault and the shear tractions on the fault are assumed to be equal to a friction 
law.  These friction traction vectors are always assumed parallel to fault slip velocity, 
but in the opposite direction.  The simplest possible friction law is just an 

instantaneous jump in friction from 1  to 0  .  In this case, if the shear traction 

rises to 0 n   , then the shear traction instantaneously drops to 1 n  and there is 

an instantaneous stress drop of ( )0 1n    = −  , that is, assuming that the 

normal stress is constant.  This was the assumption that Brune made in his 1970 
paper. 
 
Most observations of friction show a linear increase in frictional traction with fault-
normal compressive stress.  Examinations of machined surfaces typically show that 
contact surfaces are never truly planar; instead they all have geometric roughness 
(typically fractal).  When two rough surfaces are placed into contact, then the actual 
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contacts occur at only a few places (if the material is rigid, then only three contact 
points are enough to form a statically stable configuration).  Of course, the normal 
force on the materials would be concentrated at these contact points.  The result is 
that the contact points elasto-plastically deform into contact patches, that are 
typically called asperities (see Figure 8.23).  The frictional shear tractions are also 
concentrated at these asperities.  One common view is that the static coefficient of 
friction is simply describing how the total area of asperities changes as the normal 
stress is increased. 
 
This view that friction laws are essentially describing the properties of surface 
asperities seems consistent with the observation that fault normal compressive 
stress is best measured by also including the effect of fluid pressures.  That is, any 
interstitial fluids in the rough fault surface serve to push the surfaces apart.  
Obviously, this argument works well if the area of asperities is small compared to 
the overall area of the surface.  If there are almost no void spaces, then the effect 
of fluid pressure is mitigated.    

 

 
Figure 8.27.  The contact area of geometric asperities are 

thought to be the key aspect of standard Byerly friction,  The 
contact area increases with the normal stress 
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Figure 8.28.  Instantaneous stress drop friction law where the 
friction drops instantaneously from a static coefficient of 
friction to a dynamic coefficient of friction.  This law is 
unphysical because the properties of the material change 

without doing any work. 
 

Although this “instantaneous stress drop” friction law is convenient for its 
simplicity, it has a fundamental and fatal flaw.  That is, the material changes its 
physical properties without doing any work to the material.  In the case of an 
instantaneous stress drop law, there is no fracture energy, which means that the 
material is infinitely brittle.  A far more realistic situation is one in which the 
properties of a material change as a result of work that is done on the material.  It 
may be that this work is small compared to other energies, but there must always 
be some work associated with changing the properties of a material.  Realistic 
friction laws always involve parameters that describe the “state” of the material.  In 
particular, as inelastic yielding occurs, the material’s yield stress evolves as well.  If 
we assert a simple friction law that changes from an initial friction to a final friction, 
it is necessary that there is some evolution of this change; it cannot be 
instantaneous.   
 

 
Simple Slip-Weakening Friction 
 
Slip-weakening friction as shown in Figure 8.29 is commonly used in simulations 
of earthquake rupture.  It has the advantages that there is work associated with 
change in the frictional state of the material.  That is, the work associated with the 
transition from static friction to sliding friction is just the area of the back-hatched 
region shown in 8.29.  Slip-weakening friction is described by 
 

 
( ) 0

0

0

0S S d

f n

d

D
D D

D

D D

  
 




− −  

 
 

  8.90 

 

Where 0D  is the slip-weakening distance.  The fracture energy (per unit of 

rupture area), 0G  , is given by 

 ( )0 0

1

2
n s dG D  = −   8.91 

and the frictional heat energy (per unit of rupture area), FE  , is 
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 F n dE D =   8.92 

 
Figure 8.29.  Slip-weakening friction law is common in rupture 

dynamics.   The lower hashed area represents the total work done 

by frictional heating oD  , while the upper back hashed area 

represents the work done to drop the friction and is commonly 
interpreted as fracture energy. 

 

As long as 0D D  , slip-weakening produces a simple stress drop.  However, this law 

also includes a length scale that is associated with changing the frictional state from 
static to dynamic.  In fact, any friction law that changes the internal energy of a 
material has included (either explicitly or implicitly) a characteristic length in the 
friction model.  Rather interestingly, Aki’s conjecture of scale-free rupture 
dynamics is violated by any friction law with a scale-independent fracture 
energy. 
 
Notice that slip-weakening friction specifies the maximum shear that can occur 

before sliding, s n   .  Sometimes this number is called the strength of the fault 

since it is the maximum shear stress that can be achieved locally.  While this 
parameter is relevant to the conditions of crack nucleation, it turns out that it has 
virtually no effect on the dynamics of propagating failures.  Instead, propagating 
failures are more related to the work necessary to extend a rupture, which is the 
fracture energy.  Fracture energy is the product of peak stress and slip weakening 
distance, and neither quantity can be independently determined from dynamic 
modeling of rupture (Gutierri and Spudich). 
 
A major problem with slip-weakening friction centers on the problem of rupture 
nucleation.  That is, in order to have a seismic instability, the rate at which potential 

Fracture energy 

Frictional heating 
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strain energy is extracted by the rupture must exceed the rate at which energy is 
dissipated by friction and fracture on the expanding rupture surface.  We can 
approximate the change in potential energy due to faulting that is available for 

radiation, ( )W fE t−  , as the change in potential energy minus the frictional energy 

as 

 

( ) ( ) ( )
3

2

W f eff

eff

E t S t D t

S
C








− 




  8.93 

Where S  is the rupture area, D  is the slip averaged over the rupture area (scales 

with L, see 8.69), and eff  is the difference between the prestress and the dynamic 

friction (see 8.7).  That is, it is the effective stress that is available for dynamics. 
 
I have written this as an approximate relationship because I am assuming that the 
effective stress is constant in space.  Later we will see that the prestress, the slip, 
and the dynamic friction are spatially heterogeneous.  8.93 needs to be modified if 
it correctly considers this heterogeneity. 
 

Now the energy that is available for radiation RE  (kinetic energy) is just  
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
 −

 
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  8.94 

where 0G  is the fracture energy per unit rupture area.  This means that in order to 

have spontaneous sliding , there must be more change in potential energy than 
is required for fracture and friction, Or, 
 

 0

eff

G C
S







  8.95 

 
That is, slip weakening friction implies that if the prestress is homogeneous, then 
there is a minimum dimension for earthquakes.  If we use the laboratory measures 
of fracture energy (say 200 J/m2), and effective stress of 2 MPa (estimated from 
seismic energy radiation), a typical stress drop of 2.7 MPa, then the minimum 
rupture length for an earthquake is about a meter, which is very small.  However, 
if we use fracture energies that are required to stop a large-dimension crack in a 
uniform stress field (see 8.35) then we end up with fracture energies of tens of 
MJ/m2 .  In this case, it is necessary to use high prestress in the nucleation region 
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just to get things started.  Currently, many researchers insert patches of high pre-
stress in order to nucleate instabilities.  While inserting high-stress patches is easy 
on a computer model, it requires a religious miracle to realize in the real world. 
 
Unfortunately, many researchers report the fracture energies that are employed in 
their dynamic modeling and interpret this energy as having physical significance.  
They rarely mention that using small fracture energies causes extreme numerical 
instability in their dynamic calculations.  That is, in many cases the reported fracture 
energy is the energy that is required to produce stable finite-element models (a 
function of the grid spacing and time step).  Small fracture energies produce 
singular stresses at the crack front.  Discrete element codes cannot handle these 
singular stresses, and the modelers increase the fracture energy in order to soften 
the singularity at the crack tip.  In addition, the use of small fracture energy means 
that this parameter has almost no impact on the details of the fracture dynamics.  
Basically, fracture energy is used to stop fractures.  However, it is impossible to 
stop long cracks without very large (stupidly large) fracture energies. 
 
Another consequence of using fracture energy together with crack-like dynamics is 
the fact that discrete numerical simulations are not only poorly resolved, they also 
typically jump to super-shear rupture velocities as the rupture dimension grows.  In 
discrete models (e.g. finite elements) with low fracture energy, the expanding crack 
fronts evolves into such large stresses that elements several grids in front of the 
crack can begin to slip even before the crack front arrives.  That is, the rupture 
jumps ahead of the crack front.  This is super-shear rupture velocity and once it 
starts, it can propagate stablely.   Although there have been reports of evidence for 
sup-shear rupture velocities in some earthquakes, most well recorded earthquakes 
appear to have sub-shear rupture velocities.  Given the behavior I just described, 
the real mystery is to explain why all significant earthquakes don’t have super-shear 
rupture velocities.  I will shortly show that a better way to control the rupture 
dynamics is with the prestress.  
 

Rate and State Friction 

 
Although instantaneous weakening friction and slip-weakening friction have been 
commonly used in earthquake dynamics because they are so simple, they are not 
actually based on experimental observations of frictional sliding.  Frictional sliding 
is actually a specialized type of localized inelastic shear straining.  In general, the 
inelastic shear strain rate depends on the applied shear stress and it also depends 
on the past history of inelastic strain (the “state” of the interface) and it can also 
depend on the current rate of sliding.  Friction laws that have these two 
dependencies belong to a class of laws called rate and state friction laws.  The 
use of variables that characterize the state of a deforming material are quite 
common in material science; for example, the stress-strain relationship for 
reinforced concrete is very complex.  In particular, it is important to know if the 



 

349 
 

concrete has been cracked in previous straining.  In that sense, the amount of 
fracturing is a state variable for reinforced concrete. 
 
In the Earth Sciences, the term, “Rate and State friction” has been used almost 
exclusively to mean a particular friction law that was developed to describe the 
temporal behavior of a number of low-slip-rate (less than 1 mm/s) frictional sliding 
experiments.   I personally prefer to use the term “Dieterich-Ruina friction” when 
referring to friction laws of the type described below.  Since rate and state 
dependent rheologies are common in mechanics, it’s easy to be confused when 
using the phrase rate-state friction. 
 
In a foundational set of friction experiments, James Dieterich (1979, Modeling of 
rock friction 1. Experimental results and constitutive equations, JGR, 84, 2161-
2168) observed the time variation of slip along the interface of machined blocks of 
granite that were subjected to time-dependent shear stress and constant fault-
normal compression.  Dieterich discovered that if a block was forced to slide at a 
steady slip rate, then an instantaneous step in the shear traction caused a change in 
the slip rate and that this change in slip rate was not instantaneous, but instead 
evolved over some time scale (or alternatively a slip scale).  Later, Andrew Ruina 
(1983, Slip instability and state variable friction laws, JGR, 88, 10,359-10370) 
introduced a state variable that could predict this behavior.  
 
The Dieterich-Ruina friction law is briefly summarized in Figures 8.26 and 8.27, 
which I copied from a presentation by Chris Marone at Penn St.  This friction law 
provided a new framework for studying fault dynamics.  Most importantly, the 

definition of several constants ( )0, , , cA B V D accurately mimics the experimentally 

observed slip rate as a function of time for a wide variety of materials.   This friction 
law is often used as the basis of numerical modeling of fault slippage in a wide range 

of problems.    Notice that the Dieterich-Ruina friction has a state variable, ( )t  

, which is described by a 1st order differential equation in either time (or alternatively 

slip).  ( )t  has units of time and it controls how the friction evolves after jumps 

in slip velocity (or alternatively, shear stress).  The evolution after a jump evolves 
logarithmically (either time or slip) towards a new steady state.  Clever experiments 
that allow one to observe the evolution of contact patches during slip have revealed 
that the fact that the asperities are constantly evolving on a slipping surface.  Slow 
slip velocities allow dislocation creep to increase the asperity area (indentation 
creep), thereby increasing the friction.  In this case, the friction decreases with 
increasing sliding velocity (but only after the effect of the state variable has 
decreased.  On the other hand, increasing the slip velocity can cause higher 
temperatures at the asperities, which allows them to relax faster and thereby 
increasing the friction when the sliding rate is increased.  These two effects are 
included in the Dieterich Ruina friction law as the constants, A and B.   If A > B, 
then the Dieterich Ruina law predicts that increasing the sliding rate results in lower 
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friction.  This is called rate-weakening friction and it produces dynamic instabilities 
in the sliding process.  That is, if there is a perturbation that causes the sliding rate 
to increase, then this decreases the friction, which in turn, increases the sliding rate.  
This dynamic instability naturally results in earthquake nucleation. 
 
On the other hand, if A < B, then faster sliding results in higher friction and is 
referred to as rate-strengthening friction.  Perturbations to the sliding rate tend to 
damp out with time.  I often see that faults that fail in earthquakes are interpreted 
as having A > B, whereas faults that experience creep are interpreted as having B 
> A. 
 
It is worth noting however, that B > A  seems to imply that a fault creeps steadily.  
It is difficult to observe spatial and temporal variations in creep (there are no 
radiated waves and the creep is deep in the Crust).  However, when creep has been 
observed in detail, it’s my experience that it mainly occurs during creep events.  
These creep events seem to be much like other earthquakes, but with a greatly 
reduced rupture velocity (usually less than 1 km/hr). 
 
There is a very large literature that discusses the attributes of Dieterich-Ruina 
friction and these class notes are far too brief to really do this subject justice.  I 
recommend reading the review paper by Rice, Lapusta, and Ranjith (Rate and state 
dependent friction and the stability of sliding between elastically deformable solids, 
J. of the Mech. And Phys. Of Solids, 2001, 49, 1865-1898). 
 
One important cautionary note concerns the range of laboratory conditions that 
were observed when creating this friction law.  In particular, the experiments 
observed at slip rates of microns per s and observed characteristic slip distances, 
Dc, of microns.  Furthermore, the changes in friction were small changes about 
average frictions of about 0.7.  That is to say, the dynamic friction had similar values 
to traditional Byerlee friction, with the important addition of time evolution that 
provides a natural pathway to event nucleation.  It’s worth noting that when these 
experiments were sped up to earthquake slip velocities (> 1 m/s), then frictional 
melting always occurred.  Once the material surfaces melts, these friction laws no 
longer apply.  That is, while rate-weakening Dieterich-Ruina friction appears to be 
a reasonable model for the nucleation of earthquakes, it is inconsistent with 
observations of large earthquakes.  Furthermore rate-strengthening friction 
provides a convenient model for creeping faults, but it fails to predict the common 
observation that creeping faults typically fail in slow earthquakes. 
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Figure 8.30  
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Figure 8.31 

 
 

Frictional Heating 
 
Assuming either instantaneous weakening friction, slip-weakening friction, or even Dieterich-
Ruina friction, we can estimate the average long-term rate of frictional heating (or power per 
unit rupture area) on a fault to be 
 

 F n dP D =   8.96 

Where D  is the average geologic slip rate of a fault and 
d  is the average dynamic coefficient 

of friction.  It is a simple calculation to estimate the heat production on the San Andreas fault 
assuming that the dynamic coefficient of friction is about 0.6 (i.e., Byerlee friction).  Assuming 
that the average dynamic friction on the San Andreas is about 200 MPa (see Figure 8.22), and 

that the slip rate is about 3 cm/yr (or about 10-9 m/s) gives 2200 mW/mFP   .    This is 

actually a problematically large power; the average power of heat transferred through the 
Earth’s continental crust (otherwise known as the heat flow) is 66 mW/m2 (Davies and 
Davies, 2010).  That is, the assumption of Byerlee friction implies that the average rate of 
frictional heat produced by the San Andreas fault is several times the average heat flow in the 
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Crust and thus we would expect to observe elevated heat flow in the vicinity (within 10’s of 
km) of the San Andreas fault.  This elevated heat flow is not observed and this fundamental 
problem is often called the Heat-flow Paradox (see for example, Scholz, C. H., The 
Mechanics of earthquakes and Faulting, Cambridge University Press, Cambridge England, 
1990). 
 
Actually, the heat flow paradox is far more severe than is indicated by the calculation above.  
In particular, a variety of observations indicate that average slip rates during earthquakes are 
at least 2 m/s.  This means that, during the slip event, if dynamic friction is about 200 MPa, 
then we expect frictional power of at least 400 MW/m2 during the sliding.   This is an 
extraordinarily large number.  In fact, it’s the energy of 200 sticks of dynamite per second 
applied to every square meter of the fault.  Or, for comparison, the power of a nuclear power 
reactor is about 1 GW.  The specific heat of granite is 790 J/oCkg, and the density is 
2.7x103kg/m3.  Assuming that a temperature change of 1,000oC would cause melting (rocks 

have a very low latent heat of melting), then the heat 1mmmeltE   required to raise the 

temperature of a 1mm thick section of the fault by 1,000o C is   
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Now the total frictional heat energy is  

 

 8

2

J
4 10

m s
Friction SE T

 
   

 
  8.98 

 

Where  duration of slip at a pointST   .  If 1
2ST s=  , then the slip is about 1 

m and there is enough frictional heat to raise a 2-m thick zone by 1,000o.  Clearly, 
any coefficient of sliding friction larger than 0.05 would cause instantaneous 
melting of the fault-zone materials.  This fact was originally pointed out by Harold 
Jefferies and a more detailed calculation was described by Richards (197?). 
 
Although there are geological observations of melts observed in fault zones that 
have been exhumed by tectonic uplift followed by erosion of overburden materials 
(see for example, the Punchbowl Fault described by Chester and Chester, 199?), 
the total volume of melt is very small compared with the amounts expected from 
ordinary Byerlee friction.  In fact, once a melt layer is developed, one expects the 
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fault tractions to be controlled by the viscosity of the melt.  Furthermore, we would 
expect to see that the final fault shear traction should drop to zero, which is often 
referred to as complete stress drop. A 200 MPa stress drop is a factor of one 
hundred larger than the average observed in major earthquakes.  This means that 
the average slip should be a factor of 100 times larger than is typically observed. 
 

Notice that the estimate of 2
kJ200

mm-m
 to melt a mm-thick layer is an order of 

magnitude smaller than estimates of the far-field radiated energy from a earthquake 

with a 1-m slip, about 2

slip

MJ2
m -m

D   (see 8.42).  That is to say that we should 

expect to find extensive frictional melting in the vicinity of active faults.  The big 
mystery is, why they are not observed.   
 
At this point, I will say that the paucity of melted rocks in exhumed faults implies 
that the total frictional heat per unit rupture is less than about 200 kJ/m2.  This 
implies very low dynamic friction for meter-sized slips.  At this time, such a low 
dynamic friction has not been observed in a laboratory experiment.  Which is to 
say that although it’s clear that dynamic friction in large earthquakes is very low, we 
don’t know why.  
 

Strong Rate-Weakening Friction 
 
In my 1990 slip-pulse paper, I argued that strong rate-weakening friction could be 
the key to understanding the origin of slip pulses.  I argued that it could also help 
to explain the low heat observed from tectonic deformation. 
 
One simple realization of a rate weakening friction is to hypothesize that  
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(see Cochard and Madariaga, 199?).  In this friction law, the friction has a power 
law dependence on slip velocity.  There is no inherent distance in this friction law, 
and hence this friction law cannot provide any inherent length scale to rupture 
problems that are described by this law.  While none of the friction laws discussed 
to this point are capable of generating slip pulses, this friction law can.  In order to 
estimate how much less heat can be produced by this friction law, we integrate the 
frictional force over the slip in a slip pulse, or 
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Now assuming that the slip history of a pulse  can be approximated as a truncated 
growing crack, then  
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Unfortunately, I have not been able to find an analytic solution to this integral.  However, this 
definite integral can be numerically evaluated and the answer is shown in table 8.2. 
 
   

β FRW 

0.1 0.98 

0.5 0.94 

1 0.88 

2 0.77 

4 0.61 

8 0.43 

16 0.27 

32 0.15 

64 0.081 

128 0.042 

  

Table 8.2 
 
 

Table 8.2 seems to imply that the use of the rate-weakening law still results in 
substantial frictional heating.  That is, unless the law assumes very strong rate 

weakening (i.e., 20   ).  The paucity of melt observed in exhumed faults is strong 

evidence that dynamic friction drops very rapidly behind the rupture front.  Perhaps 

it is a sudden transition from high static friction ( )0.6static   to very low dynamic 

friction ( )0.05dynamic  .  At the time of these notes, I am unaware of experimental 

observations of such low dynamic friction.  
 
Dynamic Friction in Landslides sudden transition to low dynamic friction 
 
One of the most direct ways to observe a rapid transition from high static friction 
to very low dynamic friction is to study the dynamics of landslides.  For example, 
Fig. 8-32 is a photograph of Mt. St. Helens just seconds prior to its eruption in 
1980.  Mt. St. Helens is a typical composite volcano.  These volcanoes are conical 
structures that form by the accumulation of pumice, ash, and volcanic bombs that 
eject from the top of the volcano.  In essence, a composite volcano is simply a large 
pile of unconsolidated material that is sitting at its angle of repose.  The angle of 
repose is the steepest slope that a pile of granular material can obtain in static 
equilibrium.  The angle of repose is determined by the coefficient of friction 
between the granular materials.  In the case of Mt. St. Helens, the volcanic cone 

was in static equilibrium with a slope of about 29o  .  The inter-granular 

coefficient of friction of a marginally stable cone of material is tanf   , or in 

the case of Mt. St. Helens, 0.54f   .  Steady inflation of the magma beneath the 
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volcano occurred for a period of several months prior to the eruption.  This 
inflation (about a 100-m bulge) over steepened the slope.  About 10 seconds prior 
to the eruption, a M 5.1 earthquake shook the over-steepened slope and an 
enormous landslide was triggered.   Figure 8-33 is a photograph taken early in the 
landslide.  A remarkable time lapse of photographs provides data to estimate the 
velocity of the sliding mass .  
https://www.bing.com/videos/search?q=mt+st+helens+time+lapse+video&qp
vt=mt+st+helens+time+lapse+video&view=detail&mid=58ACA9463AB2BDC
C740F58ACA9463AB2BDCC740F&&FORM=VRDGAR  
 
In the time lapse, it can be seen that approximately 3 km3 of material slid downslope 
with a velocity of about 200 km/hr.  The base of the slide appears to be on a steep 

slope of about 50o  .  The acceleration of the landslip can be approximated as 

( )1 sindynamicu g   −  .  The time lapse indicates that the friction dropped almost 

instantaneously to near zero and that the landslide mass accelerated as if frictionless 
on the steep sliding plane.  As the mass slid downslope, the pressure from the 
weight of the landslide mass was decreased in the magma chamber (very high 
viscosity alkaline magma) beneath the mountain.  This caused rapid outgassing of 
volatiles that were dissolved in the previously confined magma.  This rapid 
outgassing caused the lateral blast phase of the eruption.   
 

 
Figure 8.32.  Mt. St. Helens volcano prior to its eruption in 1980. 

 

https://www.bing.com/videos/search?q=mt+st+helens+time+lapse+video&qpvt=mt+st+helens+time+lapse+video&view=detail&mid=58ACA9463AB2BDCC740F58ACA9463AB2BDCC740F&&FORM=VRDGAR
https://www.bing.com/videos/search?q=mt+st+helens+time+lapse+video&qpvt=mt+st+helens+time+lapse+video&view=detail&mid=58ACA9463AB2BDCC740F58ACA9463AB2BDCC740F&&FORM=VRDGAR
https://www.bing.com/videos/search?q=mt+st+helens+time+lapse+video&qpvt=mt+st+helens+time+lapse+video&view=detail&mid=58ACA9463AB2BDCC740F58ACA9463AB2BDCC740F&&FORM=VRDGAR
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Figure 8.33.  Mt. St. Helens during the massive landslide that depressurized the 

magma chamber. 
 

Landslides are very similar to earthquakes; they are dynamic shear sliding on a slip 
plane.  However, in earthquakes, the rupture is confined to a portion of the fault 
plane, while in landslides, there are no ends of the rupture plane.  In essence,  
landslides are crack-like; the entire fault plane slips simultaneously.  The downslope 
slips can become very large since gravity provides the driving mechanism.  In an 
earthquake the fault-plane shear stress decreases as slip increases.  In landslides, the 
stress does not decrease until the mass is at the bottom of the hill. 
 
The most important point of Figure 8.33 is that the static friction at Mt. St. Helens 
was at least 0.54 prior to the M 5.1 earthquake.  A failure plane with very low 
dynamic friction (less than 0.1) formed very rapidly during the massive landslide.  
If the rupture velocity was similar to earthquakes (VR about 2 ½ km/s), then this 
plane formed in less than 1 s.   
 
One simple way to parameterize the dynamic friction in a landslide is to estimate 
the ratio of the vertical displacement, H, to the horizontal displacement, X 
,  of the center of mass.  This is a measure of the average slope of the landslide, and 

the effective coefficient of dynamic friction is just H
X

 .  Estimates of dynamic 

friction in landslides vary from almost 1.0 to as low as 0.06.  There seems to be a 
clear indication that landslides with larger total volumes tend to have smaller 
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dynamic frictions.  
8

1
1

dynamic
H

X V
  

+
 (where V is landslide volume in m3) 

approximately fits widely scattered observations (Johnson, Campbell, and Melosh, 
2016, The reduction of friction in long runout landslides as an emergent 
phenomenon, JGR, 121, 881-889, doi/10.1002/2015JF003751).  
 

 Force Chain Networks 
 
I will now briefly describe the behavior of granular particle systems.  This will help 
to introduce the concepts of self-organization, emergent systems, and fluidization. 
 
Sand is an example of a material that has a rich variety of behaviors.  It is comprised 
of simple grains, each of which is described by the dynamics of a rigid body.  
However, a collection of interacting sand grains can display behavior that is difficult 
to anticipate based solely on the rigid body dynamics of each particle.  For example, 
sand in an hourglass can flow like a viscous liquid.  Sand can also interact with wind 
to form sand dunes that evolve and appear to slowly propagate through space.  
Sand can also compact into a closely packed material that is well suited to form the 
foundation of structures (condensed matter physicists call this a jammed granular 
material).   
 
In the case of sand foundations, it’s important to understand the conditions that 
cause inelastic yielding of the sand.  One approach to collections of sand is to 
consider that the particles are so small and numerous that they can be simulated 
using a continuum (i.e., there is no smallest scale).  Numerous tests of yielding sand 
has demonstrated that it can be described as an elasto-plastic continuum.  In the 
case of sand, the plastic yield shear stress is dependent on the confining pressure 
of the sand.  This is usually called Drucker-Prager plasticity. In contrast, steel is 
described with Von Mises plasticity, where the yield stress is independent of 
confining pressure.  
 
The idea that there is a maximum shear stress that can be supported by sand seems 
intuitively reasonable, and you might believe that that is all you need to understand 
about the deformation of an assemblage of sand particles.  However, there has been 
new research that is revealing surprising mechanics behind the simple statement 
that a sand is elasto-plastic.  In a sense, it should not be unexpected that there is 
something else at play; sand is not elastoplastic at the grain level (it’s elastic-brittle).  
It’s only a large assemblage of sand particles that behave plastically. 
 
Experiments that reveal the mechanics of interacting sand grains show that most 
of the load carried by sand is actually borne by a relatively small percentage of the 
sand grains.  Furthermore, even if the external tractions may produce bulk shear of 
the sand assemblage, the actual loads are primarily axial stresses directed along 
collections of grains.  These are called force chains.  The details of how and when 
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individual chains appear are very sensitive to particular shapes and orientations of 
individual grains.  Although these systems were first studied using physical 
experiments, recent advances in computational dynamics have demonstrated that 
these types of systems can be numerically simulated (for example, see 
https://resolver.caltech.edu/CaltechTHESIS:12042014-104112714).   
 
Fig. 8.34 is copied from the website of Robert Behrenger (Duke Univ. Physics 
Dept., deceased).  The force chains carry axial forces that resist shearing force.  The 
axial forces cause shear in the photosensitive beads.  A video from this experiment 
shows how finite motions result in eventual failure of individual force chains.  After 
failure, new force chains rapidly develop and the ensemble behavior of the system 
appears as if it’s a plastic material.   
 
The force chains shown in Fig. 8-34 are a complex network that forms almost 
instantaneously.  This network is an example of a self-organizing system.  The 
formation of the force chains is natural and fundamental to understanding the 
mechanics of sand.  Even though prediction of the details of the network of force 
chains is very difficult, you can be certain that appropriate force chains will occur. 
 
Although the sand system deforms in a sequence of small jumps, the effect of 
individual chains is small enough that a system of many particles behaves similarly 
to traditional sliding friction.  The system shown in Fig. 8.34 is an example of a 
jammed granular system.  If the confining pressure of the system is removed 
then the particles can move freely and the same sand grains can show deformation 
that is similar to a viscous fluid, which is typically referred to as a granular fluid.  
Granular fluids are important in many industrial processes since this is a way to mix 
and transport granular materials.  The transition between jammed and fluidized 
states can occur very quickly.   
 
Fig. 8-35 is a photo taken after a massive landslide that was triggered by the M 7 ½ 
1959 Hebgen Lake Earthquake.  A substantial fraction of a 2.3 km high mountain 
slid into the Madison River Valley at an estimated speed of 150 km/hr.  The 
momentum of the slide was sufficient to cause the slide to climb several hundred 
m above the opposite valley wall.  As soon as the slide’s velocity dropped to zero 
as it climbed the valley wall, it froze into place.  This seems to be direct evidence of 
sudden transitions in the apparent friction when 1) it was initially stable on the 
mountain slope, 2) it suddenly transitioned to very low dynamic friction allowing 
the slide to accelerate downhill at high speed, and 3) suddenly transitioned back to 
high friction when the sliding velocity dropped to zero. 
 

https://resolver.caltech.edu/CaltechTHESIS:12042014-104112714
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Fig. 8-34.  Photograph of force chains that result from the shearing of an 
assemblage of photo-sensitive plastic beads that are confined to a rectangular 
bucket.  The black wedge above is moving to the left.  The polarized light is 

transmitted by beads experiencing shear strain that is the result of uniaxial stress 
carried by the force chains (from Robert Behrenger’s web site). 

 
.    
 

 
Figure 8.35.  Landslide across the Madison River in Montana triggered by the 

1959 M 7 ½ Hebgen Lake earthquake.  Note that the slide had sufficient 
momentum to climb the opposite valley wall.  I seems that the friction 

transitioned back to high static friction when the sliding velocity dropped to zero. 
 



 

362 
 

Some of the most dramatic examples of large landslides are from the Hawaiian 
Islands.  The dotted lines in Figure 8.36 map out the areal extent of landslide 

deposits that originated from the slopes of Hawaiian volcanos (Moore, J., D. 
Clague, R. Holcomb, P. Lipman, W. Normark, and M. Torresan, 1989, Prodigious 
submarine landslides on the Hawaiian Ridge: Journal of Geophysical Research, 
v. 94, p. 17,465–17,484). Several of these enormous landslides appear to have run 
out more than 100 km from their source region.  Furthermore, there is evidence 
that giant tsunamis (run-up heights exceeding several hundred meters) carried 
beach rocks far up the flanks of existing volcanos.  The most recent of these events 
has been dated at about 100,000 ybp (Megatsunami deposits on Kohala volcano, 
Hawaii, from flank collapse of Mauna Loa, McMurty, and others, 2004, Geology, 
32, 741-744, doi: 10.1130/G20642.1). 
 
 
Figure 8.37 shows a map of the head scarp of one of these landslide structures (P 
Lipman, T. Sisson, and J. Kimura - 2-4. Hilina slump area, 2001, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=69511814).  This scarp is 
called the Hilina slump (or alternatively, the Hilina fault).  Figure 8.38 is a 
photograph of the Hilina escarpment.  Obviously, the landslide is currently in 
equilibrium, which means that the friction in the landslide exceeds the shear forces 
that result from the gravitational weight of the slide. 
 

 
Fig. 8.36.  Spatial extent of debris fields created during pre-historic collapse of the 
flanks of Hawaiian volcanoes.  These enormous landslides sometimes ran more 

than 100 km along the ocean bottom. (Moore and others, 1989) 
 

 

http://hilo.hawaii.edu/~kenhon/GEOL205/Landslides2/lslide1.gif
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Figure 8.37 Map showing the extent of the Hilina slump which appears to be an 

incipient flank collapse structure. 
 
 

 
Figure 8.38.  Photograph of the escarpment of the Hilina fault (landslide).  

 
Figure 8.39 shows a schematic cross section of the Hilina slump.  The eruption of 
lavas built the broad swell of the Island of Hawaii.  The old ocean floor sits at the 
base of volcanic deposits, which are more than 10 km thick in the center of the 
volcano.  The weight of the volcanics have depressed the ocean floor so that the 
interface between the volcano and the ocean floor dips shallowly towards the 
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volcano.  This means that the toe of the landslide actually moves upwards due to 
gravitational collapse of the head of the landslide. 

 
 

 
Figure 8.39. A cross section showing the structure of the Hilina slump.  Notice 
how this cross section resembles cross sections intended to show the shallowest 

section of subduction zones. 
 
 
Landslides vs. Earthquakes or Cracks vs. Slip Pulses 
Although the Hilina slump appears to be an example of an incipient long-run-out 
landslide, it has experienced other modes of failure.  In particular, there have been 
several large earthquakes that seem to have occurred on the basal interface between 
the ocean floor and the volcanic deposits.  The 1975 M  7.4 Kalapana earthquake 

and the 2018 M 6.9 Leilani Estates earthquake both appear to have occurred as 
shallow-dipping thrust earthquakes along the interface at the base of the Hilina 
slump.  Figure 8.40 shows the surface projection of the contours of slip that were 
used to simulate teleseismic P-waves. 
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Figure 8.40.  Slip model of the 2018 M 6.9 Leilani Estates 
earthquake (Lay, T., Ye, L., Kanamori, H., & Satake, K.(2018). 
Constraining the dip of shallow, shallowly dipping thrust events 
using long-period Love wave radiation patterns: Applications to the 
25 October 2010 Mentawai, Indonesia, and 4 May 2018 Hawaii 
Island earthquakes. Geophysical Research Letters, 45, 10,342–
10,349. https://doi.org/10.1029/ 2018GL080042) 

 
As is the case for almost all shallow crustal earthquakes, these moderate-sized 
earthquakes were probably propagating slip pulses.  Furthermore, the dynamic 
friction during the slip pulses was probably very low (just like most shallow crustal 
earthquakes).  The main difference between these earthquakes and a giant long-
run-out landslide is that the landslides were certainly expanding cracks.  Of course, 
a standard crack has a crack tip at at least one end (In many cases the crack extends 
to the surface).  In the case of a landslide, both ends extend to the surface. 
 
Presumably, there is a critical dimension for slip pulses.  If the slip pulse becomes 
larger than this dimension, then it transitions into an expanding crack.  At this point, 
I don’t know what this critical size is, but I can make an educated guess.   For 
example, the M 8.8 2010 Maule earthquake was well recorded by high-rate GPS 
stations located directly above the rupture.  Figure 8.41 shows the displacements at 
several stations located above the rupture.  Clearly this is an example of a slip pulse; 
the slipping had already stopped at stations in the south near the epicenter before 
rupture even began beneath stations in the north. Heaton, T., S. Minson, M Simons, 
2011, S11A-2201 Characterization of the Slip Pulse for the 2010 M 8.8 Maule 
Earthquake, Fall AGU). 
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Fig. 8.41. GPS displacements recorded during the M 8.8 2010 Maule earthquake.  

This is clear evidence that the rupture consisted of a slip pulse; not all of the 
points on the rupture surface are slipping simultaneously. 

 
While almost every reasonably well recorded earthquake seems to be best modeled 
with slip pulses, there are several examples that suggest that slip pulses grew so large 
that they turned into expanding cracks.  I think that the best example of this 
behavior is from the 2011 M 9.2 Tohoku earthquake.  Figure 8.42 shows the surface 
projection of contours of slip on the subduction interface (Simons, Minson, Sladen, 
Ortega, Science, ).  This slip model was constructed to simulate co-seismic GPS 
displacements combined with tsunami waveforms, which are primarily determined 
by the spatial pattern of coseismic uplift.   Although the inferred slip is large (as 
much as 40 m in the hypocentral region), the inferred rupture history can be 
interpreted as a very large slip pulse.  The Simons and others model appears to 
show that the rupture did not extend all of the way to the ocean floor.  
Unfortunately, the model resolution in the shallowest region (at the trench) is poor 
since the displacement data is only available from on-shore GPS stations.  
Furthermore, in the limiting case of zero depth, there are no radiated seismic waves 
for the case of a horizontal fault.  That is, slip that occurs at the upper edge of a 
subduction earthquake is practically invisible for seismic studies. 
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Figure 8.42 

 
 

There was a lucky break for researchers studying the Tohoku earthquake.  Ocean 
bottom observatories TJT1 and TJT2 had been installed just west of where the 
mega-thrust fault intersects the ocean floor (see Figure 8.43).  Sonar positioning 
had been used to calculate the position of these stations on the ocean floor.  
Although the pressure records from the earthquake were of interest, the most 
amazing observation came from relocating the stations after the Tohoku 
earthquake.  In particular, the change in position of TJT1 and TJT2 was determined 

to be 62 ± 20 m and 53 ± 20 m, respectively.  In addition, the pressure gauges 
indicated that the stations had been uplifted by 5 m (Ito and others, 2011).  It seems 
as though there was exceptionally large slip on the very shallowest part of the 
rupture.  Ito and others showed that this large shallow slip was consistent with a 
large pulse in tsunami height that was recorded on two ocean bottom pressure 
sensors, TM1 and TM2 which are located closer to the Honshu coast (see Figure 
8.43).  Ito and others summarize their findings in Figure 8.44; they concluded that 
the slip in the 50-km wide shallow part of the rupture (average depth of 4 km from 
the ocean bottom) was about 80 m.   
 
Remarkably, there was no evidence for this enormous slip to be found in the short-
period accelerograms recorded on either Honshu or in the teleseismic body waves.  
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Of course, this is what one would expect from crack-like rupture; the high-
frequency radiation is only from the propagating crack tip.  Furthermore, in the 
limit of a horizontal fault that becomes very shallow, there are no radiated waves 
of any sort (including surface waves).  That is, very shallow thrusting on very low-
angle planes is essentially invisible to seismometry.  Unfortunately, this faulting 
geometry can cause static uplift of the ocean bottom, which can cause large 
damaging tsunamis.  Shallow crack-like slumping at an ocean trench seems to be a 
logical explanation for tsunami earthquakes, which are a class of nearly silent 
earthquakes (or slumps) that generate dangerous tsunamis (see McKenzie and 
Jackson, 2012, Tsunami earthquake generation by the release of gravitational 
potential energy, EPSL, 345-348, 1-8). 

 
Figure 8-43.  Locations of ocean-bottom observatories operating during the 2011 
Tohoku earthquake (Ito, Y, T. Takeshi, Y. Osada, M. Kido, D. Inazu, Y. Hayashi, 
H. Tsushima, R. Hino, and H. Fujimoto, 2011, Frontal wedge deformation near 

the source region of the 2011 Tohoku‐Oki earthquake, Geophys. Res. Lett., 38, 
L00G05, doi:10.1029/2011GL048355). 
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Figure 8-44.  Schematic showing the region of inferred large slip near the Japan 
Trench for the 2011 Tohoku earthquake (Ito and others,  2011).  The dip of the 

megathrust is so shallow that it appears that the shallowest part of the earthquake 
can be interpreted as a gravitational slump.  

 
While it is uncommon to find direct evidence for crack-like rupture in earthquakes, 
crack-like rupture might also help to explain puzzling features of the enigmatic 1960 
M 9.5 Chilean earthquake.  Crack-like rupture produces very large slips that are 
spatially smooth; the ratio of short-period to long-period radiated energy is small 
for crack-like ruptures as compared to pulse-like ruptures of comparable potency.   
 
Figure 8.45 shows the peak amplitude of broad-band (1 s to 90 s) teleseismic P-

waves for the largest earthquakes of the 20th Century.  WM  for these events is 

based on the potency (aka seismic moment) which was estimated from a variety of 
long-period measurements that include geodetic positioning, tsunami excitation, 
and excitation of free oscillations.  Notice that, with the exception of the 1964 M 9 
¼ Alaskan earthquake, the largest earthquakes have long-period body waves that 
saturate with magnitude.  This behavior is inconsistent with standard spectral 
scaling laws.  It presents us with a mystery.  Why are the potency rate functions of 
the largest earthquakes smoother than other earthquakes? Figure 8-46 shows 
potency-rate functions inferred for these largest events.  These time functions were 
derived from teleseismic P-waves recorded by the long-period Benioff seismometer 
in Pasadena, which has a response that is flat to velocity between 1 s and 90 s (see 
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chapter 3).  In the case of the largest earthquakes (M > 9), it appears that there is a 
large portion of the potency rate function that is not visible in the 1 to 100 sec 
teleseismic P-waves. 
 
One plausible explanation is that many of these largest events may have sections 
with crack-like ruptures, which are characterized by large, spatially-smooth slips.  

 
Figure 8-45. Maximum distance corrected P-wave amplitude on the Pasadena 

broad-band seismograph (aka, Benioff 1-90) for the largest earthquakes of the 20th 
Century.  The triangles are observed data and the circles are predicted from 

standard f-2 spectral scaling.  This scaling seems to match the observations of 
most earthquakes, except those with M > 9.  Hartzell, S., and T. Heaton, 1988, 

Failure of self-similarity of large shallow subduction earthquakes, Bull. Seism. Soc. 
Am., 78, 478-488. http://resolver.caltech.edu/CaltechAUTHORS:20121121-

115204715 
 
Figure 8.46 shows Potency Rate functions that are 1) compatible with the observed 
1-90 records, 2) have potencies that are compatible with estimates using free 
oscillation data, and 3) that have overall durations that are inferred from the source 
dimensions and typical rupture velocities (Hartzell, S, and T. Heaton, 1985, 
Teleseismic time functions for large shallow Subduction zone earthquakes, Bulletin 
of the Seismological Society of America , v. 75, pp. 965-1004. 
http://resolver.caltech.edu/CaltechAUTHORS:20130130-145105862). The 
apparent saturation of intermediate-period body waves is also recently reported by 
Kanamori and Ross (Reviving mB, Geophys. J. Int. ,2018, 216, 1798–1816 doi: 
10.1093/gji/ggy510). 
 

http://resolver.caltech.edu/CaltechAUTHORS:20121121-115204715
http://resolver.caltech.edu/CaltechAUTHORS:20121121-115204715
http://resolver.caltech.edu/CaltechAUTHORS:20130130-145105862
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The bottom line seems to be that there is evidence that slip pulses can transition into 
growing cracks if the pulse becomes large enough (perhaps slips > 20 m are predominantly 
crack-like). 

 
Figure 8. 46 
 
Initiation of cracks 
 
At the other end of the scale, earthquake nucleation is almost certainly a crack-like 
process.  In order to have dynamic instability (an earthquake), it is necessary that 
the rate at which potential energy (usually strain energy) is removed from the system 
must exceed the rate of energy dissipation in inelastic processes (friction).  For 
example, see equation 8.95, which estimates the minimum area that a crack-like 
rupture can experience dynamic instability.  When Dieterich-Ruina friction is 
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assumed for slowly increasing shear stress (e.g., plate motion), then inelastic strains 
tend to concentrate in an area that eventually becomes the hypocenter of an 
expanding crack.  This temporal evolution is a consequence of the evolving state 
variable, and the nucleation process may accelerate over days in a small patch.  The 
important point is that ruptures cannot initiate as slip pulses; the rupture area of 
the slip pulse would be smaller than the critical length for instability. 
 
 
Transition from cracks to pulses 
 
Assuming that all earthquakes initiate as growing cracks, and that most significant 
shallow crustal earthquakes appear to be propagating pulses, leads to the conclusion 
that there must be some length where there’s a transition from crack-like rupture 
to pulse-like rupture.  Currently, finite fault modeling of seismograms is the 
methodology that allows us to image slip pulses.  This detailed 3-d imaging is more 
difficult when the distance to the observation is large compared with the dimension 
of the rupture.  That is, it has not been feasible to image the ruptures of earthquakes 
smaller than M 5 ½ with enough precision to resolve slip pulses.  
 
Another way to investigate the transition of cracks to pulses is shown schematically 
in Figure 8.47 (from Meier, Heaton, and Clinton, 2016).  This schematic shows 
several circular arcs on a rupture plane.  The arcs are meant to show crack (or 
healing) fronts at different times.  The shaded areas show the slipping region for 
several different times.  For areas near the point marked as nucleation, all of the 
area is slipping in the moments after the rupture front has passed; it’s an expanding 
crack.  At later times, the rupture front has propagated further from the hypocenter 
and the slip is now confined to a pulse.   
 
The schematic shows expected slip profiles at different times.  When the 
earthquake is crack-like, we expect to see spatially smooth slip profiles, whereas 
when it’s a pulse, we expect to see spatially heterogeneous slip; I’ll come back to 
that to explain why pulses are inherently unsteady.  Panel d is a schematic of the 
potency rate function that one would expect from such a conceptual model.  
Remember that the far-field displacement should look like the potency rate 
function. 
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Fig. 8-47 Cartoon showing concept for transition between crack-like and pulse-

like rupture (see text). 
 

 
Meier, Heaton, and Clinton investigated a large set of near-source displacement 
records (doubly integrated from accelerograms).  The records were all at 
hypocentral distances of less than 25 km and they were all processed in the same 
way.   The records are sorted into magnitude bins and then the log of the median 
peak displacement for each magnitude bin is plotted as a function of log time (see 
Fig. 8-48).   The  use of a log-log plot allow us to look for power-law behavior.  
Time is defined with respect to the first P-wave.  Pay close attention to the 
logarithmic time scale; the first decade is only one tenth of a second and the center 
of the plot is just 1 second.  The S-wave pick times are displayed at the bottom of 
the plot as single points for each record.  Notice that the S-waves do not begin to 
arrive until several seconds after the P-arrival.  Also notice that for the first 0.2 s, 
the median motions are approximately the same, independent of the magnitude.  

Furthermore, the pgd’s grow quickly and increase as approximately 3t .  We 
interpret this initial rapid growth as crack-like rupture in the hypocentral region.  
There also appears to be a change in the pgd growth rate at about ¼ s.  That is, pgd 

seems to grow as 3t  until it transitions to a growth rate of about 1.3t  for times 
greater than ¼ s.  Of course, earthquakes smaller than M 4.5 seem to be all over by 

¼ s, so the transition to 1.3t growth is only observed for earthquakes larger than M 
4.5.   
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Fig. 8.48 

 
 
I interpret this break in growth at 0.25 s (corresponds to M 4.5) as the transition 
from cracks to pulses.  I admit that this evidence is suggestive and not compelling.  
If this is the transition from cracks to pulses, then we can estimate the rupture 
length at which the transition occurs.  For crack-like rupture, the total event 
duration is about twice the time required for the rupture to spread, or 

2event
R

ST
V

  .  ( )
1

0.25
2

crack pulse RL V s−   .  If we use a typical rupture velocity 

of 2.5 km/s, then the transition would occur at a rupture length on the order of 
250 m.  Unfortunately, the assumption of a length-scale independent rupture 
velocity is not at all obvious.  That is, it seems plausible that the rupture velocity 
increases as the crack grows.  That possibility of increasing rupture velocity seems 
difficult to assess and I will ignore it for the present.  Assuming that the dimension 
of the rupture at which this break in scaling is 250 m, then the rupture area would 

be on the order of 46 10  m2 (assuming that the rupture approximately square).  
We can use 8.22 to estimate that that corresponds to a magnitude 3.0 earthquake.  
This estimate is similar to the M 4.5 at which the scaling changes in Fig. 8.48.  Using 
8.30, we can estimate the total change in potential energy as 
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Or, 
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If the rupture area is 46 10  m2 , then  
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the prestress 0  is a typical Bayerle stress of 200MPa, and if the stress drop is the 

average of 3 MPa. Then the change in potential energy of a M 3.0  is about 5 MJ/m2.  
This enough energy to melt several mm’s of fault material.  This potential energy 
change can be compared with the radiated energy that is estimated using 8.57.  The 
following is from an unpublished note from Hiroo Kanamori. I lightly modified 
his equations which were written in the familiar form of seismic moment and 

assuming a circular rupture. I will assume the standard 
2f −

 model 
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The S-wave energy is large compared to the P-wave, so neglect the P-wave. 
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Using the standard Brune model, 
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To compare the radiated energy per unit rupture area with the potential energy per 
unit rupture area, we need to divide 8.112 by the rupture area 
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And we obtain 
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If we assume that 3MPa, =  
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  kJ/m2.    However, the 3 MPa stress drop is a number 

that is appropriate to simulate static stress drop.  Our current derivation is designed 
to simulate near-source high-frequency motion.  In this case, it seems more 
appropriate to use effective stress instead of static stress drop.  Hanks and McGuire 
used near-source acceleration records to conclude that effective stress is about 10 
MPa.  Inserting 10 MPa into 8.114 gives an estimated radiated energy of 2MJ/m2.  



 

377 
 

Clearly, there is ambiguity in obtaining the  radiated high-frequency energy estimate.  
However, I would say that it’s in the range of 1 MJ/m2.  
 
In order to form a slip pulse, there must be enough potential energy change to 
sustain the high-frequency radiated energy in a slip pulse.  If we say that the high-
frequency energy (f > 2 Hz) radiated by a slip is described by a white noise 
acceleration spectrum (this is basically Brune’s model), then we can use 8.114 to 
provide a very rough estimate of the radiated high frequency energy.  Since the 
rupture area of a slip pulse is small compared to a crack, the estimate may be larger 
than that just provided (as large as 200 kJ/m2??).  Our earlier estimate of potential 
energy change of 5 MJ/m2 for a M 3 indicates that there is abundant available 
energy to support the radiation of high frequency waves (greater than 2 Hz) that 
are observed in the near-source region of slip pulses.  
 

The Sound of Slip Pulses 
 
I have used the phrase, “white noise,” without providing much definition or 
context.  The “colors of noise” is a concept that originates in audio engineering.  It has 
been observed that many forms of noise have random phase with a power 

spectrum that is approximately described by a power law 
2f 

 .  Recall that the 

power spectrum is an energy spectrum.  That is, if the power spectrum is
2f 

 , then 

the amplitude spectrum is f 
 .  In the case of sound, the amplitude of sound is 

proportional to acoustic pressure, which is proportional to the particle velocity.   
 
In audio engineering, the term, white noise, refers to a sound that has equal energy 

in all frequency bands (
2 0f =

, just like white light).  In this case, the amplitude 

spectrum is also flat and white.   A good example of the sound of white noise is the 
sound that an old-fashioned AM radio makes when it’s tuned between stations 
(sometimes called shot noise).  If the amplitude spectrum of the particle velocity is 

constant, then the amplitude spectrum of the particle displacement is 
1f −
 , and the 

spectrum of the particle acceleration is 
1f  .  Now the observation of the “sound 

of a slip pulse” is that it has constant particle acceleration amplitude, or the velocity 

amplitude spectrum is 
1f −
 .   This in turn gives a power spectrum that is 

2f −
 .  

Noise of this type is typically called red noise.  This form of noise is quite common 
in physical systems.  For instance, the time integral of randomly timed force impacts 

(e.g, Brownian motion) produces 
1f −
red noise. Red noise sounds very much like 

the roar of a waterfall. 
 
It seems that slip pules are accompanied by white-noise acceleration with a total 
radiated energy on the order of 1 MJ/m2.  It’s as if slip pulses have a distinctive 
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sound (the sound of a waterfall).  Furthermore, this noise seems to be consistent 
with the notion that the slip pulse is characterized by Brownian-motion-like impacts 
from a fluidized granular material.     
 

 Modeling Slip Pulses 
 
In my 1990 paper, I presented observational evidence that earthquake rupture is 
pulse-like and I then presented a conceptual model of dynamic friction that I 
claimed would produce slip pulses.  In particular, I hypothesized that dynamic 
friction was inversely proportional to slip speed, which is a particular realization of 
the friction law in equation 8.99.  At the time that I wrote the slip pulse paper, I 
searched for an analytic solution for a steady slip pulse.  The only solution that I 
found is a solution by Freund (1970), although pulse-like ruptures were first 
introduced by Joffe.  Fig. 8.50 shows Freund’s solution for a mode III slip pulse of 

length pl  that is propagating at constant velocity RV  .  The shear stress at infinity 

is uniformly equal to 0 and the shear stress on the slipping patch is p .  The 

dynamic stress drop of the pulse p  is given by 
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Figure 8-49. Idealized model of Freund (1970) in which a pulse of slip propagates 

steadily at velocity 
RV .  A uniform shear stress 

0 is applied at infinity and the 

shear stress on the slipping portion of the fault is assumed to be to f  . 

 
This solution is obtained by the appropriate transformation of the static solution 

of a mode III crack of length pl  .  This solution has numerous quirks that limit its 

usefulness.  In particular, if the rupture velocity approaches the shear velocity, then, 
for a given slip, the length of the slip pulse tends to zero.  Or alternatively, given 
the length of the slip pulse and the slip, then the dynamic stress drop of the slip 
pulse tends to zero as the rupture velocity approaches the shear wave speed.  These 
features are the result of singular stress at the crack tip that results from 
instantaneous stress drop (no fracture energy).  Presumably, the stress at the leading 
edge of the slip pulse is approximately the shear stress that is required to overcome 
static friction.   

  
As was mentioned earlier, there is no inelastic work at the crack front (fracture 
energy) and the crack front has singular stresses that cannot be handled numerically.  
The second issue is that this friction law has no stable steady-state solutions.  In 
particular, a steady-state pulse should propagate at a constant velocity and with a 
slip pulse of constant slip.   
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Another strange aspect of this solution is that the static stress drop is zero.  That is, 
the pulse propagates indefinitely, so the total rupture length is infinite while the slip 
is a constant.  Finally, since this solution is obtained from a transformed static 
solution, there are no radiated waves generated by this slip pulse.  This turns out to 
be an important feature of a slip pulse that propagates steadily.  It is invisible 
to seismology.  A slip pulse only radiates far-field waves when 1) either it 
changes its amplitude as it propagates, or 2) it changes its rupture velocity.  
You can obtain further insight in this by reading the analysis associated with Figures 
7.12 and 7.13.  Interestingly, this invisibility of steady-state slip pulses means that 
we cannot resolve the upper limit of slip velocity from seismic data.  That is, 
you can only observe the details of a slip pulse if you are so close to the pulse that 
you can observe the near-field terms (basically the static part of the solution).  Since 
seismic measurements are only available from the Earth’s surface, it is practically 
impossible to observe the true nature of slip pulses that propagate at depth greater 
than a couple of km. .  However, it is possible to put a lower bound on the average 
slip velocity.  In particular, the duration of pulse-like ground velocities in the 
forward directivity direction provides a lower bound on slip velocity.  Since 
directivity pulses are only observed for mode II ruptures (they are on the fault 
normal component of stations located near a fault with the provision that the 
rupture is propagating parallel to the slip direction (i.e., mode II).  Modeling of 
records of this type indicates that the length of slip pulses is typically less than 10% 
of total rupture length. 
 
It appears that the average slip velocity in slip pulses is greater than 2 m/s.  Since 
the elastic strain in shear waves is on the order of the particle velocity (1/2 the slip 
velocity) divided by the wave speed (see Chapter 3), we can conclude that a particle 
velocity of 1 m/s in a material with a shear wave speed of 3 km/s implies a shear 

strain of about 
43 10− .  Therefore, a slip velocity of 20 m/s implies a shear strain 

of about 
33 10− , which is about the maximum shear strain that rocks can sustain 

at the confining pressure of earthquakes.  While 20 m/s slip velocities (at 10 km 
depth) is an order of magnitude faster than is typically assumed for earthquakes, it 
is not possible to exclude the possibility of slip velocities as high as 20 m/s.  
Again, high slip velocity in a slip pulse that is steadily propogating at depth does 
not necessarily produce large high-frequency radiation.    
 
It is important to recognize that the solution given by 8.115 is not a “self-healing” 
pulse.  It is only a slip pulse because I constrained the fault rupture to be pulse-like.  
In my 1990 slip-pulse paper, I hypothesized that friction that scales with inverse 
slip velocity should produce slip pulses.  As it turns out, it has not been possible to 
simulate the behavior of two half spaces that are governed by a friction law that 
varies inversely with slip speed.   
 
While a solution like that shown in Fig. 8.24 can match boundary conditions, it is 
not a stable solution.  In order to achieve a stable solution, then it must be that 
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slight perturbations from homogeneity in the prestress should have little effect on 
the solution.  Assume that you have found a slip pulse that will propagate steadily 
at a particular homogeneous prestress.  Now assume that some slight perturbation 
occurs as the pulse runs (e.g. a tiny patch with higher prestress).  When the pulse 
hits the perturbation, then the pulse temporarily begins to grow larger, which means 
that it has slightly larger slip speed.  However, larger slip speed means that the 
friction drops, which causes the pulse to grow even larger.  That is, if you put a tiny 
positive perturbation to a steadily running slip pulse, then it grows spontaneously 
without bound.  Similarly, if you perturb the solution such that it temporarily 
becomes smaller, then it quickly shrinks to zero.  
 
Rice and Lapusta recognized this difficulty and they concluded that a friction that 
is purely rate weakening would produce slip pulses with unstable solutions (Rice, J. 
R., Spatio-temporal complexity of slip on a fault, J. Geophys. Res., 98(B6), 9,885–
9,907, 1993).  They concluded that pure rate weakening friction is a pathological 
mechanics problem.  They said that this problem is ill posed.  By that they meant 
that there was insufficient information to construct a solution to the problem.  In 
particular, there is no length scale to rate weakening friction; while a stable slip pulse 
has a length scale associated with it (see Chapter 5 of Ahmed Elbanna’s PhD 
dissertation for further discussion).   
 
Aagaard and Heaton (2008, Constraining fault constitutive behavior with slip and 
stress heterogeneity, J. Geophys. Res., 113, B04301, doi:10.1029/2006JB004793) 
studied this problem using 3-d finite element models of sliding faults with a friction 
law that had both slip weakening (fracture energy) and rate weakening.  They were 
unable to simulate rupture using pure rate weakening (i.e. zero fracture energy) 
since the solutions became singular at the crack tips; it was not possible to attain 
numerical stability.  Based on this knowledge, they hypothesized that, if there is a 
solution to pure rate-weakening friction, then the solution would have to be 
described by a fractal, since fractals and homogeneous solutions are the only classes 
of solution that have no inherent scale. 
 
Aagaard and Heaton were searching for ways to produce earthquakes that had self-
sustaining heterogeneity.  That is, they observed that most finite fault source 
inversions resulted in slip models that 1) were characterized by slip pulses, and 2) 
the slip models were spatially complex.  Aagaard and Heaton attempted to find 
ways to produce self-sustaining spatial heterogeneity that would persist through 
many millennia of earthquakes.  Although they were able to find spatial 
distributions of frictional properties that would produce spatially heterogeneous 
slip in response to plate motions.  They found that the residual stress that was left 
after the heterogeneous event was then spatially correlated with the heterogenous 
friction. The result was that the next event in the sequence was spatially 
homogeneous.  Aagaard and Heaton wanted to show that strong rate weakening 
could produce earthquakes that were 1) self-sustaining heterogeneous, 2) skip 
pulses, and 3) that required very little inelastic dissipation energy (friction and 
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fracture energy).  Unfortunately, achieving numerical convergence with low 
fracture energy and with strong rate weakening was not possible with even the 
largest super computers.  When they recognized that the number of computations 

required for this calculation grows as 4
1

x
, they realized that finite element 

simulations could not solve this problem.  Worse, the simulation of strong rate 
weakening and low dissipation requires that the model should evolve into a 
prestress that is spatially complex.  In particular the prestress must be fractal (I’ll 
get back to that later).  This makes the numerical simulation problem even more 
overwhelming.   
 
Aagaard and Heaton found that they could produce more spontaneous slip 
heterogeneity by increasing the strength of the rate-weakening in their friction law.  
A general observation that comes from numerical finite element modeling of 
rupture dynamics is, if you assume relatively homogeneous prestress, then the 
change in potential energy per unit rupture area grows as the rupture length grows.  
The only parameter that is available to absorb all the potential energy is the fracture 
energy; the fracture energy must exceed the radiated energy if you want to control 
the dynamics of an earthquake.  I have seen numerous dynamic models with 
enormous fracture energies.  My opinion is that these reported fracture energies are 
simply introduced as a way to avoid numerical instability in the calculation of stress 
at the rupture fronts.  I will shortly argue that prestress is extremely heterogeneous 
and that this prestress heterogeneity serves to limit the growth of dynamic ruptures. 
 
Following the realization that there are fundamental difficulties with 3-d finite-
element modeling dynamic ruptures assuming strong rate-weakening friction, 
Ahmed Elbanna and I took a different approach.  We decided to study the impact 
of strong rate weakening friction on a 1-d spring-block-slider model (sbm).  The 

sbm (shown in Fig. 8.50) consists of a number ( )1,...,i m=  of identical point 

masses that are connected with identical leaf springs (stiffness lk ) to rigid blocks 

(above and below) that move with a steady differential velocity v  .  Additionally, 

the blocks are connected to each other by identical coil springs (stiffness 
ck ).  

Finally, there is uniform rate-weakening friction between the masses and the lower 

rigid block (
1

1
fi

i

F
bu

=
+

 ).  Dynamic friction is specified to occur at any block that 

exceeds a specified maximum force.  While you might think of this maximum stress 
in a block is the “strength” of this system, it seems that changing the value of this 
maximum has very little effect on the overall behavior of this system.   
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Figure 8.50 

 
The sbm has several tunable parameters that control the system behavior.  In 
particular, if the coil springs are stiff, then there is strong coupling between the 
masses and when failure occurs, it tends to involve all of the blocks.  In fact, events 
tend to be crack-like in the sense that all bocks are moving during an event.  As I 
have already mentioned this friction law provides a positive feedback in the 
dynamics of this problem.  That is, the faster the sliding, the lower the friction 
which produces even faster sliding.  Positive feedback dynamics is often a 
characteristic of chaotic systems.  For example, the stock market is a highly complex 
system.  When stock prices are rising, people want to buy so they can get in on the 
profits.  Conversely, when stock prices are falling, people want to sell before they 
lose their investment.  Wild fires are another example of a positive feedback system.  
The larger a fire, the faster it spreads.  Epidemics are another example of a positive 
feedback system.  All of these systems have complex behavior that is difficult to 
predict.  In fact, often the behavior is so complex that we resort to random variables 
to describe them.  However, it is important to recognize that complexity does not 
necessarily imply random.  In fact, surprising structure can spontaneously appear 
as the result of chaotic dynamics. 
 
Elbanna and I chose to investigate the sbm model since it is simple enough to 
explore with modern computers, while it still has characteristics that are of interest 
for earthquake dynamics.  In particular, it is possible to explore the consequences 
of strong rate weakening friction using an sbm model.  One reason that sbm’s are 
amenable to computer simulations is that they are nearest-neighbor models.  That 
is, motion of a single block only affects the adjacent blocks.  This is in contrast to 
an elastic continuum; slip on a fault segment causes stress changes throughout the 
entire medium.  The fact that the motions at a finite-element node are affected by 
the motions of all other nodes is responsible for the enormous size of 3-d 
continuum calculations.  By their very nature, slip pulses are short-range 
phenomena, and it’s critical to have a numerical scheme that concentrates on short-
range phenomena if there is any hope of studying them.   
 
There are two distinct stiffnesses in the sbm, the coil springs and the leaf springs.  
If the friction is dropped to zero, then the coupled blocks vibrate through traveling 
waves.  These waves are dispersive because of the two stiffnesses.  If the system is 
frictionless and composed of only coil springs, then the system is nondispersive 
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and the sound wave velocity is, c
s

k
c

m
= .  If leaf springs are added to the 

frictionless system, and if it is excited by harmonic forcing of frequency  , then 
the wave speed is dispersive and is given by 

 
( )

2
1 l

p s

s

k
c c

c
= −   8.118 

  
Fig. 8.51 shows the spatio-temporal characteristics of a typical slip pule in an sbm 
with velocity weakening friction.  Notice that the pulse is very localized as it runs 
(pulse width is 5% of the rupture length).  Furthermore, the pulse seems to be 
nondispersive and running at the sound velocity (since the springs are linear, there 
is no way for disturbances to jump to supersonic velocities).  The apparent constant 
rupture velocity is typical of most events in this system and it is a key feature that 
allowed us to develop the slip-pulse energy equation that allows us to simulate this 
system with a single equation (more later on the pulse-energy equation). 
 
 

 
Figure 8.51 

 
Even though all of the springs, masses, and friction laws are identical for every 
block in our model, the individual events are quite complex.  Typically, we initiate 
the system by assuming a higher pre-stress in some group of blocks.  Although 
individual events can become quite large, they do not grow without bound since 
the energy in the leaf springs that drives the system has an upper bound.   After a 
large number of events have occurred, the system attains an unusual kind of steady 
state.  That is, the statistical properties of the events and the prestress no longer 
change as more events occur.  That is, the systems evolve towards a strange 
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attractor.   In dynamics, an attractor is a state that a system tends to evolve to 
independent of initial conditions.  An attractor is called strange if is described by a 
fractal.   An example of the nature of the prestress that has evolved after tens of 
thousands of events is shown in fig. 8.52. 

 
Figure 8.52 

 
 

The model is unitless and the maximum shear before dynamic failure is 50 units.  
In this example, the next event starts as an expanding crack at the narrow spike at 
block 290 and it then quickly becomes two slip pulses that propagate bilaterally 
until they arrest at block 225 on the left and block 345 on the right.  Notice that the 
pulses propagate at the relatively low prestress of 10 units and that they arrest after 
propagating across regions of negative shear stress.   Many colleagues have been 
surprised that a frictional system that is being forced with right-lateral shear can 
evolve patches of left-lateral shear stress.  In the case of slip pulses in an sbm, the 
answer is quite simple.  As a slip pulse propagates, it can become accumulate large 
kinetic energy (i.e., large slips).  Because of the strong feedback in the friction law, 
slip pulses can also arrest very abruptly.  When this happens, there can be a patch 
of very large slip that is frozen in when the event is over.  The slip may be locally 
large enough that it causes shear stress in the opposite direction of the motion of 
the rigid plates driving the system.   
 
Even though there are patches of negative shear in this self-organized prestress, 
there are never any events that have slip in the opposite direction of forcing.  That 
is because events only nucleate when the stress exceeds a threshold and this only 
happens when the prestress has the same polarity as the driving stress.  This same 
principle applies to the Earth.  If there are patches of negative prestress (e.g., left-
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lateral stress on the San Andreas fault), then they are mostly invisible to seismology 
since such patches will not nucleate future events.  For more discussion on this 
subject, see Smith and Heaton. 
 
Figures 8.53 shows an example of the types of events that occur after the system 
has evolved into a strange attractor.  We call this example Case A.  In each of these 
plots, a sequence of thousands of consecutive events are plotted.  Each event (event 
index is the horizontal axis) shows the blocks that moved during that event.  Fig. 
8.53 shows events number 62,000 through number 66,000.  Most of these 4,000 
events involve only short ruptures, although there are many long ruptures as well.  
If you stare at this sequence, it would be easy to convince yourself that there are 
likely to be some blocks with different properties that control the locations of 
events.  Of course, this is not the case; everything is uniform in the model.   
 
There are also persistent local knots that experience a large number of mostly short 
ruptures.  These knots sometimes persist even after a long rupture extends through 
the knot.  Inevitably, though, these knots are transitory, and some future large event 
erases them and causes new knots to appear.  It’s important to remember that sbm’s 
only have nearest neighbor interactions.  This means that once a knot forms, 
conditions at the knot are totally independent of what is happening at more distant 
nodes in the system. 
 

 
Figure 8.53 

 
Although I claim that this system is chaotic, there is actually quite a bit of structure 
in the spatio-temporal sequence of the larger events.  Complex does not mean that 
it’s random.  In nonlinear dynamics, a system is called chaotic if its long-term 
solution is sensitive to perturbations in initial conditions.  If a small change in the 
prestress at some time causes the future events to diverge from the unperturbed 
system, then the system is chaotic, which is the case for this system. 
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Figure 8.54 

 
Fig. 8.54 shows a snapshot of the shear stress that is associated with Figure 8.53 
(case A).  Only 1,400 of the 10,000 total blocks are shown to better display the 
spatial complexity. Areas where the prestress is negative (opposite to the driving 
stress) are shown in red.  Even though the next event on this system is entirely 
controlled by this prestress distribution, it is virtually impossible to guess what the 
next event will look like.  You’ve got to run the computer to calculate the complex 
evolution of the next slip pulse as it propagates through the system. Later, I will 
show an equation that does in fact do this calculation. An important feature of the 
system is that two events with virtually identical prestresses can be very different if 
the events nucleate at different places. 
 
Figure 8.55 shows the relationship between average slip in an event and the rupture 
length of the event for Case A.  Although there is large scatter, there is a clear trend 
that shows that events with larger rupture lengths have larger average slips.  In fact, 
the ratio of the average slip divided by the rupture length is approximately 
independent of the overall size of the event (as measured by the rupture length).  
Figure 8.48b shows the same events, but in this case, the vertical axis is the average 
change in stress (stress drop) and the horizontal axis is rupture length.  This implies 
that the average stress drop in this system is independent of the event size.  This is 
very similar to the observations of natural earthquakes. In the case of chaotic slip 
pulses, the scale invariance of stress drop is a consequence of self-
organization of the prestress; it’s not caused by details of the friction law.  
 
Although the stress drop is scale invariant in this model, there is still a scatter of 
about a factor of 100 between individual events.  Similar scatter is seen in natural 
earthquakes.  I have the impression that many researchers believe that the scatter 
in observed stress drops is primarily caused by erroneous measurements.  
Personally, I believe that most of this scatter is real and that it comes from the 
natural variation arising from rupture complexity of slip pulses.  In fact, the average 
stress drop of earthquakes is almost certainly a measure of the heterogeneity of the 
spatial distribution of slip.  That is, if the amplitude of a slip pulse changes slowly 
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as it propagates, then the probability that the pulse will drop to zero is small 
compared to a similar sized pulse whose amplitude changes rapidly as it propagates.  
This topic is discussed in a paper by Liu-Zeng, Heaton, and DiCaprio, 2005, The 
effect of slip variability on earthquake slip-length scaling, Geophys. J. Intl., 162 (3), 
841-849. http://resolver.caltech.edu/CaltechAUTHORS:20130305-102043001.  
It seems that the more heterogeneous the slip, the higher the average stress drop.   
 
 

 

 
Figure 8.55. CaseA 
 
There are several parameters to play with in the sbm models.  The first and most 
important is the ratio between the coil spring stiffness and the leaf spring stiffness.  
If the coil springs are very stiff, then the blocks tend to move in unison and then 
there are more large events and fewer small events (Case A, Fig. 8.53).  That is, 
stiffer coil springs produces events with less spatial heterogeneity and it also results 
in suites of events that have lower b-values (Gutenberg-Richter). 
 
Figure 8.56 shows the events produced by a system with more compliant coil 
springs (Case  B).  Notice that there are more moderate sized events than Case A 
with stiffer coil springs.  That is, this system has a lower b-value.  Although the 

http://resolver.caltech.edu/CaltechAUTHORS:20130305-102043001
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average stress drops for this system are higher than for case A, they are still scale 
invariant.  The scale invariance seems to come from the fractal nature of the 
prestress.  Figure 8.57 shows that the prestress for case B is more heterogeneous 
than for case A. 
 
 
 

 
Figure 8.56. CaseB 
 
 

 
Fig. 8.57. Case B 
 

How to interpret the chaotic sbm 
 
The sbm system has the advantage that slip-pulse dynamics can be studied with 
modern computers, whereas 3-d elastic systems cannot, even if the events are 
confined to a single planar fault.  Nevertheless, it’s important to acknowledge that 
there are important differences between the Earth and an sbm.  For example, we 
can tune an sbm to produce power-law frequency-magnitude statistics (similar to 
the Gutenberg-Richter law).  But the sbm confines all of the events to a single line 
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(it's a 1-d model).  In contrast, it seems clear that real earthquakes are distributed 
within a volume.  As modern seismology is providing ever greater fidelity to resolve 
spatial patterns in seismicity, we are seeing ever more complex structures. That is, 
seismicity seems to not be amorphous clouds of events.  Instead, seismicity seems 
to occur on complex assemblages of planar faults.  The implication is that 
earthquakes occur on fractal networks, while at the same time, the dynamics of the 
failure is fundamentally chaotic and described by fractals. 
 
At this point, it seems hopeless to attempt to model all this geometric and dynamic 
fractal complexity.  Perhaps a more constructive question is to ask what we would 
do with our models if we were capable of realistically simulating earthquake 
phenomena.  My opinion is that these new dynamic models provide us with a 
deeper understanding of failure processes, and they hint at new frameworks for 
characterizing mechanical properties.  
 
The Earthquake Cycle 
 
Several decades ago, Keitti Aki proposed that all earthquakes shared simple 
common characteristics (i.e., stress drop, rupture velocity, geometric aspect ratios).  
Even though I have argued that his insight was fundamentally flawed, Aki’s 
conjecture has been a useful framework to understand the characteristics of 
earthquakes.  Actually, Aki recognized that spatio-temporal complexity was missing 
from his conjecture and he later proposed models such as the barrier model 
(patches of high mechanical strength) to introduce complexity.  Kanamori and 
Anderson’s seminal paper on earthquake scaling was an extension of Aki’s 
conjecture.  Kanamori later introduced the asperity model (patches of high 
prestress) to add spatio-temporal complexity into the model.  Although barriers 
and asperities are fundamentally different, they serve the same purpose of adding 
complexity. 
Whether it’s barriers or asperities, both of these models lead to crack-like dynamics; 
neither of these models are chaotic.  Their behavior may be complex, but it is 
fundamentally predictable; it’s ultimately controlled by spatial variations in earth 
materials that define friction.  Based on the behavior of these crack-like  models, 
researchers have proposed that earthquakes are fundamentally dominated by 
repeating large earthquakes.  A cartoon of this view of earthquakes as large events 
that repeat regularly (controlled by the average slip per event and the fault loading 
rate) is often referred to as the seismic cycle (see Fig. 8.58).   
 
Geologic evidence of slip in past earthquakes has suggested that complex slip 
patterns repeat from one slip event to the next one.  This has motivated the notion 
that the large earthquakes are characteristic earthquakes.  I often observe 
colleagues who opine about where we are in the seismic cycle.  For example, “the 
big one is overdue.”  While this type of earthquake cycle logic is natural if 
earthquakes are crack-like ruptures, it seems nonsensical from the viewpoint of 
chaotic slip pulses.  Slip pulses arise from extreme spatio-temporal variations in 
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dynamic friction.  Dramatically low dynamic friction only occurs in the core of a 
propagating slip pulse. 
 
   

 
Figure 8.58 

 
 
One way to get a feel for importance of  the crustal strength is to estimate  the total 
strain energy in the Crust of southern California and to then estimate how many 
earthquakes  would be required to remove all of this energy.  This is kind of a 
whimsical calculation, but it can help to build intuition. 
 
I begin by assuming that the shear stress in rocks is close to the limit of Byerly 
friction (I have heard several colleagues make this claim).  That is, I will assume a 
coefficient of friction of 0.6 and that between the free surface and a depth of 15 
km, the shear stress is approximately increasing linearly at a rate of 20 MPa/km.  

Now the strain energy density is given by 
21 1

2 2
 


= .  Therefore, 
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Now let’s take the approximate area of southern California to be 300 km by 300 

km or 
11 210 m . Then 

 
205 10E J   (8.120) 

Now the conversion to energy magnitude is  

 
log 4.8

1.5
W

E
M

−
=  (8.121) 

So there is enough energy for a M= 10.6.  Or alternatively, if the crust is uniformly 
at the Byerly limit, then there is enough strain energy for 7,500 M 8 earthquakes. In 
this whimsical world, the next earthquake nucleation could set off a chain reaction 
of 7,500 M 8 earthquakes.  Clearly the assumption that the stress is near the Byerly 
limit is incorrect.   
 
 
 
 
Strength of the chaotic spring-block slider model 
 
While figures similar to 8.58 are common in earthquake studies, they typically avoid 
putting numbers on the vertical axis to describe shear stress.  Nevertheless, there is 
an implied maximum shear stress that many researchers describe as the strength of 
the system.  As I have discussed earlier, there are long-standing debates about what 
is the appropriate strength of the crust.  Before, I discuss the strength of the crust, 
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I want to discuss the strength of the sbm just presented.  This system provides 
some important insight into how to view the strength of the crust. 
 
Strength based on average stress 
 
If the prestress in the sbm was uniform, then defining the strength of the system 
would simply be the stress at which failures occurred.  However, the prestress is 
very complex.  Given this complexity, there are several different ways that we could 
think of to measure the strength of the system. 
 
Let’s begin by looking at the prestress in the event shown in Fig. 8.52.  We could 
define the strength to be the maximum shear force that can occur on a block, which 
in this case, is 50. However, the choice of maximum force of 50 has little effect on 
the overall behavior of this system.   A more meaningful choice for strength would 
be to measure the total shear force on all the blocks that moved in the event that 
occurred as a result of the force distribution in Fig. 8.52.  In a laboratory experiment 
to measure strength, we typically measure a load that results in failure, and then we 
divide by the cross-sectional area of the sample to obtain the strength of the 
material (described as a stress, or force per area).  I will define this to be the average 
stress-based strength, or  
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 8.122 

 
In the case of the event for fig. 8.52, the average stress is less than 10, which is 
much less than the maximum shear stress of 50. 
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Fig. 8.59.   Case A  0.232 RL

−    

 
We can immediately see that if the Earth experiences slip-pulse failure, then the 
strength of the Crust is significantly lower than the maximum shear stress in the 
system (presumably the shear stress at the hypocenter).   That is, laboratory 
experiments on the frictional strength of materials may not tell us much about the 
strength of the crust.  My opinion is that the “Christmas tree” model (see Fig. 8.26) 
does not represent the strength of the crust.  Instead, it provides an estimate of the 
maximum localized stress. 
 
In the rate-weakening sbm, faster sliding is associated with lower friction.  Faster 
sliding is more common in longer ruptures that have larger slip pulses.  These 
physics are behind the correlation between strength of the sbm and the length of 
the ruptures.  That is, the average stress decreases with the rupture length as is 
shown in Fig. 8.59.  The heavy line is a log-log fit that indicates that average stress 

based strength scales with rupture length as, 0.2

RL

−  .  Obviously, larger 

dimension solids (e.g., the Crust) support larger events; the larger the event, the 
lower the strength. 

 
This may, at first, seem counter-intuitive.  Perhaps it’s easier to see if you realize 
that the definition of strength that I am using involves finding the average of the 
self-organized prestress at different lengths.  It seems that the longer the averaging 
length of prestress, the lower the average.  I will get back to that shortly when I 
discuss power laws.  
 
Strength based on work 
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In the laboratory, it is straightforward to calculate the average stress in a sample.  
However, this is not a feasible measurement in the Earth since we don’t know the 
total load on the failure surface.  In principle, we could measure the stress tensor at 
enough locations that we could obtain a realistic average.  In fact, that is what would 
be required if we want to take a spatial integral to estimate total load.  If stress is 
heterogeneous, then it is not feasible to measure it at enough points to spatially 
integrate it. 
 
Perhaps you have already observed that I have previously discussed the strength of 
the crust using arguments about heat energy, fracture energy, and radiated energy 
(see eq. 8.89).  In the sbm, there is no radiated energy or fracture energy, frictional 
heating is the only dissipation to absorb the potential energy released by the springs. 
Accordingly, I define strength based on work as  
 

 dissipation
W

E

LD


   8.123 

 

You can think of W  as being analogous to a plastic yield stress.  It provides an 

estimate of how much work is required to change the material from an initial 
configuration to a final configuration.  Since energy is an integrated quantity, it is 
not necessary to worry about the spatial irregularities associated with fractal stress.  
 

Figure 8.60 shows the length scale dependence of W , and it should be compared 

with Fig. 8.59.  There is a considerably stronger weakening of this strength with 

increasing length scale.  In this example 0.4663W RL−   (it’s case A, see Figures 8.54 

and 8.55).  The fact that longer ruptures are associated with higher slip velocities is 
the reason for this stronger length dependence of the energy based strength.   
 

 
Figure 8.60.  log-log Plot of energy-based strength,  W , vs rupture length for 

events from case A of the sbm.  Notice that there is a stronger dependence of 
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energy-based strength on rupture length than there is for stress-based strength (see 
Fig. 8.59). 
 
This is an important lesson from the sbm.  That is, when considering materials 
that experience slip pulses, determining the strength of the system using 
analyses based on energy considerations is likely to provide smaller 
estimates than is obtained by estimating the total load on the region that 
fails. 
 

 
Figure 8.61. Case B 

0.1910W RL−    

 
 

Power-Law Scaling 
 
While crack-like rupture dynamics can be quite complex, the far-field radiation 
from these models can be described by some scaling relations about amplitude and 
duration.  Fundamental theorems concerning the principle of “equivalent width” 
can be used to infer the shape of Fourier amplitude spectra for crack-like models.  
Crack-like models with constant stress drop typically produce amplitude spectra 
that can be characterized with simple power laws.  In particular, these power laws 

have simple exponents (e.g., 
3

2 2,f f
−−  ).  These laws have exponents that are 

rational numbers because of some simple geometries (e.g., rupture area scales with 
2L , stress drop scales with /D L ,  derivatives and integrals are equivalent to 

multiplying or dividing f or 1f − , etc.). 

 
However, in chaotic self-organized systems, there are also typically power laws, but 
in this case, the exponents can be any real number (Although this is a speculation, 
I suspect that these exponents are typically an irrational number).  The power law 
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behavior is the result of self-organization of the system into a self-similar fractal.  
By definition, fractals are scale free. 
 
I believe that self-organization of chaotic dynamics that is the key to understanding 
Aki’s observation that earthquakes seem similar over a wide band of length scales.  
Ironically, it became popular to erroneously use the term self-similar for Aki’s 
conjecture (his model is similar, but not self similar).  But in the end, the more 
appropriate model of earthquakes is a system with chaotic dynamics that self 
organizes into a self-similar state (scale free). 
 
It may seem that we are at an impasse.  Models like the sbm provide the insight 
that we are dealing with a chaotic self-organizing system, but computational 
limitations prevent us from meaningful simulations of 3-d solids that yield during 
strong rate-weakening friction. 
 
One approach to this impasse is to develop new equations that provide us with 
meaningful calculations, while at the same time requiring fewer calculations.  The 
need to allow the system to self-organize while simultaneously honoring the 
complexity that comes from positive feedback dynamics is why this is so difficult.  
It’s important to recognize that if the solution is described by a fractal, then there 
is little hope of using conventional continuum mechanics (Navier’s equation).  That 
is, Navier’s equation is a 2nd order partial differential equation, whereas our 
solutions likely look like fractals.  A fundamental difficulty with fractals is that the 
conventional definition of a derivative doesn’t make sense for fractals.  That is, 
derivatives are defined to be the change in a function’s value as the step size shrinks 
to zero.  Fractals are irregular at all scales, even when the step size shrinks to zero.  
This means that this class of problem can only be investigated with discrete 
models.  In effect, we anticipate that we will be unable to derive exact solutions to 
problems. 
 
It is important to recognize that the Fourier spectra of parameters describing 
individual events that occur as a result of self-organized chaotic dynamics do not 
necessarily follow a strict power law.  Instead, it is the expected value of these 
parameters that obeys a power law. 
 
Although I have argued that the amplitude spectrum has a power-law expected 
value, I have avoided discussion of the phase spectrum.  This is a tricky issue, since 
chaotic behavior is definitely not the same as random phenomena.  That is, there is 
structure (often hidden) that results from these systems.  This structure is 
fundamental to the identification of strange attractors.   In the case of our 
problem, we can anticipate that the phenomena are statistically stationary.   That 
is, the expected values of our parameters are independent of the initial conditions 
of the system. 
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Slip v Length (stress drop) scaling 
 
One example of a stochastic power-law model comes from a study of slip vs length 
scaling by Liu-Zheng, Heaton, and DiCaprio. We considered a simple 1-d model 
of slip as a function of linear distance x.  In particular, we assumed that slip is a 
stochastic function of x. We hypothesized that the amplitude of a slip pulse as it 
propagates along the fault is described as a random walk.  Consider that I have 

discretized distance along the rupture as 
ix . I will assume that 

 

 ( ) ( )1i i iD x D x R+ = +  8.124 

 

Where 
iR  is a number chosen from a bin of random numbers.  This is known as a 

1-d random walk and this process has been used to simulate the Brownian motion 
of particles that are randomly impacted with fluid molecules.  1-d Brownian motion 
is the same as taking the integral of random white noise over all past steps.  The 

random sequence ( )R x has a Fourier transform that is also composed of random 

numbers.  That is, the spectrum looks like random numbers that do not change 
their expected values as a function of wavenumber.  Therefore, the amplitude 
spectrum is flat and this is called white noise.  In contrast, the stochastic slip is the 

spatial integral of this random function and thus it has a 1
k

 spectrum. 

 
I can generalize this model by assuming that the slip is a fractal function of space, 
or 
 

 ( )
( )

0

R k
D k D

k
=  8.125 

 

In standard Brownian motion, 1. =   However, since we are dealing with self-
organizing fractals, we anticipate that  may be an irrational number; in this case  
the process is called a fractional random walk.  Unfortunately, current 
measurements of slip variations are inadequate to obtain a stable estimate for the 
amplitude spectrum of slip of real earthquakes.   
 
Liu-Zheng, Heaton, and DiCaprio (2005, GJI,  doi:10.1111/j.1365-
246X.2005.02679.x) used this fractional random walk model to reproduce 
measured values of the ratio of average slip divided by the rupture length. In 
particular, measurement of Potency and rupture length are available from many 
earthquakes.  As I will now show, the ratio of Potency to rupture length depends 
on the value of  .   
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We considered this to be an example of a class of problems known as gambler’s 
ruin.  The focus of this problem is to estimate how many games a gambler can play 
before she loses all of her money.  That is, slip as a function of space is transformed 
into a sequence of games of chance.  Once the slip crosses the x-axis, the 
earthquake is considered to be over.  That is, the rule of this game is that 
earthquakes are comprised of spatially continuous regions of slip.  Figure 8.62 
shows examples of spatially contiguous slip profiles for different values of  .  All 
of the walks start at zero slip and end at zero slip; most of the examples involve 
only several steps until the slip returns to zero.   The three examples in Fig. 8-62 
are chosen to show the spatial characteristics of the larger events in this numerical 
experiment.  The spatially averaged slip for each event is shown as D1, D2, and 

D3. Notice that the red curve ( )1.0 = is quite rough.  This is true Brownian 

motion.  The length of this red rupture is 72 km and the average slip is 4.5 m, which 

gives a slip to length ratio of 
56 10− , which is comparable to the average value of 

earthquakes (see 8.33). 
 
The next thing to notice in Figure 8-62 is although the different events have 
comparable rupture lengths, the average slip decreases as the roughness is filtered 
out.  This trait is clearly displayed in Figure 8-63, which shows how increasing 
smoothness,  , results in systematically longer rupture for a given average slip.  
That is, the rougher the fractional random walk, the better the chance that the slip 
will cross the x-axis (termination of the event).   
 
You should recognize that the ratio of average slip to rupture length is a measure 
of the average stress drop for these events.  Thus, this model predicts that rougher 
slip distributions produce higher average stress drops.  Also notice that, 

although the red curve ( )1.0 =  has a rupture length of 73 km, it very nearly 

terminated at the 67-km mark, which would have been a 44-km rupture. That is, it 
was mere chance that the red event did not have a significantly higher stress drop.  
In this model, two events could have identical slip distributions up until one of 
them stopped rupturing.  If the second event continued to rupture it, might end up 
with a much lower stress drop, even though the radiation from the first part of the 
ruptures was identical.  This example shows that average stress drop may not 
tell us much about the dynamics of a rupture.       
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Figure 8-62.  Stochastic simulations of slip as a function of distance on a 1-d fault.  

Random numbers are filtered with a low-pass power law filter, after which, 
stretches of positive only are selected to simulate heterogeneous slip on ruptures.  
Alpha=1 is a full integral of random white noise, alpha = 1.5 is the 3/2 integral of 
random noise.  All chosen events have the same magnitude (i.e., potency).  Notice 
that the ratio of the average slip to the rupture length (aka, stress drop) increases 

as the slip is more heterogeneous (smaller alpha). 
 

 
Figure 8-63.  Similar to Fig. 8.62, but the vertical axis is the 

dependence of the slip to length scaling on heterogeneity.  Notice 
that scale-free stress drop (D ~ L) implies that alpha=1.5. 
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Now the observation that average stress drop is approximately independent of scale 
is direct evidence that average slip scales linearly with rupture dimension. Notice 

that in standard 1-d random walk (aka, Brownian motion 1.0 = ), the expected 
rupture length scales as the square root of the average slip.  However, when the 

smoothness increases to 1.5 =  (one and one half integrals of random white 
noise), then the expected rupture length scales linearly with average slip.  Curiously, 

1.5 =  seems to be some type of critical point.  That is, if  1.5  , then the 
random walks tend to diverge with distance (the gambler always wins).  
 
While a 1-d fractional random walk model can adequately explain stress drop scale 
invariance, it does a poor job of simulating the Gutenberg-Richter relationship.   
Figure 8-64 shows the slip/length ratios of many simulated events 

And for several values of  .  It appears that a smooth distribution , 1.5 = , 
produces just as many long ruptures as it does short ones.  That is the b-value is 

approaching 0.  In contrast, a standard random walk ( 1.0 = ) produces many 
more short ruptures than long ones. 
 

 
Figure 8-64.  This figure follows from Fig. 8-63.  Stress drops (aka, 

D/L) of individual stochastic simulations are shown as a function of 
rupture length (remember, it’s a gambler’s ruin problem) for three 

different roughnesses of slip.  
 

This observation raises some interesting questions. Are large strike-slip ruptures 
with very long ruptures (340 km for 1857 Ft Tejon, or 450 km for 1906 San 
Francisco) compatible with the Gutenberg-Richter law?  If they are to be explained 
by a fractional random walk, then the slip must vary slowly along the rupture.  I 
admit that I don’t know how to explain these very long ruptures.  However, if you 
examine the slip to length ratio of major historic crustal earthquakes (see Wells and 
Coppersmith, BSSA, 84, 974-1002), you will see the distribution shown in Fig. 8-
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65a.  In comparison, Fig. 8-65b shows the result of a combination of numerical 

simulations of fractional random walks with 1.25 = and 1.5 =  .   This particular 
combination matches the observation that the variation in the slip to length ratio is 
larger for shorter ruptures than it is for longer ones (notice the trend in the upper 
limit in both plots).  
 
The observed similarity between measure slip/length ratios  and fractional  1-d  
random walks is evidence  that the observed scale  invariance of stress drop may 
be closely related to the heterogeneity of ruptures, and not a simple characteristic 
of friction.  The fact that, for a given magnitude, stress drops can vary by more than 
two orders of magnitude has often been attributed to modeling error.  Personally, 
I prefer to interpret this large range of reported stress drops as being a real 
phenomenon that just reflects variations in random walks. 
 
 

 
Figure 8-65.  Comparison of observed slip v length ratios v 

stochastic simulations of slip v length 
 
 
It is important to recognize that the models of spatial complexity that I have just 
described all come from 1-d models; there are no complicated fault systems similar 
to what is observed in the real earth.  In fact, there is great variety in the geometric 
complexity of fault systems.  Some faults are remarkably simple planar 
unconformities.  In fact, it is possible to view the Punchbowl fault in great detail by 
a pleasant trip to Punchbowl Regional Park.  The Punchbowl fault is a major right-
lateral strike-slip fault that runs sub-parallel to the San Andreas fault just north of 
the San Gabriel Mtns.  This fault is interpreted to be an early version of the San 
Andreas and it appears that the total offset on this fault is about 45 km.  Luckily, 
erosion over millions of years has exposed extensive sections of the fault for 
detailed investigation.  There is a very good field guide by Fred and Judy Chester 
(they have many excellent publications describing many aspects of this fault).  A 
visit to the Punchbowl allows you to view the fault along its strike and it’s plain to 
see that it is geometrically flat (despite the large total offset).  It’s even more amazing 
to view the fault up close.  In most areas, the total thickness of the fault zone is less 
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than a meter and there is evidence that most of the sliding was confined to a zone 
only several mm wide. 
 
The San Gabriel Fault is another early version of the San Andreas that has been 
exposed by erosion (again studied by Chester and Chester).  If you hike along this 
fault zone, you will find some places where the fault is a simple thin zone (like the 
Punchbowl fault), but you will also find other places where the fault becomes very 
complex (a complex zone of pulverized rock more than several hundred meters 
wide (for example, visit Red Box Gap just north of Mt. Wilson). 
 
Recent advances in remote imaging have provided a new perspective on the 
complexity of individual earthquake ruptures.  For example, comparison of before 
and after satellite-based photographs of the desert floor show that the 2019 
Ridgecrest rupture occurred on a complex network of fault structures (Figure 8-
66).  Given the observed geometric complexity of observed faults, it’s easy to think 
that the dynamic complexity of earthquakes is entirely due to this geometric 
complexity.  This is an important unsolved problem in earthquake physics.  That 
is, we suspect that 3-d complexity of faults is important, but we can’t even 
numerically simulate the dynamic complexity that occurs on simple planar faults 
that experience pulse-like ruptures. 
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Figure  8-66.  Deformation of the ground surface in the vicinity of the 
2019 Ridgecrest earthquake sequence. (Chen, Avouac, Aati, Milliner, 
Sheng, and Shi, https://doi.org/10.1038/s41467-019-13750-w). 

 
The type of complexity shown in Fig. 8-66 is typical of other well-observed crustal 
ruptures (e.g., 1991 Landers, 2001 Hector, 2011 Cucapah-El Major, 2017 
Kumamoto, 2018, and 2016 Kaikoura).  In contrast, there are long sections of the 
San Andreas fault that appear to be relatively simple and planar (especially the 
Carizzo Plain).  The very long ruptures in 1857 and 1906 appear to have been on 
relatively straight sections of the San Andreas. 
 
Although we observe geometric complexity in fault systems, it is difficult to 
simulate and interpret.  In particular, any kind steadily rupturing fault that has 
localized jumps in fault orientation (e.g., a kink) will produce singular stress changes 
at geometric corners.  Some modelers have argued that geometric corners are the 
likely places to initiate and terminate rupture (often referred to as fault 
segmentation).  Although this seems like a plausible assumption, there are clear 
examples where fault ruptures seem to ignore these segment boundaries.   
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Figure 8-67.  Geometric complexity of the 1991 Landers 
earthquake.  

 
The 1991 Landers rupture is an example that shows a failure of the fault 
segmentation hypothesis.  That is the rupture progressed northward along the 
Johnson Valley Fault, and then it continued to rupture when it intersected the 
Homestead Valley Fault.  It then ruptured right through another  segment 
boundary between the Homestead Valley Fault and Emerson/Camp Rock fault.  
The rupture finally terminated in the middle of a fault segment (perhaps the 
straightest fault segment in the whole complex).  While it may be that fault 
complexity and segmentation has a first-order effect on rupture dynamics, the 
Landers earthquake clearly shows that simple models do a poor job of predicting 
reality. 
 
 

Heterogeneous Stress in the shallow Crust 
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There are numerous places in this chapter that I have argued  that stress is likely to 
be spatially complex  (look at the discussion of chaotic slip pules).  In the following, 
I discuss the statistical characteristics of this heterogeneous stress.  Unfortunately, 
this discussion may be difficult to follow.  Furthermore, the hypothesized model is 
very different from conventional models of crustal stress (for example, see Zoback 
and Zoback, or Scholz).  The model was developed by Deborah Smith and me and 
it is designed to show that the effect of heterogeneous stress depends strongly on 
the length scale that is appropriate for different problems. 

 
Figure 8-68.  Map of Southern California with velocity arrows used in 

this study in a fixed North America reference frame. Red arrows: 
velocity provided by the Scripps Orbit and Permanent Array Center 

(SOPAC); blue arrows: data from the University of Miami; green 
arrows: data from the crustal motion map (version 3) by the Southern 
California Earthquake Center (SCEC).   Hackl, M. & Malservisi, Rocco 

& Wdowinski, Shimon. 2009, Strain patterns from dense GPS 
networks, Natural Hazards and Earth System Sciences, 9. 

10.5194/nhess-9-1177-2009. 
 
The measurement of stress in the Crust  is actually very difficult.  Testing in deep 
boreholes is probably the most direct approach to this problem.  Unfortunately, 
deep boreholes are extraordinarily expensive and they are typically limited to the 
upper 5 km of the Crust.  Since  direct measurements are so sparse, many earth 
scientists use simple models to infer  the stress in the crust.  One of the most 



 

407 
 

successful methodologies to inform these models comes from observations of the 
spatio-temporal distribution of the changes in positions of geodetic monuments 
over time.   The introduction of satellite-based surveying (Global Positioning 
Satellite system, GPS) in the 1990’s has provided the data to track the steady 
deformation that drives plate tectonics.  Figure 8-68 shows the velocities of stations 
in southern California relative to the average velocity of North America.  These 
velocity vectors are very coherent; they all point to the northwest and their 
amplitudes steadily increase as for stations located further from stable North 
America. 
 
The impressively coherent, long-term, point velocities in Fig. 8-68 might mislead 
you into the impression that the crustal stress in comparably coherent.  In contrast, 
Fig. 8-69 shows the orientation of the principal compression  axes measured in a 
number of boreholes in southern California.  These orientations are primarily 
obtained by observing the orientation of borehole breakouts, which  are 
spontaneous fractures in  the walls of boreholes (primarily from the oil industry).  
Borehole breakouts typically occur in the faces of the borehole that are 
perpendicular to the least compressive principle stress axis (aka, the  Sh axis). SH is 
the direction of the largest compressive principal stress axis. Because the Earth’s 
surface is traction free, Sh and SH are generally horizontal and therefore, they are 
perpendicular.   
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Figure 8-69. Wilde and Stock [1997, J.Geophys. Res., 102, 4969-4983] 
plotted inferred maximum horizontal compressive  stress, SH , orientations 
from borehole breakouts in Southern California. There are a variety of 
orientations for borehole breakouts from the same borehole or from 
boreholesspatially close to one another. This suggests short-wavelength 
spatial stress heterogeneity. In this modified plot, we have used circles to 
point out a few of the locations studied by Wilde and Stock that show 
evidence for SH orientation heterogeneity.  Modified by Smith and Heaton, 
2011,  Bull.  Seism. Soc. Am., 101, 1396–1421, doi: 10.1785/0120100058 

 
 
Notice that there is considerable scatter in the SH orientations.  Although this 
scatter is sometimes described as “noise,” observation of breakouts is relatively 
straightforward.  That is, direct measurements of stress orientation provide 
evidence that the actual stress field may be far more complex than you might 
imagine from inspection of particle velocity field shown in Fig. 8-68.  It’s not noise. 
 
The statistical analysis of the orientations of focal mechanisms is currently the most 
popular method to determine the spatial orientation of stress in the crust (see 
foundational papers by Angelier, J., 1984, J. Geophys. Res., 89, 5835–5848, and by 
Michael, A., ,1984, J. Geophys. Res., 89, 11517–11526 and also Michael, A., 1987, 
J. Geophys. Res., 92, 357–368.  These studies make the following key 
assumptions: 1) stress is approximately uniform in space, 2) the crust has a large 
suite of pre-existing fault planes with a large variety of orientations,  3) these faults  
have a large variety of yield stresses, 4) seismicity in a region occurs on a diverse 
suit of planes with many orientations 5)  (most importantly) the slip vectors of all 
of the earthquakes are aligned with the direction of maximum shear stress in the 
region.   According to this technique, the orientation of the principle stresses in a 
region is that orientation that minimizes the misfit of one of two plausible slip 
vectors (there are two conjugate planes for every focal mechanism) for the suite of 
focal mechanisms. 
 
Focal-mechanism-based stress inversions are widely used as the basis to describe 
the stress distribution in the Earth’s Crust.  Unfortunately, there is a fundamental 
inconsistency in the underlying assumptions.  Specifically, it seems impossible 
to have spatially uniform stress (assumption 1) if there is an assortment of randomly 
oriented fault planes with a very wide range of yield strengths (see Rivera and 
Kanamori, 2002, Geophys. Res. Lett. 29, art. no. 1088). 
 
A particularly egregious violation of the assumption of homogeneous stress comes 
from a study of the aftershocks of the 1989 M 6.9 Loma Prieto earthquake by 

Zoback and Beroza (1993, Evidence for near-frictionless faulting in the 
1989 M 6.9 Loma Prieta, California, earthquake and its aftershocks, Geology, 
21, 181-185.  Figure 8-70 shows the focal mechanisms of aftershocks of the 
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1989 Loma Prieta earthquake projected onto the main fault plane.  Slip in this 
earthquake was oblique (a steeply dipping plane with a slip vector that was 
primarily right-lateral strike slip with some thrusting).  Rather mysteriously, a 
significant percentage of the aftershocks had slip vectors in the opposite direction 
to the mainshock.  That is, there were left-lateral aftershocks on the obviously right-
lateral San Andreas fault.  Zoback and Beroza explained this by hypothesizing that 
the static coefficient of friction was nearly zero on the San Andreas.  This would 
have made the maximum principal stress axis nearly perpendicular to the San 
Andreas.  Zoback and Beroza argued that there were small variations in fault strike 
and that the shear stress resolved to different polarities as the strike varied. 
 
I find this explanation to be implausible for several reasons.  1) the amplitude of 
the slip (see the shaded contours) varies by more than a meter within several km.  
This implies large local strain changes, which implies large local stress changes.  This 
observation seems incompatible with an assumption of uniformly low static stress 
on the mainshock fault plane.  2)  Such a small static friction (less than 0.1) has 
never been observed in testing and it seems incompatible with the shear stresses 
that are necessary to support the gravitational load of the Santa Cruz mountains 
(directly above the rupture). 
 
 

 
 

Figure 8-70.  Map view of the aftershocks of the 1989 Loma Prieta 
earthquake (from Beroza and Zoback).  The slip distribution derived from a 
finite-fault slip inversion is also shown as the shaded contours.  The vertical 
axis is depth.  (+) represents right-lateral focal mechanisms, (x) represents 
left-lateral, (Δ) reverse thrusting, and (◊) is normal.  Each focal mechanism 
has two conjugate (perpendicular) planes and the plane that is most parallel 
with the mainshock is displayed.  The Red Arrows (x) highlight aftershocks 

with slip vectors that are in the opposite direction from the mainshock. 
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Another explanation is that the stress is highly heterogeneous (similar to the stress 
in Fig. 8-52) and that there are actually patches of large left-lateral stress that exist 
on the San Andreas fault.   These patches of negative shear stress would be the 
remnant of previous chaotic ruptures; the dynamic shear stress in the vicinity of a 
slip pulse are more than an order of magnitude greater than the average stress 
change.   Since steadily increasing tectonic shear stress is in the direction of plate 
motions, regions of negative shear stress will not nucleate earthquakes.  That is, 
only regions in which the local shear stress is large and also aligned with tectonic 
stress rates will have future hypocenters.  The only time that we expect earthquakes 
in the opposite direction from plate motion is during an aftershock sequence.  That 
is, the spatially complex slip in the mainshock means that the stress changes from 
the mainshock are even more complex than slip pattern.  This interpretation seems 
to explain seismicity near the Loma Prieta earthquake; events with negative slips 
have not been observed in the background seismicity, they are only observed in the 
aftershocks. 
 
Another curious feature of seismicity (either background or aftershocks) is that it 
ends to be clustered in space; I sometimes call it clumpy.  That is, there are typically 
spatial knots of persistently high seismicity (just look at any high-resolution 
seismicity map).  Although it may be tempting to assign different material 
properties to these spatial knots, I suspect that these high-seismicity knots are 
ephemeral (perhaps on the time scale of decades to centuries).  In particular, I 
suspect that patches of high seismicity are patches of high stress 
 
Deborah Smith and I created a stochastic model of the stress tensor in an attempt 
to simulate patchy seismicity that has the statistical characteristics of observed focal 
mechanism catalogs.  We hypothesized that, within some region, the deviatoric 

stress tensor, ( ), tσ x , can be approximately separated into tectonic term that is 

steadily increasing and approximately spatially uniform, ( )0

T t t −σ , and a term that 

is spatially heterogeneous and independent of time, ( )Hσ x .  This model assumes 

that at the time of the last nearby earthquake, 0t , the heterogeneous stress and the 

average background stress, 
Bσ , were reset to new values by the heterogeneous 

stress changes caused by chaotic rupture.  The deviatoric stress in a region is written 
as 
 

 ( ) ( ) ( )0, B T Ht t t   = + − +σ x σ σ σ x  8.126 

 
We next hypothesize that events nucleate in the region whenever the shear stress 

exceeds some pre-determined value, 2

YI   , where 2I   is the 2nd deviatoric stress 

invariant.  This failure criterion is referred to as Henky-Mises plastic yield 
criterion and it is commonly used in the ductile yielding of steel.  That is, we 
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assume that the shear stress in the crust cannot exceed this limit; once the yield 
stress is achieved, the material experiences inelastic shearing along conjugate planes 
of maximum shear stress. 
 

To construct this model, we begin with a 3-d Cartesian grid of discrete points, , ,i j kx

.  At each grid point, we use a Gaussian, mean-zero, random number generator to 
select the values of the components of the stress tensor.  We assume that the stress 

tensor is symmetric, ij ji = , which ensures that angular momentum is conserved 

(see Chapter 3).  The standard deviation of the diagonal components is chosen to 

be 1.0, while the off diagonal terms have a standard deviation of 1 2 .  This choice 

ensures that the random stress is isotropic; this is the only ratio that provides 
stresses that are uniformly distributed in orientation space. 
 
Once we have assigned random numbers to each of the six independent stress 
components, we apply a power-law spatial filter to each stress component.  
Because our model is isotropic, we can uniquely specify this filter by defining the 

spectral properties along any line, i ir = x , passing through the grid.  In order to 

construct the heterogeneous stress, we take the 3-d Fourier transform of each 
tensor component.  We then multiply these spectra by  
 

 ( ) ( )1r rF k k
−

= +  8.127 

    
After which, we take the inverse 2-d transform to obtain the stochastic, power-law, 
stress tensor in the spatial domain. This process creates a fractal-like distribution.  
While the expected value of the average components is zero, the mean of a finite 
number of random numbers is not zero.  We remove the mean of our random 
numbers and then we reintroduce finite mean to our stress through the 

specification of 
Bσ . That is, the stress is the sum of a zero-mean stochastic part 

with a specified “background” stress. 
 
Figure 8-71 shows the stochastic model of heterogeneous stresses projected onto 
a plane that intersects the 3-d grid (100x100x100 points).   
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Figure 8-71.  Examples of one component of the stochastic power-law 

heterogeneous stress for different powers, 1
1 rk


 
 + 

, of wavenumber. 

 
 

In order to have a 3-d model with realistic values of stress, it is necessary to find a 
meaningful scale.  In particular, we chose to relate the variance of the 

heterogeneous stress to the size of the uniform background stress 
Bσ .  In 

particular, we define the Heterogeneity Ratio, HR, as 
 

 2

2

H

B

I
HR

I





 8.128 

Where 2

HI  is the spatial average of the 2nd invariant of the heterogeneous deviatoric 

stress.   2

HI   is also a measure of the shear-strain energy density (see Housner and 

Vreeland, 1965).  As it turns out, 2

HI   is also the sum of the variances of the 

components of ( )0, t t =σ x  (see Smith and Heaton). 

 
For this parameterization of the relative size of the uniform background stress and 
the stochastic heterogeneous stress, we want to ensure that the modeled stress is 
independent of the number of grid points used to describe a region.  To accomplish 
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this, we use the same outer scale for different grids, independent of the number of 
grid points.   Fig. 8-72 shows examples of the amplitudes of maximum shear stress 
(heterogeneous plus background) at  points along a line intersecting the grid.  
Random white Gaussian noise is used for the left column and the preferred power-

law, 0.8 = , is used in the right column.  The heterogeneity ratio, HR, increases 

from top to bottom; the model in the lower right (HR=2.375 and 0.8) =  best 

fits southern California focal mechanism data.       
 

 
Figure 8.72. Maximum shear stress (aka, Von Mises stress) plotted 
along lines that intersect the 3-d spatial grid of fractal stress.  The 
horizontal dotted lines are taken to be the local yield stress of the 

material (200 MPa).  The overall heterogeneity increases from top to 
bottom.  The heterogeneous stress is white-noise random in the left 
column, whereas the smoother preferred model is shown in the right 

column. 
 
Notice that there is a horizontal dotted line at a shear stress of 200 MPa.  This 
signifies the yield stress at about 8.0 km (assumes Byerly-like friction).  Grid points 
at which the shear stress already exceeds the yield stress are removed from the 
model.  After that, time increases and the spatially uniform tectonic stress,
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( )0

T t t −σ , steadily increases at a rate of 10 kPa/yr.  This stress rate is consistent 

with the strain rate inferred for the high-strain rate regions of Figure 8-68.   
 
The amplitude of stress grows with time at most of the grid points in Fig.8-71.  The 
rate at which this stress amplitude grows is determined by the relative 
orientation of the tectonic stress and the initial stress.   If these two stresses 
are aligned, then the growth rate of the amplitude is large.  If, on the other hand 
the initial stress is opposite to the direction of the tectonic stress rate, then that 
point evolves ever further from the yield stress.  Only grid points at which the stress 
amplitude exceeds the yield stress experience hypocenters.  Once a grid point is 
declared to be a hypocenter, its location, origin time, and focal mechanism 
(orientation of maximum shear stress) are included in a synthetic catalog.  
Furthermore, once an event is generated, the location of that grid point is removed 
from the model.  There is no concept of magnitude in this simulation; all events are 
simple grid points and there is no stress transfer to adjacent grid points when an 
event occurs.  This means that there are no aftershocks in this model. 
 

 
Figure 8-73.  Simulated seismicity maps based on the fractal stress 

model of Smith and Heaton.  Models increase in overall heterogeneity 
from left to right.  Models increase in spatial roughness from bottom to 

top.  Notice that spatial clustering increases as the models become 
smoother; the top row is random white noise plus a spatially uniform 

stress. 
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The most important concept in this model is that locations of hypocenters are 
spatially biased; the seismicity is highest in places where the stochastic 
heterogeneous stress is aligned with the tectonic stress rate.  That is, one 
cannot use focal mechanism catalogs to infer the average stress orientation. Since 
focal mechanisms that are aligned with the stress rate tensor are favored, the 
inversion procedure tens to derive the orientation of the stress rate tensor.  More 
importantly, the strong spatial heterogeneity in the stress is invisible to focal 
mechanism catalogs (except for aftershocks).  Figure 8-73 shows examples of 
focal mechanism catalogs that are generated by the procedure just described.  Maps 
of the seismicity produced by different roughnesses,  , and heterogeneity ratios, 
HR, are shown.  Notice that as  increases (i.e., the stochastic variation becomes 
smoother) the seismicity becomes more spatially clustered.   
 
Figure 8-74 shows a comparison of the spatial coherence of focal mechanisms as 
measured by Hardebeck (2006) and a prediction of this value using the Smith and 
Heaton stochastic model.  The horizontal axis is the distance between pairs of 
events, and the vertical axis is the average angular difference between the focal 

mechanisms of the pair.  0.75 and 2.38HR = =  produced simulations that were 
most similar to Hardebeck’s data analysis.  The Smith and Heaton study is difficult 
to describe in the simplified context of class notes.  This is an important topic and 
I suggest that you attempt to read the entire manuscript (including Hardebeck’s 
published comment and our reply). 
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Figure 8-74.  Comparison of the Smith and Heaton model for focal 
mechanisms in a stochastic stress field compared with the 
observation of Jeanne Hardebeck of a catalog of focal mechanisms 
in southern California (J. Hardebeck, 2006, Homogeneity of small-
scale earthquake faulting, stress and fault strength, Bulletin of the 
Seismological Society of America, 96, 1675-1688).  The best fit to 

Hardebeck’s analysis is with 0.8 and 2.4HR = = . 
 
In order to get a better intuitive understanding of our best fit stochastic model, we 
generated an example of one component of the shear stress on a 100-km grid and 
at a spacing of 1 cm.  Since there are too many grid points to observe on a single 
plot, we plotted a line through the grid at a variety of scales in Figure 8-75.  In 
particular, panel (a) shows 10,000 points on a line through the entire 100-km 
volume, panel (b) shows the same stress on a 10-km length that run from 15 km to 
25 km, which is a region of higher stochastic stress.  Panel (c) focuses in on 17.5 
km to 18.5 km, which is the largest stress patch in the previous panel.  Finally, panel 
(d) focuses in on a 100-m patch of the highest stress in panel (c).  The high shear 
stress at 18.01 km will cause an earthquake nucleation at that point at some time in 
the future. 
 
 
Average shear stress at Different Lengths 
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We can use Figure 8-75 to investigate the stress-based strength of the crust based 
on this model (see Figure 8-52 and equation 8.122).  In particular, the spatially 
averaged shear stress is shown for each panel in Fig. 8-75.  This average shear stress 
is about 190 MPa at 1 m, 174 MPa at 100m, 155 MPa at 1 km, 104 MPa at 10 km, 
and 60 MPa at 100 km.    It is clear that, for this stress distribution, the average 
stress near potential nucleation points decreases with the length over which the 
stress is averaged.   

 

 
Figure 8-75 shows how the stress near a nucleation point (200 MPa 

yield) looks depending on the length scale.  Clearly, the average stress in 
the longest length scale (panel a) in the 3-d fractal grid is lower than the 

average stress viewed at the shortest length scale (panel d). 
 
 

Deborah Smith and I explored how this length scale dependence of average stress 
varies with the power-law smoothing parameter, , using our stochastic stress 
model.  The results of these numerical simulations are displayed in Figure 8-76.  In 
this case, we assumed that 

 
1

1
L

L




 

  
+ 

 8.129 

where L is the scale length of the averaging and  is a number determined from 

the stress generated in the model.  Assuming that 0.8   then indicates that the 
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average shear stress decreases as about the inverse fourth root of averaging 
length.  That is, changing from a length scale of 1 meter to a length scale of 10 km 
would decrease the average stress by a factor of ten. 
  

 

 
Figure 8-76.  Based on simulations like that shown in Fig. 8-75, 

the dependence on stress-based strength on the length scale 

L  is shown for different values of fractal roughness.  

 
There are numerous bold assumptions underlying this calculation and, 
unfortunately, it’s almost impossible to directly test this model since the 
measurement of true stress is exceedingly difficult (i.e., expensive).  The Cajon Pass 
Borehole experiment is one example of such a measurement.  This was “the” major 
earthquake experiment of the late 1980’s.  It consisted of a 3.5 km deep borehole 
that was drilled about 3 km north of the San Andreas fault in Cajon Pass.  With the 
view that rocks would be too damaged to measure if they were in the fault zone, 
the scientists managing the project chose to drill adjacent to the fault.  A 300-m 
section of the downhole log of the orientation of borehole breakouts is shown in 
Figure 8-77.  Panel (a) shows the observations.  Note that at any given depth, there 
are two data points that are 180o different (breakouts on opposite sides of the 
borehole).  Panel (b) shows the orientation of the principal compression axis along 
a 300-m line intersecting  our preferred southern California stochastic stress model.  
Although the model and the observation are different, they do have similar 
variations over this length scale. 



 

419 
 

 
One of the most embarrassing observations of this expensive experiment was the 
fact that the spatial average of the orientation of the principal compression axis for 
the Cajon Pass borehole indicated that the San Andreas has an average shear stress 
that is left lateral (at least in the Cajon Pass).  This is embarrassing since the San 
Andreas fault is obviously a right-lateral fault.  Furthermore, the geodetically 
measure strain rates are also right-lateral (see Figure 8-68).  Barton and Zoback 
interpreted this observation to mean that the principal compression axis is almost 
perpendicular to the fault, which implies a very small shear stress on the fault.  In 
our stochastic stress model, most regions are right-lateral.  However, there are also 
significant regions of left-lateral stress. 

 
 

 
 

Figure 8-77. (a) orientation of borehole breakouts observed in a 300-m 
stretch of the Cajon Pass Borehole located 4 km from the San Andreas 
fault.  Tensile stresses are maximum at opposite sides of a borehole and 
they are aligned with the maximum principal stress.  (b) orientation of 
the maximum principal stress along a 300-m linew transecting the 
preferred fractal model of Smith and Heaton 

 
 
The stochastic stress model of Smith and Heaton is radically different from other 
models of stress that are derived from assumptions that the stress variations are 
small compared to the average.  Most researchers that I have encountered do not 
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seriously entertain the possibility that shear stress could actually be opposite to the 
direction of tectonic strain accumulation.  I must admit that the stochastic power-
law model we proposed only makes sense if rupture dynamics are truly chaotic.  
While I personally believe that the evidence points us in that direction, the reader 
of these notes should always be cautious when discussing these issues (caveat emptor). 
 
 
Failure Model that has low frictional heat, low fracture energy, and low 
radiated  energy 
 
Based on the insight obtained from the chaotic spring-block-slider model, the 

stochastic stress model of Smith and Heaton, and the gambler’s ruin analysis of 

fault slip, I am now able to re-examine the stress paradox.  That is, is there a 

model of dynamic rupture that has the following critical features?  

1) high nucleation shear stress of about 0.6 n  

2) small frictional heating (less than 2 MJ/m2) 

3) small fracture energy (less than 500 kJ/m2  

4) radiated far-field seismic energy of about 
22.0 /D MJ m .   

 

The key to satisfying these elements is to recognize that 1) friction depends very 

strongly on slip speed; low-speed sliding (mm/s) produces friction similar to the 

Byerly estimate, while high-speed sliding (> m/s) is almost frictionless.  The 

transition between these two types of friction seems to occur when about 500 

kJ/m2 of energy is available on the sliding surface. 2) This low dynamic friction 

produces unsteady slip pulses that can propagate through regions of much lower 

average stress (even localized patches of negative stress).  3) the chaotic system 

evolves to produce fractal-like prestress that is large enough to allow ruptures of 

any length (that is, the system is in a critical state).   

 

The average stress drop of events depends on the distance that slip pulses propagate 

(heterogeneous slip is more likely to have smaller rupture lengths, and highly 

heterogeneous ruptures have average higher stress drops).  Slip pulses propagate 

until they encounter low-stress regions.  The Gutenberg-Richter relation is 

controlled by the spatial properties of the prestress. The prestress is the result of 

self-organization of a dynamic system that does not have inherent length scales. 
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One useful measure of this system is seismic efficiency, 
R , which is defined as 

the fraction of total energy that ends up as radiated seismic energy, or  

 1R D D
R

E W E E

W W W


 −
 = = −
  

  8.130 

where  and R DE E are radiated and dissipated energy, respectively.  The observed 

low dissipation for large earthquakes implies that the seismic efficiency is high 

(approaching 1) for large earthquakes.  That is, for large earthquakes, 

 2Radiation effW E P MPa P  =    8.131 

We know that the change in potential energy is given by 

 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

2 2

0 1

22

22 2 2

0

2 22 2

1
, , ,

2

1
, , , ,

2

W L

W L

W L L
W

W L W L

W x y x y D x y dxdy

x y D x y dxdy x y D x y dxdy

 

 

− −

− − −−

 = +

= − 

 

   

 

 8.132 

To get some idea of how things work, I will simplify things by assuming that the 

rupture is approximately a line source.  That is, ( ) ( ) ( ),D x y D x y . Note that 

if the rupture physics is isotropic, then x can be in any direction. I can now evaluate 

the change in potential energy as 

 ( ) ( ) ( ) ( )
2 2

0

2 2

1

2

L L

L L

W x D x dx x D x dx 
− −

 = −    8.133 

The first integral is a difficult problem since ( )D x  is a highly nonlinear function 

of ( )0 x .  In contrast, the second integral is entirely determined by ( )D x  since

( )x  is a linear function of ( ).D x  In particular, it is convenient to write this in 

terms of a Green’s function. 

 ( ) ( ) ( )x D x G x  =   8.134 

Where ( )G x is a Green’s function for a spatial impulse of slip.  Uenishi and Rice  

(2003, JGR, doi:10.1029/2001JB001681)  say that 
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( )

( )

( )

( )

( )

2

2

2

2

1

2

2

L

L

Hi

D

x d
x

D

d
x

D x

x x

D x
F

x



 
 

 



 


 









−



−








 = −

−




=

−


= 



 
= −  

 



  8.135 

Where   =  for mode III and ( )1   = − for modes I and II.  HiF  signifies a 

Hilbert transform.  This can also be written 

 ( ) ( )( )
2

Hix F D x
x




 
 =


 (8.136) 

 

Therefore, 

 ( ) ( )( )
2

HiD D x F D x







 = −  8.137 

 
I can take the Fourier transform of 8.137 to obtain 
 

 

( ) ( ) ( )

( ) ( )

( )

( )( )

2

2

sgn
2

sgn
2

Hi

FT D k D k

D k F ikD

D i k k D

k k D D

 



















 =  

= − 

 = −  − 

= 

 8.138 

And then, using Parsevals’ theorem 
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( ) ( )( )

( )

2

2

? 2

2

sgn
2

2

L

Hi

L

Ddx D x F D x dx

k k D D dk

kD dk
















− −



−



−

 =

 =  

 =  

 





 8.139 

I now need to estimate ( )2D k .  I begin with a statistical description of ( )D x . 

   
I will assume that at each point along the rupture, the slip is chosen from a random 
number generator with a pdf described by a mean-zero Normal distribution with a 

variance of 
2 .  Meier, Ampuero and Heaton investigated the Potency rate 

functions that resulted from finite source inversions of large earthquakes.  They 
found that 

 ( ) ( )( )1
2 2

R R

t t
P t R x

L L
V V

    
       −
    

        

 8.140 

Where ( ), 0.38R x  = is a number chosen from a group of random numbers 

whose frequency (probability density function, or pdf) is described by a Gaussian 

function, 

2

22

2

R

e
P



 

−

= .  That is, the random numbers are from a Normal 

distribution with a standard deviation 0.38  .  8.140 is an isosceles triangle (the 
expected value) multiplied by a random number that has a normal pdf with a mean 
of 1.  Almost all of the random numbers are less than 1, so this multiplicative factor 
is almost entirely positive).  It’s important to realize that this functional description 
of spatially varying slip is based on fitting observed data (a rather complex 
observation); it’s not clear that this functional form is derivable from physics.   
 
Now recall (from Chapter 7) that, for a slip pulse propagating along a long narrow 
rupture (i.e., a line source), the Potency rate maps directly into the slip distribution.  

That is, ( ) ( )RD x P V t . From this, I infer that 

 ( ) ( )( )56 10 1
2 2

x x
D x L R x

L L

−     
    −    

    
 8.141 

The scaling factor, 
56 10 L− , is from the observed ratios of average slip to rupture 

length (see 8.31).  I can now attempt  to calculate the Fourier transform of 8.141, 
which gives 
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  8.142 
Unfortunately, I am unable to take the Fourier Transform of 1.  I note that I can 
write that  

 ( ) ( )( )
2

2 2 56 10
2 2

x x
D x E R x L

L L

−     
        

     
 8.143 

Now the power  of the random variable term is just the energy density of the 
spatially filtered random numbers.  The final density is modulated in space by the 
triangle function.  I think I can do my integral in the space domain by integrating 
the modulated power as a function of x. 
 
 
 
  

 

( ) ( ) ( ) ( ) ( )0

1
, , ,

2
x y x y x y x y x yW k k k k D k k Lk Wk dk dk 

 



− −

 
  −     

 
 

8.144 
 

 ( ) ( ) ( ) ( ) ( )0

1

2
x x x x x xW k D k G k D k Lk dk







−

 
 = −   

 


 8.145 
 

Now the stress drop is a linear function of the slip distribution.  That is, it can be 

calculated using a linear Green’s function, ( )G x  or 

 ( ) ( ) ( )x D x G x  =   8.146 

This convolution can also be defined in the wavenumber domain as 

 ( ) ( ) ( )x x xk D k G k  =  8.147 

Unfortunately, I do not know what ( )G x  is, but for now,  

The convolution with a rectangle is identical to performing a running-mean lo-pass 

filter (width  1
L

) on the integrand.  Unfortunately, 8.145 is a rather cumbersome 

expression.   
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

1
sinc

2

1
sinc sinc

2

x x x x x x

x x x x x x x x

W k D k G k D k Lk dk

k Lk D k D k G k D k Lk dk















−



 



−

 
 = −   

 

 
   −   

 





8.148 
I can now take the Fourier transform of Error! Reference source not found.. 

 ( ) ( )1x x xG k i k k  = +  8.149 

Where I used the fact that ( ) xFT x k= .  I am tired of explicitly writing 

everything as a function of xk .  I  can now rewrite 8.148 as 

 

( ) ( ) ( )

( ) ( ) ( )

0

2

0

1
1

2

1
1

2

x x x x x

x x x x x

W Lk D ik k D D Lk dk

Lk D ik k D Lk dk

 

 



 

−





−

 
    − +   

 

 
=   − +  

 





 

8.150 
 

At this point, I need to emphasize that we have little hope of obtaining accurate 

measurements of the prestress or the slip distribution, especially since we strongly 

expect that these are complicated functions of space.  To deal with this, I will 

assume that these parameters can by described by their probability density 

functions.  For the following section, you should understand that when I write 

prestress and slip, I actually mean that there are pdf’s that describes the parameters 

for each value of x. I will then describe the distribution with an expected value and 

some pdf about the expected value.  Now I will make the critical assumption that 

prestress and slip are random stationary functions of space.  That is, I assume that 

statistical properties are invariant with respect to position.  Furthermore, when I 

say the “change in potential energy,” I really mean the expected value of the change in 

potential energy.   

 

I need to be careful with 8.150, since it has terms that are the product of stochastic 

variables, that is, ( ) ( )0 x xk D k  and also ( ) ( )x xD k D k 
.  These products are 

also stochastic variables, with the following properties 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 0cov ,x x x x x xE k D k E k E D k k D k       = +       

 8.151 
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And 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )2

cov ,

var

x x x x x x

x x

E D k D k E D k E D k D k D k

E D k D k

  



       = +       

   = +   

 8.152 
Where cov is the covariance function, which is defined as 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )0 0 0cov ,x x x x x xk D k E k E k D k E D k       − −      
 8.153 
Covariance is a measure of the correlation between random variables;  when the 

covariance is positive, then two variables tend to vary together (positive variations 

in one variable tend to occur when there are positive variations in the other variable.  

When the variables are statistically independent, then their covariance is zero.  I am 

getting tired of explicitly writing that my random variables are a function of xk , so 

I will drop that formality.  I can obtain the expected change in strain energy by 

substituting 8.151 and 8.152 into 8.150. 

    ( ) ( )  ( )2

0 0

1

2 2cov , var 1x x x

L

E W E E D D E D D ik k dk  


        + − + +    

8.154 
 

At this point, I will assume that my random variables, 0  and D , are a  zero-mean, 

Gaussian,  stationary process.  That  is,  at  each value of x, I assign a value by picking 

a random number, where the probability of the number is given by the Gaussian 

function.  Basically, I start with Gaussian white noise and I then apply a spatial filter 

power-law that is a power law in wavenumber space (I spatially smooth the random 

white noise).   I now note that the Fourier transform of Gaussian white noise is 

Gausian white noise.  Furthermore, it is easy to show that 

 ( ) ( ) ( )2 2varE D D E D= +  8.155 

Since I assumed that ( )D x and ( )0 x are mean zero, then it follows that ( )D k  

and ( )0 xk  are also mean zero.  Therefore 8.154 becomes   

   ( ) ( ) ( )0

1

2 cov , var 1x x x

L

E W D D ik k dk 


    − +
 

 8.156 
Now the covariance term can be written as 
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 ( ) ( ) ( ) ( )0 0 0cov , corr , var varD D D  =  8.157 

Where corr is the correlation coefficient between prestess and the slip.  A 

correlation of +1 means that variables are perfectly correlated, -1 if they are 

oppositely correlated, and 0 if they are statistically independent.  So 8.156 can be 

written 

   ( ) ( ) ( ) ( ) ( )0 0

1

2 corr , var var var 1x x x

L

E W D D D ik k dk  


   − +
  

 8.158 
At this point, I will assume that my variables are wave-number filtered versions of 

Gaussian white noise with a variance of 1.  That is, I assume that  

 ( )
( )

2

0

1
var

1 xk



 

  
 + 

 8.159 

And 

 ( )
( )

2

1
var

1 x

D
k



 
  
 + 

 8.160 

Substituting these into 8.158 

 

  ( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( ) ( )

( )( )
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1 1
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1 1

1 1
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1 1

1
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1 1

1 1 11
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51 2 1
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k kk k
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 

 
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 
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 
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

 
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 
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+
= −

+ +

+ − + +  
= − +

+ − − −



 

 8.161 
 

 

 

 

 can simplify it by assuming that the prestress, slip, and stress drop are isotropic on 

the fault plane.  That is,  I will assume that 
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 ( ) ( ), rD x y D r  8.162 

Where 2 2r x y= + .  At this point, I need to modify my 2-d Fourier transform 

such that it only depends on r .  In particular, 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

2

2
2 cos

0 0

0

0

, ,

2 2

ˆ

x y

r

i xk yk
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r
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 

 
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

 
=  

 
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
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

 8.163 

That is, I will greatly simplify the problem by assuming that the Fourier spectrum 

of slip is approximately given by  

 ( ) ( )ˆ,x y r rD k k D k  8.164 

Where the hat connotes Hankel transform of zero order,  0J  is a Bessel 

function of the first kind, and 2 2

r x yk k k + .  A Hankel transform is very similar 

to our familiar Fourier transform, except that the kernel function is a Bessel 

function instead of a sinusoid.  Similar to a sinusoid, ( )0J r  oscillates with increasing 

r.  However a Bessel function’s amplitude decays with distance and the asymptotic 
expansion is 

 ( )0

2
cos

4
J r r

r





 
 − 

 
 8.165 

 
The Hankel transform has the following properties 
 

 ( ) ( ) ( )0

0

ˆ 2 2r r rD k D r J rk dr 


   8.166 

 ( ) ( ) ( )0

0

ˆ2 2r r r r r rD r D k J rk k dk 


=   8.167 

This is an unrealistic assumption that allows me to simplify the math.  In particular, 
8.145 becomes 
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( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
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 
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

−
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 
 = − 

 

 
= − 

 

 



 8.168 
Now I will note that a sinc function with scale width of R can be crudely 

approximated by a Rectangle function with a scale width of R.  8.168 can be 

approximated as 

 

( ) ( ) ( ) ( ) ( )
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
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 
 



−
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−

 
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 

 
= − 

 

= −


= −





 

 

 8.169 

  
At this point, I will assume that the prestress and the slip are both random variables 

with pdf’s given by 

 ( )
00 rk C k 

 −  8.170 

 

 ( )r DD k C k −  8.171 

 

 

 

I can now approximate the change in potential energy  8.132 as 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )  ( ) ( )

1 1

0

0 0

1 1

1 1

0 0

0 0

2

2 cov ,

R R
r r r r

r r

r r

R R

r r r r r r r r r r

k D k D k k
W E dk E dk

k k

E k E D k k D k k dk E D k k k dk

 
 

    − −

   
 = −   

   

     = + −         

 

 

 8.172 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

2 2

0

1
,

2

1
,

4

S

S

W x y f y D x D x f y dxdy
x

x y f y D x f y D x dxdy
x

 

 

 
 = − 

 

 
= − 

 





 8.173 
  

For the moment, I will greatly simplify things by assuming that ( ) ( )f y y  .  I 

can now rewrite 8.173 as 

 ( ) ( ) ( )2

0

0

1

4

L

W W x D x D x dx
x

 
 

  − 
 

  8.174 

The observation that the  ratio of 510D
L

−  can be produced by a random-phase 

slip that has an amplitude  spectrum of ( )D k k −= , where 1.2   (see Zheng-

Liu and others).  From 8.130, 

 

 
RE

W


 =  8.175 

So 8.175 is rewritten as 

 ( ) ( ) ( )2

0

0

1

4

L

RE W x D x D x dx
x

  
 

 − 
 

  8.176 

Now radiated energy is estimated to be R effE P  (see 8.7), so 8.176 becomes   

 ( ) ( ) ( )2

0

0

1

4

L

R effE P W x D x D x dx
x

   
 

  − 
 

  8.177 

Or 
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 ( ) ( ) ( ) ( )2

0

0 0

1

4

L L

effW D x dx W x D x D x dx
x

   
 

 − 
 

 

 8.178 
 

 

( ) ( ) ( ) ( )( )
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( ) ( )

2

0
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1
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1
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1
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2

L L

eff

L L

eff

L L

eff

eff

eff

D x D x dx x D x dx
x

D x D x D x dx x D x dx
x

D x D x dx x D x dx
x

D x D x x D x
x

D x x
x

   

   

   

  

  

 
+   

 
+   

 
+   

 
 + =  

 
+ =  

 

 

 

 8.179 
  

 

( ) ( ), ; , ,D F

S

E x y D D D x y dxdy=    8.180 

IF we assume that the prestress and final stress are uniform in x and y, then 8.132 

becomes 

 ( )0 1

1

2
uniformW DS  = +   8.181 

Of course the prestress and final stress can only be uniform for one unique 

distribution of slip which depends on the geometry of the rupture surface.  If we 

make the very restrictive assumption that the friction is uniform and equal to the 

final stress, then  

 1D GE DS E= +   8.182 

Where GE  is fracture energy.  If we assume that the radiated energy is the change 

in potential energy minus the dissipation energy, then in the case of uniform stress 

and friction, 
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( ) ( )

( )

0 1 1 0 1

0

1 1

2 2

1

2

R G G

G

G

E DS DS E DS E

DS E

W E

    



= + − − = − −

=  −

  −

 

 8.183 

Where GE  is the fracture energy, which is meant to signify the transition from static 

to dynamic friction (sometimes called the breakdown energy).  In the case of slip 

weakening friction, ( )1 0

1

2
G yieldE D S = −  .  Assuming slip weakening friction, 

the potential energy change available for seismic radiation  is 
0

1

2
GW DS E   −  

.   Unfortunately, it is not possible for seismologists to determine absolute stress, 

we can only infer stress changes.  In response, many seismologists have substituted 

0W  for W   in their definition of seismic efficiency.  I will call this “crack seismic 

efficiency” ( crack  ).  In this case 

 

 
0

2observed observed
observed R R
crack

E E

W DS



 =

 
  8.184 

We also know that 

 
( )

0

1 0

1

1

G
crack

yield

E

W

D

D



 



= −


−
= −



  8.185 

Or  

 
( )

0

1

1 crack

yield

D
D

 

 

− 
=

−
  8.186 

In principle, seismologically observed quantities can be used to determine 

everything in 8.184.  Then assuming that the Byerly friction is the yield stress, then 

the slip weakening distance can be determined, that is provided that 1  is known 

(which it is not).  However, in this case, ( )1crack

G crackE DS = −   .   
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Equations 8.181 through8.186 all assume that the frictional sliding stress is the final 

stress after all rupture has ceased. The resulting definition of the change in potential 

energy is very, very restrictive. It assumes constant friction and it thus excludes 

slip pulses.  Furthermore, all of these definitions assume that the prestress and 

stress drop are spatially uniform.  This is clearly not the case.  In particular, the slip 

and the stress drop are both complex functions of space that are correlated.  

Multiplying their average values is clearly inappropriate.  The best description of 

the radiated energy is to subtract 8.180 from 8.132, or   

 ( ) ( ) ( ) ( )0

1
, , , ,

2
R F

S

E x y x y D D D x y dxdy  
 

= −  − 
 

  

 8.187 

As you are aware, I believe that the prestress and stress drop is very heterogeneous.  

Unfortunately,  I don’t know any simple average relations between radiated energy, 

slip and stress drop. 

With regards to the fracture energy, I like the definition that 

( )minG fE E D dS −  .  This is rather arbitrary.  However, the key issue about 

dynamics is whether or not the energy available to radiate increases with additional 

rupture.  That is, if 0RdE

dt
=  , then the event has ended.  This can be accomplished 

solely with the distribution of prestress, which then determines the distributions of 

friction and slip.  One does not need large fracture energies to stop an event.  If the 

friction is strongly rate weakening, it produces slip pulses and the relationship 

between slip and dynamic friction and stress drop becomes very complex (see 

Elbanna and Heaton). 

 

One potential research direction is to use seismological evidence to determine 
observed

RE  , ( ),D x y  , and ( ),x y  .  We could then assume a friction law together 

with the assumption that slip is a Joffe  slip pulse to determine  

( ) ( )( ), ,F JoffeE x y F D x y= .   This is similar to the approach taken in Elbanna and 

Heaton.  In this case we can anticipate that FE CD  , where  and C   are 

constants obtained from numerical simulations of pulses.  Then 8.187 could be 

written 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

1
, , , , ,

2

1
, , , ,

2

observed

R

S S

S

E x y D x y dxdy CD x y x y D x y dxdy

x y x y D x y CD x y dxdy





 

 

 
= − +  

 

  
= −  −  

  

 



 

 8.188 

Finally, we can constrain put a constraint on the prestress. 

 

( ) ( ) ( ) ( ) ( )0

1
, , , , ,

2

observed

R

S S

x y D x y dxdy E x y D x y CD x y dxdy


 
 

= +  + 
 

   

 8.189 

The system could work consistently even with no friction or fracture energy as long 

as 

 

 

( ) ( ) ( )0

1
, , ,

2

observed

R

S

E x y x y D x y dxdy 
  

= −   
  

   8.190 

As an example we use the relationship between radiated energy and seismic 

moment of Kanamori.  We recall  that, on average, 

 0

4 42 10 2 10
R e e

M DS
E DS P


  = = =

 
  8.191 

Where effective energy 2e MPa   .   Substituting this into 8.188, we obtain 

 ( ) ( ) ( ) ( )0

1
, , , ,

2
e

S

SD x y x y D x y CD x y dxdy


  
  

= −  −  
  

  

 8.192 

If we assume that ( ) ( )0

1
, , 0

2
x y x y

D
 

  
−  =   

 , or that the final slip at a 

point is independent from the difference between the initial stress and the stress 

drop at the point (implausible assumption), then 8.192 becomes, 

 ( ) ( )0

1
, ,

2

F
e

E
x y x y

P
  

 
 −  − 
 

  8.193 
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If 3MPa   ,  then ( )0 , 1.5 3.5F F
e

E E
x y MPa MPa

P P
  + +  +  .  The fact 

that there is minimal melting implies that 2FE
Mpa

P
  . then ( )0 , 5.5x y MPa  .  

This is a restatement of the stress paradox.  Stresses inferred from seismology are 

far smaller than stresses measured in the laboratory, and they are small compared 

to the stresses required to resist gravity in mountain ranges.  I am convinced that 

the key to resolving these problems is to establish the detailed connection between 

prestress and stress drop.  In dynamic models that produce slip pulses (strong rate 

weakening friction), the amplitude of the slip pulse varies in a complex way that is 

mostly determined by the prestress and the hypocentral location (see the pulse 

energy equation by Elbanna and Heaton). 

 

 Thank you to Hiroo Kanamori, Valere Lambert, and Victor Tsai for the 

comments. 

 
 
 
Strength-length scaling 
b-value and prestress 
b-value and brittleness 
creeping fault 
discrete vs continuum 
far from equilibrium Reynolds number 
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Derivation of Brune spectrum from the observation of near-
source high-frequency magnitude saturation 
We observe that very near-source accelerations (high-frequencies) appear to be 
incoherent noise with a peak acceleration that is independent of magnitude.  This 
leads us to the following hypothesis. 
 

Hypothesis: Radiated high-frequency energy c

RE
 

scales with the rupture 

area S , independent of the average slip on that rupture surface, or
 

  

 c

RE S
 

 8.2 

This hypothesis means that if we double the rupture area, then we double the 
radiated high-frequency energy. 
What does this mean for the scaling of radiated seismic waves? 
Let us assume that the seismic wave is approximately a non-negative function 

of duration cT , whose integrated area scales with seismic moment, and 

which has a power-law high-frequency spectral decay.  Then, 

 
0sincR

c

U M  


 
 
 

 8.3 

Where 2
c

cT
 = .  Equation Error! Reference source not found. has 

asymptotes 

 

0

0

c

R

c
c

M

U
M



 

  


−



  

 
 

 8.194 

Now let us assume that the duration of the signal is proportional to the 

dimension of the fault, or that c S .  In addition, we will assume that 
3

2
0M SD S .  Therefore, 

1
3

0c M
−

, and 8.194 becomes 

 
0

1
3

0

c

R

c

M
U

M




 

  
− −





 8.195 

Now the radiated energy spectrum scales as the square of the Fourier amplitude 
spectrum, or 
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 ( ) ( )2 2 1 23
0

c c

R RE U M


    
− −

 8.196 

Now our original hypothesis was that 

 
2

3
0

c

RE S M
   8.197 

Relations 8.196 and 8.197 can only be simultaneously true if 2 = .  Therefore our 
hypothesis that the high-frequency very near-source ground motion is incoherent 
noise of constant amplitude that is independent of the size of the slip implies that 

 
0

2

10
23

0

sinc
c

R
c

c

M
U M

M

 

   −

 
  
  

 8.198 
Relationship 8.198 is identical to the Brune spectrum (1970), but without the stress 
drop scaling.  That is, the high-frequency radiation is independent of the stress 
drop.  Therefore our hypothesis is identical to assuming Brune’s spectral scaling for 
seismic moment (but not for stress drop). 
We can also anticipate the following asymptotic behavior for any ground motion 
prediction equations.  When the distance is large compared to the source 
dimension, and when the predominant periods of the ground motion are large 
compared to the source duration, we expect the ground motion amplitudes to scale 
with the seismic moment, or  

 
& 0

3log log
2far lowfreqU M M  8.199 

For very near-source long-periods (e.g. displacement), we expect the peak 
amplitude to scale with the size of the slip on the nearby fault segment, or 

 
1

3
& 0

1log log log
2near lowfreqU D M M  8.200 

   

Gutenberg-Richter Frequency Magnitude Relation 
 

 ( )log N M a bm = −  8.201 

 

 
( )

( ) ( )10 ln 10 10a bM a bM
d N M d

b
dM dM

− −


= = −  8.202 

 

 ( )( ) ln 10 10
2 2

a bMM M
N M M M b M− 
 −   + = −   8.203 
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 ( )log ( ) log ln 10
2 2

bM M
N M M M M a bM

−     −   + =  + −    

 8.204 
 

 
( )log ln 10

( ) 10 10
2 2

b
M a bM bMM M

N M M M C
−  + − −  

 
 −   + = =

 8.205 
 

 ( )
2

2 3

0

2
log log

3
M C M C L D

−

= − = +  8.206 

 

If L D , then 

 
2logM C L−= +  8.207 

 

 ( )2log 2( ) 10 `
2 2

b C L bM M
N M M M C CL

− + − 
 −   + = =

 8.208 
 

Now the total rupture area ( ),totalA M M for all earthquakes with 

2 2

M M
M M M

 
−   +  is 

 ( ) ( )2 12, `
b

totalA M M N L CL
− = =  8.209 

 
That is, if the b-value is 1, then the total rupture area is the same for integrated area 
of each magnitude.  That is the sum of the rupture area of all 2’s is the same as the 
rupture area of all 3’s, is the same as all 4’s, etc.  What this means is that given a b-
value of 1, and given that a point has just experienced slip, then it is equally likely 
that it could have come from any magnitude earthquake.  Given that different 
magnitude earthquakes have different slips, any slip is as likely as any other.  This 
is only true in a logarithmic sense.  That is, a fault is equally likely to experience slip 
between D and C x D, regardless of the value of D and a constant, C (e.g. given, 
slips between 1 and 2 mm are just as common as slips between 4 and 8 m. 
  

 
 
 
but with a mirror image fault  
with plan view of displacement amplitude vs. distance from fault. 
cross section of static motion of a dip-slip fault.     
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Static offsets in a half-space 
near-fault particle motions  
Aagaard’s figures of different rupture velocities 
Spectral representations 
Stress drop 
Steady-state ruptures do not radiate 
Stress in cylindrical hole. 
Fracture energy vs yield stress 
Residual stress 
Energy of a slip pulse. 
Frictional energy 
Chaotic ruptures 
Self-organization 
Random walks 
 
 
Appendix A 
 
A Generalized power-law spectral scaling law   
 
The fact that very near-source accelerations (high-frequencies) appear to be 
incoherent noise with a peak acceleration that is independent of magnitude 
motivates the following hypothesis. 
 

Assumption 1: Radiated high-frequency energy cf f

RE scales with the rupture 

area, S LW= , some unknown power of the stress drop,   , and is 

independent of the average slip on that rupture surface, or 
 

 cf f

RE S    8.210 

 
 
This  assumes that high-frequency motions are characterized by random phase, 
which means that if we sum two motions, then the energies sum linearly.  This 
means that if we double the rupture area, then we double the radiated high-
frequency energy.  I have also included a yet unknown static stress drop 
dependence.   
 
My hypothesis of near-source energies (equation 8.210) and Brune’s assumptions 

are identical if 2 =  , and if eff =   .  In essence, Brune (1970) also assumed 

that the near-source high-frequency radiated energy scales linearly with the rupture 
area (see 8.68).  
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Assumption 2:  Assume that the far-field seismic wave is approximately a non-

negative function of duration cT .   This is equivalent to saying that the motions 

are approximately the solutions for the far-field S-waves in an elastic whole space.  

A non-negative function of duration cT  has a flat amplitude spectrum between 

zero frequency (value is proportional to the integrated area of the function, which 

is proportional to the Potency) and the corner frequency, 1
c

c

f
T

=  .  If the S-wave 

is non negative then its spectrum at periods shorter than cT  is less than the 

amplitude spectrum for periods longer than cT  .  Brune also explicitly made this 

assumption. 
 
Assumption 3: For simplicity, assume that the high-frequency spectrum has 

a power-law high-frequency spectral decay f −
 .  That is, assume that 

 

1

R

c

P
U

f

f


 

+  
 

 8.211 

 

Where RU  is the Fourier amplitude spectrum of the radiated (far-field terms) S-

wave, potency P SD=  , and corner frequency, 1
c

c

f
T

= .  Equation 8.211 has 

asymptotes 
 
 

c

R

c
c

P f f

U f
P f f

f

−



  

 
 

 8.212 

 

Brune also used this assumption, but he assumed that 2 =  (based on the analytic 
solution of an instantaneous shear on a half space). 
 
Assumption 4: Now assume that the duration of the signal is proportional to 
the dimension of the fault (that is, assume constant rupture velocity), or that 

1
cf

S
.  Again, Brune used this assumption. 
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Assuption 5: Assume size similarity of the form  
3

2P SD S  , or 

alternatively 
2 2

3 3LW P 
−

  . Brune also made this assumption.  Therefore, 
1 1

3 3
cf P 

−
 , and 8.211 becomes 

 
 

( )

3 3

1
R

P
U f

f

P



 


−

+


  8.213 

Which has asymptotes 
 
 

1
3 3

c

R

c

P f f
U

P f f f
 


− −






 8.214 

 
Now the radiated energy spectrum scales as the square of the Fourier amplitude 
spectrum, or at high frequencies 
 
 

( ) ( ) 22 2 1
3 3c cf f f f

R RE U P
 


−


 8.215 

   
Now my original hypothesis 8.210 was that 
 
 

2 2
3 3cf f

RE S P
 
−

   8.216 

 

The 
2

3
−

  in 8.216 comes from the hypothesis that the radiated high frequencies 

scale with the rupture area. This hypothesis implies that for the same P  , a higher 
static stress drop has a smaller rupture area and therefore a smaller radiated high-
frequency energy.  
 

The scaling of high-frequency radiated energies with P  and   given in the two 

independent relations 8.215 and 8.216 can be simultaneously true only if 2 = and 
also if 2 =  .  Assuming 2 =   is the same as saying that radiation of high 

frequency energy per unit of rupture area of scales with the square of the static 
stress drop.  Since energy scales as the square of the wave amplitude, 2 =  is the 

same as saying near-source peak acceleration scales linearly with stress drop (this is 
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Brune’s assumption).  This assumption is essentially the Brune spectral model (with 

eff  =  ). Notice that in this case 

 
 

1 22 23 3

2 2
3 3

1

c

R

c

P f fP
U

f P f f f

P





−

−




+


 8.217 

 
This relation could have been derived from either one of two sets of assumptions. 

Assumption set 1: the spectrum is an 
2f −

  power law with a maximum amplitude 

proportional to P  and a spectral corner that is inversely proportional to the 
rupture dimension. Alternatively, assumption set 2: the spectrum is an unknown 
power law, the high-frequency near-source motions scale linearly with stress drop, 
and for equal stress drop, the high-frequency radiated energy scales with rupture 
area (random phase).   These two sets of assumptions are equivalent and either set 
independently leads to the 2nd form of Brune’s spectral model.   
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2

2 2
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2

2 2
3 3

1
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1
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P







−

−



+


+
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  8.218 

 
Which is identical to my earlier statement of Brune’s spectral law. 
 
Inconveniently, near-source high-frequencies (pga) seem to be independent 

of both slip amplitude (see Figure 8.14) and stress drop  (see Figure 8.11). 
That is, Figure 8.11 shows that near source pga’s are approximately independent of 

P  (for M>6) and  .  That is, 0   , or rewriting 8.216, 

 
2 2

3 3cf f

RE S P 
−

   8.219 

Which means that the high-frequency spectral amplitude scales as 
 

1 1
3 3cf f

U S P 
−

   8.220 

The lack of correlation between near-source pga and stress drop seen if Fig. 8.11 

seems to suggest that the spectral asymptotes are given by   
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1 1
23 3

c

R

c

P f f
U

P f f f
−−






  8.221 

Unlike the Brune relationship, we cannot assume a single power law with a single corner to fit the 
spectrum.  
 
 

Scale Dependence of the Strength of the Earth’s Crust 

Thomas H Heaton 

Introduction 

What is it that earth scientists mean when they speak of the strength of the Earth’s 
crust?  Although the concept of strength is well defined for materials that yield 
uniformly with spatially homogeneous stress, there is little doubt that deformations 
and stresses are highly heterogeneous in the Earth’s crust.  I discuss more general 
definitions of strength that are applicable for materials that have spatially 
heterogeneous stress when they yield.  These new definitions of strength are based 
on spatial averages of stress, and while they are compatible with a simple intuitive 
understanding of strength, they lead to the conclusion that materials that are 
deforming at multiple length scales have strengths that depend on the length scale 
of the observation.  In particular, the strength decreases with increasing length 
scale. 

Strength of a Material  

It is natural to think of the strength of a material as the amplitude of stress at which 
a material begins to yield2.  In practice, it is common to measure the strength of a 
material using some test apparatus that applies an increasing external load to a 

sample until it begins to yield, 
EXT

YF . Figure 1 shows a schematic of a hypothetical 

test apparatus to measure the strength of a cubic sample of dimension 0L .   The 

strength is determined by calculating a yield stress from the yield force and the 

appropriate cross sectional area 
2

0L .   For reasons that will become apparent shortly, 

I will consider the strength to depend on the scale of the sample and I will define 
it as 

 ( ) ( )0
20
0

.
EXT

YF L
L

L
   (8.222) 

 
2 Since stress is a tensor quantity, it is usually necessary to define strength as an imaginary surface in 6-

dimensional stress space that separates elastic stress states from yielding stress states.  If the material is 

isotropic, then this yield surface can be defined in the 3-dimensional space of the amplitudes of the principal 

stresses. 
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While this is the traditional way that strength is measured for materials, it is not 
really possible to make this measurement in the Earth’s crust; there is no test 
apparatus large enough to cause the yielding of a sample that is ten’s of kilometers 
in dimension.  Of course, one can measure the yield stress of small samples of the 
crust, but we should be cautious since there may be mechanisms whose 
deformation physics depend on the scale of the material.  Later I will discuss two 
other definitions of strength, one which is based on root-mean-square statistics, 
and the other is based on inelastic work. 

 

Figure 1.  Hypothetical cubic test sample of dimension 0L  that is subjected 

to a uniform stress.  The “strength” of this sample can be viewed as the 

size of the externally applied stress 
Ext

Y that causes the sample to yield. 

Since it is not possible to test the Earth’s crust in an apparatus, it is common for 
earth scientists to estimate the strength of the crust by obtaining estimates of stress 
amplitudes for a section of the crust that is experiencing inelastic yielding (e.g., 
earthquakes; see Kanamori and Heaton, 2000).  However it is important to 
recognize that this is a different measurement from the one that is made using a 
test apparatus in the laboratory.  That is, if we return to our conceptual test 

apparatus of Figure 1, instead of measuring the external yield force
EXT

YF , we would 

directly measure stress Y  inside of our yielding sample.  To keep the discussion 

relatively simple, let’s choose to look at only one component of the shear stress in 
our medium.  That is, I could alternatively define the strength of the sample to be 
the amplitude of internally measured stress within the yielding sample.  Although 
the discussion up to this point may appear to be trivial, the fundamental issue is 
how to measure this internal yield stress.  That is, stress is always spatially variable 
inside of any solid material.  For example, any poly-crystalline material has 
enormous stresses at grain boundaries; these stresses are on the order of GPa’s. 
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Thermal stresses and dislocations are other sources of spatial variations in stress.  
Therefore, a more complete description of the stress in our medium would be  

 ( ) ( ) ( )  )0 0, , , , , , , 0,Ext Intx y z L x y z x y z L  = + 

 (8.223) 

where ( )0

Ext L is the spatially uniform stress from the externally applied force and 

( ), ,Int x y z  is the spatial distribution of internal shear stress.3  By definition, the 

spatial average of  ( )Int x  over the entire sample is zero.  However, the condition 

is stronger than that, the average internal stress over any cross section intersecting 
the x-axis must also be zero, or 

 ( ) ( )
0 0

0

2

0 0 0

1
, , 0,

L LL
Int Int x y z dydz

L
  = x  (8.224) 

where I use the double bar notation to signify the average over a 2-dimensional 
surface that is perpendicular to the x-axis.  Therefore, by using this decomposition, 
I can alternatively define the strength as  

 ( ) ( ) ( ) ( )
0 0

0

0 02

0 0 0

1
, , .

L LL
Ext

YL x y z dydz L
L

     = x

 (8.225) 

Now suppose that at a given external load, then the sample could yield at either the 
scale length of the sample, or it could also yield only in some smaller section of our 

sample with the dimension, 1L .  Therefore, we would conclude that the strength 

of the smaller cube is 

 ( ) ( ) ( ) ( ) ( )
1 1 1 1

1

1 02 2

1 10 0 0 0

1 1
, , , ,

L L L LL
IntL x y z dydz L x y z dydz

L L
     =  +   x

 (8.226) 

Therefore, ( ) ( )1 0L L    unless ( )
1

, , 0
L

Int x y z = .  Importantly, earthquakes 

seem to happen at multiple length scales , 1...iL i n= , which implies that the stress 

in the crust is such that the crust is at its yield strength at multiple length scales.  
That is, the strength of the crust is independent of the length scale if, and only if, 

( ), , 0
iL

Int x y z =  for all length scales iL .  If i → , then for the strength to be 

 
3 Internal stresses are sometimes called “residual stress”, although we will use a more general description of 

these stresses than is usually considered. 
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independent of scale length, then ( ) 0Int =x , which would imply homogeneous 

stress in the crust, which is inconsistent with the occurrence of earthquakes at 
multiple length scales.  Therefore, if the crust is failing at all length scales, then the 
strength of the crust, as defined by (8.225), must depend on the scale length.   

More generally, since the definitions of strength given by (8.225) and (8.222) are 
equivalent, this implies that if our laboratory apparatus recreates the same physics 
as earthquake failures in the crust, then we would also measure changes in the 
strength of samples as a function of the size of the sample.  As we will see, the key 
to a deeper understanding of this problem is to characterize the internal stress 
distribution in the crust. 

A Statistical Description of Stress in the Crust 

In the previous section I defined the strength of a yielding volume as the amplitude 
of the average stress on a plane that cuts through the volume, that is, 

equation(8.225).  I am particularly interested in how strength   varies as a function 

of the length scale L  of the yielding volume.  In the case of the Earth’s crust, I 
make the following key assumption.  The crust has evolved into such a state 
of stress that it can fail at any length scale.  That is, I assume that earthquakes 
of any size are possible within our hypothetical crust (Bak and others, 1987).   In 

this case the distribution of stress ( ), ,x y z tells us the length scale dependence 

of the strength in the crust.  All we need to do is to estimate the amplitude of the 

spatial average of ( ), ,x y z  as a function of the length scale.   

At this point, it is convenient to assume that ( ), ,x y z is a random stationary 

function of y and z.  The assumption of stationarity means the statistical properties 
of the stress are invariant with respect to position within the medium.  That is, the 

joint statistical distribution of ( ) ( )1 1 1, , ,..., , ,Int Int

n n nx y z x y z  is the same as that 

of ( ) ( )1 1 1, , ,..., , ,Int Int

n n nx x y y z z x x y y z z + + + + + + .  Assuming 

stationarity means that the process Int  is entirely determined by its covariance 
function 

 
( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) 

, , , , , cov , , , , ,

, , , , , , , ,

Int Int

Int Int Int Int

x y z x y z x y z x y z

E x y z E x y z x y z E x y z

 

   

         

         − −
   

 (8.227) 

which is also known under the names of the autocorrelation function or the power 
spectrum, and where E is taken to mean expected value.  Note that the stationarity 
assumption implies that the covariance between two points depends only on the 
distance between those points.  Therefore, we can define
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( ) ( ),     −     

I recognize that stress in the Earth’s crust is clearly not stationary with respect to 
position; for example, there are systematic variations in crustal thickness, material 
properties, total deformation, and deformation rate. Nevertheless, this assumption 
is necessary for later analysis in this paper and it may be approximately valid within 
regions of the crust.  Furthermore, if I choose an x-axis that is perpendicular to a 
fault plane, then I am essentially assuming that the statistical properties of stress on 
the fault plane are independent of the position on the fault plane. 

I can now restate my definition of strength in (8.225) as 

 ( ) ( ), ,
L

L E x y z
 

   
 

 (8.228) 

Where E is the expected value of the amplitude of the stress averaged over the 
volume of length scale L.  As an alternative, it can make the mathematics simpler 
if I introduce an alternative definition of strength that I will call the root-mean-

square strength ( )rms L  and which I define as 

 ( ) ( )
2

2 , ,
L

rms L E x y z
  

    
   

 (8.229) 

Using rms in the definition ensures that strength is always a positive amplitude, but 
it has the advantage that it allows me to relate strength to the statistical variance of 
stress.  In particular, I show in Appendix I (see page 316 of Dwass) that  

 

( ) ( ) ( )

( )( ) ( )

2

2

2

0

, , , ,

, ,

L L

rms

L
Ext Int

Y

L E x y z Var x y z

L Var x y z

 

 

    
  +    

    

 
= +  

 

 (8.230) 

This means that I can find the length scale dependence of rms strength by finding 
the dependence of the variance of the spatially averaged stress on the length scale 
of the spatial averaging. 

I can use Parseval’s theorem to calculate the variance of a stationary function that 
is described by its covariance.  That is, the integrated energy in the space domain, 
which is the variance times the length of the function, is identically equal to the 

integral of the power spectrum at all frequencies.  That is, if ( ), ,Int

x y zk k k  is the 

3-dimensional Fourier transform of the spatially averaged internal stress, then it has 
a variance given by 
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( ) ( )

( )

0 0

1 1
0 0

2

2

0 0 0

2

2

0

1
, , , ,

1
, ,

L L LL
IntInt

L
Int

x y z y z

L L

Var x y z x y z dydz
L

k k k dk dk
L

 


− −

 

 
= 

 

=

 

 

 (8.231) 

 
 If I can characterize how the integral in (8.231) depends on scale length L, then I 

will have solved our problem.  At this point, I assume that ( ), ,Int x y z is a mean-

zero (i.e., ( ), , 0IntE x y z =   ) Gaussian stationary process.  That is, I assume 

that the internal stress can be approximated by a spatially filtered version of 
Gaussian white noise.  I am unaware of any physical basis for this assumption, and 
I use it because it makes the mathematics simpler. 

I am particularly interested in the obtaining the statistical properties of 

( ), ,
L

Int x y z , which is the spatial average of the stress over a 2-dimensional 

surfaces of dimension L .  Obtaining the spatial average of the stress is equivalent 
to 2-dimensional convolution of  the stress with some 2-dimensional function 

( ) 2,
y zg L

L L
− , where g has circular symmetry with respect to y and z, and g has 

unit characteristic length and integrated area (e.g., a Gaussian, a box function, etc.).  

That is, ( ) 2,
y zg L

L L
−  has a characteristic length of L and an integrated area of 

unity.  Therefore 

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

2

, , , , ,

, ,

L
Int Int

Int

y zx y z L x y z g
L L

y zL x y z g z g y
L L

 

  

−

−

= 

    =  
    

 (8.232) 

 Where g  is the 1-dimensional version of g.  Therefore I can conclude that 

 ( ) ( ) ( ) ( )2, , , ,
L

Int Int

x y z x y z y zk k k L k k k g Lk g Lk −  =  (8.233) 

 
I can substitute (8.233) into (8.231) to conclude that 

 ( ) ( ) ( ) ( )
1 1

0 0

2

2

0

1
, , , ,

L
Int Int

x y z y z y z

L L

Var x y z k k k g Lk g Lk dk dk
L

 
− −

 
 

 = 
 

 

 (8.234) 



 

451 
 

At this point, it is helpful to be more specific about g .  If I were to assume g  to 

be a box rectangle function in the space domain (corresponding to an un-weighted 
running mean), then it’s transform would be a sinc function in the wavenumber 
domain.  If, on the other hand, I assume that g  is a sinc function in the space 

domain, then its transform is a rectangle function in the wavenumber domain and 
the solution becomes particularly simple.  That is if 

 ( )
( )sin y

g y
y

   (8.235) 

Then 

 
( ) ( )

1 1
1,

2 2

0, otherwise

y

y y

k
g k k


−  

 =   



 (8.236) 

Substituting (8.236) into (8.234), I obtain 
 

 

( ) ( ) ( ) ( )

( )

1 1
0 0

1 1

1 1
0 0

2

2

0

2

2

0

1
, , , ,

1
, ,

L
Int Int

x y z y z y z

L L

L L

Int

x y z y z

L L

Var x y z k k k Lk Lk dk dk
L

k k k dk dk
L

 



− −

− −

− −

 
 

=   
 

=

 

 

 (8.237) 
 
Substituting (8.237) into (8.230) gives the functional dependence of rms strength on 
length scale. 

 ( ) ( )( ) ( )
1 1

1 1
0 0

2

2
2

0 2

0

1
, ,

L L

Ext Int

rms Y x y z y z

L L

L L k k k dk dk
L

 

− −

− −

 = +  

 (8.238) 
 
This relationship tells us how to determine the strength of the sample at smaller 

scales L  than the scale 0L of the entire sample.  Conversely, if I already knew the 

rms strength of the material at a smaller scale L , then I could determine its value 

at the larger scale 0L simply by rearranging (8.238) as  

 ( )( ) ( ) ( )
1 1

1 1
0 0

2

2
2

0 2

0

1
, ,

L L

Ext Int

Y rms x y z y z

L L

L L k k k dk dk
L

 

− −

− −

=  −  

 (8.239) 
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That is, if I could make in situ measurements of stress in the crust at the scale length 
of meters, then I could infer the rms strength at the length scale of kilometers by 

using (8.239), provided of course that I can characterize ( ), ,Int

x y zk k k . 

 
The nature of stress heterogeneity in the crust 
 
.As mentioned in the introduction, we can view the question of strength of the 

crust as being equivalent to characterizing ( ), ,x y zk k k .  That is, through 

millennia of deformation, the crust has evolved into a state of stress whose 
statistical characteristics are determined by its spatial power spectrum.  In a very 
fundamental way, knowing this power spectrum tells us the strength of the crust. 
However, a power spectral definition of strength is definitely not as simple as the 
more traditional notion of measuring a force necessary to yield a sample (i.e., 
equation (8.222)).  We saw that these two notions of strength can be connected 
through equation (8.238). 

What is the nature of ( ), ,x y zk k k ?  To keep things as simple as possible, we will 

assume that the power spectrum is isotropic in space.  Although we have explicitly 
acknowledged the 3-dimensionality of the crust, we have adopted a definition of 
strength that is based on the failure of 2-dimensional surfaces.  In some ways it is 
attractive to drop one of the dimensions from this discussion.  However, we will 
later discuss seismicity data that is inherently 3-dimensional.  If the stress power 
spectrum is isotropic in three dimensions, then we can consider that we can write 

it as ( )rk , where 2 2 2

r x y zk k k k= + + .  

If the stress in the crust was a simply a constant (which it’s clearly not), then the 

strength is also a constant, independent of the scale.  In this case, ( ) 0Int

rk =  

and the power spectrum of stress is simply a 3-dimensional impulse function at the 

origin, or ( ) ( ) ( )0r rk L k =  .  

A more interesting case is to investigate the possibility that the power spectrum can 

be approximated as a power law, or assume that ( )r rk Ck  −= , where   is 

positive and where the outer scale of the sample is infinite.  In this case, the strength 
approaches zero as the scale becomes infinite and (8.238) can be written as 

 ( ) ( )
1 1

2 2 2

2

0 0 0

L L

rms y z y z

C
L k k dk dk

L


− −

−

 = +   (8.240) 

This double integral over a rectangular box in Cartesian coordinates can be 
transformed to a double integral over a circular area without any loss of generality.  
That is, we can rewrite (8.240) as  
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( ) ( )
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2 2
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L

r r
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















−

−

−

−

−

 =

=


=

−

 

  (8.241) 

Or  

 ( ) 1

1
, 0 1

1 2
rms

C
L

L 



−


 =  

−
 (8.242) 

The remarkably simple result of (8.242) only applies if the material is in a critical 
state at all length scales.  Or, in other words, the material could experience an event 
of any size.  The spectral decay parameter   must be smaller than 1, since if it is 

larger than 1, it would lead to the conclusion that long wavelength variations in 
stress are large compared to small ones.  Such a stress state is incompatible with the 
concept that failure can occur at any length scale. 

In many ways, either uniform stress, or random stress with a power law spectral 
content, are the stress states requiring the fewest parameters to describe them.  Both 
of these idealized stress states have no inherent length scale.  Of course, the stress 
in the Earth is determined by failure processes that introduce scale lengths that 
result in power spectra that are not easily parameterized.  However, we will discuss 
evidence that suggests that earthquake failure processes may be consistent with 
power-law spectral behavior over a relatively broad range of scale lengths.   

Numerical simulations using fractal tensors 

Up to this point we have discussed stress as if it were a scalar quantity, which is 
clearly not the case.  Smith and Heaton (2006) demonstrate a procedure to generate 
spatially varying stochastic stress tensors that 1) are isotropic (no preferred 
orientations), 2) has scalar invariants that are power law for any section through the 
material, and 3) has orientations of principal coordinate frames that vary 
stochastically in space with correlation at all length scales (i.e., the orientations are 
fractal).  The procedure consists of parameterizing the stress at each point with 
three scalar invariants and with the orientation of the principal coordinate frame 
(another 3 degrees of freedom) for each point. For the purpose of this calculation, 
we are interested in spatial averages of shear stress, so we can assume that the scalar 
invariant corresponding to pressure is spatially constant (that is, it drops out of the 
problem). 

We start with a cubic grid of discrete points.  We then assign zero-mean Gaussian 
random numbers corresponding to two principal stresses.  The third principal stress 
is then chosen so that the sum of the principal stresses is zero.  These stress 
invariants are then spatially filtered in three dimensions using a wavenumber filter 
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given by ( )
1

3 2 2 2 2 , , , 1...ijkf n i j k i j k n
−

−= + + = , where n is the number of 

points along a linear axis.  

 

 

Thin faults lead to fractal stress because there is no scale length 

Strong velocity weakening leads to very unstable slip 

Slip length scaling can be approximated with a self-similar statistical models 

Focal mechanism statistics 

Radiated energy may be controlled by prestress 

Kanamori, H., and T. Heaton, 2000, Microscopic and macroscopic physics of 
earthquakes, contained in Geocomplexity and the Physics of Earthquakes, Editors 
J. Rundle, D. Turcotte, and W. Klein, Geophysical Monograph 20, Published by 
the American Geophysical Union, D.C., 127-141. 
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effective damping of yielding structure, 202 
effective pressure, 342 
effective shear stress, 306 
effective stress, 286, 349, 378 

eigenvalue problem, 177 

eigenvectors, 179 
elastic constants, 69 
elasto-plastic single-degree-of-freedom oscillator., 

199 
elasto-plastic system, 198 
Elbanna, 383, 384 
Elbanna,, 339 

Empirical Green’s Function, 334 
energy flux, 270 
energy in the radiated far-field P-wave, 81 
energy magnitude MW, 286 
Factor Building, 172, 185 
far-field, 81 
far-field P-wave, 252 
far-field S-wave radiation pattern, 257 
far-field time function, 262 
fault segmentation, 406 

Finite Sources, 261 

fixed trace, 42 
flexural bending of beams, 137 
focal sphere, 255 
Focal-mechanism-based stress inversion, 410 
foot wall, 250 

Force Chain Networks, 361 

force chains, 362 
force/deflection curve, 197 
force-feedback seismometers, 33 
fractal, 300, 383 
fractal prestress, 384 
fractal stress model, 416 
fractional random walk, 400 
fracture energies, 350 
fracture energy, 297, 344, 348, 384 
Fracture energy, 349 
fractured welds, 139 
free oscillations, 79 

free-body analysis, 65 
Freund, 380 

FRICTION, 342 

friction from deep mines, 343 
Friction in Landslides, 358 

Friction Laws, 345 

frictional heat energy, 348 

Frictional Heating, 354 

frictional melting, 353 
frictional power, 355 
friction-pendulum isolator, 154 

Galitzen, 22 

galvanometer, 23 
gambler’s ruin, 401 
geometric spreading of Love wave, 125 
Global Positioning Satellite, 409 
gmpe, 210 
granular fluid, 362 
granular materials, 358 
gravity waves in a fluid, 128 

Green’s function, 9, 167 
group delay, 58 
group velocity, 103 
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Group Velocity of SH plate wave, 102 
Gutenberg, 283 
Gutenberg-Richter, 422 
Gutenberg-Richter law, 403 

Gutenberg-Richter Relationship, 288 

Gutierri, 349 
Haitian earthquake, 135 
hanging wall, 250 
Hanks, 378 
Harmonic Plane Waves, 78 
Harry Wood, 282 
Hartzell,, 335 
Haskell-like model, 270 
heat flow, 354 
Heat-flow Paradox, 355 
Heaton pulse, 271 
Heaviside step function, 7 
Hebgen Lake Earthquake, 362 
Helmholtz decomposition, 72 
Henky-Mises plastic yield, 413 
Heterogeneous slip, 341 

Heterogeneous Stress, 407 

higher modes, 174 
high-frequency radiation pattern, 258 
high-seismicity knots, 412 
Hilbert transform, 424 
Hilina slump, 364, 366 
homogeneous boundary condition, 244 
homogeneous equation, 2 
horizontal slowness, 87 
hydrostatic pressure, 342 
ill posed, 383 
Imperial Valley Earthquake, 335 
Impulse Response, 7 
incident SV-wave, 94 
incremental dynamic analysis, 202, 203 
inertial coordinate, 167 
Initiation of cracks, 373 
instantaneous stress drop, 347 
invisibility of steady-state slip pulse, 382 
isotropic solid, 68 
Ito, 369 
Izmet Turkey earthquake, 147 
Jackson,, 370 
jammed granular material, 361 
jammed granular system, 362 
Japan Meteorological Agency (JMA) intensity, 280 
Japan vs US buildings, 229 
Japanese construction, 143 
Jefferies, 355 
Joffe, 380 
John Anderson, 282 
Kalapana earthquake, 366 
Kanamori, 286, 341, 377, 410 

kinematic source, 237 
Kinemetrics FBA-13, 43 
Kinemetrics K-2, 34 
Kostrov, 296 

L4-C (Mark Products, Inc), 22 
Landers, 43 
Landers earthquake, 407 
Landslides vs. Earthquakes, 366 
Laplacian operator, 70 
Lapusta, 339, 352, 383 
large shallow slip Tohoku, 369 
Lay, 367 
leaky modes, 128 

Leilani Estates earthquake, 366 
line source, 266 
liquefaction, 135 
Lithostatic pressure, 342 
Liu-Zeng, 390 
Liu-Zheng, 400 
logarithmic decrement, 83 
Log-log plots, 14 

Loma Prieta, 411 
Lorentz transformation, 296 
Love Waves, 123 
low dynamic friction, 356 
Madariaga, 296, 336, 356 
Madison River landslide, 362 
magnitude saturation, 287 

mass matrix, 180 
Maule (Chile), 56 
Maule earthquake, 367 
McGuire, 378 
McKenzie, 370 
mechanical impedance, 75 
Meier, 374 
Mexicali, 135 
Mexico City lake resonance, 118 
Michael, 410 
microseisms, 30 
minimum dimension, 350 
Minson, 368 
ML, 282 
ML (or local magnitude), 282 
ML v MS, 284 
MMI v pga and pgv, 206 

modal coordinate frame, 179 
Modal Coordinate Frame, 172 
mode II ruptures, 382 
mode III crack, 297, 381 

Mode shapes, 175 
mode solutions, 79 

Modeling Slip Pulses, 380 

Modified Mercalli Intensity, 278 



 

 v 

moment magnitude, 286 
moment rate function, 263 
moment release, 242 
Moment Resisting Frame (MRF) Buildings, 135 
Moment tensor, 241, 243 

Moore,, 364 
Mt. St. Helens, 358 
MW  is NOT Moment Magnitude, 287 
Navier’s Equation, 69 
near field, 273 
nearest-neighbor models, 385 
near-field, 81 
near-field P-wave, 253 
near-source, 273 
near-source motions, 209 
near-source pga, 312 
near-source pga saturation, 209 
Near-source pga vs stress drop, 316 
Near-source pgd vs stress drop, 317 
Near-source pgv vs stress drop, 317 
negative shear stress, 387 
negative stress, 422 

NGA-PEER processing, 62 

Non-causal filters, 59 
nondispersive, 73 
non-double-couple source, 244 
non-ductile concrete, 146 
noninertial coordinate, 167 
nonlinear simulations of collapse, 213 
normal fault, 250 
nstrumental  Modified Mercalli Intensity, 280 
nuclear power stations, 209 
nucleation, 349 
nucleus of strain, 243 
numerical instability, 350 
Olive View Hospital, 133 
opposite direction slip, 411 
Ormsby filter, 44 
Ormsby filters, 60 
overshoot, 296 

overtone, 174 
P to S ratio, 253 
Pacoima dam, 334 
Paper or film recording devices, 19 
Pareto Distribution, 290 
partial stress drop, 310 
particular solution, 2 
P-delta, 141 
P-delta collapse, 203 
Peak Filtered Acceleration, 202 
Peak Ground Displacement, 212 
PEER, 62 
pga, 209 
pga and magnitude, 321 

Pga vs. pgd, 320 
pgd v magnitude, 322 
pgv and damage, 208 
pgv v magniyude, 322 
phase spectrum, 58 
Phase Velocity of SH plate wave, 102 
planar P-wave, 73 
Planar SH-Waves in Layered Media, 104 
Planar Waves in Layered Media, 85 
Plane P-waves, 73 
Plane Shear Waves, 76 
Point Force, 82 
Point Sources, 242 
Poisson’s ratio, 77 
Poissonian solid, 126 

Poles and Zeros, 28 
positive feedback, 385 
Post-Critical Planar SH waves, 120 
post-critical reflection, 90, 121 
Potency, 242 
Potency History, 242 
Potency Magnitude, 287 
Potency rate function, 425 
Potency Rate functions, 372 
potential energy, 340, 423 
power, 75, 254 
power flux, 253 
power law friction, 356 

Power-Law Scaling, 398 

power-law spatial filter, 413 
pP, 262 
Pressure Step in a Spherical Cavity, 81 
prestress, 349 

Problems with the Brune Spectral Model, 325 

Properties of Convolution, 13 
pS, 262 
pseudo response spectra, 170 
Punchbowl fault, 404 
Punchbowl Fault, 355 
pushover analysis, 141 
Q, 7, 174 
Q for traveling wave, 83 
radiated energy, 253, 304 
Radiated energy from a point source, 254 
radiated energy from pulses vs cracks, 266 
radiation damping, 82 
radiation damping for rocking building, 164 
radiation damping of crack, 296 
radiation pattern, 83 
Radiation pattern, 252 
Radiation Pattern, 255 
rake angle, 250 
random isotropic stress, 413 
random walk, 400 
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Rate and State Friction, 351 

rate-strengthening friction, 352 
rate-weakening friction, 352, 384 

Rate-Weakening Friction, 356 

ray diagram, 87 
ray parameter, 87, 89 
Rayleiagh wave geometric spreading, 128 

Rayleigh damping, 181 
Rayleigh wave, 128 
Rayleigh wave crossover depth, 127 
Rayleigh wave higher modes, 128 
Rayleigh wave speed, 127 
Rayleigh Waves, 125 
Reciprocity, 244 
Reciprocity for force couples, 247 

Rectangle function, 13 
Red Box Gap, 405 
red noise, 379 
reflection and transmission coefficients, 89 
reinforced concrete, 145 
removal of accelerations from tilt, 41 
residual stress, 383 
Response Spectra, 166 
Response spectra v Fourier Spectra, 169 
response spectral acceleration, 168 
response spectral displacement, 168 
response spectral velocity, 168 
retrograde particle motion, 127 
R-factor, 199 
R-Factor, 211 
Rice, 383, 423 
Rice,, 352 
Richards, 355 
Richter magnitude, 282 
Rigid Building on a Flexible Foundation 

(Rocking), 161 
rise time, 270 
Rivera, 410 
Ruina, 351 
running mean, 14 
rupture velocity, 376 
sampling function, 95 
San Andreas, 404 
San Francisco Bay Mud, 112 
San Gabriel Fault, 405 
Sand, 361 
scale invariant, 301 
Scholz, 408 
SDOF, 1 
seismic cycle, 392 
seismic efficiency, 423 
seismic moment, 242 

Seismographic Systems, 18 

Seismographs, 18 
self affine, 300 
self-healing, 382 
self-organizing system, 362 
Self-similar, 300 
self-similar, miss use of definition, 300 
semi-infinite shear crack, 296 
serial division, 15 
SH modes of a plate, 95 
SH wave, 86 
SH Waves in a Plate, 94 
Shake, 108 
SHEAR STRESS IN THE CRUST, 339 
Shindo scale, 280 
short-period body wave magnitude mb, 285 
shot noise, 379 
SH-Waves, 87 
SH-waves in a Plate with a Rigid Base, 99 
Simons,, 368 
simple connections, 137 
Simulating motions using smaller earthquakes, 

332 

sinc function, 14 
size effect, 140 
slip histories for circular crack, 336 
slip pulse, 271, 386 
Slip Pulse, 334 
slip pulse instability, 383 
slip to length ratio, 401 
slip velocity, 382 
slip-pulse, 338 
slip-pulse energy equation, 386 
slip-weakening distance, 348 
Slip-weakening friction, 347 

SMA-1, 20 

SMAC, 20 
Smith, 408 
Snell’s law, 88 
soil-structure interaction, 161 
Soil-Structure Interaction for a Shear Beam, 193 

Sound of Slip Pulses, 379 

Southern California Seismic Network, SCSN; 
previously,TriNet, 34 

sP, 262 
specific heat, 355 
Spherical coordinates, 71 
Spherical Waves, 80 
split nodes, 237 
spring-block-slider, 384 
Spudich, 349 
Standard for Exchange of Earthquake Data 

(SEED), 29 
standing gravity waves, 129 
standing wave, 79 
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state variable, 352 
Static Offsets from Finite Faults, 273 
static pushover analysis, 198 
statiic displacement from thrust fault, 275 

stiffness matrix, 180 
Stiffness of a building, 132 
Stock, 410 
Strain, 67 
strange attractor, 387 
strange attractors, 399 
strength, 384 
strength based on average stress, 419 
Strength based on average stress, 395 
Strength based on work, 396 
Strength of the chaotic spring-block slider 

model, 394 
strength of the Crust, 393 
strength of the fault, 349 
stress drop, 303, 356, 401, 422 
Stress Drop and Near-Source Ground Motions, 

312 

Stress Drop and Strain Change, 292 

stress intensity factor, 296, 344 
stress paradox, 422 
strike angle, 250 

Strong-motion accelerographs, 18 
STS-1, 33 
STS-2, 33 
super nodes, 257 
super-shear rupture velocities, 350 
Surface Wave Magnitude MS, 283 
Surface Waves, 120 
SV wave, 86 
the pulses are inherently unstable, 339 

Thompson-Haskell Propagator Matrices, 108 
tilt, 38 
tilt from a Rayleigh wave, 40 
time functions, 329 
Tohoku as a gravitational slump, 371 
Tohoku earthquake, 368 
Tokachi-Oki, 55 
transition from crack-like rupture to pulse-like, 374 
transition from cracks to pulses, 376 
Transition from cracks to pulses, 374 
transmission and reflection coefficients, 92 
tsunami earthquakes, 370 
Turnagain Heights, 155 
Uenishi, 423 
unilateral, 266 
Unreinforced Masonry, 156 
US vs Japan code, 215 
velocity pulse, 334 

velocity transducer, 22 
vertical slowness, 87 
Von Mises plasticity, 361 
wave energy, 75 
wavegroup, 103 
welded connections, 137 
Wells, 403 
white noise, 379, 400 
Wild fires, 385 
Wilde, 410 

Wood-Anderson torsion seismometer, 20 
Wood-Frame Structures, 155 

WWSSN LP, 24 
Yield strength of a building, 132 
zero-phase filters, 60 
Zihuantanejo, 45 
Zoback, 408, 410, 421 

 



 

 

 


