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Ge 162 Seismology 
 
1. Introduction 
 
1.1 Frequency Spectrum of Earthquake Phenomena 
 
 Phenomena associated with earthquakes occur over a broad frequency range as 
shown in Figure 1.1.   
 
 

 
          Fig. 1.1 
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1.2  Source of an Earthquake 
 
Faulting and Crustal Deformation 
 
 An earthquake is a failure process in the Earth's crust (sometimes in the mantle, 
too).   As the stress in the crust builds up, it eventually exceeds the strength of crustal 
rock, and failure occurs.  The result is faulting (Figure 1.2), which causes deformation of 
the crust (Figure 1.3).    
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          Fig. 1.3 
The pattern of crustal deformation can be studied in detail using geodetic methods 
(traditional ground-based method, GPS, SAR) and seismological methods.   
 
Failure (Fracture vs. Frictional Sliding) (Figure 1.4) 
 
 The failure process during an earthquake is often illustrated as fracture of rocks.  
If a piece of rock is subjected to stress (force), eventually fracture occurs.  Although this 
is qualitatively correct, it is probably more appropriate to view earthquake faulting as 
frictional sliding.  In this case, the sliding surface corresponds to an earthquake fault.  A 
fault is formed by a long-term geological process, and represents a weak zone.  In a 
sense, the major difference between fracture and frictional sliding is whether there is a 
pre-existing weak zone (plane) or not. 
 A simple experiment on frictional sliding exhibits many important characteristics 
of earthquakes; i.e. loading (stress accumulation), sudden slip, repetition of slip events.  
This general behavior is called stick slip. 
 
 



 8

Fracture and Frictional Sliding 

Stress (τ)

Displacement (x) time

time

Stick-slip
Stable sliding

 
          Figure 1.4 
  
 
 
Strain, Stress, Stress-Strain Relation (Hooke's law) 
 
 Strain is a measure of deformation of a deformable (continuous) medium, and 
represents displacement per unit length.  Stress is a measure of force.  It is measured by 
force per unit area.  In seismology, shear strain and shear stress are most important. 
 The relation between stress (force) and strain (deformation) can be best illustrated 
by using a spring.  (In fact a spring is a very useful analog of Earth's crust, and we can 
explain many important relationships in seismology using a spring.)   Suppose we apply a 
force F  to stretch a spring, and the spring is stretched by Δl.  Then F and Δl are related 
by the Hooke's law, 
 
    F=ksΔl      (1-1) 
 
Here ks is called the spring constant.  A similar relation 
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    σ με=      (1-2) 
 
holds between stress σ  and strain ε .  Here μ   is called the elastic constant.  If the rock 
is harder, then μ  is larger.  We have different elastic constants for shear deformation and 
volumetric deformation (volume change).  In general, for simple deformable bodies, like 
rocks, metals etc, we need two elastic constants μ  and k, rigidity and incompressibility 
(also called bulk modulus), for shear and volumetric deformations, respectively.  For 
most seismological problems, these two elastic constants, and the density ρ  are most 
important.   For most crustal rocks, the representative values are: 
 
  μ  =3x1011 dyne/cm2=0.3 Mbars=30 GPa 
  k=5x1011 dyne/cm2=0.5 Mbars=50 GPa 
  ρ =2.7 g/cm3=2,700 kg/m3 
  
 
Critical strain (strength) of Earth's crust 
 
 An important question is "How strong is the Earth's crust?".   Many geodetic and 
seismological studies have demonstrated that the change in strain (deformation) 
associated with an earthquake ranges from 3x10-5 to 3x10-4, or, in terms of stress, this 
corresponds to 10 to 100 bars (i.e., 1 to 10 MPa, or 10 to 100 atmospheric pressure).  If 
we try to break an intact piece of rock, we normally need a few kbar stress.  This suggests 
that an earthquake occurs on a pre-existing weak plane (fault), and frictional sliding 
appears to be a more appropriate model for an earthquake. 
 
 
Ground Motion 
 
 When an earthquake occurs, the ground shakes.  The motion of the ground is 
given by the displacement u(t) as a function of time, t, in 3 directions, usually, UD, NS, 
and EW.  If we take the time derivative of u(t), we get the velocity of ground motion 

( ) ( )v t u t= � , and if we differentiate it again, we get ground-motion acceleration 
( ) ( ) ( )a t v t u t= =� �� .   

 The ground motions near the source of an earthquake are measured with 
geological, geodetic and seismological methods (Figure 1.5). 
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 For large earthquakes,  
 
   u  is 1 to 20 m 
   v  is 10 cm/sec to 3 m/sec 
   a  is  0.1 to 20 m/sec2 (10 m/sec2 is about 1 g) 
 
These are useful numbers in seismology to remember.   
 
 

 
 
1.3 Seismic Waves 
 
 The disturbance caused by a faulting in Earth's crust propagates as elastic waves.  
These waves are called seismic waves.  In a large homogeneous medium without 
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boundary, two types of waves exist.  The first wave is mainly due to volume change, and 
is called compressional wave or P  wave, and the second type of wave is caused by shear 
deformation, and is called shear wave or S wave.  The P and S  wave velocities, α  and β, 
respectively, are given by 
 

   (4 / 3)k μα
ρ

+
=     and   β =

μ
ρ

    (1-3) 

 
 For most solids, k=(5/3) μ , so that  α = 3β = 1.732β .  Although this is an 
approximate relation, it is a good approximation and useful in observational seismology.  
In the shallow part of Earth's crust α=5 to 6.5 km/sec, and β=3 to 3.8 km/sec.   
 In real world, we have the surface of Earth, and also the velocity changes as a 
function of depth.  In general, the velocity increases with depth.  When P and S  waves 
propagate in a medium with a free surface and layers of different velocities, complex 
reflection and refraction occur and P  and S  waves interact to generate surface waves.  
This is an interesting mathematical problem, but here we just introduce two types of 
surface waves, Rayleigh waves and Love waves.  These waves primarily propagate along 
Earth's surface so that the amplitude decays more slowly with distance than P and S 
waves.  Hence, at large distances, surface waves are more dominant on seismograms 
(recordings of seismic waves).  Also, these waves exhibit dispersion (velocity varies with 
the wave period) so that the appearance of these waves are usually distinct.  The particle 
motion of Rayleigh waves is vertical and in the direction of wave path, and that of Love 
waves is horizontal and in the direction normal to the path.  In the shallow crust, the 
velocity of Rayleigh waves CR, ranges approximately from 2.5 to 3.0 km/sec, and that of 
Love waves, CL, from 2.8 to 3.5 km/sec.  Two examples are shown in Figure 1.6. 
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Fig.  1.6   Seismograms of the 1995 Kobe, Japan, and the 1999 Izmit, Turkey, 
earthquakes. 
 
 As shown above, the velocities of these waves are different, i.e., in general α > 
β  > CL > CR.  Thus, at a station some distance from the source, the P wave arrives first, 
which is followed by the S  wave.  Then the large amplitude Love wave and Rayleigh 
wave arrive.   
 Seismologists study these seismic waves in detail to determine the earthquake 
source parameters (the size, type of faulting etc), and the structure of the Earth. 
 One useful relation is that between the S-P time, tS− P , (time interval between P 
and S waves) and the distance, Δ.  Since tS− P  is given by 
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    1S Pt α
β α α β−

⎛ ⎞Δ Δ Δ
= − = −⎜ ⎟

⎝ ⎠
    (1−4) 

 
from which 
 

    
1

S Ptα
α
β

−Δ =
⎛ ⎞

−⎜ ⎟
⎝ ⎠

      (1-5) 

 
For the shallow part of the crust (i.e., Δ<1000 km), α  is about 6 km/sec, and /α β  is 
1.732, so that this relation gives 
 
        Δ ≈ 8tS− P    ( tS− P  in sec and Δ in km)   (1-6) 
 
For example, if tS− P  is 50 sec, the distance is about 400 km. 
 
1.4 Seismograph (LW (Lay and Wallace), pp 173-199) 
 
 The instrument that measures ground motion caused by an earthquake is a 
seismometer or a seismograph.  During an earthquake, everything moves so that it is 
difficult to measure the ground motion accurately.  We need a reference point from which 
we can measure the motion of the ground.  Seismologists use a pendulum as a reference.  
 Since most seismographs use a pendulum as a reference of the position, here we 
briefly discuss the principle (Figure 1.7).  
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Pendulum and Simple Mechanical Seismograph 
 
 Consider a simple pendulum (a string with a small mass hanging from it).  Hold 
one end of the string and let the mass swing in a vertical plane.  The natural period of the 
pendulum, T0, is given by, 
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     T0 = 2π
l
g

     (1-7) 

 
where g  is the acceleration of gravity, 9.8 m/sec2.  Thus if l=1 m, then the period is about 
2 sec. 
 Suppose we have an earthquake, and the ground starts shaking horizontally.  
Since you are standing on the ground (i.e., fixed to the ground), you will be shaken with 
the ground.  If the ground shakes very gradually, say at period T >>T0, then the mass will 
move with you so that you cannot use it as a reference point (i.e., everything moves in the 
same way).  In this case, this pendulum is not good as a seismometer.  However, if the 
ground shakes very rapidly, e.g., T<<T0, then the mass tends to stay at the same place, if 
not completely.  This is the very principle of a horizontal seismometer, a seismometer 
that measures horizontal motion.  You can measure the motion of ground with respect to 
the mass which is approximately stationary.  Thus, if T<<T0, this pendulum is a good 
seismometer, and if you record the motion of the ground (i.e., you) with respect to the 
mass, you can have a seismogram.   
 If we use a spring with a mass hanging vertically, we can measure the vertical 
ground motion with the same principle.   
 In the real seismometer, we need to attach a device to magnify the motion and 
damp out the resonance (damper), but the basic principle is the same.  The Wiechert 
seismograph  and the Wood-Anderson seismograph used in California are all of this type. 
 It is difficult to record very long-period ground motions with these simple 
mechanical seismographs, because it is difficult to build a stable pendulum with a very 
long natural period. 
 
 The response of a mechanical seismograph can be derived from the following 
equation (see the figure below). 
 
    2

0 02x h x x Vyω ω+ + = −�� � ��     (1-8) 
 
where x  is the motion of a reference point (i.e., mass) of the seismograph with respect to 
the ground, and y is the ground motion displacement. h is the damping constant, 

0 /k mω =  is the natural angular frequency of the seismograph ( 0 02 /Tω π= , 0T is the 
natural period), and V is the static magnification.  The  response of a mechanical 
seismograph is completely described by these 3 constants. 
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 For a unit harmonic input  
 
    exp( )y i tω=       (1-9) 
 
the output is  
 

   
2

2 2
0 0

exp( )
2
Vx i t
ih
ω ω

ω ω ω ω
=

− + +
    (1-10) 

 
then, the response is given by  
 

   
2

2 2
0 0

ˆ ( )
2
VH
ih
ωω

ω ω ω ω
=

− + +
     (1-11) 

 
 
The amplitude response ˆ| ( ) |H ω  is plotted in Figure 1.8. 
 
Other Types of Seismographs 
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 In order to increase the sensitivity of the instrument, and improve the response at 
long-period, various developments have been made.  These seismographs use an electro-
magnetic sensor (moving coil etc), and a galvanometer.  The examples are: Galitzin, 
Benioff short-period, Benioff long-period, Press-Ewing, and Benioff strain seismographs 
(Figure 1.8).   
 
 

 
 
Modern Broad-band Seismograph and Strong-motion Seismograph 
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 Until recently seismograms written on paper were the standard data for most 
seismological research and routine reporting.  While these analog records are still useful 
for various research purposes, these instruments are limited in two respects.  First, since 
the movement of the pendulum is mechanically limited by the physical size of the 
instrument, it is not possible to record very large ground motions; i.e., the dynamic range 
is limited.  Second, as long as recordings are made on paper (analog recording), the 
dynamic range is limited by resolution in visually reading the records, which is normally 
1/1000, i.e., 60 db. 
 To remove these limitations, modern seismographs adopt a force balance 
mechanism and digital recording system.  In the force balance mechanism, the output 
signal from the transducer is amplified and fed back to a device that holds the mass at the 
original unperturbed position (Figure 1.9).  The strength of the signal (usually measured 
in voltage) is proportional to ground motion.  With some filters in the feedback circuit, it 
is possible to make the output proportional to acceleration, velocity or displacement of 
ground motion, at least over a certain frequency band.   
 In this type of instruments, there is virtually no displacement of the mass, and the 
dynamic range can be increased.  Also, with an appropriate feedback system, the 
response can be adjusted relatively easily.    
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The response of the standard broad-band instruments used in seismology (often 
called the VBB system) is approximately flat for a ground-motion velocity over a wide 
frequency band (e.g. 7 Hz to 0.0033  Hz (300 sec)) (Figures 1.10 and 1.11).  The broad-
band instruments usually have a 140 db (107) dynamic range.  
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 Seismographs designed to record very strong ground motion are called strong-
motion seismographs and are used in earthquake engineering.  Modern strong-motion 
seismographs have a force balance mechanism with voltage output proportional to 
ground-motion acceleration.      
 Recent developments in solid state electronics made it possible to build stable 
force balance seismographs; they are now widely used in the world for research and 
routine monitoring. 
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Ge 162      
 
2. Concepts in Classical Seismology 
 
2.1  Structure of the Earth 
 
2.1.1 Ray theory and Snell's Law (LW, pp70-91) 
 
 In the early days of seismology, the structure of the Earth was determined mainly 
by using ray theory.  When the wavelength of seismic waves is sufficiently short (i.e., if 
the period is sufficiently short), we can treat seismic waves as a geometrical ray, just as 
we do in geometrical optics. 
 In ray theory, the most fundamental is Snell's Law, which is illustrated in Figure  
1.   
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 Suppose a ray is incident from a medium with a wave speed 1v  on a medium with 
a speed 2v .  Let the incident and emergent angles be 1i  and 2i .  Then the Snell's law is 
given by  
 

     1 2

1 2

sin sini i
v v

=       (1) 

 
 This can be shown easily from the geometry of the two triangles OAB and OBC 
shown below. 
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 If the wave speed changes continuously with z (i.e., depth) as v(z), then (1) can be 
written as 
 

        sin i p
v

= =constant for a given ray      (2) 

 
p is called the ray parameter. 
  
 For a spherical geometry as shown in Figure 1, the Snell's law can be written as  
 
 

    1 1

1

sin sink k k k

k k

r i r i
v v

+ +

+

=     (3) 

 
and  
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    sin ( )
( )

r i r p
v r

=      (4)  

  
corresponding to (1) and (2), respectively. 
 
2.1.2 Seismic Ray (LW, pp. 200-217) 
 
 Figure 2 shows various seismic rays in the Earth's interior.  P and S waves are 
denoted by P and S, respectively.  Other symbols are: 
 
 K:   P wave ray in the core 
 p :   P wave ray before reflection near the source (only for a deep source) 
 s :   S wave ray before  reflection near the source (only for a deep source) 
 c:    Reflection at the core 
 P':   PKP 
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P, S, Pdif, Sdif pP, sS, PP, SS

PKP SKS

PcP, ScS ScP, PcS

P’P’ (PKPPKP) S’S’ (SKSSKS)

Storchak, D., Schweitzer, J., and Bormann, P., The IASPEI Standard Phase List, Seismological Research Letters, 
74, 761-772, 2003.
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Some Examples 
 
 Figure 3 and Figure 4 show some examples. 
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 Figure 5 shows ray paths in the Earth's interior for 3 representative velocity structures, 
and the corresponding travel time curves. 
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 Figure 6 shows 3 regions in the Earth's interior and the corresponding travel time 
curves.    

 
Figure 7 shows the crustal structure for ocean and continent, and corresponding 

travel time curves. 
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2.1.3 Travel-Time Curve (LW  pp.213-217) 
 
 Figure 8 shows the travel times observed at many stations and reported to the 
International Seismological Center (ISC).   
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Figure 9 shows the same with the phase names labeled.  
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For a spherically symmetric structure, the distance, Δ ,  traveled by a seismic ray 
with a ray parameter p, and the travel times, T , can be computed easily.  Referring to the 
figure below, 
 

   
2 2

2
2cos 1 sin 1dr v pi i

ds r
= = − = −    (5) 

 

   2 2 2

2

sin 1

1

ds i vpd dr
r r v p

r

Δ = =

−

   (6) 
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Then,   
 

    
0

2 2 2
2

p

r

r

rT dr
v r v p

=
−∫    (7) 

 

    
0

2 2 2
2

p

r

r

vp dr
r r v p

Δ =
−∫    (8) 

 
where 0r  is the radius of Earth and pr  is the radial distance of the deepest point of the 
ray.  These integrals are fundamental in the seismological ray theory (e.g., Herglotz 
Wiechert Method). 
 
 
 
 
 
 
 
2.1.4 Gross Structure of the Earth (LW, pp. 26-33) 
 
 In the early days of seismology, the structure of the Earth was determined from 
the travel-time data, as shown in the upper figure of Figure 10.  This figure shows one of 
the standard laterally homogeneous model, which is used for various seismological 
studies.  

 The bottom figure in Figure 10 shows an example of 3-D Earth structure 
determined by more recent studies using seismic body waves, surface waves and normal-
mode data (Helffrich and Wood, 2001).  Tomographic methods are used for determining 
these structures. 
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Ge 162     Plate Motion and Great Earthquakes 

 

 Earthquakes occur in the Earth's crust and mantle due to stresses caused by global 

plate motion.  The actual pattern of stress distribution is probably very complex, but we 

expect that the activities of great and large earthquakes must reflect the global plate 

motion. 
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The world greatest earthquakes occur at subduction zones (e.g.,  1960 Chilean 

earthquake, and the 1964 Alaskan earthquake), but not every subduction zone has 

experienced a great earthquake (e.g., the Marianas,  the Tonga-Kermadec).  It is possible 

that the length of earthquake catalog is too short to be representative of long-term  

       

seismicity.  With this caveat in mind, we investigate the level of seismic activity and 

plate motion.  Ideally, the seismic activity along a subduction zone should be defined by 

the energy release per unit length along the subduction zone, and unit time, i.e.,  
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0 0

1 L T

Re E dldt
LT

= ∫ ∫  

where L and T are the length of the subduction zone and the time period involved, 

respectively.  

Unfortunately, the available seismic record is too short to compute this.  So, we 

take the magnitude, wM , of the largest earthquake that occurred in a particular 

subduction zone as a parameter that represents e  for that subduction zone.  Then , it is 

reasonable to assume that  

    wM V∝  

where V is the convergence rate.  However, the plot of wM  versus V  does not show any 

obvious trend.  This suggests that other factors may be controlling seismicity.  Another 

potentially relevant parameter is the age, T, of the subducting plate.   However, no 

obvious negative correlation is seen between wM  and  T. 
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 Then, we can try a 3-parameter regression between wM , V and T.  The result is 

shown in the following figure.  The horizontal axis shows the observed wM  and the 

vertical axis shows wM  predicted by the regression relation. 
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(Ruff, L., and H. Kanamori, Seismicity and the subduction process, Phys. Earth Planet. 
Inter., 23, 240-252, 1980) 
 

 

 If this regression is valid, this provides a useful method for assessing the seismic 

potential of subduction zones for which no great earthquake has occurred.  This pattern 

suggests that the subduction zones where a relatively young plate is subducting at a 
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relatively fast rate are more likely to have great earthquakes, and those with an old plate 

subducting at a moderate rate are less likely to have great earthquakes.  The end-member 

subduction zones are the Chilean type and the Mariana type, shown below. 

 

  

 

(Uyeda, S., and H. Kanamori, Back-arc opening and the mode of subduction, J. Geophys. 
Res., 84 (B3), 1049-1061, 1979) 
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 Another interesting implication of this correlation is the seismic potential of the 

Pacific Northwest (i.e., Oregon-Washington coast).  The Juan de Fuca plate is subducting 

beneath the states of Oregon and Washington.  The background seismicity there is very 

low, as shown below, and until mid 1980's, it was generally believed that the seismic 

potential in the Pacific Northwest is low (i.e., great earthquakes are unlikely).  However, 

the age of the Juan de Fuca plate is very young, about 10 My, and it is subducting at a 

rate of 3 cm/year.  Thus, in view of the regression relation shown above, one would 

expect a large, wM =8.5 to 9, earthquake there.   This suggestion motivated the interest of 

geologists who started extensive investigation for finding palaeo-seismological evidence.  

Geological evidence for regional submergence and evidence for large tsunami which 

occurred in 1700 [Satake et al., 1996] now seem to have convinced most people, which 

seems to have led to upgrading of building code in the area.  This is a good example in 

which seismological study, even if it is poorly constrained, can be useful if it is followed 

up by investigations from different disciplines. 



 47

 

(Heaton, T., and H. Kanamori, Seismic potential associated with subduction in the 
northwestern United States, Seismol. Soc. Am. Bull., 74 (3), 933-941, 1984) 
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(see, Atwater, B. F., and others, Summary of coastal geologic evidence for past great 
earthquakes at the Cascadia subduction zone, Earthquake Spectra, 11, 1-18, 1995) 
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(R. S. Yeats, Living with Earthquakes in the Pacific Northwest,  Oregon State University 
Press, 1998) 
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Ge 162 

 

2.2 Location, Magnitude, and Mechanism of Earthquakes 

 

Locating Earthquakes (LW, pp. 217-235) 

 Referring to Figure 1, the arrival time of P wave at station i can be written as,  

 

    ( , , ( ))i o i ot f r r v r t= +K K K      (1) 

 

where the function f ( ) gives the travel time between the source and station i.  
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 Here, or

K  is the hypocenter location (i.e., the location of the beginning of an earthquake), 

ir
K  is the location of the i-th station, ( )v rK  is the wave speed which is in general a function 

of the position, and ot  is the origin time.  For a homogeneous medium,  

 

  
2 2 2 1/ 2[( ) ( ) ( ) ]( , , ( )) i o i o i o

o i
x x y y z zf r r v r

v
− + − + −

=K K K       (2) 

 

 We want to determine 4 unknowns, ( , , )o o o or x y z=K  and ot , from N observations, 

1 2 3 4, , , , ... Nt t t t t . 
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 This problem is a nonlinear problem even for the simplest case for a 

homogeneous medium.   

To solve a nonlinear problem like this, we start from a first approximation  

 

   0 0 0 0( , , )o o o or x y z=K  and  0
ot     (3) 

 

Then writing 

 

   0
o o ox x xδ= +  etc, and 0

o o ot t tδ= +    (4) 

 

and taking the first order terms in oxδ  etc and otδ , we set up linear equations for oxδ  etc 

and otδ as, 

 

  0
0 0 0 0

0 0 0

( ) ( ) ( )i i i
i i

o o o

f r f r f rt t x y z t
x y z

δ δ δ δ∂ ∂ ∂
− = + + +

∂ ∂ ∂

K K K
 (5) 

 

      (i=1, 2. 3, .....N), where 0
it  is the arrival time at station i computed for the first 

approximation (i.e., 0
it = 0

ot +(travel time computed for the first approximation)).  

 

 This problem can be solved by the method of least squares.  By iterating this, we 

can determine ( , , )o o o or x y z=K  and  ot  which best fit the observed travel times.   More 

details will be discussed in the practice session. 

 



 53

Earthquake Magnitude (LW, pp. 379-385) 

 

  Traditionally, magnitude scales are used to indicate the size of an earthquake. 

The magnitude M is determined from the amplitude of the observed seismic waves. In 

general, 

 

    log( ) ( )M A f= + Δ     (6) 

 

where A is the amplitude of the observed seismic waves (body waves, surface waves, or 

unspecified), and ( )f Δ  is an amplitude attenuation curve as a function of distance 

determined for specific type of waves.   

 For example, in case of the traditional local magnitude LM , the amplitude A is the 

amplitude of the Wood Anderson seismogram in mm, and ( )f Δ  is given by a table, or by 

a nomogram such as that shown in Figure 2. 
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 In case of the surface-wave magnitude, SM , A is the ground-motion amplitude of 

20 sec (period) surface waves in μ observed at a distance of Δ deg.  Then,  

 

   log 1.656log( ) 1.818SM A= + Δ +    (7) 

 

 Although the magnitude is a useful parameter, it is difficult to attach some 

specific physical quantity to it.  Empirically, SM  is related to the total wave energy, RE , 

radiated from an earthquake by 
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   log 1.5 4.8R SE M= +   (joule)    (8) 

 

 In more recent studies, we use another scale, WM , which is determined from 

seismic moment , 0M . The seismic moment 0M  is given by 

   

    0M DSμ=      (9) 

 

where D is the fault offset, S is the fault area, and μ  is the rigidity of the crust 

surrounding the fault.  The unit of 0M  is N-m.  Unlike other magnitude scales, WM  

represents a specific earthquake source parameter, the overall static size of an earthquake 

given by 0M .  The relation between wM  and 0M  is given by  

 

    0log 1.5 9.1wM M= +     (10) 

 

This will be discussed in more detail later. 

 

Earthquake Mechanism (LW,  pp.346-356) 

 

As shown in Figure 3, the fault motion on a vertical strike slip fault would 

produce compressional  and dilatational quadrants in the Earth's crust.   
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The pattern of compression and dilatation can be detected by the first motion of P 

waves.  In the compressional quadrant P wave is up and in the dilatational quadrant, it is 

down.  As viewed from above, the sense of the first motion (up or down, or compression 

or dilatation) alternates in quadrant.  The planes separating the compressional quadrant 

and the dilatational quadrant are called the nodal planes.   The fault plane coincides with 
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one of the nodal planes.  The other nodal plane is called the auxiliary plane.  With this 

method alone, we cannot distinguish the fault plane from the nodal plane, i.e., the fault 

plane can be either one of the nodal planes.   

Thus, from the observations of P wave first-motion data from many stations 

surrounding the source we can determine the geometry of the faulting.  The pattern thus 

determined is usually referred to as "Mechanism of Earthquake".   Faults with different 

types (e.g., strike slip fault, thrust fault, and normal fault) produce different radiation 

patterns of P waves.  This can be easily seen, if we consider a small sphere surrounding 

the source.  This sphere is called the focal sphere (Figure 3). 

 The radiation pattern is three dimensional, and the surface of the focal sphere is 

divided into quadrants of compression and dilatation. (This can be best understood using 

a worn-out tennis ball with compressional quadrants painted dark.) 

 We need to show this three-dimensional pattern on the focal sphere on a piece of 

paper.  Since the pattern is point symmetric with respect to the center of the focal sphere, 

we need to show only the pattern on a hemisphere.  It is conventional to show the lower 

focal hemisphere, but in rare cases, the upper hemisphere or the side hemisphere is 

shown.  We use a standard projection method, most commonly the equal-area 

stereographic projection, to project the lower hemisphere to a flat horizontal plane 

(Figure 4).   
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Some examples are shown in Figure 5.  The projected diagram is called the 

mechanism diagram.  As shown in Figure 5, the stereographic mechanism diagram is 

intuitive for understanding the geometry of faulting (more details in the practice session). 
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 Figure 6 shows the mechanism of large earthquakes along the Circum-Pacific 

belt. Most of them are low-angle thrust mechanisms which are consistent with subduction 

of the Nazca and the Pacific plates beneath the South American, the North American, and 

the Eurasian plates. The normal fault events represents tensional failure within the 

oceanic plate upon bending caused by subduction. 
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Ge 162  Practice Session 1     Locating Earthquakes  
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Data 

 

 Table-1 is the travel time data obtained using "STP" which is a SCEC (Southern 

California Earthquake Center) tool to extract earthquake data (parameter data and 

waveform data).  (For details of STP, see the SCEC Web site).  The data are rearranged 

in (x, y) coordinate (in km) with the Pasadena station (Latitude=34.1484°, Longitude=-

118.1711° ) as the origin.  The origin time of the arrival times is arbitrary.  Table-1 gives 

only the first 10 stations.  The actual data are in loc_dat_1 (all the data and program files 

are in a FTP site on ftp.gps.caltech.edu    /home/ftp/pub/hiroo/ge162.dir). 

 

Table 1. 
Earthquake-1   
Reference Station (Origin of (x,y))    PAS      34.1484 -118.1711 
 
Station   Lat.    Long.     Elev.      x(km)    y(km)  arrival t.(sec)   
MIK    34.1370 -118.1260  235.0000     4.160    -1.264     1.453 
GSA    34.1368 -118.1283  165.0000     3.947    -1.286     1.453 
KIK    34.1504 -118.1016  168.0000     6.409     0.224     1.596 
PAS    34.1484 -118.1711  257.0000     0.000     0.000     1.615 
GVR    34.0497 -118.1200  141.0000     4.718   -10.947     1.620 
RUS    34.0505 -118.0799   37.0000     8.420   -10.856     1.753 
RIO    34.1047 -117.9796   79.0000    17.670    -4.831     2.778 
MWC    34.2237 -118.0529 1696.0000    10.891     8.359     2.731 
LGB    33.9756 -118.1491    6.0000     2.033   -19.167     3.417 
TCC    33.9947 -118.0140  195.0000    14.514   -17.038     2.731 
GR2    34.1183 -118.2994  316.0000   -11.837    -3.331     3.134 
......           ..................  ......................   ....................        .................      .................             ........... 

 

 Locate the earthquake taking the following steps.  Ideally, you should write your 

own program to carry out 2 to 6, but if you find it difficult to do so, you can use a simple 

program, eqloc.f .   To do 7, you will need to use this program.  In case you use this 

program, try to follow the steps taken in the program. 
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1. Use the first approximation,  (0.0, 0.0, -10.0, 0.0). 

 

2.  Compute the travel times and the partial derivatives in a homogeneous medium with 

v=6 km/s which is a good average for the shallow crust.  Refer to equation (1) to (5) in 

class note 2.2. 

 

   0
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∂
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K
  (i=1, 2. 3, .....N)  (1) 

 

 

3.  Set up the equation for the least-square solution. 
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which we write as 

 

     Am d=
KK     (3) 

 

where A is an Nx4 matrix  
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and mK  and d
K

 are column vectors containing the parameters to be determined and the 

data, respectively, i.e.,  
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4. Determine mK . 

 

 The normal equation is,  

 

     T TA Am A d=
KK     (6) 

 

If TA A  is not singular, the formal solution is given by  

 

     1( )T Tm A A A d−=
KK    (7) 

 

and the error estimates are determined by the variance of the data and the diagonal 

elements of the inverse matrix of the normal equation (6 ).  Usually, we write the 

uncertainty in im  by imΔ , and compute it by 

 

   2

1

( ) /( )
N

c
i ii j j p

j

m c t t N N
=

Δ = − −∑ ,       i=1, 2, 3 (8) 
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where pN  is the number of parameters (here 4), cii are the diagonal elements of  1( )TA A − , 

and c
jt  are the computed arrival times for station j. 

 

5. Obtain the 2nd approximation by: 

 

     0 00x xδ= +  

0 00y yδ= +     (9) 

0 010.z zδ= − +  

0 00t tδ= +  

 

6. Iterate 2, 3, 4, 5. 

 

  

 A simple program eqloc.f is in /home/ftp/pub/hiroo.  This program uses 2 input 

files. 

 
i_eqloc and c_eqloc 

 

i_eqloc 

loc_dat_1    : Name of the travel-time data file 
0.0     0.0    -10.0   0.0    : 1st approx. 
 
c_eqloc 
10     : maximum number of interations 
half_space  
   : name of the structure 
s-cal.pvel 
 
 
half_space 
half_space 
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1     : number of layers 
9999.   6.0    : layer thickness,  α 
 
s-cal.pvel 
southern cal. P structure, with a slightly low surface velocity 
   5 
1.0       4.0 
3.        5.5 
23.4      6.3 
5.        6.8 
9999.0    7.8 
 
 

7.  If the second line of c_eqloc is replaced by s-cal.pvel, it will use a more general 

subroutine which computes the travel times etc for a layered model given by s-cal.pvel.   

Try eqloc.f with s-cal.pvel.  Output of eqloc is in o_eqloc. 

 

8.  Vary the 1st approximation to see how the solution is affected. 

 

9.  Remove the data for which ti is less than 5 sec, and locate the event. 

 

Example output 

o_eqloc 

 
   10 
southern california P structure, with a  
     1.000     4.000 
     3.000     5.500 
    23.400     6.300 
     5.000     6.800 
  9999.000     7.800 
loc_dat_1                                                                        
     0.000     0.000   -10.000     0.000 
Earthquake-1                                                                     
PAS       34.148  -118.171 
x0=        6.778     0.319 
y0=       -4.360     0.378 
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z0=      -10.676     1.159 
th0=       0.017     0.054 
      34.148    -118.171     -10.000       0.000 
x0=        6.790     0.316 
y0=       -4.186     0.381 
z0=       -8.184     1.079 
th0=       0.027     0.054 
      34.109    -118.098     -10.676       0.017 
x0=        6.782     0.308 
y0=       -4.172     0.367 
z0=       -7.645     1.180 
th0=       0.030     0.048 
      34.111    -118.098      -8.184       0.027 
x0=        6.782     0.307 
y0=       -4.167     0.365 
z0=       -7.533     1.217 
th0=       0.032     0.047 
      34.111    -118.098      -7.645       0.030 
 
........... 
station data 
 
Station Dist.(km) Azm.(deg)     ti     ti(computed)  Res. 
  MIK     3.911   317.927     1.453     1.552    -0.099 
  GSA     4.040   315.481     1.453     1.563    -0.110 
  KIK     4.404   355.193     1.596     1.594     0.002 
  PAS     7.958   301.591     1.615     1.983    -0.368 
  GVR     7.088   196.979     1.620     1.876    -0.256 
  RUS     6.888   166.284     1.753     1.853    -0.100 
  RIO    10.909    93.540     2.778     2.377     0.401 
  MWC    13.179    18.203     2.731     2.703     0.028 
  LGB    15.734   197.612     3.417     3.083     0.334 
  TCC    15.014   149.045     2.731     2.975    -0.244 
  GR2    18.637   272.606     3.134     3.525    -0.391 
  WLT    17.605   129.626     3.714     3.367     0.347 
  USC    20.145   239.757     3.804     3.756     0.048 
  WTT    23.123   219.086     4.858     4.218     0.640 
  PEM    21.884    73.425     3.989     4.026    -0.037 
 
........... 

    0.3273       RMS of residuals 
 
 

Ge 162  Practice Session 2   P-wave First-Motion Mechanism 
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Data 

 Table-1 is the phase data obtained using "STP"  which is a SCEC tool to extract 

earthquake data (parametric data and waveform data).  (For details of STP, see the SCEC Web 

site).  The data contain station names, first motion data (C or D), quality (Q, ignore in this 

problem), azimuth, and take-off angle. The azimuth and take-off angle, ih, (measured from 

downward vertical) are computed using a standard southern California structure. Table-1 lists 

only selected 10 stations.  The actual data are in mech_dat_1 in 

/home/ftp/pub/hiroo/ge162.dir/practice2.dir. 

 

Table 1.  P-wave first-motion data 

station     C or D  Q  Azimuth (°) ih (°) 
  BVH                   D    2   340.332   164.798 
  SMS                   D    2   231.855   131.689 
  DJJ                   C    2   310.759   131.679 
  USC                   C    2   114.973   123.098 
  LAX                   D    2   190.413   116.500 
  HLL                   D    2    11.487   115.842 
  PAS                   D    2    63.638   103.096 
  NOT                   C    2   320.286   101.493 
  MWC                   D    2    59.358    96.635 
  LKL                   D    2    39.880    92.397 
................................................................. 
 
 
 
Determine the mechanism of this earthquake taking the following steps. 
 
 
1.  Compute the radial distance on a mechanism diagram using the equal-area projection, 

 

  2 sin( / 2)
ii hr i=   (equal-area projection)  (1) 
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Remember that if ih is larger than 90°, then 180° must be added to the azimuth (i.e., the 

station must be plotted in the opposite azimuth.), and ih must be changed to 180°-ih. 

 

 

2.  Plot the first-motion (filled circle for compression and open circle for dilatation) on a 

mechanism diagram. (Plot the data for the 10 stations listed in Table-1 manually, or with your 

own program). 

 

3. A program mplotr_2.f is provided in practice_2.dir to plot the first-motion data on a 

mechanism diagram. mplotr_2.f  takes 2 input files, i_mplotr_2 and c_mplotr_2.  The 

output is a postscript file p_mplotr_2. 

 

i_mplotr_2 
Earthquake(mech)-1  :   Job ID 
f     :   fault(f) or moment tensor(m) 
85.   180.  350.   :   dip, rake, and fault strike 
mech_dat_1    :   file name of the data 
 

(For plotting only the first-motion data, the 2nd and 3rd lines are irrelevant.)  

c_mplotr_2 
7.0  0.1  10. 5.0  0  0  1  0    : these parameters control the type and 
style of the plot 
(change plot_opt parameter (2nd from the last) only.  1 for the first-motion 
data only (in this case, the fault parameters are ignored), 3 for the data + 
nodal lines) 
 
 
(radius, sizef,  delt1c,  delt2c, shading p, sv or sh,  ndens, 
plot_opt.,  projection) 
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4. The final step is to determine the mechanism by drawing two orthogonal nodal planes so that 

they divide the compressional and dilatational stations.  Usually there are always some 

inconsistent stations, but try to find the best solution.  Many methods have been developed, but 

here try a few mechanisms.  mplotr_2.f  draws 2 nodal lines corresponding to the fault 

mechanism given by dip, δ , rake, λ , and  fault strike, fφ  (run mplotr_2 with plot_opt=3 in 

c_mplotr_2).  These fault parameters are defined in the figure below. 
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5. Assume that the fault strike is -45° from N.  Plot the mechanism diagrams for (1) right-

lateral vertical strike slip,  (2) vertical dip slip (north-east side down), (3) thrust fault 

dipping 20° NE, (4) normal fault dipping 45° NE, and (4) an oblique-slip mechanism 

(e.g., add some right-lateral component to (3)).    (This problem has nothing to do with 
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the first-motion data given in mech_dat_1.  You can just draw a sketch of mechanism 

diagrams, or run mplotr_2.f with  

c_mplotr_2 

7.0  0.1  10. 5.0  0  50  4  0     

.) 

Ge162  

2.3. Seismicity of the Earth (LW, pp.434-477) 

2.3.1   Global Seismicity  

Earthquakes occur mainly: 

  1. Along trenches (subduction zones), 

  2. Along ridge-transform systems, 

  3. In continental interiors. 

Figures 1 and 2 show seismicity in the world and California, and Figures 3 and 4 show 

the mechanisms of large earthquakes in the world and California. 
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 The world largest earthquakes occur along subduction zones (e.g., the 1960 Chilean 

earthquake, Mw=9.5, the 1964 Alaskan earthquake, Mw=9.2). More than 75 % of the seismic 

energy release takes place there.  Most of these events represent slip on the interface between a 

subducting oceanic plate and an overriding plate (Figure 3).  In these zones deep focus 

earthquakes occur to a depth of about 700 km. 
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 Most earthquakes along ridge-transform systems are shallow and relatively small (10% in 

energy release). The events on ridges have normal-fault mechanism, and those along the 

transform boundaries have strike-slip mechanisms.  Transform fault events are generally larger; 

occasionally the magnitude reaches 8 (e.g., the 1906 San Francisco earthquake, Mw≅8 ). No deep 

focus earthquake has been found beneath ridge-transform systems. 

 The distribution of the events in continental interiors (15 % in energy release) is 

very diffuse. Partly because of their proximity to major population centers, large intra-
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continental events are often very devastating (e.g., the 1976 Tanshang earthquake, the 

1988 Armenian earthquake, the 2001 India earthquake) 

 

2.3.2  Depth Variation  (Figure 5) 

 Most earthquakes occur at depths shallower than 60 km.  However, some 

significant earthquakes occur at depths of as deep as 700 km, especially in subduction 

zones (e.g. 1970 Colombia, d=653 km, Mw=8.1; 1954 Spain, d=640 km, M=7.8, 1994 

Bolivia, d=635 km, Mw=8.3).  The largest recorded deep focus earthquake is the 1994 

Bolivia earthquake.   
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 A pronounced peak in the energy release is seen at a depth of 600 km, just before 

the seismic activity dies out. 

 

2.3.3  Temporal Variation of Seismicity  (Figure 6) 

 Figure 6 shows the temporal variation of seismicity. The energy release during the 

period from 1952 to1965 dominates. This peak is a result of five large subduction-zone 

earthquakes in the Pacific (1952 Kamchatka, 1957 Aleutian Is., 1960 Chile, 1964 Alaska, 
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1965 Aleutian Is.).  The energy release rate is not uniform in time, and fluctuates on a 

time scale of at least 100 years. 

 

 The average energy release is about 4.5x1024 ergs/year, which is approximately 

1/4 of the energy released in volcanic eruptions, and 0.05 % of the terrestrial heat flow. 

 Figures 7, 8, and 9 show the distribution of great earthquakes, the temporal 

distribution of damaging earthquakes, and the temporal distribution of damaging tsunami. 
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2.3.4 Magnitude-Frequency Relation (Gutenberg-Richter Relation) 

 

 Figure 10 shows the distribution of the number, N, of earthquakes equal to, or 

larger than, magnitude M. In general, this distribution is expressed as  

 

    log ( )N M a bM= −  



 83

 

 The results obtained for many regions indicate that the value of b (called  b value) 

is approximately equal to 1.  

 Figure 9 shows that approximately 1 earthquake with M ≥ 8 occurs every year. 

 

 

2.3.5   Aftershocks 
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 After a large earthquake (main shock), many smaller earthquakes occur near the 

epicenter of the earthquake.   The decay of aftershock activity follows the Omori's law 

given by  

 

      ( ) Kn t
t c

=
+

 

 

where ( )n t  is the number of aftershocks larger than a given magnitude per unit time.  A 

modified Omori's law is given by 

 

      ( )
( ) p

Kn t
t c

=
+

 

 

where p is a constant, which is usually slightly larger than 1. 

3.1 Review of Elasticity Theory 
 
3.1.1 Stress 
 

In the theory of elasticity we consider two types of forces.  
 

Body Force 
 

The body force f
K

  is defined by a force per unit mass in a medium (Figure 1). 

Then, the body force per unit volume is fρ
K

 where ρ is the density of the medium.  
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Then the force acting on a volume element dV  is 

 
  fdVρ

K
 

 
which can be integrated over a volume V as 
 

  
V

f dVρ∫
K

 

 
e.g. body force due to gravity:  f gρ ρ=

K
 (downward) 

 
 
 
 
 
Surface Force 
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The surface force is the force distributed over a surface of the body, either internal 

or external. Usually it is defined by the force per unit area, Sf
K

.   Then the force acting on a 

surface element dS  is Sf dS
K

. 

Stress 
Consider a deformed elastic body in equilibrium (see Figure 1). Let dS be a surface 

element at P which divides the medium on the + side and the - side.  A unit normal vector 

nK  ( 1n =K  ) is taken from the - side to the + side. In equilibrium, the force, F+

K
, exerted by 

the + side on dS should be balanced by the force, F−

K
 exerted by the - side on dS ,  i.e.,  

0F F+ −+ =
K K

. 

 
The stress at P acting on dS from the + side is then defined by  

 

0
limn
dS

Ff
dS

+

→
=

KK
 

 
nf
K

 is a vector (often called a stress vector, or traction) and its dimension is force/area. 

We take a Cartesian coordinate system 1 2 3( , , )x x x and write 1x , 2x , and 3x   

components of nf
K

 by 1 2 3( , , )n n nf f f .  Note that nf
K

 is a function of not only the location 

of P but also the orientation of nK . Hence, in order to specify the stress at P uniquely, we 

need two vectors nK  and nf
K

. 

This situation can be understood more easily in the simple example shown in 
Figure 2. 
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Consider an elastic beam with one end, AB, clamped at the wall. Then, apply a 

force F uniformly on the surface S at the other end BC. Let us consider the stress at P. In 

(a), we consider the stress acting on S1 that is perpendicular to the axis of the beam. In 

this case, it is obvious that 

 
1 2 1( , ) ( / , 0)n nf f F S=  

 
In (b), we consider S2 which is parallel to the axis. Suppose we cut the beam in two 

parts along S2. The beam will be still in equilibrium without change in shape. That is, there 

is no force acting on S2. Hence, in this case, 

 
     1 2( , ) (0, 0)n nf f =  

 
Stress Tensor 
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For simplicity, we consider a 2-dimensional problem. The section shown in 

Figure 3 depicts a 2-D medium extending to infinity in 3x  direction (perpendicular to the 

face of the paper). 

 
 
 
 
 

 
 
 Consider a surface element 1dS  normal to the 1x  axis. We call the medium on the 

+ 1x  side M+ and that on the - 1x  side, M- (Figure 4). Let 11σ and  21σ  be the 1x and 

2x components of the stress exerted by M+ on 1dS . Then 11σ− and 21σ−  are 1x  and 2x  

components of stresses exerted by M-, respectively. 
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Note that the first subscript denotes the component, and the second, the direction 

of the normal to the surface. 'ijσ s with any i and j can be defined similarly. 

Consider a triangular beam with an infinitesimally small cross section BOA . 

Referring to Figure 5, we define the following. 

 
  1n :   1x  component of nK ,  1 cosn θ=  
  2n :  2x  component of nK ,  2 sinn θ=  
 
 1nσ :   1x  component of the stress acting on AB 
 2nσ :  2x  component of the stress acting on AB 
 
 S:  AB x unit length in 3x  direction 
 S1: OB x unit length in 3x  direction 
 S2: OA x unit length in 3x  direction 
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Then the forces acting on BOA are given as follows. 
   
 
  1x  component  2x  component  
 force on S1 11 1Sσ−  21 1Sσ−  
 
 force on S2 12 2Sσ−                         22 2Sσ−  
 
 force on S 1nSσ  2nSσ  
       
 Total 11 1 12 2 1nS S Sσ σ σ− − +  21 1 22 2 2nS S Sσ σ σ− − +  
  
 
In equilibrium, the total force should vanish.  Since 1 1cosS S Snθ= = , and 

2 2sinS S Snθ= = , we obtain 
 
 
 1 11 1 12 2n n nσ σ σ= +  

 2 21 1 22 2n n nσ σ σ= +    (1) 
or, in matrix notation, 
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1 11 12 1

2 21 22 2

n

n

n
n

σ σ σ
σ σ σ

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
   (2) 

 
Consider an infinitesimally small square around P (Figure 6). In equilibrium, the 

total moment around P should vanish. This condition leads to 

 
    12 21σ σ=     (3) 
 
 

 
 
The above analysis can be extended easily to a 3-dimensional  

problem, and we can derive, 

 
1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

n

n

n

n
n
n

σ σ σ σ
σ σ σ σ
σ σ σ σ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

  (4) 

 
 
with the symmetry relations ij jiσ σ= .  Here, inσ  (i=1,2,3) are the 1x , 2x , and 3x  

components of the stress acting on dS (at P) whose unit normal is nK . 

The matrix ( ijσ ) above is called the stress tensor at P. (It can be shown that ( ijσ ) is a 

tensor.) Because of the symmetry ij jiσ σ= , it has only 6 independent elements. Once we 
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know the stress tensor ( ijσ ) at P, we can calculate, using (4), the stresses on any surface 

at P whose unit normal is nK  (Figure 7). 

 

 
 

In the above equilibrium analysis, we ignored body forces compared with surface 

forces. This is justified because if we consider a small volume around P with a linear 

dimension da, then the total body force is proportional to da3 while the total surface force 

is proportional to da2. Hence as da → 0, the body forces can be ignored. 

 
Normal, Shear, Principal Stresses 
 
 We resolve the stress acting on dS  into two components, one parallel to nK , nnσ , 

and the other perpendicular to nK , ntσ  (see Figure 8). nnσ  is called the normal stress, and 

ntσ  is the shear stress. In general, 0nnσ ≠  and 0ntσ ≠ . However, at any point P, it is 

always possible to choose a Cartesian coordinate system ' ' '
1 2 3( , , )x x x  for which 

' ' 0 ( ' ')i j i jσ = ≠ . In other words, for this new coordinate system ( ' 'i jσ ) is a diagonal 

matrix. The non-zero diagonal components, 1'1' 2'2 ' 3'3', , andσ σ σ  are called the principal 
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stresses, and ' ' '
1 2 3, , andx x x  axes, the principal axes. It can be shown that 

1'1' 2'2 ' 3'3' 11 22 33σ σ σ σ σ σ+ + = + + . 

 
 

 
 
 
 
 
 
Equations of Motion 
 

First, consider a 1-dimensional problem illustrated in Figure 9. Figure 9 shows an 

elastic rod with cross section S. 

 

 
 
The equation of motion for a small part of it, ABCD (length 1dx ) is given by, 
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  1 1 1 1 11 1 1 11 1( ) ( )Sdx u f Sdx x dx S x Sρ ρ σ σ= + + −��  
    
where ρ  is the density, 1u  is the displacement, and 1f  is the body force. Expanding 

11 1 1( )x dxσ + around 1x , and retaining only the first order terms in 1dx , we obtain, 

 
11

1 1
1

u f
x

σρ ρ ∂
= +

∂
��    (5) 

 
This is the equation of motion in 1-dimension. 
 
 A similar analysis can be made for a 3-dimensional geometry, and we obtain: 
 

3

1

ij
i i

j j

u f
x
σ

ρ ρ
=

∂
= +

∂∑��   (i=1,2,3)  (6) 

 
These are the equations of motion expressed in terms of the stress components. 
 
 

Tensor Notation 
 

In tensor notation, if any suffix occurs twice in a single term, it is to be put equal 

to 1, 2, and 3 in turn and the results are to be added. For example, 

 
 

3

11 22 33
1

ii ii
i

a a a a a
=

= + + = ∑  

 
1 3 11 13 12 23 13 3 1 33j j l la b a b a b a b a b= + + =  

 
3

1
ip pj ik kj

k

a b a b
=

= ∑  
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Also, we use , j  to denote differentiation by jx .   For example, 
 

,
i

i j
j

u u
x

∂
=

∂
 

 
Also note that, 
 

31 2
, 1,1 2,2 3,3

1 2 3

l
l l

l

u uu uu u u u
x x x x

∂ ∂∂ ∂
= = + + = + +

∂ ∂ ∂ ∂
  

 
 
We also use the Kronecker’s delta 
 
 

1 if
0 ifij

i j
i j

δ
=⎧

= ⎨ ≠⎩
 

 
Note that  3iiδ = . 

 
In the tensor notation, (6) can be written as 

 
 

,i i il lu fρ ρ σ= +��    (7) 
 
Boundary Conditions 
 
 From the definition of the stress, it is evident that the normal and the tangential 

stresses should be continuous across any surface. In particular, at the free surface, there is 

no force acting on it; hence the normal and the shear stresses should vanish there. If the 

free surface is perpendicular to 3x  axis, 
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31 32 33 0σ σ σ= = =  
 

 
Within the interior of continuum, the displacement iu should be continuous.   

 
3.1.2  Strain 
 

The displacement in continuum consists of three parts, 

1. Translation (rigid body) 
2. Rotation (rigid body) 
3. Deformation 
 

In the theory of elasticity, we are primarily concerned with  “Deformation”. 
 
 

 
 
  Referring to Figure 10, let P and Q represent two points dxK apart in an 

elastic medium, and uK  and u du+K K  be their displacements. 

 

  If u u du= +K K K , i.e., 0du =K , for any pair of points, uK  simply represents 
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rigid body translation. Thus duK is considered to represent rotation and deformation. To 

the first order, 

 

   

1 1 1

1 2 3
1 1

2 2 2
2 2

1 2 3
3 3

3 3 3

1 2 3

u u u
x x xdu dx
u u udu dx
x x x

du dx
u u u
x x x

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟∂ ∂ ∂
⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

  (8) 

 

Denoting the matrix ( ,i ju ) by U and ( ,j iu ) by UT  (transpose of U), we can write U as 

 

   1 1( ) ( )
2 2

T TU U U U U= + + −    (9) 

 

We denote 1 ( )
2

TU U+  by D and 1 ( )
2

TU U− by R. D is symmetric and R is anti-

symmetric. We will show that D represents deformation, and R represents rigid-body 
rotation. 
 

 The elements of D, , ,
1 ( )
2 i j j i iju u e+ =  can be interpreted as follows. 

If only 11 0e ≠ , 
 

1 11 1

2 2

3 3

0 0
0 0 0
0 0 0

du e dx
du dx
du dx

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
We then have, 1 11 1du e dx= , 2 0du = , and 3 0du = . This means that the line element 1dx  in 
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1x  direction is stretched by 1 11 1du e dx=  in 1x  direction.  Hence, 11e  represents  extension 

(or contraction if 11e <0) per unit length in 1x  direction. 22e  and 33e can be interpreted 

similarly. 

Next consider 12e , and 21e (= 12e ). 
 

1 12 1

2 21 2

3 3

0 0
0 0

0 0 0

du e dx
du e dx
du dx

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
i.e., 1 12 2 2 21 1 3, , and 0du e dx du e dx du= = = .  As shown in Figure 11, the angle between 1x  

and 2x  axes which is originally / 2π  becomes 12/ 2 2eθ π= −  after the deformation. 

Thus, 12e  is equal to half the angle change between the 1x  axis and 2x  axis, and is called 

the shear strain. 13e  and 23e can be interpreted similarly. 
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D is called the strain tensor (it can be shown that ( ije ) is a tensor). 

11 22 33, , ande e e represent extension or contraction, and 12 13 23, , ande e e  represent shear. 

 
We now show that R represents rigid body rotation. R can be written as 

 
 

1,2 2,1 1,3 3,1

2,1 1,2 2,3 3,2

3,1 1,3 3,2 2,3

1 10 ( ) ( )
2 2

1 1( ) 0 ( )
2 2
1 1( ) ( ) 0
2 2

u u u u

R u u u u

u u u u

⎛ ⎞− −⎜ ⎟
⎜ ⎟
⎜ ⎟= − −⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎝ ⎠

 

 
 
 
 
Define 1 2 3, , andω ω ω  by 
 

1 23 32 2,3 3,2

2 31 13 3,1 1,3

3 12 21 1,2 2,1

( ) (1/ 2)( )
( ) (1/ 2)( )
( ) (1/ 2)( )

r r u u
r r u u
r r u u

ω
ω
ω

= − = = − −

= − = = − −

= − = = − −

 

 
Then,   

 
3 2

3 1

2 1

0
0

0
R

ω ω
ω ω
ω ω

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

 

 
 
Consider the case where 1 2 0ω ω= =  and 3ω  is non-zero. 
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Then, we have 

 

   
1 3 1

2 3 2

3 3

0 0
0 0

0 0 0

du dx
du dx
du dx

ω
ω

−⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
i.e.,  1 3 2, 2 3 1, 3and 0du dx du dx duω ω= − = = .  As shown in Figure 12, this displacement 

 represents counter-clockwise rotation by 3ω around the 3x  axis. 1ω  and 2ω can be 

interpreted similarly. Thus R represents rigid body rotation. 

 

 
 
3.1.3   Stress-Strain Relations and Elastic Constants 
 

The relation between stress and strain is the extension of the Hooke’s law for a 

spring. (i.e., F k l= Δ where F is the force, lΔ  is the length change and k is the spring 

constant.) 

We assume that the material is isotropic and perfectly elastic. If the medium is 
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perfectly elastic, the stress should be expressed as a homogeneous linear function of 

strain. Since there are six independent stress components and strain components, in 

general there can be 6x6=36 constants. However, if the material is isotropic, we can show 

that there are only two independent constants. 

Consider an elastic parallelepiped shown in Figure 13. Apply a normal stress 11σ  

in 1x  direction. The extension in 1x  direction is 11e  (Figure 13). In the linear theory, 11e  is 

proportional to 11σ  

 

   11 11
1e
E

σ=  

 
 

 
 

The constant of proportionality is written as 1
E

, and is called the Young’s  

modulus. Note that 11e  is non-dimensional, so that E has the dimension of stress. Under 

this stress, there will be contraction in 2x  and 3x directions that is proportional to 11e . 

Since the material is isotropic, 

 

22 11 11e e
E
νν σ= − = −     and  33 11 11e e

E
νν σ= − = −  
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ν  is called the Poisson’s ratio. 

If we apply 11 22 33, , andσ σ σ  in 1x , 2x  and 3x  directions simultaneously, then by 

superposition, 

 
 

11
11 22 33

22
22 11 33

33
33 11 22

( )

( )

( )

e
E E

e
E E

e
E E

σ ν σ σ

σ ν σ σ

σ ν σ σ

= − +

= − +

= − +

   (10) 

 
Adding the three equations in (10) we obtain 
 

    (1 2 )
E

ν−
Δ = Σ     (11) 

 
where 
 
    11 22 33e e eΔ = + +    (12) 
 
and 
 

11 22 33σ σ σΣ = + +  
 

Consider deformation of a small parallelepiped. The initial volume is 

0 1 2 3V dx dx dx=  and the volume after deformation is 

 
11 1 22 2 33 3(1 ) (1 ) (1 )V e dx e dx e dx= + + +  
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Then, to the first order, the volume change is  
 

0 0 11 22 33( )dV V V V e e e= − = + +  
 

Hence,    
 
   0/dV VΔ =  
 
Thus, Δ  represents relative change in the volume, and is called the volumetric 

strain or dilatation. 

If  11 22 33σ σ σ σ= = = , then from (11), we obtain    

 
 

   
3(1 2 )

E kσ
ν

= Δ = Δ
−

 

where 

3(1 2 )
Ek

ν
=

−
     (13) 
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is called the bulk modulus or incompressibility. 
 

Substituting (11) into (10), and solving for 11 22 33, , andσ σ σ , we obtain 
 

11 11

22 22

33 33

(1 2 )(1 ) (1 )

(1 2 )(1 ) (1 )

(1 2 )(1 ) (1 )

E E e

E E e

E E e

νσ
ν ν ν
νσ
ν ν ν
νσ
ν ν ν

= Δ +
− + +

= Δ +
− + +

= Δ +
− + +

  

 
We introduce the Lame’s elastic constants λ  and μ  by 

 

(1 2 )(1 )
Eνλ

ν ν
=

− +
   (14) 

 
 

2(1 )
Eμ

ν
=

+
    (15) 

 
 
Then, 
 

   
11 11

22 22

33 33

2
2
2

e
e
e

σ λ μ
σ λ μ
σ λ μ

= Δ +
= Δ +
= Δ +

    (16) 

 
Next, we consider shear stress and shear strain. From Figure 15, we see that the 

shear strain 12e  is caused by the shear stress 12σ : 
 

12 122Geσ =  
 

where G is called the shear modulus. 
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Similarly, 
 

13 13

23 23

2
2
Ge
Ge

σ
σ

=
=

 

 
It can be shown (homework problem) that G is equal to the Lame’constant μ . Hence, 

 

    
12 12

13 13

23 23

2
2
2

e
e
e

σ μ
σ μ
σ μ

=
=
=

    (17) 

 
Equations (16) and (17) give the stress-strain relations in isotropic media. (16) and (17) 

can be written collectively as 

   
 

2ij ij ijeσ λ δ μ= Δ +    (18) 
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Note that, although we have introduced five elastic constants , , , , andE kν λ μ  above, 

there are only two independent constants. If we choose E and ν  as the basic constants 

then 

 

      , ,
3(1 2 ) (1 )(1 2 ) 2(1 )

E E Ek νλ μ
ν ν ν ν

= = =
− + − +

 (19) 

 
If we choose λ and μ  as the basic constants, then 
 

  3 2 2, ,
2( ) 3

E kλ λ μν μ λ μ
λ μ λ μ

+
= = = +

+ +
 (20) 

 
 

Some Relations in Vector Analysis 
 

In the theory of elasticity, the following definitions and relations are often used. 

Here, 1 2 3( , , )x x xφ  is a scalar function and 1 2 3( , , )u u u uK  and 1 2 3( , , )v v v vK are vectors.  

We assume that these functions are continuous and differentiable. 

 

1) gradφ  is a vector with the components 
 

 
1 2 3

, ,
x x x
φ φ φ⎛ ⎞∂ ∂ ∂

⎜ ⎟∂ ∂ ∂⎝ ⎠
    (21) 

 
We often use an operator 

 

1 2 3

, ,
x x x

⎛ ⎞∂ ∂ ∂
∇ ≡ ⎜ ⎟∂ ∂ ∂⎝ ⎠
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and write it as φ∇ . 

2) divuK  is a scalar defined by 
 

   31 2
,

1 2 3
l l

uu u u u
x x x

∂∂ ∂
+ + = = ∇ ⋅

∂ ∂ ∂
K    (22) 

3) curluK  (rot uK ) is a vector defined by 
 

3 32 1 2 1

2 3 3 1 1 2

, , xu uu u u u u
x x x x x x

⎛ ⎞∂ ∂∂ ∂ ∂ ∂
− − − = ∇⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

K   (23) 

4) Laplacian 2φ∇  is a scalar defined by 

 

1 2 3

2 2 2
2

,2 2 2 llx x x
φ φ φφ φ∂ ∂ ∂

∇ = + + =
∂ ∂ ∂

    (24) 

5) Vector Laplacian 2u∇ K  is a vector defined by 
    

2 2 2
1 2 3 1, 2, 3,( , , ) ( , , )ll ll llu u u u u u∇ ∇ ∇ =    (25) 

 
We use this only in the Cartesian coordinate. 

 
6) 2 graddiv curlcurl x xu u u u u∇ = − = ∇∇ ⋅ − ∇ ∇K K K K K   (26) 
 
 For a non-Cartesian coordinate system, this should be considered as the definition of 

2u∇ K . 
 
7) curlgrad 0φ ≡  
 
8) divcurl 0u ≡K  
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9) If curl 0u =K , uK  is called an irrotational vector, and can be written as gradu φ=K .   
           φ  is the scalar potential. 

 
10)  If divuK =0,  then uK  is called a solenoidal vector, and can be written as curlu v=K K .  

vK  is the vector potential. 
 

11)   Any vector field uK  can be decomposed into an irrotational field IuK and a 
solenoidal field IIuK , i.e. 

I IIu u u= +K K K  

where curl IuK =0 and div IIuK =0. Using 9) and 10) uK  can be written as 
 
    grad curlu vφ= +K K    (27) 
 
Relations 6), 7), and 8) can be easily verified.  Proof of  9), 10) and 11) requires some 

knowledge of Potential Theory. 

 

3.1.4   Equation of Motion Expressed in Terms of Displacement 

From (18) and the expression for ije , we obtain 

 

, , , ,

2 2
, , ,

( )

( ) ( )
ij j j ij i jj j ij

i i i i i

u u

u u

σ λ δ μ

λ μ λ μ μ

= Δ + +

= Δ + ∇ + Δ = + Δ + ∇
 

where we assume that the medium is homogeneous, i.e., λ and μ  are constants.  

Substituting this into (7), we obtain 

2
,( )i i i iu f uρ ρ λ μ μ= + + Δ + ∇��  

or in a vector form, 
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2( )graddivu f u uρ ρ λ μ μ= + + + ∇

KK K K��    (28) 
 
 

Using (26), this can be rewritten as,  
 

( 2 )graddiv curlcurlu f u uρ ρ λ μ μ= + + −
KK K K��   (29) 

    
 or 
 
   2( 2 ) ( )curlcurlu f u uρ ρ λ μ λ μ= + + ∇ + +

KK K K��   (30) 

Equations (28), (29) and (30) are among the most fundamental equations in seismology. 

 
If we decompose uK  into irrotational field (curl 0)I Iu u =K K  and solenoidal field 

(div 0)II IIu u =K K , we obtain for IuK , using (30) 

   2( 2 )I Iu f uρ ρ λ μ= + + ∇
KK K��    (31) 

For IIuK , we obtain, using (28) 

   2II IIu f uρ ρ μ= + ∇
KK K��        (32) 

 
(31) and (32) are the wave equations for the irrotational field and the solenoidal field, 

respectively. 
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Ge 162  Problem #3 
 
1.  Show that the Lame's elastic constant μ=E/2(1+ν)  (E: Young's modulus, ν: Poisson's 
ratio) is actually equal to the shear modulus G defined by  
 
     σ ij = 2Geij    (i ≠ j)  
 
 Follow the steps described below for a 2-dimensional problem. 
 
 
1) Consider a rectangular parallelepiped ABCD shown in Figure 1, and apply a normal 
stress -σ uniformly on BC and AD, and +σ on AB and DC. 
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 Consider equilibrium of a beam with the square cross section abcd in the 
parallelpiped.  The square abcd is now deformed into a parallelogram a'b'c'd' as shown in 
Figure 2. 
 
 
 Show that 
 

    
ob'
ob

=1 −
(1 +ν )

E
σ     (1) 

 

    
oa'
oa

=1 +
(1 +ν )

E
σ     (2) 

 
2) Now consider equilibrium of a triangular beam with the cross section aob.  The normal 
stress is -σ on oa and σ on ob. 
 
 
 Show that  
 
    σt=σ,  and   σn=0, 
 
where σt  and σn are the shear and normal stresses on ab, respectively (see Figure 1). 
 
3) Referring to the square abcd, this deformation can be viewed as shear deformation due 
to the shear stress σt .   
 Show that the corresponding shear strain et  is given by 
 
  et = (π / 4) − (1/ 2)∠d' a' b'  ( ∠d' a' b'  is θ  in Figure 2)   

(3) 
 
 
4) From (1), (2) and (3), 
 

   ' (1 )tan(( / 4) )
' (1 )t

ob Ee
oa E

ν σπ
ν σ

− +
− = =

+ +
   (4) 
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Assuming that et  is small (i.e. you can put sinet=et , coset=1), obtain the expression for G 
by relating et to σt . 
 
 
Ge 162, Problem  #2 
 
Strain at a Point,   Principal Strain 
 

Consider a 2-D problem shown in Fig. 1. 
 
 

 
   
 
 A line element PQ becomes P'Q' after deformation.  The strain components for 
this deformation are given by e11, e22, and e12.  
 
 Determine the unit elongation in the direction of PQ and the shear strain for the 
directions of PQ and PT (PT is perpendicular to PQ).  Follow the steps given below. 
 
 Let the displacement of P and Q be ( )u xG G and u du+

G G , respectively.  Observe that 
vector QQ" represents 1 2( , )du du duG , where 1du  and 2du are the x1 and x2 components of 
duG , and are given by QR and RQ" in the figure, respectively. 
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1. Referring to the geometry shown in Fig. 1, show that the difference in the length 
between PQ" and PQ (elongation in PQ direction) is given by: 
 
    dl = du1 cosα + du2 sinα  
 
 
 Then dividing this by PQ, show that the unit elongation in the direction of PQ is 
given by: 
 
   eα = e11 cos2 α + e22 sin2 α + 2e12 sinα cosα  
 

( Use the relations like 1 1
1 1 2

1 2

u udu dx dx
x x

∂ ∂
= +

∂ ∂
 and 1 cosdx

PQ
α=  etc.) 

 
 
2. Referring to the geometry shown in Fig. 1, show that the angle through which PQ is 
rotated is given by: 
 

  2 22 1 2 1
22 11

1 2

cos sin cos ( ) cos sin sin
PQ

du du u ue e
x x

α α ∂ ∂α α α α
∂ ∂

−
= + − −  

 
3. The line segment PT makes an angle α+π/2 with the x1 axis.  Using the result obtained 
above, show that the rotation of PT is given by: 
 

   2 22 1
22 11

1 2

sin ( ) cos sin cosu ue e
x x

∂ ∂α α α α
∂ ∂

− − −  

 
4. Using the results of 2 and 3, show that the shear strain for the directions of PQ and PT 
(i.e. 1/2 of the change in angle between PQ and PT) is given by: 
 
   es = e12(cos2 α − sin2 α ) + (e22 − e11)sinα cosα  
 
 From this result we see that there are two values of α, differing by π/2, for which 
shear strain vanishes. They are given by: 
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     tan 2α =
2e12

e11 − e22

 

 
The corresponding strains eα  are called the principal strains. 
 
Ge 162  Problem  #1 
 
Stress at a point,  principal axes and stresses 
 
 Consider a 2-D problem shown in Fig. 1.   
 
 

 
 

  
 Consider a (infinitesimally) small prism BOA  at P with the three sides parallel to 
the x3 axis.  Let nK  and t

K
 be the unit vectors normal and parallel to BA respectively (the 

directions are shown in the figure.). In class, we showed that the x1 and x2 components of 
stress acting on plane BA are given by, 
 

    1 11 12 1

2 21 22 2

n

n

n
n

σ σ σ
σ σ σ

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 

 
1. Show that the normal stress and shear stress on the plane BA are given by, 
 
   2 2

11 22 12cos sin 2 cos sinnnσ σ θ σ θ σ θ θ= + +     
           (1) 
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   2 2
12 22 11(cos sin ) ( )cos sinntσ σ θ θ σ σ θ θ= − + −  

 
 Show that if the angle  θ  is chosen such that 
 

    12

11 22

2tan 2 σθ
σ σ

=
−

 

the shear stress vanishes. 
 
 The directions of nK  and t

K
 for this θ  are called the principal directions.  

If we take x1
'  and x2

'  axes in nK  and t
K

 directions, they are the principal axes. The normal 
stresses on the plane normal to x1

'  and x2
'  axes are the principal stresses. 

 
  
 
 
 
 

If x1  and x2  axes were the principal axes, (1) becomes 
 
    2 2

11 22cos sinnnσ σ θ σ θ= +      
    
    22 11( ) cos sinntσ σ σ θ θ= −  
 
2. Refer to Fig. 2. 
 
 Show that the X and Y coordinates of point P is given by nnσ and ntσ , 
respectively.  The circle shown in Fig. 2 is called Mohr's circle which is used for 
graphical representation of the normal stress and shear stress on plane AB.  Note that x1  
and x2  axes are the principal axes. 
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3.2   Wave Equation and Seismic Waves 
 
Wave Equations 
 

Following (31) and (32) of 3.1.4, and ignoring the body force, we obtain for the  

irrotational field IuK   ( curl 0Iu =K ), 

 
     2 2I Iu uα= ∇K K��      (1) 
 
where  

     2λ μα
ρ

+
=      (2) 

 
For the solenoidal field IIuK   ( div 0IIu =K ), 
 

 
2 2II IIu uβ= ∇K K��  (3) 

 
 
where 
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μβ
ρ

=  (4) 

 
 
Equations (1) and (3) are three-dimensional wave equations which are of fundamental 

importance in seismology. 

 

 
3.3  Seismic P Wave (Compressional Wave) and S Wave (Shear Wave) 
 

We first examine the property of IuK . Here we use a coordinate system (x, y, z) instead of  

(xl, x2, x3), and denote the x, y, and z components of displacement by u, v, and w, respectively. 

 

Let us consider a plane elastic wave propagating in the x direction, that is, a wave in 

which IuK  is a function of x and t. Since all derivatives with respect to y and z are zero, we have 

from curl 0Iu =K , 

 

   0w
x

∂
=

∂
,  and   0v

x
∂

=
∂

 

 

which give v = w =0. (Actually v  and w  are constant, but constant displacement is not 

important in wave propagation problems and they are set equal to 0.)  Therefore, only non-zero 

displacement component is u .  This means, IuK  represents a wave in which the particle motion is 

in the direction of propagation. The propagation velocity is, from (2), 
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                                                          2λ μα
ρ

+
=  

 

Because of this particle motion, this wave is also called longitudinal wave (Fig.1). 
 
  

 
 
 
          Fig. 1 

Similarly, for IIuK , we have from div 0IIu =K , 
 

                                                                   0u
x

∂
=

∂
 

 
which gives u  = 0 . Then the non-zero components are v  and w . This means, IIuK  represents a 

wave in which the particle motion is confined on the plane perpendicular to the propagation 

direction; the propagation velocity is, from (4), 

 
 

        μβ
ρ

=  
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Because of this particle motion, this wave is called a shear wave (Fig. 2).  Since 

div 0IIu =K , it does not involve volume change.  

In seismology, the longitudinal wave is often called P wave, and the shear wave 

is called S wave. 
 
 

 
 
            
          Fig. 2 
 

3.4  Ray Theory 
 

In the above, we assumed that the medium is homogeneous (in addition to being 

isotropic). That is the elastic constants λ  and μ  do not vary spatially. The equations 

(28), (29), and (30) in 3.1.4 were all derived with this assumption. 

 
Once we obtain a 1 -D wave equation in the form, 
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                                                   2( , ) ( , )u x t c u x t′′=��  (5) 
 

we can obtain the solution, 
 

                                          ( , ) ( ) ( )u x t f x ct g x ct= − + +  (6) 
 

where f(ξ) and g(ξ) are twice differentiable arbitrary functions of ξ.   f and g 

represent a plane wave propagating in positive and negative x directions, 

respectively, with velocity c.  For a wave propagating in the positive x direction, we 

can consider a wave front x=ct+constant. The line perpendicular to the wave front 

determines the path along which the wave front propagates. This line (or curve, in 

general) is called a ray. Thus, in case of a homogeneous medium, we can use rays to 

describe wave propagation completely (ray theory). Ray theory is more intuitive than 

wave theory, and has been used very extensively in seismology. 

 
However, in the real medium, λ  and μ  are usually a function of x, y, and z. The 

equation of motion is consequently far more complex than (28), (29), or (30) in 3.1.4, and 

we cannot obtain simple wave equations; consequently we cannot use the ray theory (rays 

cannot be defined rigorously). Fortunately, however, if the medium is only weakly 

heterogeneous, we can define a “ray” approximately, and use the ray theory. This is a 

common practice in seismology. The question is “what is considered weakly heterogeous 

?“ This problem can be discussed in detail in the Appendix to this section. Here we only 

discuss this condition qualitatively. 

 
 Suppose that the wave velocity c(x) is a function of position x. Then the change in 

velocity c over a wave length λ  is given by 
 
            c cλ ′Δ =  
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If this is much smaller than c itself, we can consider that the medium is “weakly 
heterogeneous”. The condition then can be stated as 

  
                                               / / 2 / 1c c c c cλ π ω′ ′Δ = = <<  
 
Ignoring 2π , we can say that if 
 
                                                           cω ′>>  (7) 
 
then we can use the ray theory to discuss wave propagation problem in a heterogeneous 

medium. In this sense, the ray theory represents a high-frequency approximation. 

 
As shown in the Appendix, a harmonic wave in a l-D homogeneous medium is 

given by, 
 

                                              ( , ) exp[ ( / )]u x t i t x cω= −  (8) 
 
while in a 1-D weakly heterogeneous medium, it is given by 
 

                                        1( , ) exp
( )
dxu x t i t

c c x
ω

ρ
⎡ ⎤⎛ ⎞

∝ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫  (9) 

 
Equation (9) shows that the wavefront propagates at the local velocity c(x), and the 

amplitude varies as 1/ cρ . 

A similar relation can be obtained for a 3-D medium. The most important result 

here is that a “wavefront” can be defined and it propagates at the local velocity, which 

leads to the well-known “Snell’s Law” (see the Appendix, for more details). 

If a ray is incident from a medium with velocity 1c  into a medium with velocity 

2c , then the incidence angle 1i  and the angle of emergence 2i  are related by (Figure 3), 
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1 2

1 2

sin sini i
c c

=  (10) 

 
In general, if the velocity varies vertically as c(z), then, for a given ray on a vertical plane, we 
have (Figure 3) 
 

 sin ( )
( )
i z p

c z
= =const. 

 

 
  
            
   
        Fig. 3 
Ge 162  Appendix to 3.4 
 
Wave Propagation in a Slightly Heterogeneous Medium  
          - Solution with the WKBJ Method- 

 
1. One-Dimensional Case 
 
 The equation of motion  
 

    
2

2

u uE
t x x

ρ ∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝ ⎠
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does not reduce to the simple wave equation because 0E
x

∂
≠

∂
 in general.  We obtain 

 

    
2 2

2 2

u u E uE
t x x x

ρ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
 

 
Introducing a new variable v by  
 
     1/ 2u E v−=  
 
and ignoring the term containing E′′ , we obtain  
 

    
2 2 2

2 2

1
4

v v EE v
t x E

ρ
′∂ ∂

= +
∂ ∂

 

 
 We consider a harmonic wave  
 
    ( , ) ( ) i tv x t V x e ω=  
 
Then, we have  
 

    
22

2
2

1 0
4

d V Ek V
dx E

⎡ ⎤′⎛ ⎞+ + =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

 
where  
 

    k
c
ω

=  and  Ec
ρ

=  

 
 
 
If  
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2

2E k
E

′⎛ ⎞ <<⎜ ⎟
⎝ ⎠

, or cω ′>>  

 
Then  
 

    
2

2
2 0d V k V

dx
+ =     (A-1) 

 
Note that if 0 constk k= = , then the solution is  
 

    00
i k dxik xV e e

±± ∫= =  
 
If k is a slowly varying function of x, we can solve this equation with the WKBJ method. 
 
 We seek a solution in the form  
 
    ( )expV i dxκ= ± ∫  

 
Substituting this into (1), we find that κ  must satisfy the equation  
 
    2 2 0i kκ κ ′− ± + =     (A-2) 
 
1-st Approximation 
 
 Since  
 
    2 2| |κ κ′ <<  
 
we obtain for the first approximation of  κ  by  
 
 
   (1)2 2kκ =    or  (1) kκ =  
 
2nd Approximation 
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 The 2nd approximation can be obtained by using (1)κ  for the second term of (A-
2).  Then, the 2nd approximation  
 

  ( )
1/ 21/ 2 1/ 2

(2) 2 (1) 2
21 kk i k ik k i

k
κ κ

′⎛ ⎞⎛ ⎞′ ′= ± = ± = ±⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
  (A-3) 

 

If, cω ′>> , then  2 1k
k

′
<< , and  

 

    (2)

2
i kk

k
κ

′
= ±  

 

∴      ( )1( ) exp exp
2
i kV x i k dx i kdx

k k
′⎡ ⎤⎛ ⎞= ± ± = ±⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫  

 
 

∴  1 1( , ) exp( ) exp dxu x t V i t i t
c cE

ω ω
ρω

⎡ ⎤⎛ ⎞= = ± ±⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫   (A-4) 

 
This is the WKBJ solution.  This solution is valid under the condition cω ′>> . 
 
 
2. Vertically Heterogeneous Medium 
 
 We consider a SH wave, i.e., the displacement vector is given by (0, ( , ), 0)v x z . 
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Then the equation of motion is given by  
 

   
2 2 2

2 2 2

v v v v
t x z z

ρ μ μ
⎛ ⎞∂ ∂ ∂ ∂′= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

 
As is in the 1-D case, we put  
 
 
    1/ 2( , ) ( )ikx i tv x t e V z e ωμ −=  
 
Then, we obtain  
 

   
22

2 2
2

1( ) 0
4

d V k z k V
dz β

μ
μ

⎡ ⎤′⎛ ⎞
+ − + =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 

 
where  
 

    kβ
ω
β

=   and  μβ
ρ

=  

 
We introduce ( )zχ  by  
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    2 2 2( ) ( )z k z kβχ = −  
 
If,  

    
2

2 1( )
4

z μχ
μ

′⎛ ⎞
>> ⎜ ⎟

⎝ ⎠
    (A-5) 

 
then, 
 

    
2

2
2 ( ) 0d V z V

dz
χ+ =     (A-6) 

 
For (A-5) to be satisfied, at least ω β ′>>  must be satisfied.  If  2 2( )k z kβ − =0, then this 
condition is never satisfied. 
 
 Then the solution of (A-6) is  
 

   ( )1( ) exp ( )V z i z dzχ
χ

= ± ∫  

 
Then,  
 

   ( )2 2
2 2 1/ 4

1 1( , , ) exp
( )

v x z t i t kx k k dz
k k β

β

ω
μ

⎡ ⎤= + ± −⎢ ⎥⎣ ⎦− ∫  

 
 
The wave front (i.e., plane of constant phase) is defined by  
 
 
    2 2 constkx k k dzβ± − =∫  
 
∴ 

    
2 2

dz k
dx k kβ

= ±
−
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at 0z z=  
 

    
2 2

constk
k kβ

=
−

 

 

2 2 2 2

2

1sin

1

dz ki k
kd x d z k k

k
ββ

β
ω

= = = =
+ −

+

 

 
∴ 

  sin ( ) const
( )
i z
zβ

=  for a given ray. 

 
However, if  k kβ =  or / 2i π= , which occurs at the turning point of a ray, the 

condition (A-5) cannot be satisfied and the WKBJ method breaks down. 
 
 

 
Ge 162  Problem  #4 
 
Reflection and Transmission of SH wave at a Plane Boundary 
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 An incident SH wave S1, reflected SH wave Sr and refracted (transmitted) SH 
wave S2 can be written as follows.  (The displacement has only z component, w.)  
 
 

  1 1
1

1 1

sin cosexp j jw i x y tω
β β

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
   (1) 

 

  1 1

1 1

sin cosexpr
j jw R i x y tω

β β
⎡ ⎤⎛ ⎞

= + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

   (2) 

 

  2 2
2

2 2

sin cosexp j jw T i x y tω
β β

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
   (3) 

 
where 
 

    1 2

1 2

sin sin 1j j
cβ β

= =  
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Here, the amplitude of the incident wave is assumed to be 1. R and T are reflection and 
transmission coefficients respectively.  c is the phase velocity along the boundary. (The 
above relations are solutions of the wave equation in each layer.) 
 
 
           
 
Using c, the above equations can be written as, 
 

   1
1

1

cosexp x jw i y t
c

ω
β

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
   (4) 

 

   1

1

cosexpr
x jw R i y t
c

ω
β

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
  (5) 

 

   2
2

2

cosexp x jw T i y t
c

ω
β

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
   (6) 

 
Two boundary conditions must be satisfied at the boundary: one for displacement and the 
other for stress (traction).  
 

Show that these conditions are given by 
 
    1 R T+ =  
 
       

   1 1 2
1 1 2

1 1 2

cos cos cosj j R j Tμ μ μ
β β β

− + = −  

     
 
where 1μ and 2μ  are the rigidity. 
 
Solving these equations, show that 
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   2 1 2 1 2 1

1 2 1 2 1 2

cos cos
cos cos

j jR
j j

μ β μ β
μ β μ β

− +
=

+
  (7) 

 

   1 2 1

1 2 1 2 1 2

2 cos
cos cos

jT
j j

μ β
μ β μ β

=
+

   (8) 

 
Determine the reflection and transmission coefficients for normal incidence (e.g., 1j =0). 
 

    2 1 1 2

1 2 2 1

R μ β μ β
μ β μ β

− +
=

+
   (9) 

 

    1 2

1 2 2 1

2T μ β
μ β μ β

=
+

   (10) 

 
If 2 1β β> , 2sin j exceeds 1 for 1j  larger than the critical angle.  In this case, 
 
    2 1/ 2

2 2cos (1 sin )j j= −  
 
becomes purely imaginary,  i.e., 2cos j = ib (b is real). 
 
Referring to (6), briefly describe the behavior of the "transmitted" wave S2 for this case. 
 
 Also, the reflection coefficient R becomes complex.  Determine the amplitude and 
phase (with respect to the incident wave) of the reflected wave.    
 
 

3.5   Reflection and Refraction (LW,  pp. 96-104) 

When the elastic constant, say velocity, changes discontinuously in the 

medium, the condition (7) cannot be satisfied for any wavelength, because | |c′  

becomes infinity there. Thus, in this case the ray theory cannot be used, and the wave 

equation must be solved with the appropriate boundary conditions (continuity of 
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displacements and traction) on the discontinuity surfaces. The problem, in general, 

becomes very complicated, and complex reflection, refraction and energy coupling 

between P and S waves take place. The simplest case in which a homogeneous 

medium is bounded at a plane boundary by another homogeneous medium having 

different elastic property (Fig. 4) has been studied by many investigators.  

 

First let us consider a plane S wave incident at the boundary from medium 1 

to 2. Let 1β  and 2β  be S wave velocities in media 1 and 2, respectively. We assume 

1β < 2β . It is usually convenient to decompose an S wave into SH and SV 

components. SH wave is an S wave whose particle motion is parallel to the boundary, 

and the particle motion of SV wave is on the plane including the ray and 

perpendicular to the boundary (this plane is called the plane of incidence) (Fig. 4).  
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Since SH wave does not have a component of  particle motion perpendicular 

to the boundary, the situation is relatively simple. As shown in Fig. 5a, when SH 

wave is incident at the boundary with incident angle, 1j , reflected SH wave, Sr, and 

refracted SH wave, S2, result. The angle of emergence, 2j , is related to 1j  by 

                                                         1 2

1 2

sin sinj j
β β

=  
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This relation is similar to Snell’s law (10) of 3.4.  Thus, we see that, even in this case, 
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Snell’s law can be used to determine the emergence angle. The amplitude ratios 

1/rS S  and 2 1/S S  are functions of 1j  and, of course, 2 1/β β . When 1j  exceeds 

 

                                                1 1
1,

2

sincj β
β

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                                                                

(2) 

 

no refracted wave results (Fig. 5b). In this case, part of the wave energy is trapped 

along the boundary, and total reflection occurs. At the same time phase shift occurs 

on reflection. The angle 1,cj  is called the critical angle. 

When P wave is incident on the boundary, the situation is more complicated. We 

let 1α  and 2α  be the P wave velocities in media 1 and 2, respectively. We assume 2α > 

1α  > 2β > 1β .  In this case, in addition to refracted and reflected P waves, refracted and 

reflected SV waves result (Fig. 5c). The following relation holds, 

 

                                            1 2 1 2

1 2 1 2

sin sin sin sini i j j
α α β β

= = =  (3) 

 

where 1i  and 2i  are angles of incidence and emergence of the P wave, and 1j   and 

2j  are angles of reflection and emergence of the SV wave. When 1i  

exceeds 
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1 1
1,

2

sinci α
α

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

no refracted P wave results, and part of the wave energy is trapped along the boundary. The 

angle 1,ci  is the critical angle. 

When SV wave is incident at the boundary, the situation is even more complicated. In 

this case, refracted and reflected P and SV waves result (Fig. 5d). As before, the following 

relations hold 

                                                1 2 2 1

1 2 2 1

sin sin sin sinj j i i
β β α α

= = =  (5) 

where 1j and 2j  are angles of incidence and emergence of SV waves, and 1i  

and 2i  are angles of reflection and refraction of P waves. When 1j  exceeds 

           
1

1 1
1,

2

sincj β
α

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
      (6) 

P wave no longer propagates into 

medium 2. When 1j  exceeds 

                                                       

2

1 1
1,

1

sincj β
α

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (7) 

no P wave is reflected into medium 1. 

When 1j  exceeds 
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3

1 1
1,

2

sincj β
β

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (8) 

then no SV wave refraction 

takes place. In these cases, 

part of the energy is trapped 

along the boundary, and 

complicated phase shift 

occurs. The angles 
11,cj , 

21,cj  

and 
31,cj are the critical 

angles.  

When one medium is vacuum, the 

boundary becomes a free surface, and only 

reflections are to be considered. It is not 

difficult to see from Fig. 5 that there is no 

critical angle for incident SH and P waves, 

but for incident SV wave 

                                                          

2

1 1
1,

1

sincj β
α

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (9) 

becomes critical angle at which no P wave reflection occurs. 

                                          

Ge 162  Problem #5 
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 Dispersion of Love Waves 
 
 We discussed the simplest case of plane Love wave in a single homogeneous 
layer overlying a homogeneous half-space.  The phase velocity c of Love waves can be 
determined by the characteristic equation   
 

2 2
1

1 1

tan SS H
c S
ω μ

μ
⎛ ⎞ =⎜ ⎟
⎝ ⎠

    (1)  

 

where 
2

1 2
1

1cS
β

= − ,   and 
2

2 2
2

1 cS
β

= − ,  and 1 2cβ β< < . 

 
 Equation (1) can be solved graphically to determine the phase velocity c for given 

1μ , 2μ , β1, β2, and H.   The roots of (1) are given by the intersection of the two curves 
corresponding to RHS (right-hand side) and LHS of (1) both of which are functions of 
phase velocity. 
 
For the case  
 
  H=35 km 
  1μ =3x1011 dyne/cm2,  1β =3.5 km/sec 
  2μ =7x1011 dyne/cm2,  2β =4.6 km/sec 
 
a) Compute the values of RHS and LHS of (1) for phase velocities 
c=3.52, 3.6, 3.8, 4.0, 4.2, and 4.5 km/sec, and for periods T=20, 35, 50, and 80 sec. 
 
b) Plot the values computed above (vertical axis) as a function of phase velocity c 
(horizontal axis).  Draw the two curves and find the phase velocity from the intersection 
of the two curves (this gives the phase velocity of the fundamental mode). 
 
c) Compare these phase velocities c(T) with the dispersion curve for Love waves for the 
continental region (see Fig. 14 in class note 3.6). 
 
Ge 162  Practice Session  3       Surface Wave Phase and Group Velocities 
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 Figure 1 shows the Rayleigh wave trains from an earthquake (1/2/2002, M=7.3) in the 
Vanuatu Is., southwest Pacific, recorded at two TriNet stations, PAS (Pasadena) and NEE 
(Needles) (The SAC files, van2.pas.lhz.sac and van2.nee.lhz.sac are in 
/home/ftp/pub/hiroo/ge162.dir/practice3.dir, but they are not necessary to do this problem).  
These two stations and the epicenter are almost on a great circle, and the distance between the 
two stations, Δ, is 331 km.  The unit of the time scale on the horizontal axis is sec (i.e., 2100 to 
3100 sec). 
  
 

 
 
          Fig. 1 
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 Figures 2 and 3 show the original (top trace) and band-pass filtered records (at periods of 
about  20, 30, 40, 50, and 60 sec) of the seismograms shown in Figure 1.  
 

 
 
        Fig. 2 (PAS) 
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         Fig. 3 (NEE) 
 

The band-pass filtered records at T=60 sec are of marginal quality.  Thus, we use the data 
from 20 to 50 sec. 
 
1. Determine the group velocity, U, between PAS and NEE, at periods of 20, 30, 40, and 50 sec, 
by measuring the arrival times of the wave train. (Equation 57 in class handout), and plot the 
results on a U-T diagram, and compare it  with that for a simple crustal structure shown at the 
end. 
 
 The determination of the phase velocities, c, is a bit more difficult.  Figures 4 and 5 show 
the plots of the harmonic components of the records at PAS and NEE.  The top trace is the 
original and the six traces below it are the harmonic components at periods of 20.08, 30.12, 
40.96, 51.20, 60.24, and 73.14 sec. 
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 In principle, the phase velocities can be determined from the phase arrival times  of the 
harmonic components using equation 51 in class handout.  In this example, the records at PAS 
and NEE have the same starting time.  The difficulty is that, if only harmonic components at 
discrete periods are given, it is not possible to determine the integer N.  In other words, all the 
peaks look exactly the same.  In this exercise, we assume that the phase velocities in southern 
California are approximately known within a certain range, and we determine N for each period 
so that the measured phase velocities fall in this range.  (Note:  If all the harmonics are given, as 
is the case in the real situation, we need to determine N only for one period.) 
 
 
 
 
 

 
        Fig. 4 
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         Fig. 5 
 We assume that the phase velocities in southern California are within the 
following ranges. 
 
  T  (sec)     c (km/sec) 
  20     3.1-3.9 
  30     3.0-4.3 
      40     3.3-4.5 
  50                                             3.3-4.5 
 
 
2. Determine the phase velocities between PAS and NEE using the pairs of harmonic 
waves shown below at periods of 20.08, 30.12, 40.97, and 51.20 sec, and plot them on a 
c-T diagram, and compare it with the phase velocity dispersion curve for a simple 
structure given at the end. 
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 These dispersion curves are computed for a simple crustal structure: 
 
 Thickness    P-velocity    S-velocity    Density  
      (km)        (km/sec)       (km/sec)     (gm/cm3) 
 
 4.0  5.5        3.18     2.6 
 23.4  6.3        3.64     2.67 
 5.0  6.8        3.93              2.8 
 100.  8.0        4.62     3.2 
 
 
Note: 
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 In this exercise, we use only 2 stations and the path is chosen to be a great circle.  
In practice, we use multiple stations and the wave is assumed to be a plane wave and the 
propagation azimuth and the phase velocities are simultaneously determined.  Using a 
high-density network like TriNet, the accuracy can be improved significantly, and the 
method can be used for tomographic inversion. 

3.6  Seismic Surface Waves  (LW,  pp. 116-153) 

 
Rayleigh Wave 
 

As we discussed in 3.5, when an SV wave is incident at a free surface, P and SV 

waves are, in general, reflected. However, when the incidence angle exceeds the 

critical angle, no P wave reflection occurs and part of the wave energy is trapped 

along the free surface. This situation suggests existence of surface waves whose 

energy is confined near the free surface. We consider here one of the simplest cases.  

Consider a homogeneous elastic medium whose P wave velocity, S wave 

velocity, and density are α , β , and ρ , respectively. This medium is bounded by a 

plane surface, which we take as the x-y plane. We let the medium be in z <0 (Fig. 6). 

Let us consider a harmonic surface wave propagating in x direction. Since we are 

considering a surface wave as a result of the coupling between P (irrotational) and SV 

(solenoidal) waves, we will look for a solution uK  in a form, 

 
 I IIu u u= +K K K  (1) 
 
 

where IuK  is the irrotational field satisfying 

 
 curl 0Iu =K       and 2 2I Iu uα= ∇K K��  (2) 
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and IIuK  is the solenoidal field satisfying 

 
 div 0IIu =K       and 2 2II IIu uβ= ∇K K��  (3) 
 
 
Since we consider only P and SV type motions propagating in x direction, IuK  and IIuK  have only 

x and z components ( , )I Iu w  and ( , )II IIu w  which do not depend on y. We write Iu , Iw , IIu , 

and IIw  in a form, 
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1

1

2

2

( )

( )

( )

( )

xi t
I c

xi t
I c

xi t
II c

xi t
II c

u f z e

w h z e

u f z e

w h z e

ω

ω

ω

ω

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

=

=

=

=

 (4) 

 

At this point, the phase velocity c is unknown, and we investigate whether we can find c which 

satisfies all the equations and the boundary conditions for surface waves. 

From curl 0Iu =K , and div 0IIu =K , we have 

0
I Iu w

z x
∂ ∂

− =
∂ ∂

,         0
II IIu w

x z
∂ ∂

+ =
∂ ∂

 

from which 

1 1
1( ) ( )ch z f z
i ω

′= −     and   2 2
1( ) ( )cf z h z
i ω

′=  (5) 

immediately follow. 

 

 Substituting Iu  into (2), and IIw  into (3), we have 
 

 
2 2

1 121 0cf f
c
ω

α
⎛ ⎞⎛ ⎞′′ − − =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (6) 
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and  
 

                                            
2 2

2 221 0ch h
c
ω

β
⎛ ⎞⎛ ⎞′′ − − =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (7) 

 

respectively.  If 
2

21 0c
β

⎛ ⎞
− <⎜ ⎟

⎝ ⎠
, then 2h  becomes a periodic function which does not 

decay in the medium. We therefore require 

 

                                                       
2

21 0c
β

⎛ ⎞
− >⎜ ⎟

⎝ ⎠
 (8) 

 
 

 Then, we have  

    

                                              1

S z
cf Ae α
ω

±
= ,             2

S z
ch Be β
ω

±
=  (9) 

 

                                           
2

21 cSα α
= − ,         

2

21 cSβ β
= −   

 
where A and B are constants, 

 The solution with the minus sign gives an infinite amplitude in the medium at z = −∞  

which is physically implausible; the plus sign must be taken. Thus, we have 
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( , , ) (10)

( , , ) (11)

xi tS z S z cc c

xi tS z S z cc c

S
u x z t Ae Be e

i

Sw x z t Ae Be e
i

α β

α β

ω ω ωβ

ω ω ω
α

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

  

These solutions must satisfy the stress-free boundary conditions at the free surface z = 0,  i.e., 

 
                                         

                        0 2zz
u w w
x z z

σ λ μ∂ ∂ ∂⎛ ⎞= = + +⎜ ⎟∂ ∂ ∂⎝ ⎠
,           at z=0 (12) 

 

                        0 zx
u w
z x

σ μ ∂ ∂⎛ ⎞= = +⎜ ⎟∂ ∂⎝ ⎠
,                         at z=0 (13) 

 
Substituting (10) and (11) into (12) and (13), and setting z = 0, we have  

    
2 2

2 22 2 1 0c ci A B
β β

⎛ ⎞
− − + − =⎜ ⎟

⎝ ⎠
 (14) 

 

                                                   
2 2

2 22 1 2 0c cA i B
α β

⎛ ⎞
− − − =⎜ ⎟

⎝ ⎠
 (15)                        

  

For non-trivial A and B to exist, we must have 

 
2 1/ 2 1/ 22 2 2

2 2 22 4 1 1c c c
β α β

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
      (16) 

or 
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6 4 2
2

6 4 2 2 2

24 168 16 1 0c c c β
β β β α α

⎛ ⎞⎛ ⎞
− + − − − =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
      (17) 

Since LHS of this equation becomes 
2

216 1 0β
α

⎛ ⎞
− − <⎜ ⎟

⎝ ⎠
 and 1 at c = 0 and c β= , 

respectively, (17) has a real root at 

                                                       0 1c
β

< <                                                               (18) 

 
This satisfies the condition (8) assumed previously. Thus, we have proved that the surface 

wave given by (10) and (11) exists, and that it propagates with a velocity smaller than the shear 

wave velocity β .  This kind of wave is called Rayleigh wave, and the propagation velocity c is 

called the phase velocity. Combining (14), (10), and (11), we have 

 

    

2

2

2

2

1( , , ) 1 (19)
2

1 1( , , ) 1 (20)
2

xi tS z S z cc c

xi tS z S z cc c

cu x z t A e e e

cw x z t iA S e e e
S

α β

α β

ω ω ω

ω ω ω

α
β

β

β

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞

= − − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
The amplitude ratio at z = 0 becomes 
 

                              

2

2

2
0

2

1
2
1 11

2
z

c
u
w cS

Sα
β

β

β
=

⎛ ⎞ =⎜ ⎟ ⎛ ⎞⎝ ⎠ − + −⎜ ⎟
⎝ ⎠

                                                         (21) 

 

and the phase of w is advanced by / 2π  with respect to u, 
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When 3α β= (this corresponds to the Poisson’s solid for which Poisson’s ratio ν  = 

0.25), (17) has three real roots of 
2

2
c
β

, namely, 4, 22
3

+ , and 22
3

− .  The first two do not 

satisfy the condition (8), and therefore do not yield a surface wave. From the last value, we have 

 
                                                       0.92c β=                                                                (22) 
 

which satisfies (8). In this case, from (9), 0.85Sα = , and 0.39Sβ = . The particle motion at the 

surface for simple harmonic waves can be obtained by taking the real part of (19) and (20): 
 

( )( , ) 0.42 cos /u x t A t x cω= −  (23) 
 

( )( , ) 0.62 sin /w x t A t x cω= −  (24)   
 
and the amplitude ratio becomes 0.68.  Equations (23) and (24) show that the orbital motion is 

elliptic and counter-clockwise (for a wave propagating in positive x direction) (Fig.6). 

The decay of the amplitude with depth is governed by factors like 

 

                                          
2 zS z S

ce eα α
ω π

λ=       and         
2 zS z S

ce eβ β
ω π

λ=  
 
where λ  is the wave length. Thus short wave length components are more quickly attenuated 

than long wave length components. 

 In the above, the medium is assumed homogeneous. Waves like Rayleigh waves also 

exist in heterogeneous (usually only in z direction) medium. In this case, the phase velocity c is 

in general a function of wave period (or wave length), and therefore the propagation becomes 

dispersive. Curves which relate the phase velocity to the period are called phase velocity 
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dispersion curves. Calculation of such dispersion curves for a vertically heterogeneous medium 

is usually made numerically, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Love Wave 
 
 As we saw in Fig. 5, SH wave is totally reflected when the incidence angle exceeds the 
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critical angle ( )1 1
1, 2 1

2

sincj β β β
β

− ⎛ ⎞
= >⎜ ⎟

⎝ ⎠
.  Also, it is totally reflected at a free surface, regardless 

of the incident angle. Therefore if we have a layer underlain by a half space (Fig. 7), and assume 

that 2 1β β> , we can consider a SH wave bouncing between the free surface and the boundary 

without major loss of energy into the half space. This situation suggests propagation of wave 

energy which is trapped within the layer.  

 

 
 

Let us consider propagation of this kind of wave. We take the free surface and the 

boundary to coincide with the plane z=0 and z=-H respectively. The half space occupies z H< − .  

As before we consider a wave propagating in positive x direction. Since we consider an SH field, 

the displacement vector has only y component. We let 1v  and 2v  be the displacements in the 

layer and the half space, and look for the solutions in a form 
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     1 1( )
xi t
cv f z e

ω⎛ ⎞−⎜ ⎟
⎝ ⎠=          

(25) 

 

     2 2 ( )
xi t
cv f z e

ω⎛ ⎞−⎜ ⎟
⎝ ⎠=          

(26) 

 
                                                                 
 

1v  and 2v  satisfy the SH wave equation (3) in the layer and the half space respectively. Thus,  

f1 and f2 must satisfy 

 

                                                            
2 2

1 12 2
1

2 2

2 22 2
2

1 0 (27)

1 0 (28)

cf f
c

cf f
c

ω
β

ω
β

⎛ ⎞′′ + − =⎜ ⎟
⎝ ⎠
⎛ ⎞′′ − − =⎜ ⎟
⎝ ⎠

 

 
The solutions of these equations are 
 

                                                                   

2

1 1 1

2

cos sin (29)

(30)
S z

c

f A S z B S z
c c

f Ce
ω

ω ω
= +

=

 

 
where 
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2

1 2
1

1cS
β

= −   and   
2

2 2
2

1 cS
β

= −                                        (31) 

 

For  f2  to vanish at z → −∞ , 
2

2
2

1 0c
β

− > , and we take only the term with positive sign in the 

exponent of  f2.  At this point S1 can be either real or imaginary.   f1 and  f2 must satisfy the 

boundary conditions at the free surface and at the boundary. At the free surface 

 

                                     1
10 zy

v
z

σ μ ∂
= =

∂
                              at z=0                    (32) 

At the boundary 

 

                                      1 2v v=   and  1 2
1 2

v v
z z

μ μ∂ ∂
=

∂ ∂
  at z=-H                                      (33) 

 
where 1μ  and 2μ  are the rigidity of the layer and the half space, respectively. Substituting (29) 

and (30) into (32) and (33) leads to 

 
0B =                                                                         (34)          

2

2

1

1 1 1 2 2

cos 0 (35)

sin 0 (36)

S H
c

S H
c

A S H Ce
c

A S S H C S e
c

ω

ω

ω

ωμ μ

−

−

− =

− =

 

 

For non-trivial A and C to exist, we must have 
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                                             2 2
1

1 1

tan SS H
c S
ω μ

μ
=                                         (37) 

 

This is the characteristic equation. If this equation is satisfied, the surface wave exists, and 

the phase velocity c is determined from (37). Since S2  is required to be real, this equation implies 

that S1 is also real. Therefore, from (31), 

 

                                                1 2cβ β< <  

 
If ω → ∞ , or ( )2 / 0cλ π ω= →  then (37) gives 1c β= , and 0ω → , or λ → ∞ , then (37) gives 

2c β= .  Since RHS of (37) varies continuously from ∞  to 0, as c changes from 1β  to 2β , and 

LHS changes from 0 to  ( )2
2 1

2

tan / 1 Hω β β
β

−   as c changes from 1β  to 2β  , there is at least 

one solution of (37) between 1β  and 2β  for any value of ω .  For large values of ω  

( )( )2
2 2 1/ / 1 Hω β π β β> − , more than one solution exists (Fig. 8). 

 Thus, the existence of the surface wave is proved. This kind of 

wave is called Love wave. As is evident from the previous discussion, Love wave is of purely 

SH type, and is dispersive 

(i.e., c depends on ω ). 

 
As we can see from (35), (29) and (30), the amplitudes in the layer and the half space 

become 
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2

1 1

( )

2 1

cos (38)

cos (39)
S z H

c

f A S z
c

f A S He
c

ω

ω

ω +

=

=
 

 
It can be shown that for a fixed ω , the solution (mode) with the lowest value of c (c = c1 in Fig. 

8), gives an amplitude function which does not have a zero crossing (node). This mode is called 

fundamental mode. When more than one solution exists, the modes with higher phase velocities 

than c1 have an amplitude function with zero crossings (nodes) (Fig. 8). These modes are called 

overtones or higher modes. 

We can consider this type of wave for more complex medium, for example, a medium 

which has more than one layer or continuous velocity variation with depth. The computation of 

the dispersion curves for such complex media must be made numerically, 
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Dispersion Curve and Structure 

 Dispersion curves ( )c ω or ( )c T  are important when we use surface waves to determine 

the structure of the medium.   As we discussed earlier, both Love and Rayleigh waves are 

dispersive in layered media, and the dispersion curves are determined by the structure. 

Figures 9, 10, and 11 show several examples of dispersed Love and Rayleigh waves. 
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Fig. 9 
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       Fig. 10a 
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Fig. 10b 
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Fig. 11 

 

 Consider a layer-over-half space (Figure 12).  Let the thickness of the layer be H, and the 

shear velocity in the layer and the half space be 1β  and 2β , respectively ( 2β > 1β ).   At short 

period, the Love wave energy will be in the layer and the phase velocity approaches 1β .  At long 

period, Love wave energy penetrates into the half space.  At very long period, the velocity 

approaches 2β .  Thus, the phase velocity dispersion curve would look like the one shown in 

Figure 12. 
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         Fig.  12 

 

 Then, how would the shape of the dispersion curve change as H varies?   If H decreases, 

the Love wave would "feel" the higher speed half space at a shorter period.  Thus, the shape of 

the dispersion curves would change as shown.  For a more complex multi-layered structure, a 

similar pattern is expected.  Thus, we can determine the structure from the shape of the 

dispersion curve. 
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 We can make the same argument for Rayleigh waves except that the phase velocities at 

the long-period and the short-period ends are 20.92β  and 10.92β  (for Poisson solid), 

respectively. 

 
Figures 13 and 14 show the examples of phase velocity dispersion curves for oceanic, 

continental and shield structures. 

 
 

 
Fig. 13 
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Fig. 14 

 
 
 
 
 
 The structures and the data are given in the following tables. 
 
Models 
 
Ocean 
 
 Thickness     P velocity        S-velocity     Density 
                (km)           (km/sec)          (km/sec)       (g/cm3 ) 
 
 5.0                   1.52         0.0  1.03 
 1.0  2.10  1.00  2.10 
 5.0  6.41  3.70  2.84 

49.  7.82  4.61  3.34 
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 160.  8.17  4.30  3.44 
100.  8.49  4.60  3.53 

 
Continent 
 
 Thickness     P velocity        S-velocity     Density 
                (km)           (km/sec)          (km/sec)       (g/cm3 ) 
 
 15.0                 5.57         3.36  2.65 
 18.0  6.50  3.74  2.87 
 17.0  7.775  4.36  3.33 

25.0  7.83  4.39  3.35 
 35.0  7.92  4.44  3.37 

40.0  8.04  4.49  3.41 
50.0  8.19  4.56  3.45 
50.0  8.35  4.64  3.49 
50.0  8.50  4.72  3.53 

 
 
Shield 
 
 Thickness     P velocity        S-velocity     Density 
                (km)           (km/sec)          (km/sec)       (g/cm3 ) 
 
 6.0                 5.64         3.47  2.70 
 10.5  6.15  3.64  2.80 
 18.7  6.60  3.85  2.85 

80.0  8.10  4.72  3.30 
 100.0  8.20  4.54  3.44 

100.0  8.30  4.51  3.53 
 
 
 
Data 
 
Rayleigh Wave 
 
Period  O  C  S 
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(sec)  (km/sec) (km/sec) (km/sec) 
 
55  4.02  3.98  4.15 
50  4.02  3.96  4.14 
45  4.02  3.94  4.11 
40  4.02  3.90  4.09 
35  4.02  3.83  4.02 
30  3.99  3.73  3.94 
25  3.98  3.63  3.82 
 
Love Wave 
 
Period  O  C  S 
(sec)  (km/sec) (km/sec) (km/sec) 
 
70  4.56  4.45  4.62 
60  4.55  4.42  4.59 
50  4.52  4.34  4.52 
40  4.49  4.20  4.42 
30  4.45  4.03  4.29 
20  4.40  3.88  4.05 
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Phase and Group Velocity of Dispersive Waves 

  

 Surface waves are usually dispersive. That is, the phase velocity c is a function of 

angular frequency ω .  In the treatment of dispersive waves we need to distinguish phase 

velocity ( )c ω and group velocity ( )U ω .  

 In order to understand the propagation of a dispersive wave train, we consider a 

wave packet made up of many harmonic wave trains like   

  

   [ ]0( , ) exp ( const)g x t A i kx tω= − +    (40) 

 

The phase velocity is given by  

 

    /c kω=      (41) 
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Consider a case in which all components are in phase at x=0, t=0.  Then, we have 

constructive interference at t=0, and destructive interference elsewhere leading to 

negligible disturbance.  Thus, we have an impulse at x=0.   At some later time t and at a 

distance x, a disturbance will be observable if any of the wave trains are in phase over a 

frequency band. The condition for reinforcement is  

 

    const.kx tω− =      

 

within the frequency band. Differentiating with respect to k, we obtain 

 

    d 0
d

x t
k
ω⎛ ⎞− =⎜ ⎟

⎝ ⎠
     (42) 
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The ratio x/t gives the velocity with which the disturbance (wave group) at the frequency 

band propagates, and is called the group velocity U. From (42),  

 

    d d
d d

cU c k
k k
ω

= = +      (43) 

 

In general U is also a function of ω . 

Determination of Phase Velocity ( )c ω  

 

 Let a surface wave train at 1x x= be 

 
     

   [ ]1 1 1 1ˆ ˆ( , ) ( , ) exp(2 ) | ( , ) | exp (2 )g x t g x f ift df g x f i ft dfπ π φ
+∞ +∞

−∞ −∞
= = +∫ ∫  (44) 

 
 
where 
 

       [ ]ˆ ˆ( , ) | ( , ) | exp ( ) ( , ) exp( 2 )g x f g x f i f g x t ift dtφ π
+∞

−∞

= = −∫   (45) 

 
ˆ| ( , ) |g x f  and ( )fφ are the amplitude and phase spectrum of ( , )g x t . 

 
 If the wave train propagates in x direction without changing the amplitude, then at 

2x x= ,  
 

  
[ ]{ }

( )

2 1 2 1 1

1 2

ˆ( , ) | ( , ) | exp 2 ( ( ) / ( ))

ˆ| ( , ) | exp 2

g x t g x f i f t x x c f f

g x f i ft df

π φ

π φ

+∞

−∞

+∞

−∞

= − − +

= +⎡ ⎤⎣ ⎦

∫
∫
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            (46) 
and  
 
     2 1 2 12 ( ) / ( )f x x c fφ φ π= − −     (47) 
 
If the wave is non-dispersive (i.e., 0c c= = constant), then  
 
     2 1 0( , ) ( , / )g x t g x t x c= −     (48) 
 
That is, the wave propagates without changing its waveform. In a dispersive medium, c is 

a function of frequency, and the waveform changes with propagation. 

 Since, adding 2 Nπ  (N is an integer) to 2φ  does not change (46), (47) is actually 

 

     2 1 2 12 ( ) / ( ) 2f x x c f Nφ φ π π= − − +    (49) 

 

Using (49), we can determine the phase velocity from the two wave trains measured at 

distances 1x  and 2x  by measuring the phases 1φ  and 2φ  at these distances.  Solving (49) 

for c(f), we obtain, 

            

      2 1

2 1

( )( )
( ) / 2
f x xc f

N φ φ π
−

=
− −

   (50) 

or, 

 

     2 1

2 1

( )( )
( / 2 / 2 )φ π φ π

−
=

+ − +
x xc T

NT T T
   (51) 

 

where 2 1( / 2 ) ( / 2 )φ π φ π− − −T T  is the phase travel time. 
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 In the above, the records at the two stations are assumed to have a common origin 

time.  In actual computations, we may use the records (seismograms) starting at different 

times;  at 1t t=  at 1x x=  and at 2t t= at 2x x= .  Then, if we let 1ψ , and 2ψ  be the Fourier 

phases measured from these records, then we have  

 

    2 1 2 1 2 12 ( )f t tφ φ ψ ψ π− = − − −    (52) 

 

Substituting this in (50), we obtain 
 

    2 1

2 1 2 1

( )( )
( ) / 2 ( )

f x xc f
N f t tψ ψ π

−
=

− − + −
   (53) 

 
 If the propagation path is very long, and involves antipolar or polar passages, a small 

correction is necessary to correct for the polar phase shift.  In this case, 

 

     2 1

2 1 2 1

( )( )
/ 4 ( ) / 2 ( )

f x xc f
N m f t tψ ψ π

−
=

+ − − + −
   (54) 

 

where m is the number of polar or antipolar passages. 

 

Determination of Group Velocity ( )U ω  

 

 Once the phase velocity is determined as a function of ω  (or, frequency, f), then 

the group velocity ( )U ω  can be computed from phase velocity using (43), i.e.,  
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    2

1 1 ( )
( ) ( ) ( )

dk dc
U d c c d

ω ω
ω ω ω ω ω

= = −    (55) 

 

 Another way of determining the group velocity is to use narrow band-pass 

filtering of the seismograms.  

 Let a propagating wave be given by,  

 

1 1ˆ ˆ( , ) ( , ) exp[ ( )] | ( , ) |exp[ ( )]
2 2

g x t g x i t kx d g x i t kx dω ω ω ω ω φ ω
π π

+∞ +∞

−∞ −∞

= − = − +∫ ∫  

 

           (56) 

        
 If we consider a contribution over a narrow frequency band ωΔ  around 0ω , we obtain 
from (56)  
 

  
0

0

0
1 ˆ( , ) | ( , ) | cos( )g x t g x t kx d

ω ω

ω ω

ω ω φ ω
π

+Δ

−Δ

≈ − +∫�  

 

 
0 0

0 0 0 0

0 0

sin (
2ˆ| ( , ) | cos( )
( )

2

t k x
g x t k x

t k x

ω φ
ω ω ω φωπ φ

⎛ Δ ⎞⎛ ⎞′ ′− +⎜ ⎟⎜ ⎟Δ ⎝ ⎠⎜ ⎟= − +
Δ⎜ ⎟′ ′− +⎜ ⎟

⎝ ⎠

  (57) 

 
where 0k  and 0φ  are the values of k  and φ  at 0ω ω= , respectively, and 0k ′  and 0φ′  are 

the values of dk
dω

 and d
d

φ
ω

 at 0ω ω= , respectively.  Equation (57) gives a wave train 

which propagates at a speed 
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0

0
0

1( ) dU
k dk ω ω

ωω
=

= =
′

    (58) 

 

Thus, if we measure the propagation velocity of a band-pass filtered record, we can 

determine the group velocity. 

 

 

 

 

   

Ge 162    
 
 3.7  Normal Mode Theory  (LW,  pp. 154-172) 
 
 Since the Earth is a bounded medium, the wave propagation problem can be 
treated as a normal-mode problem.   
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The basic physics can be understood with a simple 1-D problem. 
 
1. 1-D Problem 
  
 Consider free oscillations of a homogeneous elastic rod shown below. 
 

 
The equation of motion is  
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2 2

2 2

u uE
t x

∂ ∂ρ
∂ ∂

=  

 
where ρ is the density and E is the Young's modulus. 
 For harmonic motion, 
 
    ( , ) ( ) i tu x t y x e ω=      (1) 
 
then, 
 
   2 0y k y′′ + = ,      2 2 /k Eρω=     (2) 
 
The solution is 
 
    y=Acoskx+Bsinkx 
 
If both ends of the rod are free (i.e.,  y′=0  at x=0 and L), then B=0 and kn=nπ/L 
(n=integer).  Then, the eigen functions are 
 
    yn=Acos(nπx/L) 
 
and the eigen frequencies are  
 
     /  n nE kω ρ=  
 
Here, n determines the number of nodes. 
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 The eigen functions yn are orthogonal, i. e., 
 

    
0

 
L

n m nmy y dxρ δ∝∫      (3) 

 
(this relation can be derived directly from (2), if yn and ym  satisfy the homogeneous 
boundary conditions  0n nay y′+ =  and 0m mcy y′+ =  at x=0 and L.) 
 
Example 
 
 If a stretched string is plucked at a point, a localized disturbance is produced. The 
disturbance propagates in the string and the time history of the disturbance is given as 
shown in the following figure.   
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This is a seismogram.  This displacement can be viewed as superposition of normal 
modes as follows.  
 Normal modes for a string with length L, clamped at both ends are given by  
 
        ( ) sin( / )ny x n x Lπ=      
 
The displacement of the string ( , )u x t  is given by the superposition of ( )ny x with weights 
An, and can be written as  
 

    
1

( , ) sin( / ) cosn n
n

u x t A n x L tπ ω
∞

=

= ∑  

    
where /n n c Lω π=  are the eigen frequencies, and c is the velocity of wave traveling in 
the string.   
 
 The initial (at t=0) shape of the displacement ( ,0)u x  is then given by  
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1

( ,0) sin( / )n
n

u x A n x Lπ
∞

=

= ∑      

 
which can be considered as a Fourier series of ( ,0)u x . 
  
 If we assume that the initial disturbance is given by a delta function at sx x= , 

( ,0) ( )su x x xδ= − , then An above can be determined by multiplying ( ,0)u x  by 
sin(nπx/L) and integrating it from 0 to L.  Since 
 

    sin(nπx / L)
0

L

∫ sin(mπx / L)dx =
L
2

δnm   and  δ(x − xs )sin(nπx / L)
0

L

∫ dx = sin(nπxs / L), 

 
we obtain  
 
    An =(2/L)sin(nπxs/L)      
 
 Then the displacement is given by 
 

   
1

2( , ) sin( / )sin( / ) coss n
n

u x t n x L n x L t
L

π π ω
∞

=

= ∑    

 
The following figure shows ( , )u x t  for x=xs=L/4, and is essentially the same as the 
seismogram shown above.  This equation can be viewed as superposition of normal 
modes, sin( / ) cos nn x L tπ ω , with the amplitudes (2 / )sin( / )sL n x Lπ  shown as 
"spectrum". 
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2.  2-D and 3-D Problems 
 
 The above result can be easily extended to 2-D and 3-D problems.  For example, 
free oscillations of a homogeneous rectangular membrane can be expressed by eigen 
functions of the form, 
 
    sin( / ) sin( / )m

n x yy A m x L n y Lπ π=  
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Here, m and n determine the number of nodes in x and y  directions, respectively (see the 
attached figure.). 
 
 
 

 
 

 
 

 For free oscillations of a homogeneous elastic rectangular block, the eigen 
functions can have a form 
   n yl

m = Acos(lπx / Lx )cos(mπy / Ly )cos(nπz / Lz ) 
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the order numbers l, m  and n  determine the number of nodes in x, y  and z  directions, 
respectively. 
 
3. Free Oscillations of the Earth --- General --- 
 
 The free oscillations of the Earth can be formulated similarly as free oscillations 
of an elastic sphere.  The only difference is that it is more convenient to use a spherical 
coordinate system (r, θ, ϕ) instead of the Cartesian coordinate system (x, y, z).   
 

   
For a sphere with a laterally homogeneous structure, the eigen functions can be 

written as, 
 
   ( ) ( ) ( )m

n l n l my AR r θ φ= Θ Φ      (4) 
 
For a homogeneous elastic sphere, Rn(r) are Bessel functions, Θl(θ) are (associated) 
Legendre functions and Φm(ϕ) are trigonometric functions.  The three indices l, m, and n 
determine the number of nodes in θ direction (meridional direction),  ϕ direction 
(longitudinal direction) and r  direction (radial direction). 
 In general eigen frequencies depend on l, m, and n and can be written as n ω l

m .  
However, for a spherically symmetric, non-rotating Earth model, eigen frequencies do 
not depend on m. 
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 Free oscillations of the Earth can be thought of as extensions of Love and 

Rayleigh waves propagating many times around the Earth.  When Love waves propagate 

many times around the Earth, torsional free oscillations are set up.   Similarly, when 

Rayleigh waves propagate around the Earth many times, spheroidal oscillations are set 

up.  Torsional and spheroidal oscillations (modes) with order numbers l, m, and n  are 

written as nTl
m  and n Sl

m  and are shown in the attached figures and tables. 
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Spheroidal Modes,  Bolivian Earthquake 
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4. Free Oscillations of the Earth --- Some Details --- 
 
 The equations of motion can be written using displacements and stresses 
expressed in spherical coordinates (r, θ, ϕ).  (Appendix 1) 
 
Torsional Oscillations 
 
 We seek the solution in a form 
 

0S0  after  400,000 sec
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    1

0
1( )  

sin

r m
i tl

m
l

u
Yu y r e

u
Y

ω
θ

φ

∂
θ ∂φ
∂
∂θ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟

= ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟

−⎜ ⎟
⎝ ⎠

    (5) 

 
 ( , ) (cos )( cos sin )m m

l lY P A m B mθ φ θ φ φ= +   m=0, 1, 2, ....., l (6) 
       

    1T (0,  , )
sin

m m
m l l

l
Y Y∂ ∂

θ ∂φ ∂θ
= −

K
    (7) 

 
are called the vector spherical harmonics.  It is easy to show that   

K
T l

m   
 make up an orthogonal system: 
 

   
2

0 0

4 ( 1)( )!(T T )sin
(2 1)( )!

m m
l l ll mm

m

l l l md d
l l m

π π πθ θ φ δ δ
ε

′
′ ′ ′

+ +
⋅ =

+ −∫ ∫
K K

 (8) 

 

    
εm = 1   if  m = 0
εm = 2    if   m ≠ 0

 

 
Substituting this into the equation of motion, we have  
 

 
2

21 1 1 1
12 2

2 ( 1) 0d y dy d dy y l l y
dr r dr dr dr r r

μμ ω ρ μ
⎛ ⎞ +⎛ ⎞ ⎛ ⎞+ + − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
  (9) 

 
if we put 
 

   1 1
2

( ) ( )( ) ( ) dy r y ry r r
dr r

μ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

      

 
(9) can be written as  
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1
1 2

2
22

1 22

( ) 1 1( ) ( )

( ) ( 2) 3( ) ( )

dy r y r y r
dr r

dy r l l y r y r
dr r r

μ

μ ω ρ

= +

⎛ ⎞+ −
= − −⎜ ⎟

⎝ ⎠

  (10) 

 
The boundary conditions are 
 
    σrr = 0, σrθ = 0, σ rφ = 0   
 
at r=r1 (the Earth's surface) and r=r2 (core-mantle boundary). 
  

Note that, using y2(r), we can write  
 

  2
1( )

sin

m
tl

r
Yy r eιω

θ
∂σ

θ ∂φ
=   and  2 ( )

m
tl

r
Yy r eιω

φ
∂σ
∂θ

= −  

 
Thus, y2(r) gives the radial factor of stresses. 
 
 When μ=const, the above equation can be reduced to 
 

  
2 2

1 1
12 2

2 ( 1) 0d y dy l l y
dr r dr r

ω ρ
μ

⎛ ⎞+
+ + − =⎜ ⎟

⎝ ⎠
    (11) 

 
Equation (11) is one of the variations of the Bessel's differential equation.  The general 
solution is  
 

    1 1
2

1( ) ( )
l

y r Z kr
r +

≈      (12) 

 

     
/

k ω
μ ρ

=      (13) 

 
where Zν(ξ) represents a Bessel function. 
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 In order to satisfy the boundary conditions, an appropriate kind of Bessel function 
should be taken and k must take certain discrete values n k .  Since (12) depends on l, 
these values depend on l, and we write these values as n kl .  Using (13), the eigen 
frequencies n ω l  can be given by 
 

     n l n lk μω
ρ

=  

 
Note that, since (11) does not contain m, the eigen values do not depend on m.  Thus, 

there are 2l+1 eigen functions belonging to n ω l , i.e. there is degeneracy of 2l+1 degree. 

 For a radially heterogeneous sphere where μ=μ(r), the solution of (9) cannot be 

given by Bessel functions, but numerical integration of (10) with appropriate boundary 

conditions yields eigen functions similar to (12), and eigen values n ω l .  Since (10) does 

not contain m, the eigen values do not depend on m. 

 For large l, the asymptotic expansion of Pl
n  gives 

 

   2 1cos ( )
sin 2 2 4

n m i l
l

mP e m l
l

π πθ π
π θ

⎡ ⎤≈ + + −⎢ ⎥⎣ ⎦
  (14) 

 
Thus, uφ represents a wave propagating in θ direction.  For l>>1, and l>>m,  
 

    
∂Yl

m

∂θ
≈ l Yl

m        and     
∂Yl

m

∂φ
≈ mYl

m  

 
Thus, uφ >> uθ , which represents "torsional" or "Love wave" motion. 
 
Spheroidal Oscillation 
 
 We seek the solution in a form 
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   1 3

0

( ) 0  ( )  
0

1
sin

m
r l m

i t i tl

m
l

u Y
Yu y r e y r e

u
Y

ω ω
θ

φ

∂
∂θ

∂
θ ∂φ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟

= + ⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎝ ⎠

  (15) 

 
where 
 

    

  

K
S 1,l

m = (Yl
m ,  0  ,0)

K 
S 2, l

m = (0,  
∂Yl

m

∂θ
 ,

1
sinθ

∂Yl
m

∂φ
)
 

 
are vector spherical harmonics which satisfy the orthogonality condition 
 

     
2 2' '

2, 2, ' 1, 1, '0 0 0 0

4 ( 1)( )!(S S )sin (S S )sin
(2 1)( )!

m m m m
l l l l ll mm

m

l l l md d d d
l l m

π π π π πθ θ φ θ θ φ δ δ
ε ′ ′

+ +
⋅ = ⋅ =

+ −∫ ∫ ∫ ∫
K K K K

 

 
 Using the expression (15), the equation of motion for a radially heterogeneous 

sphere can be reduced to a set of ordinary differential equations for y1 and y3.  It can be 

shown that y1 and y3 satisfy the orthogonality condition, 

 

   2

1

2
1, 1, ' 3, 3, ' '[ ( 1) ]

r

n n n n nnr
r y y l l y y dr Cρ δ+ + =∫  

 

and the eigen values n ω l  do not depend on m. 

 For l>>1 and l>>m, ur  and uθ  become much larger than uφ , and the 

displacement field represents "spheroidal" or "Rayleigh wave" motion. 

 



 199

 

 
 
 
 
 
 
 
 
 
 
 



 200

 

Cartesian, Cylindrical, and Spherical Coordinates 
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Appendix 2 
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Appendix 3 
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Ge 162 
 
4.1 Herglotz-Wiechert Method  (LW,  pp. 236-240) 
 
 Assume that T(Δ) and p(Δ) are continuous functions of  Δ, as shown in Figures 1 
and 2. 
 

          
                         Fig.1           Fig. 2 
 
                          

Then, from Figure 3, tan di r
dr
Δ

= .  Since sinrp i
v

= , 
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          Fig. 3 
 
 

    
2

2

pd dr
rr p
v

Δ =
⎛ ⎞ −⎜ ⎟
⎝ ⎠

    (1) 

 
 

   
0

2
2

( ) 2
p

r

r

pp dr
rr p
v

Δ =
⎛ ⎞ −⎜ ⎟
⎝ ⎠

∫     (2) 

 
where the suffix 0 denotes the values at the surface (i.e., 0=r r ) and pr  is the radial 
distance of the deepest point of a ray. 

Introducing a new variable,  r
v

η =  

 



 210

   
0

2 2
( ) 2

p

p drp d
dr p

η

η
ηη

Δ =
−∫    (3) 

 

Δ(p) is known from observation, and ( )
( )
rr

v r
η = , or ( )v r  is a unknown function of r which we 

wish to determine. (Note that since sin=
rp i
v

, η=p  at the deepest point of the ray where 

/ 2π=i .) 
 
 Mathematically, this is a Volterra's integral equation of the second kind.  The  
 
solution can be given by,  
 

1 2

1 0
1 10

1exp ln 1
π η η

Δ⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎢ ⎥= − + − Δ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦
∫ p pr r d   (11) 

 
The suffix 1 is used to denote values of variables at the level 1r , and let 1Δ  be the value 

of Δ  for the ray whose deepest point is at 1r . 
 
 
 
 

 
---------------------------------------------------------------------------------------------------------------- 

To solve this, multiply (3) by 
2 2

1

1
p η−

 and integrate with p from 1η  to 0η  (see Figure 

4).   
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     Fig. 4 
 
The suffix 1 is used to denote values of variables at the level 1r , and let 1Δ  be the value 

of Δ  for the ray whose deepest point is at 1r . 
 

      
0 0 0

1 1

2 2 2 2 2 2
1 1

1( ) 2
η η η

η η

η
ηη η η

Δ =
− − −∫ ∫ ∫p

dp p drp dp d
dp p r p

  (4) 

 
 

LHS=
00

1 1

1 1

1 1

( ) cosh coshp d pp dp
dp

ηη

η η
η η

− −⎛ ⎞ ⎛ ⎞Δ
Δ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫   (5) 

 

Since  0( ) 0ηΔ =  and  1 11

1

cosh cosh (1) 0η
η

− −⎛ ⎞
= =⎜ ⎟

⎝ ⎠
, 

 

  LHS=
1

0

1

1

cosh p d
η

−

Δ

⎛ ⎞
− Δ⎜ ⎟

⎝ ⎠∫      (6) 

 
To evaluate the integral of RHS, we change the order of integration (see Figure 

5),  
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    Fig. 5 
 

RHS=
0

1 1

2 2 2 2
1

1 12 dr pd dp
r d p p

η η

η η

η
η η η− −∫ ∫   (7) 

 
Introducing θ , by  
 

   
2 2

12

2 2
1

sin
p η

θ
η η

−
=

−
 

 
we obtain,  

1

2

2 2 2 2
1 0

1
2

p dp d
p p

πη

η

πθ
η η

= =
− −∫ ∫   (8) 

 
Then, 

   RHS=
0

1

0

1

1 ln
r

r

rdr
r r

π π
⎛ ⎞

= ⎜ ⎟
⎝ ⎠∫     (9) 

Hence. 
 

      
1 1 2

10

1 1 1 10 0

ln cosh ln 1r p p pd d
r

π
η η η

Δ Δ

−
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= Δ = + − Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦∫ ∫   (10) 

 
or,   
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1 2

1 0
1 10

1exp ln 1
π η η

Δ⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎢ ⎥= − + − Δ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦
∫ p pr r d   (11) 

------------------------------------------------------------------------------------------------------------ 
 
 If  p(Δ) is known, RHS of  (11) can be evaluated for a given 1η  to determine 1r ( 1η  

is the apparent velocity at Δ= 1Δ .).  Once 1r  is determined, 1v  is given by 1
1

1

rv
η

= .  More 

details are in the practice session. 
Ge 162  Practice Session  4     Herglotz-Wiechert Method 
 

The Herglotz-Wiechert (H-W) method is an elegant 'inversion' method which determines 
the velocity distribution in the Earth from a given p-Δ curve obtained from the observation.  It is 
essential that a p-Δ curve is given continuously as a function of Δ.  If a low-velocity zone exists 
and a shadow zone is produced, then the travel time curve is segmented.  In this case the p-Δ 
curve is not continuous and the H-W method cannot be used.  In general, the H-W method is 
applicable to a structure without low-velocity zones.  This is the limitation of the method. 
 
 Figure 1 gives a p-Δ curve. 
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 From equations (11) in class note, we obtain, 
 

      
1 2

1 0
1 10

1exp ln 1
π η η

Δ⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎢ ⎥= − + − Δ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦
∫ p pr r d   (1) 

where  
 

     ( )
( )
rr

v r
η =     (2) 

 
 
Here, 1r  is the radial distance to the bottoming point of the ray reaching the distance 1Δ , 
and  
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     1
1

1( )
r

v r
η =     (3) 

 
Since / 2i π=  at the bottoming point, the ray parameter for the ray reaching 1Δ = Δ  is 
given by  
 

     1 1
1 1 1

1 1

sin
( ) ( )
r rp i

v r v r
η= = ≡   (4) 

 
 
 Thus, if a p-Δ curve is given, then for a given 1Δ , we can determine 1η .  Then,  
we can integrate (1) to obtain 1r .  Once 1r  is determined, then 1( )v r  can be computed from  
 

      1
1

1

( ) rv r
η

=    (5) 

 
Doing this for all 1Δ , we can determine ( )v r  as a function of r. 
 
 

1.  The following table shows the travel times (2nd column) which are consistent with the ISC 
travel-time curve given in class handout.  Then the travel time data are numerically differentiated 
to compute the ray parameter p which is shown on the 3rd column.  The unit of p is sec (i.e., the 
unit of the distance is converted to radian in this computation.).  The following table lists the data 
up to 30Δ = ° , and a more complete table up to 98Δ = °  is given in i_p-delta_2 in 
/home/ftp/pub/hiroo/ge162.dir/practice_4.dir. 
 Plot the travel time and p in i_p-delta_2 as a function of distance, and make sure that the 
travel times are consistent with the ISC data.  Also, check the consistency between t and p. An 
enlarged travel-time curve is shown below.  (Spot checks at 30 , 60 ,90Δ = ° ° °  are sufficient.) 
 
 
Table  
 
        dist(deg)     t(sec)        p(sec)          
        0.00000        0.00000     1145.91516 
        2.00000       35.38889      828.24194 
        4.00000       63.90000      813.59973 
        6.00000       92.22500      807.87048 
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        8.00000      120.30000      802.14056 
       10.00000      147.98334      788.77106 
       12.00000      175.25000      773.49268 
       14.00000      201.87500      753.43927 
       16.00000      227.92500      736.25037 
       18.00000      253.14999      710.46747 
       20.00000      276.72501      627.38831 
       22.00000      297.45001      572.95752 
       24.00000      317.10001      555.76868 
       26.00000      336.14999      532.85071 
       28.00000      354.47501      518.52673 
       30.00000      372.45001      509.93188 
       ........      .........      ......... 
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2. Then, compute 1r  for Δ1=0°  to 98°  at 2°  intervals by carrying out the integral given 
by (1)*. 
 
3.  Then, from 1r  thus computed and 1η , determine 1( )v r .   
 
4. Plot 1( )v r  as a function of 1r , and compare the result with the P-wave structure shown 
in class handout (section 2.1, a numerical table, jeffreys_model, for the Jeffreys model is 
in practice_4.dir). 
 
 
* Preferably, you should write a simple integration program (trapezoidal rule is 
adequate), but if you find it difficult, a simple program hw3.f is provided in 
practice_4.dir.   
 
Note:  The trapezoidal rule is given by, 
 
 

1
0 2

( ) ( ) / 2
NL

i i
i

f x dx f f x−

=

≈ + Δ∑∫ , where /( 1)x L NΔ = − , and  (( 1)* )if f i x= − Δ   

 
 
Ge162 
 
4.2 Tomography  (LW, pp. 240-249) 
 
 The structure of the Earth is heterogeneous in 3 dimensions.  To determine such a 
3-dimensional structure, various tomographic methods are used.  The basic principle can 
be illustrated as follows. 
 Consider a square area as shown in the figure.   
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Then, assume that seismic sources (X) and stations (square) are distributed on the 
sides.  The velocity is a function of space.  Divide the whole area into cells (i ,j).  The 
wave speed in cell (i ,j) is ijv  (or slowness ijs =1/ ijv ) which we wish to determine from 
observations.  If we assume that the ray paths are straight (this assumption is not valid in 
general for heterogeneous media).  The travel time from source p to station q can be 
written as 
 
 
    

, ,

/pq ijpq ij ijpq ij
i j i j

t l v l s= =∑ ∑     (1) 

 
where ijpql  is the path length in the (i ,j) cell for the p-q source-station ray.  If the 
geometry and paths are fixed, as in this case, the problem is linear, but the problem is in 
general nonlinear, and the problem is usually linearized, as is done in the earthquake 
location problem. 
 If the problem is linear, or is linearized, (1) can be solved by the method of least 
squares or some other inversion methods. 
 We renumber the cells sequentially such that  
 
     ( 1) xk i j n= + −  
 
where xn  is the number of cells in a row.  Then (1) can be written as  
 
     pq kpq k

k
t l s= ∑      (2) 
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Simple examples are given in the following. 

 
 If we place the sources p=1, 2, 3, and 4, and the receivers q=1, 2, 3, and 4, as 
shown, we can have the ray geometry as shown in the following figure.   
 

 
 
Then equation (2) can be written as   
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   (3) 

 
 
 This problem can be solved with the method of least squares in the same way as 
that used in the earthquake location problem. 
 
Example 1. 
 
  1 3 5 7 9 2s s s s s= = = = = ,  2 4 6 8 1s s s s= = = =   (checker board).   
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The solution is given as follows. 
 
 

checker_b                                                                        
cross_hole_simple                                                                
cell    s       Δs 
1:    1.892     0.011 
2:    1.218     0.015 
3:    1.890     0.011 
4:    0.892     0.010 
5:    2.219     0.010 
6:    0.890     0.010 
7:    1.891     0.011 
8:    1.219     0.015 
9:    1.890     0.011 
 
RMS  of residual 0.01160 

 
 
 
Actually, for this geometry the inverse problem is fairly ill-posed, and even if no 

noise is applied, the solution is unstable (i.e., the standard error is large), as shown above. 
If random noise of up to 10% is added to pqt , the error becomes very large, as 

shown below. 
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checker_b                                                                        
cross_hole_simple                                                                
cell    s       Δs 
1:     2.149     3.187 
2:     0.646     4.242 
3:     2.091     3.190 
4:     1.110     2.745 
5:     2.083     2.750 
6:     0.687     2.743 
7:     1.478     3.176 
8:     2.104     4.222 
9:     1.538     3.179 
 
RMS  of residual   3.31218 

 
 
This instability arises from the inadequate source-receiver geometry. 
 

Example 2.  
   
 The source-receiver geometry is now changed to that shown in the following 

figure. 
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Then the solution becomes more stable as shown below. 
 
 
No- noise case 
checker_b                                                                        
two_sides  
cell    s       Δs 
1:     1.999     0.001 
2:     1.001     0.001 
3:     1.999     0.001 
4:     1.001     0.001 
5:     2.000     0.001 
6:     1.001     0.001 
7:     1.999     0.001 
8:     1.001     0.001 
9:     1.999     0.001 
 
RMS  of residual  0.01479 
 
 
With random noise of up to 10 %: 
checker_b                                                                        
two_sides    
cell    s       Δs 
1:     2.046     0.138 
2:     0.922     0.154 
3:     1.831     0.138 
4:     0.856     0.154 
5:     1.814     0.144 
6:     1.222     0.154 
7:     2.011     0.138 
8:     1.062     0.154 
9:     2.203     0.138 
 
RMS  of residual   2.90495 
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Caveats 
 
 Although tomographic methods provide interesting 3-D structures of the Earth, 
the following caveats are in order. 
 
1.  The results depend on the initial parameterization of the cells and rays. 
2.  In a heterogeneous medium, the rays are not straight, and ray bending must be 

considered. 
3.  The effect of finite wave length must be considered in resolution. 
4.  The solutions are often regularized (damped) to avoid instability. 
 
 
 
 
 
Several recent examples are shown in the following 
 
Global Depth Slices 
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J. Ritsema [written communication, 2002] 
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Spectral Structure of the Structural Heterogeneity in Earth 
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  A. M. Dziewonski, Global seismic tomography: past, present and future, in 
Problems in Geophysics for the New Millennium, Editrice Compositori, 2000. 
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"Slab" Structure in Deep Interior 
 
 

 
 

Ritsema, J., and van Heijst, H. J., Seismic imaging of structural heterogeneity in Earth's 
mantle:  evidence for large-scale mantle flow, Science Progress, 83 (3), 243-259, 2000. 
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"Slab" Structures 
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Fukao, et al., Reviews of Geophysics, 39, 291, 2001. 
Ge162   Practice Session  5 (Optional)    Simple Tomography  
 
 From class note, a tomography problem given below can be formulated by 
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  (3) 

 
 
 As we did in the practice session for earthquake location, this problem can be solved 
using the method of least squares.  (3) can be written as  
 
 

     Am d=
KK      (4) 

 

where A is an 18x9 matrix and mK  and d
K

 are column vectors containing the parameters to 

be determined and the data, respectively.   

 The normal equation is,  

 

     T TA Am A d=
KK      (5) 
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If TA A  is not singular, the formal least-squares solution is given by  

 

     1( )T Tm A A A d−=
KK     (6) 

 

and the error estimates are determined by the variance of the data and the diagonal 

elements of the inverse matrix of the normal equation (6 ).  Usually, we write the 

uncertainty in im  by imΔ , and compute it by 

 

  
( )

2
( ) ( )

1

( ) /( )
N

o c
i ii kl kl p

kl

m c t t N N
=

Δ = − −∑ ,       i=1, 2, 3,...,9  (7) 

 

where pN  is the number of parameters (here 9) and cii are the diagonal elements of  

1( )TA A − . 

 

 

 

 

 

 

 

1. Determine the slowness si, i=1, 2,3,.....9, and the associated errors. 

The matrix elements and the data are in o_lsq_mat_ts_0.1 and o_lsq_rhs_ts_0.1 in 

/home/ftp/pub/hiroo/ge162.dir/practice5.dir, respectively.   In this computation, the 
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length of the side is 10 km, and errors up to 10% are added to the data.  (This is the same 

geometry as Example 2 in class note.  The numerical values of the standard errors may be 

slightly different, because of the difference in the definition.) 

Actually, in the real problems, the computations of the ray paths and the path 

lengths in each cell are most difficult.  In this problem, they are computed and the values 

are put in o_lsq_mat_ts_0.1.  (there are small round-off errors of the order of 0.3 %.)  

Check the values for the first 3 rows of  o_lsq_mat_ts_0.1. 

Try to write your own program to do this problem, but if you find it difficult, you 

can use the program tomo2.f  provided in practice_5.dir.  It takes an input file i_tomo2  

which contains the names of the files for the matrix elements and the data.  It also 

requires c_tomo2, but this should not be changed (it has a constant for regularization of 

the matrix inversion.). 

 

2. Drop the data for source #6, and try the same. 

 

3. Drop the data for sources #5 and #6, and try the same. 
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o_lsq_mat_ts_0.1 

checker_b                                                                        

two_sides                                                                        
         9        18      0.1000 

   

10.02    9.99   10.02    0.00    0.00   0.00    0.00    0.00    0.00

   10.56    5.28    0.00    0.00    5.28   10.56    0.00    0.00    0.00

    9.05    0.00    0.00    3.03   12.01    3.03    0.00   0.00    9.05

    0.00    5.28   10.56   10.56    5.28    0.00    0.00    0.00    0.00

    0.00    0.00    0.00   10.02    9.99   10.02    0.00    0.00    0.00

    0.00    0.00    0.00   10.56    5.28   0.00    0.00    5.28   10.56

    0.00    0.00    9.05    3.03   12.01    3.03    9.05    0.00    0.00

    0.00    0.00    0.00    0.00    5.28   10.56   10.56    5.28    0.00

    0.00    0.00    0.00    0.00    0.00    0.00   10.02    9.99   10.02

   10.02    0.00    0.00    9.99    0.00    0.00   10.02    0.00    0.00

   10.56    0.00    0.00    5.28    5.28    0.00    0.00   10.56    0.00

    9.05    3.03    0.00    0.00   12.01    0.00   0.00    3.03    9.01

    0.00   10.56    0.00    5.28    5.28    0.00   10.56    0.00    0.00

    0.00   10.02    0.00    0.00    9.99    0.00    0.00   10.02    0.00

    0.00   10.56    0.00    0.00    5.28    5.28    0.00    0.00   10.56

    0.00    3.03    9.05    0.00   12.01    0.00    9.05    3.03    0.00

    0.00    0.00   10.56    0.00    5.28    5.28   

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0.00   10.56    0.00

    0.00    0.00   10.02    0.00    0.00    9.99    0.00    0.00   10.02
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o_lsq_rhs_ts_0.1 

checker_b                                                                        
two_sides                                                                        
         9        18      0.1000 
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Ge 162 
 
5. Earthquake Source Theory 
 
5.1 Static Source 
        
5.1.1  Static Displacement Field Due to a Single Point Force in Infinite Homogeneous 
Medium (LW, pp. 323-331) 
 
1.  Description of the Problem 
  
 Consider an isotropic infinite homogeneous elastic medium with density ρ and elastic 
constants λ  and μ. 
 We apply a force at point O, and want to determine the displacement Ku   at point P.   
We assume that the outer boundary at infinity is constrained, i.e., uK =0 at infinity. 
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2.  Qualitative Solution 
 
 Suppose we apply a force F to a small sphere of radius a  at the origin.  We 
consider the displacement on the plane containing the force.  It is not difficult to imagine 
that the resulting displacement field is given by the arrows shown in the following figure.  
The magnitude of u may be approximately determined as follows. 
 Consider a sphere with radius r.  In equilibrium, the body force F  acting  
at the center of this sphere must be balanced by stresses acting on the surface.  The figure 
suggests that the stress on the surface of this sphere is compressional at C, shear at A, and 
half shear and half compression at B.  
 

     
 
 Let σ be the magnitude of this stress. Then, to the first approximation  
 
     24π σ=F r      (1) 
 
Let u(r) be the magnitude of the displacement at r, then, from the geometry shown in the 
figure, du/dr  gives the magnitude of the strain at r. 
  

    24
σ

π
− ≈ ≈� du FE

dr r
     (2) 
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(The negative sign is taken because u(r) decreases as r increases.)  Here ˜ E  represents an 
appropriate elastic constant, and is of the order of λ  or μ .  Integrating (4), and using 

( ) 0→ ∞ =u r  , we obtain 
 
 

     ( )
4π

≈ �
Fu r
Er

     (3) 

 
 
Actually, a rigorous derivation shows (in the next section) that, if we define  
the polar coordinates as shown in the figure, 
 

     
 

     
sin    

4

(1 )cos
4 2θ

θ
πμ

α θ
πμ

=

= −

r
Fu

r
Fu

r

   (4) 

 
 
where  
 

      
2

λ μα
λ μ

+
=

+
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 Since for most solids, λ μ=   and α =2/3, we see that (3) is a good approximation 
of (4) and that the directions of the displacement shown in the figure are consistent with 
(4). 
 
 
3. Elasto-static Solution of the Problem 
 
Definition 
 
 a.  Point Force of Strength F 
 
 When we consider a force in continuum, we introduce force per unit volume, or 
force per unit mass.  Let f

K
 be a force per unit mass, then ρ f

K
  gives force per unit 

volume.  
 Consider a small volume δ V,  and apply ρ f

K
 to this volume.  Then 

 
      

0
lim ( )
V

F f V
δ

ρ δ
→

=
KK

 

 
defines a point force.  F

K
 =F  is the strength of this force. 

 
 b. Three-Dimensional Delta Function 
 
    Three-Dimensional Delta Function δ (r) can be deined by 
 

   ( ) 0rδ =  ,    r≠ 0,             δ(r)dV =1
V∫  

 
where V  is a volume which includes the origin r=0.  A convenient expression for this is  
 

    δ(r) = −
1

4π
∇2 (1/ r)      (5) 

 
Direct differentiation shows that  
 
      ∇2 (1/ r) = 0 ,     if 0≠r . 
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We can show that  
 

   ∇2 (1/ r)dV = −4π
V∫ ,   V  contains the origin.    (6) 

 
 
Here, following the expression for the Gauss' theorem, 2 (1/ )∇∫V

r dV  is understood to 

mean (1/ )∇ ⋅∫
K

S
r ndS . 

 
 Although this looks like a very simple problem, it is not that easy.  We have to start 
with elasto-static equation of equilibrium.  From equation (29) of 3.1,  we have  
 
    ( 2 )graddiv curlcurl 0ρ λ μ μ+ + − =

K K Kf u u    (7) 
 
where f

K
 is the force per unit mass.  Consider a point force of magnitude F at the origin. 

 
      ( )f Fa rρ δ=

K K      (8) 
 
where Ka  is the unit vector in the direction of the force.  By using (5) we have 
 

  2 graddiv curlcurl
4 4 4

ρ
π π π

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ∇ = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

K K KK a a af F F
r r r

  (9) 

 
We look for a solution in the form  
 
     graddiv curlcurl= −

K KK
p su A A     (10) 

 
This form may appear somewhat artificial, but it is suggested from the fact that any 
displacement field can be represented by a sum of solenoidal and irrotational fields and 
that the forcing term (9) is given in this form.  Substituting (9) and (10) into (7), we have  
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graddiv curlcurl ( 2 )graddiv(graddiv curlcurl )

4 4
curlcurl(graddiv curlcurl ) 0

λ μ
π π

μ

⎛ ⎞ ⎛ ⎞− + + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− − =

K K K K

K K
p p

s s

a aF F A A
r r

A A
 

 
In the third term curlcurl

K
sA  is replaced by curlcurl

K
pA , because its divergence vanishes 

anyway.  Similarly, graddiv pA
K

 in the fourth term is replaced by graddiv sA
K

.  Using the 
relation  
 
     2graddiv curlcurl− = ∇

K K K
p p pA A A  

 
and the similar relation for sA

K
, we obtain  

 

   2 2graddiv ( 2 ) curlcurl 0
4 4

λ μ μ
π π

⎛ ⎞ ⎛ ⎞− + + ∇ + − ∇ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

K KK K
p s

a aF A F A
r r

 (11) 

 
This equation is satisfied if, 
 

     2( 2 )
4p

aA F
r

λ μ
π

+ ∇ =
KK

   (12) 

 

     2

4s
aA F

r
μ

π
∇ =

KK
    (13) 

 
 
If we put p pA A a=

K K  and s sA A a=
K K , (12) and (13) can be reduced to Poisson's equation, 

 
 

   ∇2 Ap =
F

4π (λ + 2μ)r
   and  ∇2 As =

F
4πμr

   (14) 

 
 

Since ∇2r =
2
r

, we have 
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     Ap =
F

8π(λ + 2μ)
r     (15) 

 
and     
 

     As =
F

8πμ
r      (16) 

 
 
Using (10) 
 
    2graddiv graddivp s su A A A= − + ∇

K K KK
   (17) 

 
 Substituting (15) and (10) into (17), we have for the i-th component of displacement 
for a unit force (F=1) in j-th direction, ui

j , 
 

  

( )

2

2
2 2

,

1 1 1
8 ( 2 ) 8 8

1 1     
8 2 8

j
i ij

i j i j

i
ij ij ij j

i j

r ru r
x x x x

rr r r u
x x

∂ ∂ ∂ ∂ δ
π λ μ ∂ ∂ πμ ∂ ∂ πμ

λ μ ∂δ δ α
πμ λ μ ∂ ∂ πμ

= − + ∇
+

⎛ ⎞+
= ∇ − = ∇ − =⎜ ⎟⎜ ⎟+⎝ ⎠

 (18) 

 
where   
 

     
2

λ μα
λ μ

+
=

+
  (2/3 for most solids)  (19) 

 
Equation (18) gives the solution of our problem.  Note that uj

i = ui
j   (symmetric).  ui

j  is 
often called the Somigliana Tensor.  We write all the components explicitly, 
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2
1 21 1 2
1 13 3

2
3 21 3 2
1 23 3

2
3 32 3 3
2 33 3

1 2 1 1,
8 8

1 1 2 1,
8 8

1 1 2 1,
8 8

α α
πμ πμ

α α
πμ πμ

α α
πμ πμ

⎡ ⎤⎛ ⎞ ⎛ ⎞= − − =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞= = − −⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞= = − −⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

x x xu u
r r r r

x x xu u
r r r r

x x xu u
r r r r

 (20) 

 
 Let us consider the simplest case.  A force with a magnitude F is applied in 1x  
direction.  We take the polar coordinates ( , , )θ φr  as shown in the figure.   
 

     
 
Then  
 

       

1
1
1
2
1
3

sin cos sin sin cos
cos cos cos sin sin  

sin cos 0
θ

φ

θ φ θ φ θ
θ φ θ φ θ

φ φ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= − ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

ru u
u u
u u

 (21) 

 
On 1 3−x x plane, φ =0,   
 

    1 1
1 3sin cos sin

4r
Fu u u

r
θ θ θ

πμ
= + =    (22) 
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    1 1
1 3cos sin 1 cos

4 2θ
αθ θ θ

πμ
⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

Fu u u
r

  (23) 

 
These are the results given by (4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.1.2   Static Displacement Field Due to Force Couples 
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Single Couple 
 
 If we apply a force at 1, 2, 3( )ξ ξ ξ  instead of at the origin, the displacement at 

1, 2, 3( )x x x  can be still given by (18) with  
 
 2 2 2 2 2

1 1 2 2 3 3( ) ( ) ( ) ( )i ir x x x xξ ξ ξ ξ= − + − + − ≡ − . 
 

       
 

 
 

If we apply a force F in 1x  direction at  2 2
1
2

dξ ξ+ ,  and F in - 1x  direction at 2 2
1
2

dξ ξ− , 

 
the displacement at 1, 2, 3( )x x x  is 
 
 

 

1 1
1, 2 2 3 1, 2, 3 1, 2 2 3 1, 2, 3

1
2

2 2
2

1 1( , , ) ( , , )
2 2

( )

i i

i

Fu d x x x Fu d x x x

uF d o d

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ
ξ

+ − −

∂
= +

∂

  

     (24) 
  

(ξ1, ξ2, ξ3) 

(1/2)dξ2 
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Since  2 2 2 2 2
1 1 2 2 3 3( ) ( ) ( ) ( )i ir x x x xξ ξ ξ ξ= − + − + − ≡ − , 

 

                                             
i i

r r
x

∂ ∂
∂ξ ∂

= −     (25) 

 
(we often write this as ,

,
i

ir r= − .) 
 
therefore, from (18)  
 

                                                
j j

i i

k k

u u
x

∂ ∂
∂ξ ∂

= −     (26) 

 
 
Thus, the displacement for this force couple is given by 
 

                                            
1

2
2 2

2

( )iuF d o d
x

∂ ξ ξ
∂

− +    (27) 

 
If we make  2 0dξ → ,  F → ∞ , so that  2F Mδξ → (finite),  the displacement due to this 
single couple (we will denote it by Ui ) can be written as  
 

                                               
1

1,2

2

i
i i

uU M Mu
ξ

∂
= =

∂
   (27') 

or  
                 

1
1
,2

2

i
i i

uU M Mu
x

∂
= − = −

∂
   (27'') 

 
 
Thus, the displacement due to this single couple placed at the origin can be obtained by 
replacing F by M  in (20), taking the derivative of (20) with respect to x2, and changing 
the sign. 
 
∴ 
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2

2 2 1 2
1 3 3 52 3

8
M x x x xU

r r r
α

πμ
⎡ ⎤⎛ ⎞

= − − − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

   (28) 

                  
2

1 1 2
2 3 53

8
M x x xU

r r
α

πμ
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

    (29) 

                  1 2 3
3 53

8
x x xMU

r
α

πμ
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

    (30) 

 
Similarly if we apply a single couple as shown in the following figure, we obtain  
 

                                      
2

2,1

1

i
i i

uU M Mu
ξ

∂
= =

∂
 

 
or 
 

                                                
2

2
,1

1

i
i i

uU M Mu
x

∂
= − = −

∂
 

 
 
 
 
and the x1, x2, x3 components of the displacement can be given by  
 

                   
2

2 2 1
1 3 53

8
M x x xU

r r
α

πμ
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

    (31) 

 

                   
2

1 1 2 1
2 3 3 52 3

8
M x x x xU

r r r
α

πμ
⎡ ⎤⎛ ⎞

= − − − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

   (32) 

 

                   1 2 3
3 53

8
x x xMU

r
α

πμ
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

    (33) 

 
 



 252

 
 
Double Couple 
 
 It is evident that for a double couple as shown in the figure, the displacements can 
be given by  
 
 

                             
2

1,2 2,1

1

( )i
i i i

uU M M u u
ξ

∂
= = +

∂
    (34) 

 
or 
 

                          
2

1 2
,2 ,1 1,2 2,1

1

( ) ( )i ii
i i i

uU M M u u M u u
x

∂
= − = − + = − +

∂
 (35) 

 
From the sum of (28) and (31), (29) and (32), and (30 and (33), we obtain 
 
 

 
2 2

2 2 1 2 2 1
1 3 3 5 2 2

22 3 1 1 3
8 8 4
M x M x x x M x xU

r r r r r r
α α

πμ πμ πμ
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞= − − = − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
  (36) 

 

 
2 2

1 1 2 1 1 2
2 3 3 5 2 2

22 3 1 1 3
8 8 4
M x M x x x M x xU

r r r r r r
α α

πμ πμ πμ
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞= − − = − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
  (37) 

 

 1 2 3 1 2 3
3 5 2 36 3

8 4
x x x x x xM MU

r r r
α α

πμ πμ
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     (38) 
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 For double couples with different orientations, similar expressions can be obtained. 
 
 Using the polar coordinates (r, θ, φ),  
  

  
 
the displacement components, ur, uθ, uφ are given by 
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( )

2
2

2

2

1 sin sin 2     (39)
4 2

1 sin 2 sin 2    (40)
4 2 2

1 sin cos 2        (41)
4

r
Mu

r
Mu

r
Mu

r

θ

φ

α θ φ
πμ

α θ φ
πμ

α θ φ
πμ

⎛ ⎞= +⎜ ⎟
⎝ ⎠
⎛ ⎞= −⎜ ⎟
⎝ ⎠

= −

  

   
           
 

Or,                            

( )

2

2

1 sin sin 2   
2

1 sin 2 sin 2  
4 2 2

1 sin cos 2  

ru
Mu

r
u

θ

φ

α θ φ

α θ φ
πμ

α θ φ

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟ ⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟

⎝ ⎠ ⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

   (42) 

 
On the x1 - x2 plane,   / 2θ π= , 0uθ = , and 
 

                                                
( )

1 sin 2
2

1 cos 2

ru

uφ

α φ

α φ

⎛ ⎞≈ +⎜ ⎟
⎝ ⎠

≈ −
 

 
 

The azimuthal variation of ur and uφ  is shown in the following figure. 
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The displacement field on a circle  2 2

1 2 constx x+ =  is also shown. 
 
 
Single Couple and Double Couple with Arbitrary Orientation 
 
 If the force is in 1 2 3( , , )k k k k=

K
direction and the arm is in 1 2 3( , , )l l l l=

K
 direction, 

then 
 
 

     
k

SC i
i

l

uU
s

∂
=

∂
 

 

Here, 
ls

∂
∂

 is the derivative in l
K

 direction, and l
K

 is taken positive in the direction towards 

the force oriented in positive k
K

 direction.  Then, since q
l q

l
s ξ
∂ ∂

=
∂ ∂

   and   k p
i i pu u k= , 

 
     
     ,SC p q

i i p qU u k l=     (43) 
 
 
Then, the displacement due to a unit double couple is 
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     , ( )DC p q

i i p q q pU u k l k l= +   (44) 
 
 
 
 
Ge 162  Problem  #6    Double Couple and Dipole 
 
 

Using the expressions discussed in 5.1.2 (i.e., ,SC p q
i i p qu u k l= ), we can write the 

displacement due to a force dipole as ,DP p q
i i p qu u k l=  where k

G
 and l

G
 are the unit 

vectors in the direction of force and the arm, respectively.  k
G

 and l
G

 are parallel 
but they can be of either opposite or the same direction, depending on the 
orientation of the force (i.e., inward or outward).  

Show that the force system with two dipoles (a) shown below is equivalent 
to the double couple (b) (all the dipoles and the couples are with unit moment.).   

 
 

 
Ge 162 
 
5.1.3   Elastic Dislocation 
 
1.  Qualitative Description of the Problem 
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 Consider a fault shown in the figure.  The displacement on one side is u+ and the 

other side is u-, so that the displacement discontinuity is Δu=u+-u- .  This is called fault 

offset and is often denoted by D.  Since we already know the displacement field due to a 

point force and force couples, we will first try to produce, by applying forces or force 

couples to the medium without dislocation, a displacement field similar to that caused by 

faulting. 

 
 

 Since an earthquake represents transition from one equilibrium state to another, 

there should be no net force and no net moment.  Thus, a single force or a single couple is 

not appropriate to represent an earthquake.  A double couple is an appropriate force 

system to represent an earthquake.   

 Now, we try to find a double couple applied in a medium without dislocation 

which yields a displacement field similar to that produced by a fault (i.e. dislocation). 

 As shown in the figure, to produce D  over a small distance of  wΔ  , in the 

medium without dislocation, we need to apply a force couple with one force 

approximately equal to 
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     u uF S
w

μ
+ −−

=
Δ

    (1) 

 

where S is the fault area. 

 

We reduce wΔ  while maintaining D u u+ −= − , 

 

lim ( )
w

F w u u S DSμ μ+ −

Δ →∞
Δ = − =  

 

which means a  moment  

 

M DSμ=      (2) 

 

is required to produce the offset D over S. 

 To produce D over an extended area S, we can distribute double couples on S as 

shown in the figure.  In this case, the effects of the vertical forces are cancelled within S, 

and the overall force system can produce a dislocation-like displacement field. 

 

2.  Definition of Elastic Dislocation 

 

 First we need to give a precise definition of  "Elastic Dislocation" .  Create a thin 

cavity in an elastic medium.  Let one side of this cavity be Σ+  and the other be Σ− .  

Apply force on these surfaces to move the Σ+  side by u +K   and Σ−  side by  u −K   Then, 
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make the gap very small so that Σ+  and Σ−   form an open surface Σ .  Then weld the two 

surfaces and remove the force.  Now we have a displacement discontinuity 

 

    u u u+ −Δ = −K K K  

 

across Σ .  This is called the elastic dislocation.  Note that, for a dislocation created this 

way, the traction must be continuous across Σ .  

 If u +K   and u −K  are tangential to Σ , uΔ K   is called the shear dislocation. 

 
 

3. Description of the Problem  

 

 Consider an infinite homogeneous (isotropic) elastic medium in equilibrium.  

Then create a dislocation  uΔ K   on Σ . 

 This dislocation causes deformation throughout the medium which is in new 

equilibrium state. 

 We want to determine the displacement  field uK   in the medium caused by this 

dislocation. 
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4.  Elasto-Static Theory of Dislocation 

 

 We use Volterra's dislocation theory to show 

 

    uk(Q) = Δui
Σ∫ τ ij

kν jdS       (3) 

 

where    uk(Q)  is the k-th component of displacement at Q ;  k
ijτ  is the ij  component of 

stress on Σ  due to a unit force in k-th direction  at Q  (the unit of k
ijτ  should be 

understood  

as stress/force=1/area ); Δui  is the displacement discontinuity (dislocation) across Σ.  i.e. 

Δui =ui (on Σ+ )-ui (on Σ− ).  Also, 

 

 

  Σ+ +Σ−  : Closed surface defining the dislocation surface. 

 Σ        : Open surface formed by Σ+  and Σ−   when they are 

    made coincident with each other. 

 νK   : unit vector normal to  Σ   pointing from the 

     negative side to the positive side. 

                n ν+ = KK    on Σ+  ,    n ν− = KK   on Σ−  

 

 Equation (3) will be proved in the next section. 
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 Let us consider one of the simplest cases.  

Suppose we have a very small planar shear dislocation surface dΣ at P  which is 

perpendicular to  x2  axis.  We consider a displacement discontinuity in x1 direction. 

 

 
 

 Then  Δu1 ≠ 0, Δu2=Δu3=0  and  νK = (0,1,0). 

In this case (3) gives 
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( )
( )
( )

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

1 12

(Q) [

                

                ]

          

k k k k

k k k

k k k

k

u d u

u

u

d u

τ ν τ ν τ ν

τ ν τ ν τ ν

τ ν τ ν τ ν

τ

= Σ Δ + +

+ Δ + +

+ Δ + +

= ΣΔ

   (4) 

 

Note that  

    
12 1,2 2,1( )k k ku uτ μ= +  

 

Referring to (34) of 5.1.2, this means that 
12 1,2 2,1( / ) ( )k k ku uτ μ = +  is the k-th component of 

displacement, kU , at Q due to a unit double couple placed on the 1 2x x−  plane at P. 

 

Thus, 

 

   uk(Q) = dΣΔu1 (μU k ) = (μΔu1dΣ)U k     (5) 

 

This means that uk(Q)  is equal to the k-th component of displacement at Q due to a 

double couple of moment M = μΔu1dΣ  placed at P.  Since this relation evidently holds 

for any dΣ, we can conclude that a shear dislocation Δus  over a surface S  is equivalent to 

a double couple whose total moment is    

 

    s s
S

M u d u Sμ μ= Δ Σ = Δ∫     (6)  
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5.  Volterra's Dislocation Theory 

 We first introduce the following notation for the stress strain relation: 

 

   , , , ,( )ij ij k k i j j i ijpq p qu u u c uτ λδ μ= + + =     (7) 

 

where 

 

   ( )ijpq ij pq ip jq jp iqc λδ δ μ δ δ δ δ= + +     (8) 

 

Then the following symmetry relations hold. 

 

    ijpq jipq ijqp pqijc c c c= = =     (9) 

 

Note: 

 Among 81 components of cijpq, most of them are zero.  Nonzero components are 

 

  c1111=c2222=c3333= 2λ μ+  

  c1122=c2211=c1133=c3311=c2233=c3322= λ  

  c1212=c1221=c2112=c2121=c1313=c1331= μ  

  c3113=c3131=c2323=c2332=c3223=c3232= μ  
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Then, the equation of equilibrium can be written as: 

 

   , ,0,  or  0i ij j i ijpq p qjf f c uρ τ ρ+ = + =     (10) 

 

This notation is convenient for the derivation given in the following. 

 Consider an elastic medium (homogeneous, isotropic) bounded by a closed 

surface S1.  Within this medium consider a closed surface consisting of +Σ    and -Σ  .  +Σ    

and -Σ  are made coincident with each other to make an open surface Σ .   

We let V be the volume inside of S1, and outside of  +Σ + -Σ  . 

 We let  ui  be a solution of equation of equilibrium 

 

      ,ijpq p qj ic u fρ= −     (11) 

 

ui  is continuous throughout V.    On +Σ , ui = ui
+  and on -Σ  , ui = ui

− ;   ui
+ − ui

− = Δui .  

Also, ui  satisfies the boundary conditions, either ui=0 (rigid) or cijpqup,qnj = 0 (free) on S1,  

where nK  is a unit vector normal to S1 (positive outward).  

 Let  vi be another solution of (10) and represent the displacement field due to a 

body force gρ K  (per unit volume).  vi  is continuous everywhere and satisfies the 

boundary condition on S1 (either vi =0 (rigid) or , 0ijpq p q jc v n =  (free) ).     
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     cijpqvp, qj = −ρgi     (12) 

 

Multiplying (11) by vi  and (12) by ui , subtracting and integrating over the volume V, we 

obtain 

  , ,( ) ( )ijpq p qj i ijpq p qj i i i i iV V
c u v c v u dV f v g u dVρ ρ− = − −∫ ∫    (13) 

Note that 

 

 , , , , , , , , ,( ) ( ) ( )ijpq p q i ijpq p q i j ijpq p qj i ijpq p qj i ijpq p q i j ijpq p q i jc u v c v u c u v c v u c u v c v u− = − + −  

 

Owing to the symmetry of cijpq, the second term of RHS vanishes.  Hence, 

 

   , , ,( ) ( )ijpq p q i ijpq p q i j i i i iV V
c u v c v u dV f v g u dVρ ρ− = − −∫ ∫   (14) 

 

Applying the Gauss’ theorem to LHS, 
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1

, ,( ) ( )ijpq p q i j ijpq p q i j i i i iS V
c u v n c v u n dS f v g u dVρ ρ

+ −+Σ +Σ
− = − −∫ ∫   (15) 

 

 

Due to the boundary conditions on S1, the integral on S1 vanishes.  Since vi  is continuous 

on Σ 

 

 
, , ,

, ,         ( )

ijpq p q i j ijpq p q i j ijpq p q i j

i ijpq p q j ijpq p q j

c u v n dS c u v n dS c u v n dS

v c u n c u n dS

+ − + −

+ + − −

Σ +Σ Σ Σ

+ + − −

Σ

= +

= +

∫ ∫ ∫
∫

 

 

In equilibrium, the traction on the +Σ  side cijpqup,q
+ nj

+  should be balanced by that on the -Σ  

side, cijpqup ,q
− nj

− .  Hence this integral vanishes. 

 

               
 

On the other hand 
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, , ,

,

( ) ( )

       

ijpq p q i j ijpq p q i j ijpq p q i j

ijpq p q i j

c v u n dS c v u dS c v u dS

c v u dS

ν ν

ν

+ − + −

+ −

Σ +Σ Σ Σ

Σ

= − + +

= − Δ

∫ ∫ ∫
∫

 

 

Hence,  
 

 

   , ( )ijpq p q i j i i i iV
c v u dS f v g u dVν ρ ρ

Σ
− Δ = −∫ ∫    (16) 

 

 

We put ρ fi = 0,  and,  for gi, consider a unit force in k-th direction at point Q: 

 

     ( )i ikg Qρ δ δ=  

 

Then (16) becomes 

 

     (Q)k k
i ij ju u dSτ ν

Σ
= Δ∫     (17) 

 

This is the Volterra's relation. τ ij
k  is the stress due to a unit force in k-th direction at Q, 

and its unit should be stress/force = 1/area. 

 

 

 

 

6. Moment Tensor 
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 Applying the Velterra's relation 

 

   ,( )k k k
i ij j i ijpq p q ju y u dS u c u dSτ ν ν

Σ Σ
= Δ = Δ∫ ∫

K  

 

to a small surface element ΔS over which νK , uΔ K and up ,q
k  are constant,  we obtain 

 

    ,( )k k
ijpq p q i ju y c u u Sν= Δ ΔK     (18) 

 

     = Mpqup,q
k

     (19) 

 

where 

 

     pq ijpq i jM c u Sν= Δ Δ     (20) 

 

Mpq is a symmetric tensor called the moment tensor.  Then (19) can be written as 

 

 

11

221 1 1 1 1 1 1 1 1 1
1,1 2,2 3,3 1,2 2,1 1,3 3,1 2,3 3,2

332 2 2 2 2 2 2 2 1 1
1,1 2,2 3,3 1,2 2,1 1,3 3,1 2,3 3,2

123 3 3 3 3 3 3 3 1 1
1,1 2,2 3,3 1,2 2,1 1,3 3,1 2,3 3,2

13

23

  

M
M

u u u u u u u u u u
M

u u u u u u u u u u
M

u u u u u u u u u u
M
M

⎛
⎜
⎜⎛ ⎞ ⎛ ⎞+ + +
⎜⎜ ⎟ ⎜ ⎟

= + + + ⎜⎜ ⎟ ⎜ ⎟
⎜⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎜ ⎟
⎠

  (21) 
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Using the explicit expressions for cijpq, (20) can be written as, 

 

   

( )
( )

( )

11 1 1 2 2 3 3

22 1 1 2 2 3 3

33 1 1 2 2 3 3

12 2 1 1 2

13 3 1 1 3

23 2 3 3 2

[ 2 ]

[ 2 ]

[ 2 ]
( )
( )
( )

M S u u u

M S u u u

M S u u u
M S u u
M S u u
M S u u

λ μ ν λ ν λ ν

λ ν λ μ ν λ ν

λ ν λ ν λ μ ν
μ ν ν
μ ν ν
μ ν ν

= Δ + Δ + Δ + Δ

= Δ Δ + + Δ + Δ

= Δ Δ + Δ + + Δ

= Δ Δ + Δ
= Δ Δ + Δ
= Δ Δ + Δ

   (22) 

 

 For shear dislocation, i.e., uν ⊥ ΔK K ,  

 

    

11 1 1

22 2 2

33 3 3

12 2 1 1 2

13 3 1 1 3

23 2 3 3 2

2
2
2

( )
( )
( )

M S u
M S u
M S u
M S u u
M S u u
M S u u

μ ν
μ ν
μ ν

μ ν ν
μ ν ν
μ ν ν

= Δ Δ
= Δ Δ
= Δ Δ
= Δ Δ + Δ
= Δ Δ + Δ
= Δ Δ + Δ

    (23) 

 

which is often written as 

 

    ( )M= T TS u uμ ν νΔ Δ + ΔK KK K     (23') 

 

 By taking the limit, ΔS => 0  ( ΔuiΔS is kept finite), we obtain a point dislocation 

source that is represented by a moment tensor Mpq. 

 As a special case, consider a case where 
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    1(0,1,0),  and  ( ,0,0)u uν = Δ = ΔK K . 

 

Then, from (22) 

 
    M12 = ΔSμΔu1  and  Mpq = 0  ( p ≠ 1, q ≠ 2)  

 

and, from (21) 

 

     

1 1 1
1,2 2,1 12

2 2 2
1,2 2,1 12

3 3 3
1,2 2,1 12

( )

( )

( )

u u u M

u u u M

u u u M

= +

= +

= +

 

 

This is the case considered earlier. 

 Equation (21) can be used to determine the moment tensor from the observed 

displacement uk, if the Somigliana tensor ui
k  for the medium is known. 

 Suppose we observe the displacement  lu
k  (l =1,2,3,....., L) at  L locations.  Then, 

we can compute  l up,q
k  by using the known Somigliana tensor.  Then (21) can be written 

as 

 

    ( ) ( )( )k
l l pqu U M=      (24) 

 

where  ( )lU  is the matrix on the RHS of (21) which can be computed by the known 

Somigliana tensor.  Combining (24) for l=1,2,3, ....L, we obtain a set of linear equations 
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with 6 unknowns Mpq and Lx3 data, and, for L>2 , the equations can be solved (unless the 

problem is ill-posed) to obtain Mpq. 

 

Ge 162 Problem #7  Moment Tensor and Fault Parameters 
 
 Consider a fault model as sketched in Figure 1. Only the foot-wall block is shown.  
(ξ1, ξ2, ξ3) is the fault coordinate system (+ξ1 is in the direction of fault strike), and (x1, 
x2, x3) is the geographical coordinate system (x1: North; x2: West; x3: Up). 
 The top surface of the block coincides with the surface of the Earth.  D

K
 is the slip 

vector of the hanging-wall block (not shown). δ  is the dip angle of the fault plane 
measured downward from the horizontal (i.e. from -ξ2 direction.). λ  is the slip angle 
(rake) measured counter-clockwise on the fault plane from the horizontal line as shown in 
the figure (i.e. from +ξ1 direction.). νK  is the unit vector normal to the fault plane.  Let ΔS  
be the fault area. 
 Place this fault model in a homogeneous elastic medium with the rigidity μ  at the 
origin of the Cartesian coordinates as shown in Figure 2.  The strike of the fault, φ,  is 
measured clockwise on the free surface from x1 axis in Figure 2. We assume that ΔS  is 
small so that the fault can be considered a point source. 
 
1) Determine the ξ1, ξ2, ξ3 components of the displacement vector D

K
  (magnitude D) 

and the unit vector νK . 
 
2) Determine the x1, x2, x3 components of the displacement vector D

K
  (magnitude D) and 

the unit vector νK . 
 
3) Determine the moment tensor elements Mij  (i, j =1, 2, 3) for this fault model.  Write 
the result in terms of scalar moment M0=μDΔS, δ, λ, and φ. (The results are given in 
5.1.4.)   (Note that this is a shear dislocation. )    
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4) Determine the moment tensors for the Hector Mine earthquake, the Chi-Chi Taiwan 
earthquake, and the Bhuj India earthquake.   The fault parameters for these events are 
given below (δ (dip in degree), λ (rake in degree), fφ (strike in degree), 0M (Seismic 

Moment in N-m)). 
 
1999, Hector Mine    85,  179, 336,  5.9x1019 
1999, Chi-Chi, Taiwan 27, 82, 26, 4.1x1020 
2001, Bhuj, India  50, 50, 65, 3.6x1020 

 
Ge 162 
 
5.1.4  Summary of Static Source Representation 
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1.  Green's Function 
 
 Apply unit point force in k direction at 1 2 3( , , )ξ ξ ξ ξ=

K
.  Then, the i-th component 

of the displacement at 1 2 3( , , )x x x x=K  is the Green' function ( , )k
iG x ξ

KK . 
 
 In a homogeneous whole space, this is given by the Somigliana tensor, k

iu . 
 
2.  Single force at a point 
 
 The displacement for a single force 1 2 3( , , )F F F F

K
is then  

 
     k k

i iu F G=     (1) 
 
 
3.  Distributed force 
 
 The displacement due to a distributed force in 0V  can be written as.  
 
    

0
( ) ( ) ( , )k k

i iV
u x f G x dVρ ξ ξ= ∫

K KK K   (3) 

 
 
4. Force Couples 
 
 For a unit single couple on the 1 2x x−  plane, the displacement is  
 
 
      1,2SC

i iu G=    (3) 
 
 For a double couple, 
 
 
     1,2 2,1DC

i i iu G G= +    (4) 
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In a homogeneous whole space, (3) and (4) can be also written as  
1
,2

SC
i iu G= −  and 1 2

,2 ,1( )DC
i i iu G G= − + . 

 
 If the force is in 1 2 3( , , )k k k k=

K
direction and the arm is in 1 2 3( , , )l l l l=

K
 direction, 

then 
 
 
     ,SC p q

i i p qu G k l=     (5) 
 
 This can be shown as follows.   Let ( )f

iG  be the i-th component of displacement 

due to a unit force in k
K

 direction, and 
ls

∂
∂

 be the derivative in l
K

 direction, then  

 

    
( )

,( )
f

SC p p qi
i q i p i p q

l q

Gu l G k G k l
s x

∂ ∂
= = =

∂ ∂
 (5) 

 
Then, the displacement due to a unit double couple is 
 
 
    , ( )DC p q

i i p q q pu G k l k l= +    (6) 
     
 
 For a source represented by force couples and dipoles with the strength (moment) 
given by kjM ,  
 
     ,

i
k j

kj iu M G=     (7) 
 
5. Dislocation source 
 
 
 Referring to the figure below. the displacement due to an elastic dislocation uΔ K  
on the surface Σ  can be written as  
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     i i

pq p qu u dSτ ν
Σ

= Δ∫    (8)  

 
 
 
     ,

i i
pq pqkl k lc Gτ =     (9) 

 
   , ,

i i i
pqkl k l p q kl k lu c G u dS m G dSν

Σ Σ
= Δ =∫ ∫   (10) 

 
where   
 
     kl pqkl p qm c u ν= Δ    (11) 
 
 
In the limit of point dislocation (i.e., | |uΔ → ∞K ,  0SΣ ≡ Δ →  and | |u SΔ Δ →K finite 
 
    

i
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     ,
i i

kl k lu M G=     (12)  
 
or, exchanging the source and the observation points,  
 
     ,k l

i kl iu M G=     (12')    
where 
 
 
    kl pqkl p q lkM c u S Mν= Δ Δ =    (13) 
 
This is the same as the expression for the displacement field due to force couples (7).   
Thus, a dislocation source is equivalent to force couples. 
 

The explicit form of lkM  is: 
 

  

( )
( )

( )
( )
( )
( )

11 1 1 2 2 3 3

22 1 1 2 2 3 3

33 1 1 2 2 3 3

12 1 2 2 1

13 1 3 3 1

23 2 3 3 2

2

2

2

M S u u u

M S u u u

M S u u u

M S u u

M S u u

M S u u

λ μ ν λ ν λ ν

λ ν λ μ ν λ ν

λ ν λ ν λ μ ν

μ ν ν

μ ν ν

μ ν ν

= Δ + Δ + Δ + Δ⎡ ⎤⎣ ⎦
= Δ Δ + + Δ + Δ⎡ ⎤⎣ ⎦
= Δ Δ + Δ + + Δ⎡ ⎤⎣ ⎦
= Δ Δ + Δ

= Δ Δ + Δ

= Δ Δ + Δ

  (14) 

 
In case of shear dislocation (i.e., u νΔ ⊥ KK ), then  
 

   ( )
( )
( )

11 1 1

22 2 2

33 3 3

12 1 2 1 2

13 1 3 3 1

23 2 3 3 2

2
2
2

M S u
M S u
M S u
M S u u

M S u u

M S u u

μ ν
μ ν
μ ν

μ ν ν

μ ν ν

μ ν ν

= Δ Δ
= Δ Δ
= Δ Δ

= Δ Δ + Δ

= Δ Δ + Δ

= Δ Δ + Δ

    (15) 
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or, 
 
   M= ( : )S uμ νΔ Δ KK      (15') 
 
 The following figure illustrates the force couples represented by each element of a 
moment tensor. 
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6. Fault parameters and Moment tensor elements. 
 
 The fault parameters (δ, λ, and φf ) defined in the figure below can be transformed 
to moment tensor elements by ( DSμ  is assumed to be 1), 

 

   

M11 = −sin2 φ f sin2δ sin λ − sin 2φ f cosλ sinδ

M22 = −cos2 φ f sin2δ sin λ + sin 2φ f cosλ sinδ

M33 = sin2δ sin λ

M12 = −
1
2

sin 2φ f sin2δ sin λ − cos2φ f cosλ sinδ

M13 = cosφ f cosδ cosλ + sinφ f sinλ cos2δ

M23 = − sinφ f cosδ cosλ + cosφ f sinλ cos2δ

  (7) 
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(The following part is not complete yet) 
6.  General Representation 
 
 Suppose that the medium is in equilibrium in the beginning (A).  Then a failure 
occurs in 0V  (B), and displacement iu  and stress ijσ  are produced in the medium.  
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 The equation for static equilibrium, 
 
    , 0ij jσ =      (16) 
 
holds everywhere including 0V .  In the region outside of 0V , iu  and ijσ  are related by 
elastic constitutive relations; i.e., stress can be computed from iu .  However, the elastic 
constitutive relation does not hold in the failure zone 0V .  Thus, ijσ  cannot be computed 
from iu .  If we assume hypothetical elastic constants in 0V , then, we can compute the 
stress in 0V  from iu .  We denote this stress by H

ijσ  (i.e., Hooke's stress).  H
ijσ  is different 

from ijσ .  Then we can write (16) as  
 
   ( ) 0H H H

ij ij ij ij ijmσ σ σ σ− − = − =    (17) 
 
where  
 
    ( )H

ij ij ijm σ σ= −     (18) 
 
 

ijm  vanishes outside of 0V . 
The form of equation (17) suggests that ,ij jm−  can be considered as equivalent 

body force.   Thus, the displacement can be written as  
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                                ( )
0

,
k

i kl l i
V

u m G dV= −∫     (19) 

 
Using the Gauss theorem,  
 
 
 ( )

0 0 0 0
, ,,

0k k k k
kl i kl l i kl i l kl i llV V V S

m G dV m G dV m G dV m G n dS= + = =∫ ∫ ∫ ∫  

 
 
(S0 can be taken slightly outside of V0).  Then,  (19) can be written as  
 
 

    
0

,k l
i kl i

V
u m G dV= ∫     (20) 

 
For a point source,  
 

    
0

kl kl
V

m dV M→∫     (21) 

 
and  
 
    ,k l

i kl iu M G=      (22) 
 
which is the same as (12'). 
 

ijm  defined by (18) can be considered as a general source representation, and is 
called the seismic moment tensor. 
5.1.5    Stress Relaxation 
 
1.  Description of the Problem 
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 Consider an elastic medium which is in equilibrium under stress ( )ij rσ K .  Let S be 

an open surface defined in this medium of which the stress is (0) ( )ij rσ K . Relax the stress   

from  (0)
ijσ  to (1)

ijσ  by creating a cut on S and letting the material on either side 
of S to move.  Let  uΔ K  be the resulting dislocation (displacement discontinuity).  uΔ K  is 
not necessarily parallel to S.  We want to determine uΔ K , and the difference in strain 
energy WΔ between the two states, before and after the crack formation. 
 
 

 
 

 
2.  Qualitative Solution of the Problem 
 
 Let us consider a planar crack S under uniform shear stress 0σ . 
If the stress is relaxed on the crack surface to 1σ  (= const), there will be a  
displacement offset  uΔ  across the crack.  In general, this is not uniform on S.  Let D  be 
the average of uΔ  on S.  If the representative dimension of the crack is L, then the 
change in ε  would be 
 
    ( )/ / 2D LεΔ ≈  
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This strain change is caused by the change in the stress  0 1σ σ σΔ = − , which we call  
stress drop.  Thus, 
 
    ( )/ / 2c D Lσ μ ε μΔ = Δ =    (1) 
 
where c is a non-dimensional constant which depends upon the shape of the crack; it is 
apparent from the above argument that c ~ 1.   
 
 The simplest case is a circular crack.  If a is the radius of the crack, we can show 
that L = 2a and 7 /16c π=  ( λ μ=  is assumed.). 
 
    (7 /16) /D aσ π μΔ =     (2) 
 
 
The change in the strain energy WΔ is given by S Dσ .  This is analogous to the change 
in the strain energy of a spring (spring constant k) which is stretched from 0x  to 1x . The 
change in the strain energy is  
 

2 2
0 1 0 1 0 1(1/ 2) ( ) (1/ 2) ( )( )W k x x k x x x xΔ = − = + −  

      
where 0 1(1/ 2) ( )k x x+ is the average force and 0 1( )x x− is the displacement. 
 
Thus, for the circular crack 
 
    3(16 / 7 )W S D aσ μ σσΔ = = Δ   (3) 
 
where  0 1( ) / 2σ σ σ= +  is the average stress. 
 
 If we use the dislocation theory, this crack can be represented by a distribution of 
double couples whose total moment M0 is  
 
    3

0 (16 / 7)M SD aμ σ= = Δ    (4) 
 
 Next, we consider a crack as shown by the figure. 
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The crack is a strip with a width of 2w and of infinite length. We consider a 
uniform shear stress parallel to this strip.  Because of the geometrical similarity between 
this crack and a strike slip fault, we call this crack a strike-slip crack.  In mechanics, this 
is called Mode III crack. The argument similar to that made for the circular crack leads to 
 
  /D wεΔ ≈       and       ( / )c D wσ μ ε μΔ = Δ = ,  o(1)c ≈  
 
we can prove that 2 /c π= .  If the crack is not infinitely long but of finite length L, the 
above relation is not exact.  However, when L is very long, it is a good approximation.   
 
 For practical applications, we often take one half of the crack as shown by the 
hatched portion in the figure.  For this crack, 
 
   (2 / ) ( / )D wσ π μΔ =  
 
   2( / 2 )W Lw D w Lσ π μ σσΔ = = Δ    (5) 
 
   2

0 ( / 2)M wLD w Lμ π σ= = Δ     (6) 
  
 Another useful geometry is shown below.   
 

σ0 

σ0 
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The crack extends in the direction perpendicular to the uniform shear stress.  In 
this case we can derive 
 

   4( ) ( / )
( 2 )

D wλ μ μσ
π λ μ

+
Δ =

+
 

 
We call this crack a dip-slip crack. In mechanics, this is called Mode II crack.  For the 
hatched portion,  
 

   2( 2 )
4( )

W Lw D w Lπ λ μσ σσ
λ μ μ

+
Δ = = Δ

+
 

and 
 

   2
0

( 2 )
4( )

M LwD w Lπ λ μμ σ
λ μ

+
= = Δ

+
   

 
These relations are summarized in the following table. 
 
 
 Circular 

( )λ μ=  
Strike Slip  
(Mode III) 

Dip Slip  
(Mode II) 

Srtess drop,  
σΔ  

(7 /16) /D aπ μ  (2 / ) ( / )D wπ μ  4( ) ( / )
( 2 )

D wλ μ μ
π λ μ

+
+

 

σ0 

σ0 
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Strain Energy, 
W S DσΔ =  

3(16 / 7 )aμ σσΔ  2( / 2 )w Lπ μ σσΔ  2( 2 )
4( )

w Lπ λ μ σσ
λ μ μ

+
Δ

+
Moment,  

0M SDμ=  
3(16 / 7)a σΔ  2( / 2)w Lπ σΔ  2( 2 )

4( )
w Lπ λ μ σ

λ μ
+

Δ
+

 

 
  Relations between stress drop, strain energy change, offset, dimension, and moment for static 
cracks.  Dimensions of the fault are a radius, L length, w width; initial stress is 0σ ; final stress is 1σ ;  

stress drop is 0 1( )σ σ σΔ = − ; average stress is 0 11/ 2( )σ σ σ= + ; average dislocation is D .  

               
            
3.  Elasto-Static Theory of Crack 
 
 Here, we consider only a strike-slip crack (Mode III).  In this case, the 
displacement field has a component only in the direction parallel to the crack.  Therefore, 
the problem becomes 2-dimensional. 
 
 Consider a crack extending in 3x  of which the  cross-section is elliptic.  We will 
later reduce this ellipse to a infinitesimally thin strip. 
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 Initially the crack is not formed.  We introduce initial displacement field  
 
    (0) (0)

3(0, 0, )U U=
K

  
where (0)

3 0 2U A x= .  Since the stress corresponding to this displacement is 
(0)
3

0 0
2

constU A
x

σ μ μ∂
= = =

∂
, we have a uniform initial shear stress  0 0Aσ μ= .  Let U

K
 be 

the displacement after the crack is formed.  Because of the symmetry of the problem, U
K

 
has only 3x  component. i.e., 
 
    3(0, 0, )U U=

K
     (7) 

 
where 3U  does not depend on 3x , and  
 
    0divU =

K
     (8) 

 
Thus, the equation of equilibrium 
 
  ( 2 ) 0graddivU curlcurlUλ μ μ+ − =

K K
    (9) 

 
gives 
 
    0curlcurlU =

K
     (10) 

 
If we put 
    A curlU=

K K
     (11) 

 
then, from (10), 
 
    0curlA =

K
     (12) 

 
Also from (11), 
    0divA =

K
     (13) 
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From (12) we can put 
 
    A gradφ= −

K
     (14) 

 
where φ  is a scalar potential.  Substituting (14) into (13)  
 
    2 0φ∇ =      (15) 
 
 

From (11) and (14), 
 
 

  3 3

2 1 1 2 3

, , 0 , ,U U
x x x x x

φ φ φ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂
− = − − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

   (16) 

 
 
Let us consider a case where the stress on the crack is completely released,  
i.e., 32 0τ =  on S. 
 

    3

2

0U
x

μ ∂
=

∂
  on S 

 
By (16), this condition can be restated as 
  

    
1

0
x
φ∂

=
∂

  on S 

 

Since  
3

0
x
φ∂

=
∂

(see (16)), 2( )xφ φ= .  In the limit of a very thin crack 2 0x = on S;  thus,  

φ = const on S.  Since φ  is a potential, we can put, for the boundary condition  
 
    φ =0,             on S    (17) 
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Thus, our problem is now reduced to a problem of finding a solution of (15), with a 
boundary condition (17).  Note that this problem is equivalent to the well-known electro-
static problem of finding an electro-static field due to a perfect conductor placed in 
vacuum. 
 
------------------------------------------------------------------------------------------------------------
- 
 To solve this, we introduce elliptic coordinates 1 2( , )ξ ξ  by 
 
  1 1 2cosh cosx a ξ ξ=    and     2 1 2sinh sinx a ξ ξ=   (18) 
Then 
   1 2 1 2cosh( ) cosh( )w x ix a i aξ ξ ζ= + = + =   (19) 
 
where   1 2iζ ξ ξ= + .  1ξ = const gives an ellipse with a major axis 1cosha ξ , and a minor 
axis 1sinha ξ .  Thus, the elliptic crack is given by 1ξ = const,  and the limiting case 1ξ =0 
represents an infinitesimally thin crack of width 2a. 

We write 
 
    0φ φ φ′= +      (20) 
 
where 0φ  represents the initial field, and φ′ , the perturbation due to the crack.  Since the 
initial field is (0)

3 0 2U A x= , 
 
   0 0 1 0 1 2cosh cosA x A aφ ξ ξ= − = −    (21) 
 
   0 1 2cosh cosA aφ ξ ξ φ′= − +     (22) 
 
Since    2 0φ∇ = , and  2

0 0φ∇ =  (from (21)),   
 
    2 0φ′∇ =      (23) 
 
Since φ  = 0  on S ( 1ξ = const),  φ′  must have the form  
 
    1 2( ) cosFφ ξ ξ′ =     (24) 
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From 2 0φ′∇ = , we have (use Laplacian for the elliptic coordinates),  
 
    

     
2

2
1

d F F
dξ

=  

 
 ∴        1 1 1( ) exp( ) exp( )F A Bξ ξ ξ= − + +    (25) 
 
Because 1( )F ξ must be finite for 1ξ → ∞ , we take only the first term 
 
   1 0 1 2( exp( ) cosh )cosA A aφ ξ ξ ξ= − −    (26) 
 
From the condition that 0φ =  at 1 0ξ = ,  
 
 0A A a=

 
*

0 1 2 0

2 1/ 2 2 2 1/ 2
0 0 0

1sinh cos (sinh (sinh ) )
2

Re(sinh ) Re(cosh 1) Re( )

A a A a

A a A a A w a

φ ξ ξ ζ ζ

ζ ζ

= − = − +

= − = − − = − −
   (27) 

 
Since, from (16) 
 
 

   3

1 2

( )U
x x
φ ∂ −∂

=
∂ ∂

  and    3

2 1

( )U
x x
φ ∂ −∂

= −
∂ ∂

 

 
From the Cauchy-Riemann relation, if φ  is the real part of analytic function 

2 2 1/ 2
0 ( )A w a− −  of 1 2w x ix= + , as shown above, then 3U−  is the imaginary part of  

2 2 1/ 2
0 ( )A w a− − .  Thus  

 

   2 2 1/ 2 2 2 1/ 20
3 0 Im( ) Im( )U A w a w aσ

μ
= − = −   (28) 
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 is the solution of the problem. 
 
------------------------------------------------------------------------------------------------------------
- 
 
With the solution,  
 

  2 2 1/ 2 2 2 1/ 20
3 0 Im( ) Im( )U A w a w aσ

μ
= − = −   ( 1 2w x ix= + ) (28) 

 
first, consider the displacement field on 1 3x x−  plane ( plane of the crack ). 
 
 In this case 2 0x = , and 1w x= .  
 

  
2 2 1/ 20

3 1Im( )U x aσ
μ

= −  

 
  3 0U = ,         1x a>     (29) 
∴ 

  2 2 1/ 20
3 1( )U a xσ

μ
= − ,  1x a≤  

 
This is shown in the figure.   
 

 
 
 
The maximum displacement U3max is 

σ0a/μ 
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    0
3maxU aσ

μ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
and the average displacement is 
 

  ( )2 2 1/ 20
3 1 1 0

1 ( ) / 4
2

a

a
U a x dx a

a
σ πσ μ
μ−

= − =∫    (30) 

 
The average dislocation is 
 
   ( )3 02 / 2D U aπσ μ= =     (31) 
 
For a partial stress drop in which stress drops from  0σ  to 1σ , 0σ  in (31) should simply 
be replaced by 0 1σ σ σΔ = − .  If we replace a in (31) by width w , (31) leads to the 
relation given in the table. 
 
 Next, let us consider the displacement on 2 3x x−  plane.  Putting 1 0x = , we have, 
from (28)  
 

  2 2 1/ 2 2 2 1/ 20 0
3 2 2Im( ) ( )U x a x aσ σ

μ μ
⎛ ⎞

= − − = ± +⎜ ⎟
⎝ ⎠

  (32)  

 
+ sign is taken for  2x  > 0, and  - sign for 2x < 0. 
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 Since the initial field is 0
2xσ

μ
⎛ ⎞
⎜ ⎟
⎝ ⎠

,  the actual displacement caused by the crack is 

obtained by subtracting 0
2xσ

μ
⎛ ⎞
⎜ ⎟
⎝ ⎠

from (32): 

 
 

  2 2 1/ 20 0
3 3 2 2 2( )U U x x a xσ σ

μ μ
⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − = ± + −⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠

�   (33) 

 
 

 
 
The 2x  coordinate where the displacement decays to half is given by  
 
   ( )1/ 2 3 / 4X a=    or   ( ) 1/ 24 / 3a X=    (34) 
 

σ0a/μ 

σ0x2/μ 

-σ0a/μ 

σ0a/μ 

-σ0a/μ 
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The three-dimensional displacement is shown in the figure above. 
 
 If we use this model, we can estimate the depth of the fault from the observed 
decay rate of the displacement field by using (34).   
 
 In the following examples, 3 1( 0)U x =  is plotted as a function of 2x . It is readily 
seen that 1/ 2X =  10 km for Tango, 7 km for Tottori and 5 km for the San Francisco 
earthquakes.  From these values, w ~ 13 km, 9 km and 7 km are obtained for these 
earthquakes.  However, because of the incompleteness of the data set for the San 
Francisco earthquake, the estimate of w for this event is very uncertain.      
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4. Stress 
 
 Next, let us consider the change in the stress.  Since 1 0U = , 2 0U = , 3 1 2( , )U x x ,  

only nonzero components of stress are 3
32

2

U
x

τ μ ∂
=

∂
  and  3

31
1

U
x

τ μ ∂
=

∂
.    

Using (28), we have on 2 3x x−  plane (i.e., 1x  = 0) 
 
 

 31 0τ = ,  and    32 0 2 02 2 1/ 2 2 1/ 2
2 2

1 1
( ) (1 ( / ) )

x
x a a x

τ σ σ= =
+ +

  (35) 
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---------------------------------------------------------------------------------------------------------- 
 
 Note:  (28)  gives the solution as an imaginary part of an analytic function. The 
derivatives of 3U  with respect to 1x  and 2x  can be obtained using the following relation.  
 Consider an analytic function 1 2 1 2( ) ( , ) ( , )w P x x iQ x xΨ = + of 1 2w x ix= + . Then  
 

1 1

P Qi
w x x

∂Ψ ∂ ∂
= +

∂ ∂ ∂
,   and   

2 2 2 2( ) ( )
P Q P Qi i

w ix ix x x
∂Ψ ∂ ∂ ∂ ∂

= + = − +
∂ ∂ ∂ ∂ ∂

 

 

Hence,  
1

Q
x

∂
∂

  is the imaginary part of 
w

∂Ψ
∂

 , and 
2

Q
x

∂
∂

 is the real part of  
w

∂Ψ
∂

 . 

 
---------------------------------------------------------------------------------------------------------- 
 
 
 Since 11 0τ ≡  and 12 0τ ≡ , 31 0τ =  obtained above means that the 2 3x x−  plane can 
be considered as a stress free surface.  Thus, it is convenient to take this plane as a free 
surface in modeling a shallow fault.  In this case, we consider one half of the crack as 
shown by the hatched part as the actual fault plane. 
 

 
 
 
The sress 32τ changes as a function of  2x  on 2 3x x−  plane as shown in the following 
figure. 
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 On 1 3x x−  plane ( 2x = 0), we have 
 
 

32 0τ = ,            
1

| |x a<  
          (36) 

32 0 1 2 2 1/ 2
1

1
( )

x
x a

τ σ=
−

,  
1

| |x a>        

 
As shown in the figure 32τ  has a singularity at 1x a=  of the order of 1/ 2

1( )x a −−   (i.e., 
square-root singularity). This singularity is typical of this type of thin cracks.  Near, 

1x a= , i.e., at 1x a ε= +   ( )aε << ,  and  
 
 

   1/ 2
32 0 1 01/ 2 1/ 2

1 1

1
( ) ( ) 2

ax
x a x a

τ σ σ ε −= ≈
− +

   (36') 

 
 
 

σ0 
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5.2 Elasto-Dynamic Source   ---Summary of 5.2.1. and 5.2.2. --- 
 
5.2.1  Displacement Field due to a Point Force and Force Couples   
 (Time-dependent case) 
 
 The derivation is more complex than that for the static case, but is similar.  The 
displacement field consists of near-field and far-field.  The field consists of 
"compressional" and "shear", propagating at P and S wave velocities, respectively.   The 
near-field term yields displacement between P and S waves, as shown in the figure on 
page  5.    
 
 The following relation holds. 
 
    ( ; ) ( ; )j j

i iu t u tτ τ= − −  
 
5.2.2  Force Couples 
 
 
 The derivation is essentially similar to that for the static case.  In general, the 
displacement field consists of near-field and far-field. 
 
 Far field: 
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    3

( )
4
Mu

v r
τ

πρ
′

≈  

 
 Near field  
     
 

    2 2

( )
4

Mu
v r
τ

πρ
≈  

 
 The displacement is schematically shown on page 7 
. 
 
 The most important relation is given by equation 17', which gives the radiation 
pattern and the amplitude of far-field P and S waves. The radiation pattern is exactly the 
same as that for the static field.    

 For a shear faulting, S wave is much larger than P wave.   
 

    
3

| max | 1
| max | 5

sr

p

vu
u vφ

⎛ ⎞
= ≈⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
 
 
 
5.2 Elasto-Dynamic Source 
 
5.2.1  Displacement Field due to a Point Force and Force Couples   
 (Time-dependent case) 
 
Single Force 
  
 The method is essentially the same as that used for static problem. 

 
 The equation of motion is: 
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2

2 ( 2 )u f graddivu curlcurlu
t

ρ ρ λ μ μ∂
= + + −

∂

K K K K   (1) 

 
A point force is given by: 
 

  

2( ) ( ) ( )
4

( )
4 4

af Fa r h t Fh t
r

a aFh t graddiv curlcurl
r r

ρ δ
π

μ
π π

⎛ ⎞= = − ∇ ⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

KK K

K K    (2) 

 
We seek a solution in the form 
 
   p su graddivA curlcurlAμ= −

K KK      (3) 
 
Then, we obtain, 
 

   
2

2
2

( )( 2 )
4

p
p

AFh tA a
r t

λ μ ρ
π

∂
+ ∇ = +

∂

K
K K     (4) 

 

   
2

2
2

( )
4

s
s

AFh tA a
r t

μ ρ
π

∂
∇ = +

∂

KK K      (5) 

 
Putting   
 

p pA A a=
K K  and   s sA A a=

K K      (6) 
 

     
2

2
2 2

( ) 1
4 ( 2 )

p
p

p

AFh tA a
r v tπ λ μ

∂
∇ = +

+ ∂
K     (7) 

 

     
2

2
2 2

( ) 1
4

s
s

s

AFh tA a
r v tπμ

∂
∇ = +

∂
K      (8) 

 
where 
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   ( 2 ) /pv λ μ ρ= +     and     /sv μ ρ=   (9) 
 
are P- and S-wave velocities, respectively. 
 
 
Note that, the solution of an inhomogeneous scalar wave equation, 
 
 

  
2

2
2 2

1 ( , , , )( , , , ) ( , , , )x y z tx y z t g x y z t
c t

φφ ∂
∇ − = −

∂
  (10) 

 
is given by, 
 
 

   1 ( , , , / )( , , , )
4 V

g t R cx y z t d d d
R

ξ η ζφ ξ η ζ
π

±
= ∫  (11) 

 
where   2 2 2 2( ) ( ) ( )R x y zξ η ζ= − + − + −  
 

 
 
Using this relation, and carrying out the integration, 
we obtain 
 

 
0 0

1 1( , ) ( / ) ( )
4p p
FA r t h t r v d h t d

r r
ν ν ν ν ν ν

πρ

∞ ∞⎡ ⎤= ± ± − ±⎢ ⎥⎣ ⎦∫ ∫  (12) 
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0 0

1 1( , ) ( / ) ( )
4s s
FA r t h t r v d h t d

r r
ν ν ν ν ν ν

πρ

∞ ∞⎡ ⎤= ± ± − ±⎢ ⎥⎣ ⎦∫ ∫   (13) 

 
 
 
Then, for a unit force (F=1), 
 
 

2

2
0

( / )1 1 1( ( / ) ( / ))
4

j s
i p s ij

i j s

h t r vu h t r v h t r v dv
x x r v r

ν ν ν δ
πρ

∞⎧ ⎫±∂ ⎡ ⎤⎪ ⎪= ± ± − ± + +⎨ ⎬⎢ ⎥∂ ∂ ⎣ ⎦⎪ ⎪⎩ ⎭∫   

 
(14) 

 
 This solution gives both outgoing and converging waves.  For outgoing waves, we 
take the minus sign, and rewriting it   
 
 

2 1 /

2 2 2 2
/

1 1 1( ) ( / ) ( / )
4 4 4

s

p

r v
i j i jj

i p ij s
r vi j p s

x x x xru h t d h t r v h t r v
x x v r r v r r

ν ν ν δ
πρ πρ πρ

− ⎛ ⎞∂
= − + − + − −⎜ ⎟∂ ∂ ⎝ ⎠∫  

      
          (15) 
 

j
iu  is called Love tensor. 

 
 It is easy to show that if a δ  function force is applied at ( )1, 2, 3Q y y y at time τ , 

then the displacement at ( )1, 2, 3P x x x at time t is given by, 
 
 

2 1 /

2 2 2 2
/

1 1 1( ) ( / ) ( / )
4 4 4

s

p

r v
i j i jj

i p ij s
r vi j p s

x x x xru t d t r v t r v
x x v r r v r r

νδ τ ν ν δ τ δ δ τ
πρ πρ πρ

− ⎛ ⎞∂
= − − + − − + − − −⎜ ⎟∂ ∂ ⎝ ⎠∫  

 
          (15') 
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where   
 
    2 2( )i ir x y= −  
 
 The 2nd and the 3rd terms decay as 1/r and represent propagating P and S waves, 
respectively.  These terms are called far-field.  The first term decays as 21/ r , and 
represents displacement between P and S wave arrivals.  This term is called near-field. 
 
 The time history is schematically shown in the figure below. 
 

 
 
 
Reciprocity 
 

It is evident that   
 
    ( ; ) ( ; )j i

i ju t u tτ τ= . 
 
However, since t and τ  appear as t τ− , 
 
    ( ; ) ( ; )j j

i iu t u tτ τ≠  
 
but     
 

         ( ; ) ( ; )j j
i iu t u tτ τ= − −  

  
5.2.2  Force Couples 
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 The displacement field for single couples and double couples can be  
obtained by differentiating (15) with respect to appropriate coordinates.  
 
Qualitative Derivation 
 
 

For a point force F(t)  placed at Q, the displacement at P due to the 2nd or 3rd 
term is   
 
     ( ) /u F rτ∝  
 
where /t r vτ = −  (v: wave velocity).   
 

 
 
 
For a force at Q’ (short distance a  
away from Q), 
 
  ( / ) /( )F a v r aτ − +  
 
Then for a couple 
 

 2 2

( ) / ( / ) /( ) ( ) / (1/ )(1 / )( ( ) ( / ) ( ))
( ) / ( ) / ( ) / ( ) /

u F r F a v r a F r r a r F a v F
aF r aF rv M r M rv

τ τ τ τ τ

τ τ τ τ

′∝ − − + = − − −

′ ′= + = +
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The first term decays as 21/ r ; hence, at large r, we have ( ) /M rvτ′  which is called far 
field.  At short distance, the first term, 2( ) /M rτ , dominates, which is called near field. 

Recovering the term 2

1
4 vππ

, we obtain 

 
 

    2 2 3

( ) ( )
4 4

M Mu
v r v r
τ τ

πρ πρ
′

≈ +     (16) 

 
 The following figure illustrates the contributions of near-field and far-field 
displacements. 

 
  
 
 
 
 
 
 The actual displacement field is more complicated because we need to include the 
contribituion of the 1st term in (15') too.  However, at far field, the second term in (16) 
essentially gives the displacement field which propagates at either P or S wave. 
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 The figure below shows the near-field (+far-field) displacement observed for the 
1999 Chi-Chi, Taiwan earthquake. 
 
 
 

 
 
 
 
 
 
 
 
 
Elasto-dynamic theory 
 
 

Here, we consider only the far-field term.   If we place a double couple with a 
moment ( )M t  on 1 2x x−  plane as shown in the figure,  
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we have at large r (far-field), 
 

( )

2

1 2

1 2 2 1 1 2

1 2 ( / )
4

1 2 ( / )
4

s
i i p

p p

i i i s
s

vu M t r v
v r v

M t r v
v r

γ γ γ
πμ

γ γ γ γ δ γ δ
πμ

⎛ ⎞
′= −⎜ ⎟⎜ ⎟

⎝ ⎠

′+ − + + −

  (17) 

 
 
 
           
where    /i ix rγ = . 
 

If we take the polar coodinates ( , , )r θ φ , 
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 1 sin cosγ θ φ= ,   2 sin sinγ θ φ= ,   3 cosγ θ= , 
 
Then 
 
 

 

2

3

3

sin sin 2
1 ( / ) 0

4
0

0
1 ( / ) 1/ 2sin 2 2

4
sin cos 2

r

p
p

s
s

u
u M t r v

rv
u

M t r v sin
rv

θ

φ

θ φ

πρ

θ φ
πρ

θ φ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ′= − ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟′+ − ⎜ ⎟
⎜ ⎟
⎝ ⎠

    (17') 

 
 
Thr first term on RHS represents P wave and the second term, S wave. 
On 1 2x x− plane,   / 2θ π=  and 
 

   3

1 ( / )sin 2
4r p

p

u M t r v
rv

φ
πρ

′= −  

 
   0uθ =         (18) 
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   3

1 ( / ) cos 2
4 s

s

u M t r v
rvφ φ

πρ
′= −  

 
The amplitude distribution is sketched in the following figures. 
 
 

 
 
 
Note that the pattern (radiation pattern) is identical to that for the static case.  The 
amplitude ratio    
 

    
3

| max | 1
| max | 5

sr

p

vu
u vφ

⎛ ⎞
= ≈⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
Also the time history of the displacement is given by the time derivative of the moment 
time function.  It is also important that the amplitude decays as 1/ r  in contrast to 21/ r  
for the static field. 
 
 
5.2.3  Radiation from a Double-Couple Source 
 
 
 The attached four figures show the waveforms computed for the following: 
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Fig. 1 and Fig. 2 show the responses in a whole space (α=6 km/sec, β=3.5 km/sec, ρ=2.6 
g/cm3).  The "depth" is 10 km.  This means that the displacements are computed at a 
level 10 km above the source.  The mechanism is a N-S striking vertical strike slip with 
and the seismic moment is 1027 dyne-cm.  The source time function is a triangle with a 
rise-time of 0.2 sec and fall-off time of 0.2 sec. 
 
 
 
 
 
 
 
 
 
Fig. 1.  
 Station azimuth=90°.  The transverse components are shown at 20 km distance 
intervals.  P-wave arrivals are aligned. 
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Fig. 2. 
 Station azimuth=45°.  The vertical components are shown at 20 km distance 
intervals.  P-wave arrivals are aligned. 
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Fig. 3. and Fig. 4 show the responses in a southern California crustal model given below. 
 
 Thickness (km) α (km/sec) β (km/sec) ρ (g/cm3) 
 
 5.5   5.5  3.18  2.4 
 10.5   6.3  3.64  2.67 
 19.0   6.7  3.87  2.8 
    7.8  4.5  3.0 
 
 The depth is 11 km.  The mechanism is a vertical strike slip and the seismic 
moment is 1027 dyne-cm.  The source time function is a 1/2 cycle cosine with half-width 
of 0.2 sec. 
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Fig. 3.    Station azimuth = 90°.  The transverse components are shown at 20 km distance 
intervals.   
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Fig. 4. 
 Station azimuth =45°.  The vertical components are shown at 20 km distance 
intervals.   
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5.2.3   Elastic Dislocation      ----   Summary ---- 
 
 
 The equivalence between an elastic dislocation and a double couple shown for the 
static problem holds for the dynamic case, too.  A point dislocation given by ( )D t  over 
an infinitesimally small area is equivalent to a double couple with moment  
 
    ( ) ( )M t D t Sμ=  
 
Moment tensor, ( , )klM tξ

K
, can be defined in a similar manner. 

 
 The displacement due to a point double couple is given by 
 
   ,( , ) ( , )* ( , , )k l

i kl iu x t M t G x tξ ξ=
K KK K  

 

where  * denotes convolution (i.e., ( ) ( )* ( )h t f t g t=  means ( ) ( ) ( )h t f t g dτ τ τ
+∞

−∞
= −∫ ).  

In the frequency domain,  
 
   ,ˆˆˆ ( , ) ( , ) ( , , )k l

i kl iu x M G xω ξ ω ξ ω=
K KK K  

 
This is formally equivalent to the expression we obtained for the static case.  In practice, 
both the time-domain and the frequency-domain formulations are used for inversion.  The 
time-domain representation is most commonly used in body-wave inversion, and the 
frequency-domain representation is more commonly used in inversion studies of normal 
modes. 
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5.2.3   Elastic Dislocation  
 
1.  Equivalence Between Double Couple and Dislocations 
 
 The equivalence between elastic dislocation and a double couple we showed for 
the static case holds for the dynamic case.  In particular, the displacement field due to a 
point elastic dislocation D on S, can be computed with a double couple with a moment of 

0M DSμ= .  For a finite source, we use a distribution of double couples. 
 
 To prove this, we use the Volterra's theory (next section): 
 
 

  ( , ) ( , )k k
i ij ju y t d u x dSτ τ τ ν

+∞

−∞ Σ
= Δ∫ ∫K K     (1) 

 
where 
  

 , , ,

, , ,

( ; ) ( ( ; ) ( ; ))

( ; ) ( ( ; ) ( ; ))

k k k k
ij ij l l i j j i

k k k
ij l l i j j i

u t u t u t

u t u t u t

τ λδ τ μ τ τ

λδ τ μ τ τ

= − − + − − + − −

= + +
 

 
(by reciprocity).  k

ijτ is the i-j component of stress  at time τ−  on Σ   
due to a δ  function force applied in  k direction at Q at time -t.   
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 Thus, for a small planar dislocation d Σ  at  P which is perpendicular to the 2x   
axis, and on which 1u  , has discontinuity, 1( )u τΔ  
  

 
 
 

   1 12( , ) ( )k ku y t u d dτ τ τ
+∞

−∞
= Δ Σ∫K     (2) 

where 
 
  ,2 ,1

12 1,2 2,1 1 2( ( ; ) ( ; )) ( ( ; ) ( ; ))k k k k ku t u t u t u tτ μ τ τ μ τ τ= + = − +  
 



 323

It is easy to see that 12 /kτ μ  is the k th component of displacement at Q at time t due to a 
δ  function double couple applied at τ on 1 2x x−  plane. 
 
 Then it is clear from (2) that this dislocation is equivalent to a double couple of 
moment 1( )d uμ τΣΔ . 
 
2. Volterra's Dislocation Theory (Dynamic Case) 
 
 We use the same geometry and notation as those used for the static case. 
 
 The equations of motion for ui and  vi are  
 
   , ( , ) ( , ) ( , )ijpq p qj i ic u x t u x t f x tρ ρ− = −K K K��    (3) 
 
 
   , ( , ) ( , ) ( , )ijpq p qj i ic v x t v x t g x tρ ρ− = −K K K��    (4) 
 

0i if g= =   and ui = vi  = 0  for t< T−      (5) 
 
Define 
 
   ( , ) ( , )p pv x t v x t= −K K      (6) 
 
   ( , ) ( , )i ig x t g x t= −K K      (7) 
 
then 
 
  ( , ) ( , ) 0i pg x t v x t= =K K       for  t>T    (8) 
 
For pv  and  ig , we have, 
 
   , ( , ) ( , ) ( , )ijpq p qj i ic v x t v x t g x tρ ρ− = −K K K��    (9) 
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Forming (3) x iv    - (9) x ui and integrating it with t and V 
 
 

    ((3)x (9)x )i i
V

dt v u dV
+∞

−∞
−∫ ∫    (10) 

 
 
Using the symmetry relations for  cijpq   and the relation 
 

   ( )i i i i i i i iv u u v v u u v
t

∂
− = −

∂
� ��� ��  

 
We have from (10) 
 

       1

, ,( ) ( )

( )

ijpq i p q i p q j i i i i
S

i i i
V

dt dS c v u u v n dt v u u v
t

dt dV u g vfρ

+ −

+∞ +∞

−∞ +Σ +Σ −∞

+∞

−∞

∂⎡ ⎤− − −⎣ ⎦ ∂

= −

∫ ∫ ∫
∫ ∫

��
   (11) 

 
 
The second term of LHS vanishes because 
 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

i i i i i i i i

i i i i i i

dt v u u v v u u v
t

v u u v v u u v

+∞ +∞

−∞−∞

∂
− = −

∂
= +∞ +∞ − +∞ +∞ − −∞ −∞ + −∞ −∞ =

∫ � �� �

� �� �
 

 
(owing to (5)  and  (8) ). 
 
As in the static case, we introduce 
 
 0if = ,  and  1 1 2 2 3 3( , ) ( ) ( ) ( ) ( )i kig x t x y x y x y t sρ δ δ δ δ δ= − − − +K  
then, 
 
  1 1 2 2 3 3( , ) ( ) ( ) ( ) ( )i kig x t x y x y x y t sρ δ δ δ δ δ= − − − − +K  (12) 
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Substituting these into (11), 
 
 

  ( , ) ( , )k k
i ij ju y s dt u x t dSτ ν

+∞

−∞ Σ
= Δ∫ ∫K K     (13) 

 
where   , ( , )

ij

k
ijpq p qc v x tτ = K   is for ( , )ig x tρ K given by (12).  From the definition, 

ij

kτ  is the ij 
component of stress at time -t due to a δ function force applied in k direction at Q and at 
time -s.   
 
Changing s to t and t to τ  we have 
 
 

   ( , ) ( , )k k
i ij ju y t dt u x dSτ τ ν

+∞

−∞ Σ
= Δ∫ ∫K K    (14) 

 
 
 
This is the Volterra's relation used in (1). 
 
3.  Seismic Moment Tensor 
 
 In (14), the more explicit expression for 

ij

kτ  is 
 
 . .( ; ) ( , ; ) ( , )k k

ij ijpq p q ijpq p qt c u x t c u x tτ τ τ τ− − = − − = −K K  
 
 
Substituting this in (14), 
 
  

  .( , ) ( , ) ( , )k k
ijpq p q i ju y t d c u x t u x dSτ τ τ ν

+∞

−∞ Σ
= − Δ∫ ∫K K K   (15) 

 
For a point source ( 0dS d= Σ → ,  iuΔ → ∞ , with iu dΔ Σ = constant), 
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  .( , ) ( , ) ( , )k k
ijpq p q i ju y t d c u x t u x dτ τ τ ν

+∞

−∞
= − Δ Σ∫K K K   (16) 

 
Introducing pqM  by 
 
  ( , ) ( , )pq ijpq i jM x c u x dτ τ ν= Δ ΣK K     (17) 
 
we obtain, 
 

  .( , ) ( , ) ( , )k k
pq p qu y t M x u x t dτ τ τ

+∞

−∞
= −∫K K K    (18) 

 
pqM  is the seismic moment tensor. 

 
The above integral is convolution of pqM  and .

k
p qu . Hence taking the Fourier transform of 

this, we obtain, 
 
   .

ˆˆ ˆ( , ) ( , ) ( , )k k
pq p qu y M x u xω ω ω=K K K    (19) 

 
where ˆ ( , )ku y ωK  etc are the Fourier transform of ( , )ku y tK  etc, respectively. 
 
   
 
5.2.4 Stress Relaxation Model and Cracks (Dynamic Case) 
 
1.  Description of the Problem 
 
 Consider an elastic medium which is in equilibrium under stress.  Consider an  
open surface S.  For simplicity, assume that the shear stress on this surface is  
uniform and 0σ .  At time t = 0 relax the stress on this surface from 0σ  to 1σ . Then  
the static stress drop is 0 1sσ σ σΔ = − .   
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As discussed earlier, the resulting average dislocation D  and σΔ are related by 

 
     /s c D aσ μΔ =    (1) 
 
where a is the representative dimension of the crack and c is a non-dimensional "shape 
factor" which is of the order of 1.  Thus, if we plot D  as a function of time, it would look 
like the curve shown below.   
 
 

 
 
 
 

For t<0  D =0. At  t = 0 when the stress is relaxed the side of the crack starts 
moving.  After time τ , the medium is in another equilibrium state in which dislocation 
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/sD a cσ μ= Δ  
is produced.   

The behavior between t = 0 and t τ=  depends on how stress is relaxed on S.  If 
stress relaxation takes place smoothly, the change in D  may be also relatively smooth.  
The time constant τ  depends on 0σ  and σΔ .  To solve this problem rigorously using 
elasto-dynamics is  difficult.  In most cases no analytic solution is available, and we have 
to resort to numerical  methods. 
 
 
2.  Qualitative Analysis of the Problem 
 
Infinite Instantaneous Crack 
 
 First let us consider the simplest case.  Consider an infinite homogeneous elastic  
medium under uniform shear stress 0σ .  At time t = 0, relax this stress over an infinite 
plane S  (parallel to the applied shear stress ) instantaneously.  In order to see the  
displacement for t ≥ 0 this problem can be replaced by the following problem. 
 
 Consider an homogeneous half space bounded by a plane S. 
 

 
 
Apply a uniform shear stress 0σ  at t = 0 over the entire surface of S instantaneously.  
This is equivalent to relaxing the uniform shear stress 0σ over S in an infinite medium. 
Then at time t, the point P on S will be moved to P'.  Let this displacement be u(t). 
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 The disturbance applied to the surface propagates into the medium with shear 
velocity β .  At time t, it propagates as far as tβ .  Thus, the instantaneous strain is  
 
    ( ) /u t tε β=     
 
Since this is caused by the applied shear stress 0σ , 
 
    0 ( ) /u t tσ με μ β= =  
∴ 
    0( ) ( / )u t tσ μ β=     (2) 
 
This gives the displacement for infinite instantaneous crack.  From (2) 
  
    0( ) ( / ) constantu t σ μ β= =�    (3) 
 
Note that the particle velocity is proportional to the initial stress, 0σ . 
 
 

 
 
 This problem can be solved analytically. 
The equation of motion for   x>0  is  
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2 2

2 2 2

1u u
x tβ

∂ ∂
=

∂ ∂
    (4) 

 
The solution is ( ) ( )u z F z=   where  z x tβ= − . 
 
 The boundary condition at x=0 is   
 
 

    0 0u
x

μ σ∂
+ =

∂
 ,       t>0 

 
∴               0( )F zμ σ′ = −  ,          0 0( ) / ( / )( )F z z x tσ μ σ μ β= − = − −  
 
∴  0( / )( )u t xσ μ β= −  ,               /t x β>  
 
which gives (2). 
 
 
3. Finite Instantaneous Crack 
 
 
 Next let us consider a strike-slip crack shown in the figure.   
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At  t = 0, uniform shear stress 0σ  is applied in 3x  direction instantaneously over a surface 
( 2 0x = ,  1| |x a≤ ).  Let us consider the displacement at point O, the middle point of the 
crack.  For small t (before the effect of the edge reaches this point), the displacement of 
this point should be the same as for infinite crack.  Thus, the initial velocity should be 
given by 0 /σ β μ .  The effect of the edge arrives at this point at time /t a β= , and 
eventually the motion stops when a final equilibrium state is achieved.  This is given by 
the solution of the static problem, i.e., 0 /u aσ μ= .  Hence, the displacement time 
function may be schematically given by the following figure. 
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One useful functional form which approximates this function is 
 
    0( ) ( / )(1 exp( / ))u t a t aσ μ β= − −    (5) 
 
 This problem can be solved numerically.  The equation of motion in the medium 
is  
 

     
2 2

2 2 2
1

1 u u
t xβ

∂ ∂
=

∂ ∂
     (6) 

 
and the boundary condition is 
 

   0
2

0u
x

μ σ∂
+ =

∂
 ( 2 0x = , 1| |x a≤ ,  t>0)  (7) 

 
The numerical solution is shown in the figure below and the displacement at the middle 
point is compared with the approximate solution given above.  Note that the numerical 
solution shows a slight overshoot. 
 

  
(Burridge, R., Phil. Trans. Roy. Soc. London, 265, 353-381, 1969) 
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4. Finite Propagating Crack 
 
 Let us consider the same geometry as before.   Instead of applying the stress 
instantaneously, we apply a propagating stress,  
 
    0 1( / )H t x Vσ σ= ± ,    1| |x a≤    (8) 
   
where H(t) is the Heaviside step function and V is the rupture velocity.  V is usually 
slightly smaller than β .  In this case, the final value of u is the same as before.  
However, the point O starts feeling the edge effect even in the beginning, because at t = 
0, the two edges are very close to this point.  Thus, the motion is decelerated  compared 
with the previous example.  The effect of the edge 1| |x a= will reach the point O at time 

( )1/ 1/ 2 /a V aβ β+ ≈ after the stress application.  Thus, the average velocity would be  
 
 

    0
0

/ / 2
2 /

au
a

σ μ σ β μ
β

≈ ≈�     (9) 

 
 
The schematic displacement time function may look like the one shown in the figure.  
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A useful functional form would be 
 
    0( ) ( / )(1 exp( / 2 ))u t a t aσ μ β= − −    (10) 
 
 A result of numerical computation is shown in figure below (this is  
computed for a slightly different geometry).  Note that, in this case there is no overshoot  
and that the agreement with (10) is very good. 

 
(Hanson, M. E., A. R. Sanford, and R. J. Shaffer, J. Geophys. Res., 76, 

3375-3383, 1971) 
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 The above description, however, is very simplified. In a real propagating crack, 
the initial velocity could be faster than 0 / 2σ β μ  due to the stress concentration near the 
crack tip.  Equation (10)  should be considered only approximate. 
 
5.  Comparison with the data 
 
 Regardless of all the details, the particle-motion velocity is governed by the 
relation, 
 
     0 /u σ β μ≈�  
 
If  0σ =100 bar, β =3 km/sec, and μ =3x1011 dyne/cm2, then  
 
     u ≈� 1 m/sec 
 
 The observation of u�  is difficult because of the complexity of faulting and the 
propagation effects, but the ground-motion velocity observed very close to a fault can be 
used as a good proxy of u�  at least approximately.   The following figure shows several 
examples of observed ground-motion velocity very close to the source.  This comparison 
suggests that the above estimates are approximately correct, i.e., the magnitude of the 
driving stress is of the order of about 100 bar.  However, the result from the 1999 Chi-
Chi, Taiwan, earthquake stands out, suggesting that ground-motion velocity significantly 
larger than 1 m/sec can occur under certain conditions. 
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6.  Frictional Stress Release 
 
 In actual earthquake faulting, the stress on the fault plane is released against 
frictional stress fσ opposing the motion.   
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It is also possible that, at a certain time, say 0τ , the fault motion slows down due 
to some locking mechanism.  In this case, the time history of the stress drop on the fault 
surface may be schematically given by the curve shown in the figure above.   
 
 Actual stress release pattern can be very complex as shown by figure (b) below. 
 

 
  (a)     (b) 

 
 Since the details of the stress release are presently unknown, it is not meaningful 
to consider overly detailed models.  
 
 If the stress release is simple as shown on the left, then the fault motion  
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is driven by 0 0e fσ σ σ= −  ( fσ = 1σ ) which is called the effective (tectonic) stress.   
The particle velocity of the side of the crack (fault) will be given by 0 /eσ β μ  or 

0 / 2eσ β μ  depending upon whether the stress application is instantaneous or not  
(or in general 0 /ecσ β μ , c=constant). 
 
 Thus, if we can determine the approximate time function of the source dislocation 
function, we can determine the effective tectonic stress 0eσ  from the initial slope and the 
stress drop sσΔ  from the final dislocation (static field).  
 
 It is important to note that since only 0eσ  and sσΔ  appear in these expressions 
we cannot determine the actual tectonic stresses 0σ  and 1σ  , and the frictional stress, fσ , 
by seismological methods alone. 
 
 
7. Static Stress Drop and Dynamic Stress Drop 
 
 Referring to the figure shown above, the static stress drop of an earthquake, sσΔ , 
is defined by 
 
    0 1sσ σ σΔ = −      (11) 
 
where 0σ  and 1σ  are the initial and the final stresses, respectively.  This definition is 
straightforward and unambiguous. 
 The dynamic stress drop, dσΔ , is the stress that drives fault motion.  
Unfortunately, the definition of dynamic stress drop is not universal, and is  
ambiguous.  For the simplest stress release pattern shown by figure (a) above, it is the 
same as the effective tectonic stress and is equal to the static stress drop, i e., 
 
   0 0 0 1( ) ( )d e f sσ σ σ σ σ σ σΔ = = − = Δ = −   (12) 
 
 In this case, the dynamic stress drop is unambiguous.  
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 However, for more complex stress release patterns in which friction changes as a 
function of slip as shown by figure (b) above, we can define dσΔ  by  
 
     0d fσ σ σΔ = −    (13) 
 
where 

     
0

1 D

f f ds
D

σ σ= ∫    (14) 

 
(s: slip). 
 
 This definition is similar to (12 ) and reasonable.   In general, f sσ σ≠ Δ .  Thus, it 
is important to distinguish dσΔ  and sσΔ . 
 
  
 
Ge 162  Practice Session 6,   Retrieval of Source Parameters 
 
 Figure 1 shows the ground-motion displacement, ( )U t , of the Jan. 26, 2001, 
Bhuj, India, earthquake recorded at ESK (Eskdalemuir) in Scotland.   
 

Estimate the seismic moment 0M , and the approximate duration of the source (as 
viewed from ESK).  It is also possible to constrain the depth, H, but, for simplicity, we 
fix H, except in the last step where the effect of H on the waveform will be examined. 
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        Fig.  1 
 

The following is the general principle. 
 
1)  Waveform in the whole space. 
 
 As discussed in class, the far-field waveform in the Haskell model can be 
approximated by a trapezoidal function  
 
    0( ; , )cT t tτ     (1) 
 
where 0τ  and ct  are the two time constants of the source.  The area under 0( ; , )cT t tτ  is 
unity.   Then, the P-wave form in a whole space is given by 
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   0
1 03( ) ( / ; , )

4 c

M R
u t T t r t

r
θφ α τ

πρ α
= −   (2) 

 
2)  The source and receiver effects and the geometrical spreading. 
 
 In the real earth, the structure near the source and the receiver complicates the 
wave form.   Here, we use a simple half space.  Then, we need to include the near-source 
reflections pP ans sP, and the effect of the free surface near the station.  Here, the near-
source effect is approximated by  
 
   1 1 2 2( ) ( ) ( ) ( )SC t t a t t a t tδ δ δ= + − + −   (3) 
 
The first, second, and third terms represent, the direct P, pP, and sP, respectively. 1a , 2a , 

1t , and 2t  depend on the radiation pattern, the depth, and the structure.  In particular, 
changing the depth has a large effect on the waveform. 
 
 The receiver effect is simply given by a scalar factor, RC .  (For SH wave, RC =2.) 
 
 The geometrical spreading factor is also simplified by a scalar factor g, and 1/r in 
(2) is replaced by g/ ER  where ER  is the radius of Earth. 
 
 Including these, the wave form is now modified to,  
 

    2 1( ) ( )* ( )R S
E

rgu t C u t C t
R

=   (4)  

 
 Even for this simplified problem, computation of (4) is not that simple because of 
the complexity of 1 1 2 2( ) 1 ( ) ( )SC t a t t a t tδ δ= + − + − .  A simple program pwsyn2g_asc.f is 
provided in /home/ftp/pub/hiroo/ge162.dir/practice_6.dir.  The output of this program is 

2 ( )u t . 
 Run this program for various 0τ , ct , and the depth H.. The constants, 1a , 2a , 1t , 
and 2t  are computed in the program from the fault parameters and the depth.  This 
program computes the displacement in cm for a unit moment ( 0M =1020 N-m). 
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(Another program pwsyn2g.f which does the same and outputs the results in SAC format 
is also provided.) 
 
 
 
 
 
 
 
3) Observed Waveform 
 
 To simulate the observed waveform at the station, we need to add the effects of 
attenuation.  The attenuation function, F(t; t*), for * 1sect = is shown in Figures 2, and the 
file is in practice_6.dir (o_futtm.asc (ASCII file) and o_futtm (SAC file)).  
 
  

   
 
           Fig. 2 
      
 
 The synthetic ground-motion displacement can be computed by  
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    3 2( ) ( ) ( )u t u t F t= ∗    (5) 
 
This can be directly compared with the observed record, ( )U t , shown in Figure 1. 
 
 
4) Determination of 0M  
 
 Once the waveforms are matched satisfactorily, the amplitude ratio of the 
observed waveform  
 

     
3

amplitude( ( ))
amplitude( ( ))

U t
u t

 

 
gives the seismic moment, 0M , of the earthquake in the unit of 1020 N-m. 

Since many approximations have been made, the waveforms cannot be matched 
completely, but try to match the overall waveform and the amplitude of the first 1 cycle. 

 
Here, we use only one station, and the mechanism (i.e., radiation pattern) is 

assumed.  However, if we have more than one station, we can determine the mechanism 
by matching the amplitudes at different stations with the same 0M . 

 
 In general, matching the displacement record is much easier than matching the 
velocity record, ( )V t , shown in Figure 3, because high-frequency components which are 
harder to model have been removed in the displacement record.  
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         Fig. 3 
 
 
The relevant parameters needed for the computation are in the following. 
 

Bhuj, India, Earthquake 
 

O.T.  03:16:41.0,    1/26/2001 
Lat. 23.40°, Long. 70.32°,  Depth (H), 10-40 km 
Dip(δ )= 64°,  rake( λ )=60°, strike( fφ )=66° 

 
 
 
 
Eskdalemuir 
 

Lat.=55.3167°,  Long.=3.2050°,  Elevation=242m 
Epicentral Distance ( Δ )=61°,  Azimuth=321°, Takeoff Angle (ih)=18° 
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Source Crustal Structure (Half Space) 
 

α =6.0 km/sec, β =3.46 km/sec, ρ =2.67 g/cm3 
 
For the mechanism and the takeoff angle given above, the radiation pattern factor for P-
wave at the source 
 

Rθφ =0.914   (this is computed in the program) 
 
Geometrical spreading factor computed for a standard Earth model 
 

g =0.35      
 
 
 
 
Steps for Practice 
 
1.  Compute 2 ( )u t for  
 
 H=10 km,  0τ =8 sec,  ct =12 sec 
 
using pwsyn2g_asc.f.   Plot, o_Pamp.asc (direct P wave), o_pPamp.asc (pP wave), 
o_sPamp.asc (sP wave), and o_Ptotalamp.asc (sum of all).  These are ASCII files with 
simple 2-column t vs. 2 ( )u t data. 
 
 Observe, how P, pP and sP phases interact.  Note that the far-field waveform in a 
whole space discussed in class should be a one-sided pulse, while the observed ( )U t  is 
two sided.  The interaction between these phases is the primary reason why the observed 
displacement is two-sided. 
 
2.  Convolve o_Ptotalamp.asc with F(t; t*=1 sec) to compute 3( )u t .  Program convg3m.f  
is provided, but you may want to write a simple program for convolution.* 
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3.  Compare 3( )u t  with ( )U t  to determine 0M .  The starting time is arbitrary so that you 
can shift the waveform arbitrarily in comparison. 
 
4. Try 1, 2, and 3, for different combinations of 0τ ,  and ct  (fix H) and find the best 
solution. 
 
5. Compute 3( )u t using a source time function shown below, and compare it with ( )U t .  
Vary H from 5 to 35 km, and see the difference in the synthetic waveforms. (This source 
time function is not a trapezoid, which means that the source model is different from the 
Haskell model.) 
 
Suggested source time function 
 
0.0 sec    0.0 
2.0          0.0 
4.0          0.2 
8.0          1.0 
22.0        0.0 
100.0      0.0 
 
6. (Optional) 
 
 Compute the velocity [ ]3 3 1 3( ) ( ) ( ) /i i iv t u t u t t+= − Δ  for the best model, and 
compare it with V(t). 
 
 
 
 
Explanation of the Programs 
 
pwsyn2g.f  
 
pwsyn2g.f takes input file i_pwsyn2g.  Only the parameters in bald face need to be 
changed.  (do not change c_pwsyn2g.) 
 
i_pwsyn2g 
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line 1 station id 
 
line 2   rho, α,  dt, *, *, * (density in g/cm3, P-velocity in km/s(S-

velocity is assumed to be α/1.732), dt of data (0.05 sec for VBB) 
 
line 3  fif,  dip,  rake (fault strike, dip and rake) 
 
line 4  ih,  fis,  H(depth),  g, * (take-off angle, station azimuth, 

depth, g factor) 
 
line 5  flag for the choice of source time function (do not change) 
 
line 6  nt (# of points where time function is defined_ 
 
line 7   t1,  y(t1)  (time, amplitude (amplitude is arbitrary; the 

amplitude is eventually normalized in the program.) 
 
line 8   t2,  y(t2) 
 
  etc 
 
Example 
 
ESK 
2.67      6.0       0.05       0.01       0.01       0.01  
66.       64.       60. 
18.       321.      10.       0.35      1.0      
    1 
    6 
0.0       0.0 
2.0       0.0 
10.0      1.0 
14.0      1.0 
22.0      0.0 
100.0     0.0  
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The output file o_pwsyn2g contains the parameters used and other computed parameters. 
 
 
Output files o_Pamp.asc, o_pPamp.asc,  o_sPamp.asc, and o_Ptotalamp.asc contain the 
time series for P, pP, sP, and the sum in ASCII format.   
 
 
 
 
 
 
 
 
 
 
 
 
 
convg3m.f 
 
 This program computes convolution of ( )x t and ( )y t .  The result is 

( ) ( ) ( )z t x t y t= ∗ . 

 
i_convg3m 
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line 1       file name of ( )x t  
line 2       file name of ( )y t  
line 3       file name of ( )z t  
 
Example 
 
i_convg3m 
 
o_Ptotalamp.asc 
o_futtm.asc 
o_Ptotalamp_q.asc 
 
 
 
* convolution of ( 1, 2, , )ix i l=  and ( 1,2, , )jy j m= is  
 

   
1

l

k i k i
i

z x y t−
=

⎛ ⎞= Δ⎜ ⎟
⎝ ⎠
∑       1, 2, ,k l m= +  

(if 0k i− ≤ , then k iy − =0) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Ge 162 
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6. Retrieval of Seismic Source Parameters 
 
6.1 Far Field Body Waves 
 
1.  Introduction 
 
 Far-field body waves are widely used to determine the source mechanism (fault 
plane solution), seismic moment, and rupture patterns (complexity). The method is 
conceptually simple, but the actual procedure involves many steps. These steps include 
the calculation of the following:  
 
1. Source time function (Dislocation time history) 
2. Source finiteness function (rupture function), 0( ; , )cT t tτ  
3. Radiation pattern, R   
4. Response of source and receiver structures, ( )SC t and ( )RC t   
5. Geometrical spreading function, ( , )g hΔ  
6. Attenuation (Q operator), ( )q t  
7. Instrument response, ( )I t  
 
 
 The displacement at far-field is then given by,  
 
 

0
03

( , )( , ) ( ; , )* ( )* ( )* ( )* ( )
4 c S R

c E

M Rg hu t T t t C t C t q t I t
v R

τ
πρ

Δ
Δ =  

 
where 0M  is the seismic moment, ρ  is the density, cv  is P- or S-wave velocity, and ER  
is the radius of Earth. 
 

These steps are described in detail in the following. 
 

2. Radiation Pattern from a Point Double Couple 
 
 The radiation pattern from a point double couple has been already given with 
respect to the coordinates fixed to the double couple. 
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 For actual applications it is convenient to express the radiation pattern by using a 
geographical coordinate system.  For a fault model shown in the figure, the displacement 
at point P can be given by: 
 
 
 
 
 

 
 
 

  

   3

1( , ) ( / )
4

P
ru r t R M t r

r
α

πρ α
= −�    

(1) 

   3

1( , ) ( / )
4

u r t R M t r
r

θ
θ β

πρ β
= −�    

(2) 
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   3

1( , ) ( / )
4

u r t R M t r
r

φ
φ β

πρ β
= −�    

(3) 

 
where 
   2 2(3cos 1) sin 2 sinP

R h R h R hR s i q i p i= − − −   (4) 

   3 1sin 2 cos 2 sin 2
2 2R h R h R hR s i q i p iθ = + +   (5) 

   cos sinL h L hR q i p iφ = − −     (6) 
   (cos cos )sin (sin cos 2 )cosLq λ δ φ λ δ φ= − +  (7) 
   (sin sin cos )sin 2 (cos sin )cos 2Lp λ δ δ φ λ δ φ= +  (8) 
   sin sin cosRs λ δ δ=      (9) 
   sin cos 2 sin cos cos cosRq λ δ φ λ δ φ= +   (10) 
   cos sin sin 2 sin sin cos cos 2Rp λ δ φ λ δ δ φ= −  (11) 
 
 If the azimuth of the fault strike ( 1x  axis) fφ  and  the azimuth of the station (point 
P)  sφ  are measured  clockwise from N,  then φ   (measured counter-clockwise from 1ξ  
axis) in the above formula should be given by 
 
     f sφ φ φ= −     (12)           
 

                                                               
 
 By using (1) to (12) we can compute the far-field  displacements of body waves 
from a fault of arbitrary geometry.  The station coordinates are given by ( , , )hr i φ  rather 
than the conventional ( , , )r θ φ . 
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3.  Source Finiteness-- Haskell Model 
 
 One of the useful kinematic source models is the Haskell(1964) model. In this 
model, a seismic source is represented by a rectangular fault with length L and width W.  
The dislocation (fault offset), D, on the fault plane is uniform in space, and its temporal 
variation is given by a linear ramp function with a rise time 0τ .  

The rupture propagation is assumed instantaneous in the width direction.  
Lengthwise, the rupture propagates from one end of the fault to the other with a  
uniform rupture speed V. In this sense, the rupture propagation is one-dimensional 
unilateral. 
 
 

 
 
 
 Assume that the rupture propagates from A to B over a length L.  If the seismic 
moment per unit fault length is m, the moment  per line element dl is mdl.   
 
 

 
 
 
 
The far-field time function due to this line element is given by a box-car function of 
width 0τ  and height 0/mdl τ .   
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If AP is very large compared with AB, the displacement at P (station) can be given by  
 

   3

cos
4 c c c

R r l lmdls t
rv v V vπρ

⎛ ⎞Θ
− − +⎜ ⎟

⎝ ⎠
 

 
where r = AP, vc is either P or S wave velocity, R, the radiation pattern and V is the 
rupture velocity.  s(t) is defined above, and is called the local dislocation rate function.  
Therefore, for a source propagating from A to B, we have 
 

  3
0

cos( , )
4

L

c c c

R r l lu r t m s t dl
rv v V vπρ

⎛ ⎞Θ
= − − +⎜ ⎟

⎝ ⎠∫   (13) 

 
Introducing the following variables, 
 

/ ct r vτ = − ,  / cos /c ct L V L v= − Θ ,  1 /ct lt L= ,  1 / cdl Ldt t=   (14) 
 
we obtain, 
 

  ( )0
1 13

0
( , )

4

ct

c c

MRu r s t dt
rv t

τ τ
πρ

= −∫     (15) 

 
where 0M mL=  is the total seismic moment. 
 Introducing a function  1( )r t , as shown in the figure, 
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we obtain 
 

  
( )

( )

0
1 1 13

0

0
1 1 13

( , ) ( )
4

( )
4

ct

c

c

RMu r r t s t dt
rv

RM r t s t dt
rv

τ τ
πρ

τ
πρ

+∞

−∞

= −

= −

∫
∫

    (16)

 

 
which is convolution of r(t) and s(t).   r(t) is called the rupture function. 
 

 
 
 The above convolution yields a trapezoidal function 1, 2( ; )T t t t  
given by the following figure. 
 

 
 
Note that 
 

  
1 2

1 2 1 2
0

( ; , ) ( ; , ) 1
t t

T t t t dt T t t t dt
+∞ +

−∞
= =∫ ∫    (17) 

if t1 > t2 
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Thus, the pulse width at the station in the azimuth Θ  is 
 

    0( ) cos
c

L Lw
V v

τΘ = + − Θ    (18) 

 
If 0τ  is small, the pulse shape at Θ = 0, Θ = π /2 and Θ  = π  may be schematically 
shown by the following figure. 
 
 

.  
 
Note that S is always equal to 1. 
 
 The amplitude spectrum of 0( ; , )cT t tτ  is given by  
 

   0
0

0

sin( / 2) sin( / 2)ˆ( ; , )
( / 2) ( / 2)

c
c

c

tT t
t

ωτ ωω τ
ωτ ω

=    (19) 

 
Note: 
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 In applying the above results to body-wave radiation in the real earth, another 
factor needs to be considered. For example, if AB is horizontal, we let the take-off angle 
of the ray be hi ,  and the azimuth of the station from AB measured on the earth’s surface 
be Θ .  Then  the phase velocity along the Earth’s surface is / sinc hv i .  Then  we replace 

/ cr v  and cv  in the argument of s(t) by T and / sinc hv i  respectively, where T is the travel 
time.  Hence we have, instead of (14) and (15), 
 

    ( )0
1 13

0
( , )

4

ct

c c

RMu r s t dt
rv t

τ τ
πρ

= −∫   (20) 

where, 
 
   t Tτ = − ,  and  / cos sin /c h ct L V L i v= − Θ   (21) 
 
 
 
 
 
 For example, directivity observed for the 1999 Landers earthquake is illustrated in 
the following figure. 
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Directivity has strong influence on the distribution of strong ground motion as 

shown for the 1994 Northridge earthquake. 
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4. Response Function at the Source and Receiver 
 
 If the source is shallow, the reflections from the free surface (and other structures) 
complicates the source wave as shown by the following figure. 
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 A similar situation occurs near the station too.  These effects are usually included 
as the source and receiver response functions. 
 
 
 
5.  Geometrical Spreading of Body-Wave Energy 
 
5.1 Energy Density and Energy Flux 
 
 In an elastic medium with density ρ ,  the elastic energy per unit volume is given 
by 
     2uε ρ= �     (22) 

 
where u is the displacement and u�  is the particle velocity. 
 Consider a plane wave propagating in x direction with velocity v.  
Then, the energy flux per uinit area per unit time is given by 
 
     2

E u vφ ρ= �     (23) 
 

    
5.2.  Radiated Energy from a Source 
 
 Consider an elastic wave radiating from a double couple source at O.   
Consider a small sphere with radius r  around O. 
 
 Then elastic wave energy emitted per unit time from the source  within a ring 
defined by hi  and h hi di+ is 
 
   22 sinR E h h h hE R i rdi u vπ ρ= �      (24) 
 
where ER  is the radius of the Earth, and  
 

    34
P

c

Mu R
rvπρ

=
�
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Here the subscript h signifies the values of the variables at the source, and PR  is the 
radiation pattern. 
 
 
5.3   Energy arriving at station P 
 
 From the figure above, the energy arriving at station P (per unit time, per unit area 
of wave front) is 
 
     2

0 0 0u vρ �      (25) 
 
where subscript 0 signifies the value of the variables at the station. 
 
 5.4.  Geometrical Spreading Factor ( , )g hΔ / ER  
 
 Since the total energy emitted in a ring defined by hi  and h hi di+  arrives in a ring 
defined by Δ and dΔ + Δ ,  we obtain from (23), (24), and (25), 
 

 2
0 0 0 0cos 2 sinE E RR d i R u v Eπ ρΔ Δ =�     (26) 

 
 from which we obtain  

   0 3 3
0 0 0

sin1 1 ( , )
4 sin cos 4

P P
h h h h

h h E h h E

v i diMR MRu g h
v R v i d v R

ρ
πρ ρ πρ

= = Δ
Δ Δ

� �
    (27) 

where 

    
0 0 0

sin( , )
sin cos

h h h hv i dig h
v i d
ρ

ρ
Δ =

Δ Δ
      (28) 

 
( , ) / Eg h RΔ  is called the geometrical spreading factor. 

 
 
6.  Effect of Anelasticity 
 



 364

 Usually, the anelasticity of the medium is given in terms of quality factor Q.  If 
we write the quality factor of P and S waves by Qα  and Qβ , the amplitude attenuation of 
P and S waves of angular frequency ω  during the propagation can be given by 
 
 

    
exp −

ω
2

ds
Qα α∫

⎛

⎝
⎜

⎞

⎠
⎟

,  
and 

  
exp −

ω
2

ds
Qββ∫

⎛

⎝
⎜

⎞

⎠
⎟

  (29) 
 
where the integral is taken along the ray path.  Since Qα  and Qβ  are functions of depth 
and therefore of the path length, s, we may write these 
 
 

   *exp
2

tα
ω⎛ ⎞−⎜ ⎟

⎝ ⎠
,  and   *exp

2
tβ

ω⎛ ⎞−⎜ ⎟
⎝ ⎠

   (30) 

 
where  
 

   * dst
Qα

αα
= ∫  ,  and  * dst

Qβ
β β

= ∫    (31) 

 
Empirically,  *tα  and *tβ  do not vary significantly with the distance, and  *tα = 0.5 to 1 sec  

and  *tβ = 3 to 4 sec for distance ranges Δ > 35 degrees. 
 
 In order to maintain causality of P and S pulses, the phase spectrum needs to be 
modified too. 
 In time domain, we can represent the effect of attenuation by “Futterman Q 
operator”  
 

   *( ; )q t tα   and    *( ; )q t tβ    (32) 
 
These functions are shown below for *tα =1 sec and *tβ =4 sec. 

 
 



 365

 

 
 

7. Instrument Response 
 
 Since seismographs have their own frequency response, they modify the 
waveforms.  In the following, the impulse response of the VBB and WWSSN-LP 
instruments are shown. 
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8. Simplified Expressions for a Point Source 
 
 
 The following simplified expressions are not exact, but are useful for understanding 
the basic principles for retrieval of source parameters. 
 
 
8.1   Retrieval of Seismic Moment 0M  
 
 We approximate a finite source by a point source with a moment rate function 

0 ( )M t� .   The area under 0 ( )M t�  is the seismic moment 0M  and the width of 0 ( )M t� is 
approximately equal to the rupture time 0 /L Vτ = �  where L�  is the length scale of the 
source and V  is the rupture speed. 
 
 In the following, we use the vertical component of P wave for illustration purposes.  
We assume that the observed seismogram has been corrected for the instrument, I(t), 
attenuation, q(t), and the response of the source strucuture, ( )SC t , and the response of the 
receiver structure is given by a scalar RC .  Then, from the first equation in this section, 
we can write the vertical component of P wave, ( )pu t , as 
 

     0
3

( )( )
4p R

h h E

M t R gu t C
Rπρ α

=
�

    (33) 

 
From which,  
 
 

     
3

0
4( ) ( )h h E

p
R

RM t u t
RgC

πρ α
=�     (34) 

 
Integrating,  
 
 

     
3

0
0

4 ( )
p

h h E
p

R

RM u t dt
RgC

τπρ α
= ∫     (35) 
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where pτ  is the duration of the P wave record. 
 
 Using (35), we can estimate 0M  from seismograms.   
 
 
 
 
8.2   Determination of Radiated Energy from P waves. 
 
 
 Since S waves are severely attenuated during propagation to teleseismic distances, 
we usually use P waves to estimate the radiated energy in P waves, Eα , and then estimate 
the total radiated energy, RE .  If we consider a small sphere around the source, and write 
the P wave on the spherical surface by ( )pU t , the total energy radiated by P waves is 
given by, 
 
 

   

2
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0 0

2 2
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 (36) 

 
 
 
Substituting (34),  
 
 

    
2

2
2 2

0

16 1 1 ( )
15

p
E

h h p
R

RE u t dt
g R C

τ

α
π ρ α

⎛ ⎞
= ⎜ ⎟

⎝ ⎠ ∫ �    (37) 

 
where  
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     2 2
2

1 4
4 15S

R dS R
rπ

≡ =∫     (38) 

 
for P waves is used. 
 
 
 Using (37), we can estimate Eα  from the observed record at a station.   For a point 
source, we can show that  
 
 

      
5

3 23
2

E E Eβ α α
α
β

⎛ ⎞
= ≈⎜ ⎟

⎝ ⎠
   (39) 

 
and 
 
 
      24RE E E Eα β α= + =     (40) 
    
Ge 162 Problem #8   Interpretation of Far-field Body Wave 
 

Figure 1 shows the P-wave seismograms (WWSSN long-period response) 
observed for the May 2, 1983 Coalinga, California, earthquake. The numbers attached to 
each seismogram is the amplitude. 
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        Fig. 1 
 
In order to determine the source parameters (seismic moment, source duration), 

we must remove the effects of  
 
 
1. Radiation pattern, R   
2. Response of source and receiver structures, ( )SC t and ( )RC t   
3. Geometrical spreading, ( , )g hΔ  
4. Attenuation (Q operator), ( )q t  
5. Instrument response, ( )I t  
 
 
 Fortunately, Hartzell and Heaton (1983) have removed all of these effects, and 
obtained a trapezoidal displacement at point P, as shown in Figure 2. 
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 As we discussed in class, the displacement ( , )u r t  at far-field due to a Haskell 
type source is given by  
 

Fig. 2

Fig. 3 
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( )0 0
1 1 1 03 3( , ) ( ) ( ; , )

4 4 c
c c

RM RMu r r t s t dt T t
rv rv

τ τ τ τ
πρ πρ

+∞

−∞
= − =∫   (1) 

 
where ρ  is the density, cv  is P- or S-wave velocity, 0M  is the seismic moment, and 

/ ct r vτ = − .  Note that the amplitude of 0( ; , )cT tτ τ  is 1/ ct , and the area under it is 1. ct  is 
given by  
 
 

    cos
c

c

L Lt
V v

Θ
= −  

 
where Θ  is the angle between the rupture direction and the ray. 
 
1. Check the dimension of the right-hand-side of equation (1) to make sure that it is the 
dimension of "length". 

 
 

 
2. We assume that the medium is homogeneous with α = 6 km/sec, β =3.5 km/sec and 
ρ =2.6 g/cm3, and the radiation pattern R is equal to 1.  We also assume that the fault 
plane AB and P are on the same plane.  The take-off angle of the ray to P is 30 degrees 
(note that this is different from Θ ), and the distance is r=1000 km.  The rupture 
propagation is assumed to be one dimensional unilateral (A to B) with a rupture speed 
V=2.5 km/sec. 
 
(1) Determine the rise time 0τ  and ct  from Figure 2. 
(2) Determine the seismic moment 0M . 
(3) Estimate the fault length L. 
(4) Assuming that the fault width W=L/3, estimate the average dislocation. 
(5) Estimate the particle velocity (average) of one side of the fault. 
(6) Estimate the static stress drop (use the strike-slip geometry for simplicity). 
(7) Sketch the (trapezoidal) waveform that would be observed at point P1, P2, and P3, all 
at a distance of 1000 km, but in three different azimuths, as shown in Figure 3. 
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(Note: The solution obtained by Hartzell and Heaton is slightly different from the above.) 
 
 
 
6.2 Excitation of Surface Waves and Free Oscillations 
 
1.  One Dimensional Problem 
  
 We first consider a one-dimensional problem shown below. 
 

 
 

 

    
2 2

2 2
u uE f

t x
ρ ρ∂ ∂

= +
∂ ∂

     (1) 

 
where  f is the force per unit mass. 
 
 Consider a harmonic excitation ( , ) ( ) i tf x t F x e ωρ = . 

Putting ( , ) ( ) i tu x t U x e ω=  we have 
 

    
2

2
2

d UU E F
dx

ρω− = +      (2) 

 
Let 

iy ,  i = 1,2...  be the eigen functions of the homogeneous equation of (2)  i.e., 

     
−ρω i

2 yi = E d2 yi

dx2      (3)  
 
Then iy 's constitute an orthogonal system.  That is, 
 

f
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ρyn0

L

∫ yldx = cδn,l         (4) 
 
 
Then we can expand U in iy , i.e., 
 

     
U = ai

i =1

∞

∑ yi
     (5) 

 
where 
 

     
ai =

1
c

ρyi0

L

∫ Udx
    (6) 

 
Multiplying (2) by ny  and integrating it from x=0 to x=L, we obtain 
 

    
−cω 2an = E al

l
∑ ′′yl0

L

∫ yndx + F
0

L

∫ yndx
  

     
Using (3) and (4), 
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    (9) 

 
 Now let us consider excitation by a step function force H(t).  Since 
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H(t) =

1
2π

1
iω−∞

+∞

∫ eiωtdω
     (10)  

 
 
we have from (9) 
 

   
∴ u(t) = −

yn

c
F

0

L

∫ yndx⎡
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1
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∞

∑ dω
  (11) 

 
 
The poles are at ω = 0, n iω ω ε= + , n iω ω ε= − + . 
 
Since any physical system must have at least small attenuation, these poles are slightly 
above the real axis (see Morse and Feshbach, p. 1334). 
 
 
 

 
 

Carrying out the integration along the path given above, we have, for t > 0, 
 

   2
01

(1 cos )( )
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n
n n

n nn

tu t y Fy dx
c

ω
ω

∞

=
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The first term 
 



 377

   2
01

1( )
L

n n
n nn

u t y Fy dx
c ω

∞

=

⎡ ⎤= ⎢ ⎥⎣ ⎦∑ ∫     (13) 

 
gives the permanent  deformation, and the second term 
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gives the free oscillation. 
 
2.  Torsional Oscillation 
 
 For torsional oscillations of a sphere,  the eigen functions and the force are 
vectors. 
 

  1,

0
1

sin

m
m l

n l n

m
l

Yy y

Y
θ φ

θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟∂

= ⎜ ⎟∂⎜ ⎟
⎜ ⎟∂

−⎜ ⎟∂⎝ ⎠

K  ,  
rF

F F
F

θ

φ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

K
             

(15) 

 
The expression for step function excitation can be derived in a manner similar to the one-
dimensional case. 
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where 

    m m m
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3.  Spheroidal Oscillation 
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Then 
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Again 

    m m m
n l n l n l

V
c y y dVρ= ⋅∫ K K     (19) 

 
4. Displacement due to a point Moment Tensor 
 
 Displacement due to force couples can be obtained by differentiating (16) and 
(18) in appropriate directions.  Then the displacement due to a point moment tensor M 
can be written as  
 

   2
, ,

1 cos( , ) ( : ) ( , )
m

m n l
n l m m

n l n ll m n

tu r t M y r t
c

ωε
ω

−⎡ ⎤= ⎣ ⎦∑G G G G    (20) 

 
where ε  is the strain tensor computed at the source for each l, m, and n. 
 
5.  Comparison with observations 
 
 Several examples are shown in the following. 
 
1. 1994 Bolivia Deep earthquake 
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2. 2001 Bhuj India earthquake 
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3. 1999 Russia-China Border earthquake 
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7. Summary of Seismic Source Parameters 
 
1.  Fault Geometry 
 
 Usually given by the following three parameters:   fφ =fault strike; δ = dip 
angle, λ = slip angle (rake). 
 
2.  Fault Dimension 
 
 L and W or a (radius).   Area S. 
 (S = LW)   (S = π a2) 
 
3.  Dislocation (Fault Offset), D 
       In general, ( , )D r tK  
 Usually only the average D  is used 
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 D = uΔ  
 
4.  Seismic Moment (Moment)  
 
 0M SDμ=  
 
5.  Seismic Moment Tensor 
 
 pq ijpq i jM C u Sν= Δ Δ    (in general) 
 M ( : )S uμ ν= Δ Δ

GG    (shear dislocation) 
 
 This can be related to the fault parameters (5.1.4). 
 
6. Stresses 
 
 Initial stress*   0σ  
 Final stress*  1σ  
 Static stress drop 0 1( )s Dσ σ σΔ = − ∝  
 Frictional stress*  fσ  

 Effective tectonic stress (Dynamic stress drop)   0d f Dσ σ σΔ = − ∝ �  
       Average stress* σ = (σ0 +σ1) / 2  
 
 *  This cannot be determined with seismological methods 
 
 
 
 

 
 
 
 

7. Energy 
 
 Radiated Energy      2

RE v u dtdSρ∝ ∫ ∫ �  
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 Potential Energy Change* 
  (Strain Energy + Gravitational Energy)  ΔW = σ D S       
 Frictional Energy Loss*     F fE DSσ=  
 Fracture Energy*      EG  
 
  ΔW = ER + EF + EG  = (Radiated Energy) + (Non-Radiated Energy) 
 
 *  This cannot be determined with seismological methods 
 
8.  Rupture Mode and Rupture Speed 
 
 Unilateral, Bilateral, Radial, Two-Dimensional 
 V,   usually 75 to 90% of S  velocity 
 Directivity 
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9.  Complexity 
 
 Multiple Events,  "Fractal" structure at short wave length? 
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10.  Energy (or Moment) Magnitude 
 

0(log 16.1) /1.5wM M= −   ( 0M  in dyne-cm) 

0(log 9.1) /1.5wM M= −     ( 0M  in N-m) 
 

--------------------------------------------------------------------------------------------------------------------------------- 
 From the energy budget, the radiated energy, RE , is given by 
 
  ( )R F fE W E DS σ σ= Δ − = −  
 
As mentioned above, the initial stress 0σ , the final stress 1σ , and the frictional stress fσ  
cannot be determined directly with seismological methods, and ER  above cannot be 
determined.  However, note that 
 

 0 1 0 1
1 1( ) ( ( )) ( ( ))

2 2 2
s

R f f fE DS DS DSσ σ σ σ σσ σ σ σ σ+ − Δ
= − = + − = + −  
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If we assume that 1σ  is equal to fσ  (i.e., the stress on the fault plane is equal to the 
average frictional stress when fault motion stops), then, 
 

   0
1
2 2 2

s s
R sE DS DS Mσ σσ μ

μ μ
Δ Δ

= Δ = =  

 
 For most large earthquakes, 4/ 2 1/(2 10 )s xσ μΔ ≈ , and we have, approximately, 
 
    ER = M0 /(2x104) 
 
 Once ER  is determined we can define a magnitude scale wM  using the Energy-
Magnitude relation backward, 
 
    log 1.5 11.8R wE M= +  ( RE  in ergs) 
or,  
 
    0(log 16.1) /1.5wM M= −   ( 0M  in dyne-cm) 
------------------------------------------------------------------------------------------------------------ 
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Ge 162 
 
8. Physics of Earthquakes 
 
8.1 Scaling Relations 
 
 
 For understanding the overall physics of earthquakes without going into details, it 
is useful to investigate scaling relations between several macroscopic source parameters. 
 
 
1.  Moment versus Fault Area  
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[closed circles: interplate,  open circles: intraplate, Kanamori, H., and D. L. 

Anderson, Theoretical basis of some empirical relations in seismology, Bull. Seis. Soc. 
Amer., 65 (5), 1073-1095, 1975] 
  
By definition, 
 

    
3   

0
2

   circular

            rectangular
s

s

M a

w L

σ

σ

∝ Δ

Δ
  

 
For a circular fault, 
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   3/ 2
0

3 16log log log
2 7 sM S π σ−⎛ ⎞= + Δ⎜ ⎟

⎝ ⎠
 

 

 If Δσs  is constant, then, 0
3log log
2

M S≈ .  From the attached figure, we see,  

 
 Δσs  ~  60 bars       on the average 
 Δσs  ~  30 bars       interplate (plate boundary) 
        Δσs  ~ 100 bars      intraplate 
 
2. Seismic Moment vs. Source Dimension 
 
 The scaling relation shown above has been extended to small earthquakes as 
shown below. 
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[Modified from Abercrombie, R., and P. Leary, Source parameters of small earthquakes 
recorded at 2.5 km depth, Cajon Pass, Southern California:  Implications for earthquake 
scaling, Geophys. Res. Lett., 20, 1511-1514, 1993] 

The 1/3
0L M∝  scaling  is seen, and this is generally interpreted as evidence for 

constant stress drop, but the fairly large scatter in sσΔ  should be noted. 
 

 
 
 
8.2  Physics of Earthquakes 
 
 The heterogeneity of properties and structures of fault planes seems to have a 
profound influence on dynamics of faulting.  Although we cannot resolve every detail of 
fault zone heterogeneities, we want to interpret macroscopic seismological data in terms 
of the overall processes occurring on a fault plane.   

 
8.2.1  Energy Budget  
 

As we discussed in 5.1.5, the total potential energy (strain energy + gravitational 
energy) change in earthquakes is given by 

 

    0 1
1 ( )
2

W DSσ σΔ = +      (1) 

 
Then the energy budget can be written as  
 
     
    R F GW E E EΔ = + +      (2) 

 
where RE  and GE are the radiated energy and the fracture energy, respectively, and FE  
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is the frictional energy.  In this model, separation of GE  and FE  is somewhat arbitrary 
(both  represent non-radiated energy, i.e., dissipation), but, GE , and FE  are commonly 

defined by the hatched and cross-hatched areas shown in the figure below, respectively, 
i.e.,  
 
     

0F fE DSσ=      (3) 

 
 However, here the fracture energy, GE , is the energy dissipated during rupture 

over a volume surrounding the fault zone. 
 

 
(In this diagram, the energies are interpreted as those per unit area.) 
 

 The radiated energy, RE , is what we can measure from the radiated seismic 

waves, as shown in 6.1, but because of the practical difficulty in measuring it accurately, 
RE  has not been fully used in seismology for the purpose of understanding the physics of 

earthquakes. 
 Only recently, it became possible to measure RE  accurately enough so that we 

can investigate the physics of earthquakes in terms of energy budget. 
 
8.2.2  The Radiation Efficiency 
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 The ratio of the fracture energy, GE , to the radiated energy, RE , determines the 

characteristics of fracture, or an earthquake.  Alternatively, the radiation efficiency 
defined by  
 
    /( )R R R GE E Eη = +      (4) 

 
can be used for the same purpose.   Referring to the figure above,  
 
 0 0/( / 2) /( / 2 ) 2( / ) /( / )R R s R s R sE DS E M E Mη σ σ μ σ μ= Δ = Δ = Δ   (5) 

 
 Thus, we can determine Rη , from the observed macroscopic parameters, 

0/Re E M=� ,  and the static strain drop, /sε σ μΔ = Δ . 

 
 
 
 
 
 . 
8.2.3  Observations 
 
General Observation 
 
 The results for large earthquakes are summarized in the following figure.  
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Radiation efficiency /( )R R R GE E Eη = +  as a function of wM . The different symbols 
show different types of earthquakes as described in the legend. Most earthquakes have 
radiation efficiencies greater than 0.25, but tsunami earthquakes and two of the deep 
earthquakes (the Bolivia earthquake and the Russia-China earthquake) have small 
radiation efficiencies.    (Venkataraman and Kanamori,  2004) 
 

Except for the very large deep focus earthquake, the 1994 Bolivian earthquake, 
and tsunami earthquakes, the radiation efficiency, Rη , is larger than 0.25,  which means 

that the fracture energy for most large earthquakes, regardless of their tectonic 
environment, are comparable or less than RE .   

Deep Focus Earthquake  
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 It is difficult to accurately determine the size of the fault plane, S,  for deep focus 
earthquakes.  However, for the 1994 Bolivian earthquake (Mw=8.3, depth=635 km), the 
largest deep-focus earthquake ever recorded, the source parameters could be determined 
well enough to investigate the energy budget. 
 As we discussed in 5.1.5, we cannot determine ΔW itself, but we can estimate its 
lower bound,  
 
             0 / 2sW DSσΔ = Δ     (6) 

 
from sσΔ , D , and S .    

The result for the 1994 Deep Bolivian earthquake (Mw=8.3) showed that 
ΔW0=1.4x1018 J and ER =5x1016 J, which is only 3 % of ΔW0 ;  the difference ΔW0 –
ER=1.35x1018 J, was not radiated, and must have been deposited near the focal region, 
probably in the form of thermal energy.  This energy 1.35x1018 J is comparable to the 
total thermal energy released during large volcanic eruptions such as the 1980 Mount 
Saint Helens eruption.  The thermal energy must have been released in a relatively small 
focal region, about 50x50 km2, within a matter of about 1 min. The mechanical part of the 
process, i.e. the earthquake observed as seismic waves, is only a small part of the whole 
process.  Thus, the Bolivia earthquake should be more appropriately viewed as a thermal 
process rather than a mechanical process.   
 With this much of non-radiated energy, the temperature in the focal region must 
have risen significantly.  The actual temperature rise, ΔT,  depends on the thickness of the 
fault zone, which is not known, but if it is of the order of a few cm, the temperature could 
have risen to above 10,000 °C. 
 
Shallow Earthquakes  

Although the situation for shallow earthquakes may be different from that for 
deep focus earthquakes, a simple calculation shows that if σf  is comparable to Δσs, about 
10 MPa, the effect of shear heating is significant.  If the thermal energy is contained 
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within a few cm around the slip plane during seismic slip, the temperature can easily rise 
to 100 to 1000 °C.   
 We consider a gross thermal budget during faulting under a frictional stress σf.  
Let S  and D  be the fault area and the displacement offset respectively.  Then the total 
heat generated during faulting is Q=σf DS.  If we assume that the heat is distributed 
during seismic faulting within a layer of thickness w  around the rupture plane, the 
average temperature rise ΔT  is given by 
 
    ΔT=Q/CρSw=σf D/Cρw     (7) 
 
 The figure below shows ΔT  as a function of magnitude. If a fault zone is dry (no 
fluid), melting may occur and friction may drop.  If fluids exist in a fault zone, fluid 
pressurization could occur.   
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 The key question is how thick the fault slip zone is.  Geologists have examined 
many old fault zones which were formed at depths and were brought to the surface by 
long-term uplift (i.e., exhumed faults).  Some fault zones have a very narrow (about 1 
mm) distinct slip zone where fault slips seem to have occurred repeatedly.  The 
Punchbowl fault, California, implies that earthquake ruptures were not only confined to 
the ultracataclasite layer, but also largely localized to a thin prominent fracture surface.  
They suggest that mechanisms that are consistent with extreme localization of slip, such 
as thermal pressurization of pore fluids, are most compatible with their observations.  In 
other cases, several narrow slip zones were found but evidence shows that each slip zone 
represents a distinct slip event (i.e., an earthquake).  Thus, geological evidence suggests a 
narrow slip zone, at least for some faults, but this question will remain debatable.   
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    (Richard Sibson, Written communication, 2000) 
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 If a fault zone is narrow and rough, and if the material in the fault zone behaves as 
viscous fluid, it is also possible that elastohydrodynamic lubrication plays an important 
role in reducing friction for large events.  An interesting consequence of this is that as the 
slip and slip velocity increase, the hydrodynamic pressure within a narrow zone becomes 
large enough to widen the gap thereby suppressing high-frequency ground motion caused 
by the fault asperities rubbing against each other.  During the recent Chi-Chi, Taiwan, 
earthquake, the observed ground-motion near the northern end of the fault was extremely 
large (> 2.5 m/s, the largest ever recorded), but short period acceleration was not 
particularly strong so that the damage to ordinary structures by shaking was minor.  This 
could be a manifestation of the high-speed lubrication effects.  However, since this is the 
only earthquake for which such large slip and slip velocity were instrumentally observed, 
whether this is indeed a general behavior or not is yet to be seen.  
 
State of Stress 
 The results obtained for large earthquakes suggest that the average stress level 
along mature faults where large earthquakes occur must be low because of the dominant 
thermal effects such as frictional melting and fluid pressurization, or of 
elastohydrodynamic lubrication.  Because of melting or pressurization, a fault zone is 
self-organized into a low stress state.  That is, even if the stress was high in the early 
stage of fault evolution, it would eventually settle in a low stress state after many large 
earthquakes.  This state of stress is consistent with the generally held view that the 
absence of heat flow anomaly along the San Andreas fault suggests a shear strength of 
about 200 bars or less .  The stress in the crust away from active mature faults can be high 
as has been shown by many in-situ measurements of stress.   The stress difference is 
large, and a kbar type stress may be involved in small earthquakes, but the events are in 
general so small that it is hard to determine the stress parameters accurately.  What is 
important, though, is that as long as the length of the fault is small, the state of stress in 
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the fault zone would not affect the regional stress drastically.  However, as the fault 
grows to some length (e.g. Japanese intra-plate earthquakes like Tango, Tottori, Nobi 
etc), then some sort of self-organization occurs and the fault settles at a stress level 
somewhat higher than that on more active plate boundaries.   
  
 
 
 
 
8.3.  Earthquake as a Complex System 
 
 Large-magnitude earthquakes are rare events.  To a very good approximation, the 
rate of occurrence of earthquakes falls exponentially as a function of magnitude, as 
shown in the following figure which shows the distribution of the number, N, of 
earthquakes equal to, or larger than, magnitude M  for the world (a) and southern 
California (b).  Approximately 1 earthquake with M ≥ 8 occurs every year somewhere in 
the world, and approximately 1 earthquake with M ≥ 5.5 occurs every year somewhere in 
southern California. 
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 In general, this distribution is expressed as  
 
    log N(M)=a–bM     (8) 
 
where a and b are constants. 
 
 The results obtained for many regions indicate that the value of b (called b value) 
is approximately equal to 1.  This relation is called the Gutenberg-Richter relation, 
Ishimoto-Iida relation, or simply the magnitude-frequency relation.  Since  
 

log /1.5RM E∝  
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equation (1) means 
 

  /1.5b
RN E−∝         (9) 

 
that is, the relation between N and RE  is given by a power law.  If b=1 and  

 
      3

RE r∝   (r: size) 

 
Then,  
 
    2( / ') ( / ')N N r r −=      (10) 

 
This relation suggests "self-similarity" in 2-D.   
 The observation that  b value is constant and close to 1 has attracted many 
researcher’s attention.  This relationship can be interpreted as a result of complex 
interaction between many elements in a system which has a large number of degrees of 
freedom.   Such systems are often illustrated by a mechanical slider block model (shown 
below) a sand-pile model and  a percolation model. 
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Ge 162     9.   Plate Motion and Great Earthquakes 

 

 Earthquakes occur in the Earth's crust and mantle due to stresses caused by global 

plate motion.  The actual pattern of stress distribution is probably very complex, but we 

expect that the activities of great and large earthquakes must reflect the global plate 

motion. 
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The world greatest earthquakes occur at subduction zones (e.g.,  1960 Chilean 

earthquake, and the 1964 Alaskan earthquake), but not every subduction zone has 

experienced a great earthquake (e.g., the Marianas,  the Tonga-Kermadec).  It is possible 

that the length of earthquake catalog is too short to be representative of long-term  

       

seismicity.  With this caveat in mind, we investigate the level of seismic activity and 

plate motion.  Ideally, the seismic activity along a subduction zone should be defined by 

the energy release per unit length along the subduction zone, and unit time, i.e.,  
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0 0

1 L T

Re E dldt
LT

= ∫ ∫  

where L and T are the length of the subduction zone and the time period involved, 

respectively.  

Unfortunately, the available seismic record is too short to compute this.  So, we 

take the magnitude, wM , of the largest earthquake that occurred in a particular 

subduction zone as a parameter that represents e  for that subduction zone.  Then , it is 

reasonable to assume that  

    wM V∝  

where V is the convergence rate.  However, the plot of wM  versus V  does not show any 

obvious trend.  This suggests that other factors may be controlling seismicity.  Another 

potentially relevant parameter is the age, T, of the subducting plate.   However, no 

obvious negative correlation is seen between wM  and  T. 
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 Then, we can try a 3-parameter regression between wM , V and T.  The result is 

shown in the following figure.  The horizontal axis shows the observed wM  and the 

vertical axis shows wM  predicted by the regression relation. 
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(Ruff, L., and H. Kanamori, Seismicity and the subduction process, Phys. Earth Planet. 
Inter., 23, 240-252, 1980) 
 

 

 If this regression is valid, this provides a useful method for assessing the seismic 

potential of subduction zones for which no great earthquake has occurred.  This pattern 

suggests that the subduction zones where a relatively young plate is subducting at a 
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relatively fast rate are more likely to have great earthquakes, and those with an old plate 

subducting at a moderate rate are less likely to have great earthquakes.  The end-member 

subduction zones are the Chilean type and the Mariana type, shown below. 

 

  

 

(Uyeda, S., and H. Kanamori, Back-arc opening and the mode of subduction, J. Geophys. 
Res., 84 (B3), 1049-1061, 1979) 
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 Another interesting implication of this correlation is the seismic potential of the 

Pacific Northwest (i.e., Oregon-Washington coast).  The Juan de Fuca plate is subducting 

beneath the states of Oregon and Washington.  The background seismicity there is very 

low, as shown below, and until mid 1980's, it was generally believed that the seismic 

potential in the Pacific Northwest is low (i.e., great earthquakes are unlikely).  However, 

the age of the Juan de Fuca plate is very young, about 10 My, and it is subducting at a 

rate of 3 cm/year.  Thus, in view of the regression relation shown above, one would 

expect a large, wM =8.5 to 9, earthquake there.   This suggestion motivated the interest of 

geologists who started extensive investigation for finding palaeo-seismological evidence.  

Geological evidence for regional submergence and evidence for large tsunami which 

occurred in 1700 [Satake et al., 1996] now seem to have convinced most people, which 

seems to have led to upgrading of building code in the area.  This is a good example in 

which seismological study, even if it is poorly constrained, can be useful if it is followed 

up by investigations from different disciplines. 
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(Heaton, T., and H. Kanamori, Seismic potential associated with subduction in the 
northwestern United States, Seismol. Soc. Am. Bull., 74 (3), 933-941, 1984) 
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(see, Atwater, B. F., and others, Summary of coastal geologic evidence for past great 
earthquakes at the Cascadia subduction zone, Earthquake Spectra, 11, 1-18, 1995) 
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(R. S. Yeats, Living with Earthquakes in the Pacific Northwest,  Oregon State University 
Press, 1998) 
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