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Ge 162 Seismology

1. Introduction
1.1 Frequency Spectrum of Earthquake Phenomena

Phenomena associated with earthquakes occur over a broad frequency range as
shown in Figure 1.1.
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1.2 Source of an Earthquake

Faulting and Crustal Deformation

An earthquake is a failure process in the Earth's crust (sometimes in the mantle,
too). As the stress in the crust builds up, it eventually exceeds the strength of crustal
rock, and failure occurs. The result is faulting (Figure 1.2), which causes deformation of

the crust (Figure 1.3).
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The pattern of crustal deformation can be studied in detail using geodetic methods
(traditional ground-based method, GPS, SAR) and seismological methods.

Failure (Fracture vs. Frictional Sliding) (Figure 1.4)

The failure process during an earthquake is often illustrated as fracture of rocks.
If a piece of rock is subjected to stress (force), eventually fracture occurs. Although this
is qualitatively correct, it is probably more appropriate to view earthquake faulting as
frictional sliding. In this case, the sliding surface corresponds to an earthquake fault. A
fault is formed by a long-term geological process, and represents a weak zone. In a
sense, the major difference between fracture and frictional sliding is whether there is a
pre-existing weak zone (plane) or not.

A simple experiment on frictional sliding exhibits many important characteristics
of earthquakes; i.e. loading (stress accumulation), sudden slip, repetition of slip events.
This general behavior is called stick slip.
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Strain, Stress, Stress-Strain Relation (Hooke's law)

Strain is a measure of deformation of a deformable (continuous) medium, and
represents displacement per unit length. Stress is a measure of force. It is measured by
force per unit area. In seismology, shear strain and shear stress are most important.

The relation between stress (force) and strain (deformation) can be best illustrated
by using a spring. (In fact a spring is a very useful analog of Earth's crust, and we can
explain many important relationships in seismology using a spring.) Suppose we apply a
force F to stretch a spring, and the spring is stretched by Al. Then F and Al are related
by the Hooke's law,

F=ksAl (1-1)

Here Ks is called the spring constant. A similar relation



o = ue (1-2)

holds between stress o and strain £. Here g is called the elastic constant. If the rock
is harder, then 4 is larger. We have different elastic constants for shear deformation and

volumetric deformation (volume change). In general, for simple deformable bodies, like
rocks, metals etc, we need two elastic constants x and K, rigidity and incompressibility

(also called bulk modulus), for shear and volumetric deformations, respectively. For
most seismological problems, these two elastic constants, and the density p are most

important. For most crustal rocks, the representative values are:

u =3x1011! dyne/cm2=0.3 Mbars=30 GPa

k=5x1011 dyne/cm2=0.5 Mbars=50 GPa
p=2.7 g/lcm3=2,700 kg/m3

Critical strain (strength) of Earth's crust

An important question is "How strong is the Earth's crust?". Many geodetic and
seismological studies have demonstrated that the change in strain (deformation)
associated with an earthquake ranges from 3x10-5 to 3x10-4, or, in terms of stress, this
corresponds to 10 to 100 bars (i.e., 1 to 10 MPa, or 10 to 100 atmospheric pressure). If
we try to break an intact piece of rock, we normally need a few kbar stress. This suggests
that an earthquake occurs on a pre-existing weak plane (fault), and frictional sliding
appears to be a more appropriate model for an earthquake.

Ground Motion

When an earthquake occurs, the ground shakes. The motion of the ground is
given by the displacement u(t) as a function of time, t, in 3 directions, usually, UD, NS,
and EW. If we take the time derivative of u(t), we get the velocity of ground motion
v(t) =u(t), and if we differentiate it again, we get ground-motion acceleration

a(t)=v()=u().
The ground motions near the source of an earthquake are measured with
geological, geodetic and seismological methods (Figure 1.5).



For large earthquakes,

uislto20m
v 1s 10 cm/sec to 3 m/sec
a is 0.1 to 20 m/sec? (10 m/sec? is about 1 g)

These are useful numbers in seismology to remember.
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1.3 Seismic Waves

The disturbance caused by a faulting in Earth's crust propagates as elastic waves.
These waves are called seismic waves. In a large homogeneous medium without
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boundary, two types of waves exist. The first wave is mainly due to volume change, and
is called compressional wave or P wave, and the second type of wave is caused by shear
deformation, and is called shear wave or S wave. The P and S wave velocities, « and £,
respectively, are given by

o= /w and ﬂ=JZ (1-3)
p p

For most solids, k=(5/3) £, so that a = \/§,B= 1.7324. Although this is an
approximate relation, it is a good approximation and useful in observational seismology.
In the shallow part of Earth's crust =5 to 6.5 km/sec, and /=3 to 3.8 km/sec.

In real world, we have the surface of Earth, and also the velocity changes as a
function of depth. In general, the velocity increases with depth. When P and S waves
propagate in a medium with a free surface and layers of different velocities, complex
reflection and refraction occur and P and S waves interact to generate surface waves.
This is an interesting mathematical problem, but here we just introduce two types of
surface waves, Rayleigh waves and Love waves. These waves primarily propagate along
Earth's surface so that the amplitude decays more slowly with distance than P and S
waves. Hence, at large distances, surface waves are more dominant on seismograms
(recordings of seismic waves). Also, these waves exhibit dispersion (velocity varies with
the wave period) so that the appearance of these waves are usually distinct. The particle
motion of Rayleigh waves is vertical and in the direction of wave path, and that of Love
waves is horizontal and in the direction normal to the path. In the shallow crust, the
velocity of Rayleigh waves CR, ranges approximately from 2.5 to 3.0 km/sec, and that of

Love waves, C, from 2.8 to 3.5 km/sec. Two examples are shown in Figure 1.6.
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Fig. 1.6 Seismograms of the 1995 Kobe, Japan, and the 1999 Izmit, Turkey,
earthquakes.

As shown above, the velocities of these waves are different, i.e., in general o >
f > CL>CRp. Thus, at a station some distance from the source, the P wave arrives first,
which is followed by the S wave. Then the large amplitude Love wave and Rayleigh
wave arrive.

Seismologists study these seismic waves in detail to determine the earthquake
source parameters (the size, type of faulting etc), and the structure of the Earth.

One useful relation is that between the S-P time, tg_,, (time interval between P

and S waves) and the distance, A. Since tg_ is given by
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t o :é—ézé(ﬂ—lj (1-4)
g a alp

from which

A= LtsfP (1-5)
a
B
For the shallow part of the crust (i.e., A<1000 km), « is about 6 km/sec, and «/ S is

1.732, so that this relation gives

A=8t,_, (ts_, insecand A in km) (1-6)
For example, if tg_ is 50 sec, the distance is about 400 km.

1.4 Seismograph (LW (Lay and Wallace), pp 173-199)

The instrument that measures ground motion caused by an earthquake is a
seismometer or a seismograph. During an earthquake, everything moves so that it is
difficult to measure the ground motion accurately. We need a reference point from which
we can measure the motion of the ground. Seismologists use a pendulum as a reference.

Since most seismographs use a pendulum as a reference of the position, here we
briefly discuss the principle (Figure 1.7).
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Principle of a Mechanical Seismograph and the Wiechert Seismograph
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Pendulum and Simple Mechanical Seismograph

Consider a simple pendulum (a string with a small mass hanging from it). Hold
one end of the string and let the mass swing in a vertical plane. The natural period of the
pendulum, T,, is given by,
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|
T,=2 ‘/— 1-7
& (1-7)

where g is the acceleration of gravity, 9.8 m/sec2. Thus if I=1 m, then the period is about
2 sec.

Suppose we have an earthquake, and the ground starts shaking horizontally.

Since you are standing on the ground (i.e., fixed to the ground), you will be shaken with
the ground. If the ground shakes very gradually, say at period T >>T,, then the mass will
move with you so that you cannot use it as a reference point (i.e., everything moves in the
same way). In this case, this pendulum is not good as a seismometer. However, if the
ground shakes very rapidly, e.g., T<<T,, then the mass tends to stay at the same place, if
not completely. This is the very principle of a horizontal seismometer, a seismometer
that measures horizontal motion. You can measure the motion of ground with respect to
the mass which is approximately stationary. Thus, if T<<T,, this pendulum is a good
seismometer, and if you record the motion of the ground (i.e., you) with respect to the
mass, you can have a seismogram.

If we use a spring with a mass hanging vertically, we can measure the vertical
ground motion with the same principle.

In the real seismometer, we need to attach a device to magnify the motion and
damp out the resonance (damper), but the basic principle is the same. The Wiechert
seismograph and the Wood-Anderson seismograph used in California are all of this type.

It is difficult to record very long-period ground motions with these simple
mechanical seismographs, because it is difficult to build a stable pendulum with a very
long natural period.

The response of a mechanical seismograph can be derived from the following
equation (see the figure below).

X+ 2ha X + o) X = -\ (1-8)

where X is the motion of a reference point (i.e., mass) of the seismograph with respect to
the ground, and y is the ground motion displacement. h is the damping constant,

@, =~vK/m is the natural angular frequency of the seismograph (@, =27/T,, T, is the

natural period), and V is the static magnification. The response of a mechanical
seismograph is completely described by these 3 constants.
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For a unit harmonic input
y = exp(imt) (1-9)
the output is

Vw? )
S s s (1-10)
0 0

then, the response is given by

H(w) = Vo© (1-11)

-’ +2iho,0 + o]

The amplitude response | H ()] is plotted in Figure 1.8.

Other Types of Seismographs
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In order to increase the sensitivity of the instrument, and improve the response at
long-period, various developments have been made. These seismographs use an electro-
magnetic sensor (moving coil etc), and a galvanometer. The examples are: Galitzin,
Benioff short-period, Benioff long-period, Press-Ewing, and Benioff strain seismographs
(Figure 1.8).

Seismograph Response Curves
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Fig. 1.8

Modern Broad-band Seismograph and Strong-motion Seismograph
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Until recently seismograms written on paper were the standard data for most
seismological research and routine reporting. While these analog records are still useful
for various research purposes, these instruments are limited in two respects. First, since
the movement of the pendulum is mechanically limited by the physical size of the
instrument, it is not possible to record very large ground motions; i.e., the dynamic range
is limited. Second, as long as recordings are made on paper (analog recording), the
dynamic range is limited by resolution in visually reading the records, which is normally
1/1000, i.e., 60 db.

To remove these limitations, modern seismographs adopt a force balance
mechanism and digital recording system. In the force balance mechanism, the output
signal from the transducer is amplified and fed back to a device that holds the mass at the
original unperturbed position (Figure 1.9). The strength of the signal (usually measured
in voltage) is proportional to ground motion. With some filters in the feedback circuit, it
is possible to make the output proportional to acceleration, velocity or displacement of
ground motion, at least over a certain frequency band.

In this type of instruments, there is virtually no displacement of the mass, and the
dynamic range can be increased. Also, with an appropriate feedback system, the
response can be adjusted relatively easily.
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Principle of a Force-Balance Seismograph Streckeisen STS-1 Seismometer
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The response of the standard broad-band instruments used in seismology (often
called the VBB system) is approximately flat for a ground-motion velocity over a wide
frequency band (e.g. 7 Hz to 0.0033 Hz (300 sec)) (Figures 1.10 and 1.11). The broad-
band instruments usually have a 140 db (107) dynamic range.

20



Gain

Old (Mechanical) and Modern (Force-Balance) Seismograph

10°

T T
107
104 &y .- : o
: New (Force-Balance)
10" :
e ; .
10 ; f
10" :
10" i
10‘—" 1 1 I
0.1 1 10 100 1000
Period, sec

21



1c‘|ﬂ

waanl o

.
\
]
1
]
1
i
1
1
1
1
1
1
1
1
1
1
1
I
]
i ge
I -
i
Lo
|
I
Lo
| .
[ o
[
I oan
1 5!
[
i

MEEEETYIT AT -

Velocity Response, counts/{m/s)
3,

10° ——STS5-1 :
--------- 8182 :
il -— CMGIESP| |
----- cmedor |
10‘ i i bbbl PR | | TR ...i
0.001 0.01 0.1 1 10 100

Frequency, Hz

Fig. 1.11

Seismographs designed to record very strong ground motion are called strong-
motion seismographs and are used in earthquake engineering. Modern strong-motion
seismographs have a force balance mechanism with voltage output proportional to
ground-motion acceleration.

Recent developments in solid state electronics made it possible to build stable
force balance seismographs; they are now widely used in the world for research and
routine monitoring.
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Ge 162
2. Concepts in Classical Seismology
2.1 Structure of the Earth
2.1.1 Ray theory and Snell's Law (LW, pp70-91)

In the early days of seismology, the structure of the Earth was determined mainly
by using ray theory. When the wavelength of seismic waves is sufficiently short (i.e., if
the period is sufficiently short), we can treat seismic waves as a geometrical ray, just as

we do in geometrical optics.

In ray theory, the most fundamental is Snell's Law, which is illustrated in Figure
1.
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Snell’'s Law

sinl, _ sinl,

it
\Q\M = p =const
: v(2)

rsini(r) _

v(r)

Figure 1

Suppose a ray is incident from a medium with a wave speed v, on a medium with

aspeed v,. Let the incident and emergent angles be i, and i,. Then the Snell's law is

given by

sinl, _sinl,

Vi

(1)

This can be shown easily from the geometry of the two triangles OAB and OBC

shown below.
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If the wave speed changes continuously with z (i.e., depth) as v(z), then (1) can be
written as

sini '
—— = p =constant for a given ray )
v

p is called the ray parameter.
For a spherical geometry as shown in Figure 1, the Snell's law can be written as

rk S Ik _ rk+1 S IkJrl
Vk Vk+1

©)

and
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rsini(r) _

v(r) @

corresponding to (1) and (2), respectively.

2.1.2 Seismic Ray (LW, pp. 200-217)

Figure 2 shows various seismic rays in the Earth's interior. P and S waves are
denoted by P and S, respectively. Other symbols are:

K: P wave ray in the core

p: P wave ray before reflection near the source (only for a deep source)
s: S wave ray before reflection near the source (only for a deep source)
c: Reflection at the core

P': PKP
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Seismic Rays in Earth
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Fig, 2
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P, S, Pdif, Sdif pP, sS, PP, SS PcP, ScS ScP, PcS

S'S’ (SKSSKS)

Storchak, D., Schweitzer, J., and Bormann, P., The IASPEI Standard Phase List, Seismological Research Letters,
74,761-772,2003.
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Some Examples

Figure 3 and Figure 4 show some examples.
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Figure 5 shows ray paths in the Earth's interior for 3 representative velocity structures,
and the corresponding travel time curves.
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Velocity Structure and Travel Time Curve
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Figure 6 shows 3 regions in the Earth's interior and the corresponding travel time
curves.

Ray Paths in the Earth’s Interior and Travel Time Curves
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Figure 7 shows the crustal structure for ocean and continent, and corresponding
travel time curves.
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Crustal Structure and Travel Time Curves
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2.1.3 Travel-Time Curve (LW pp.213-217)

Figure 8 shows the travel times observed at many stations and reported to the
International Seismological Center (ISC).
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Figure 9 shows the same with the phase names labeled.

Travel Time Curves
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For a spherically symmetric structure, the distance, A, traveled by a seismic ray
with a ray parameter p, and the travel times, T , can be computed easily. Referring to the

figure below,
dr . Y v p2
d—=cos|=\/1—sm 1=,/1- > (5)
S r

dA=dSSIm=L P g )
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Then,

T=2| ————dr 7)

A=2| — P g4 8)

Jor /rz _\2 pz

where 1, is the radius of Earth and r, is the radial distance of the deepest point of the

ray. These integrals are fundamental in the seismological ray theory (e.g., Herglotz
Wiechert Method).

2.1.4 Gross Structure of the Earth (LW, pp. 26-33)

In the early days of seismology, the structure of the Earth was determined from
the travel-time data, as shown in the upper figure of Figure 10. This figure shows one of
the standard laterally homogeneous model, which is used for various seismological
studies.

The bottom figure in Figure 10 shows an example of 3-D Earth structure
determined by more recent studies using seismic body waves, surface waves and normal-
mode data (Helffrich and Wood, 2001). Tomographic methods are used for determining
these structures.
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Ge 162 Plate Motion and Great Earthquakes

Earthquakes occur in the Earth's crust and mantle due to stresses caused by global
plate motion. The actual pattern of stress distribution is probably very complex, but we

expect that the activities of great and large earthquakes must reflect the global plate

motion.
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The world greatest earthquakes occur at subduction zones (e.g., 1960 Chilean
earthquake, and the 1964 Alaskan earthquake), but not every subduction zone has
experienced a great earthquake (e.g., the Marianas, the Tonga-Kermadec). It is possible

that the length of earthquake catalog is too short to be representative of long-term

Great Earthquakes
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seismicity. With this caveat in mind, we investigate the level of seismic activity and

plate motion. Ideally, the seismic activity along a subduction zone should be defined by

the energy release per unit length along the subduction zone, and unit time, i.e.,
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§=ﬁj: [| Eqdiat

where L and T are the length of the subduction zone and the time period involved,
respectively.

Unfortunately, the available seismic record is too short to compute this. So, we
take the magnitude, M, of the largest earthquake that occurred in a particular
subduction zone as a parameter that represents € for that subduction zone. Then, it is

reasonable to assume that

M _ocV

w

where V is the convergence rate. However, the plot of M, versus V does not show any

obvious trend. This suggests that other factors may be controlling seismicity. Another
potentially relevant parameter is the age, T, of the subducting plate. However, no

obvious negative correlation is seen between M, and T.
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Then, we can try a 3-parameter regression between M, V and T. The result is
shown in the following figure. The horizontal axis shows the observed M, and the

vertical axis shows M, predicted by the regression relation.
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(Ruff, L., and H. Kanamori, Seismicity and the subduction process, Phys. Earth Planet.
Inter., 23, 240-252, 1980)

If this regression is valid, this provides a useful method for assessing the seismic
potential of subduction zones for which no great earthquake has occurred. This pattern

suggests that the subduction zones where a relatively young plate is subducting at a
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relatively fast rate are more likely to have great earthquakes, and those with an old plate
subducting at a moderate rate are less likely to have great earthquakes. The end-member

subduction zones are the Chilean type and the Mariana type, shown below.
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(Uyeda, S., and H. Kanamori, Back-arc opening and the mode of subduction, J. Geophys.
Res., 84 (B3), 1049-1061, 1979)
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Another interesting implication of this correlation is the seismic potential of the
Pacific Northwest (i.e., Oregon-Washington coast). The Juan de Fuca plate is subducting
beneath the states of Oregon and Washington. The background seismicity there is very
low, as shown below, and until mid 1980's, it was generally believed that the seismic
potential in the Pacific Northwest is low (i.e., great earthquakes are unlikely). However,
the age of the Juan de Fuca plate is very young, about 10 My, and it is subducting at a
rate of 3 cm/year. Thus, in view of the regression relation shown above, one would

expect a large, M ,=8.5 to 9, earthquake there. This suggestion motivated the interest of

geologists who started extensive investigation for finding palaeo-seismological evidence.
Geological evidence for regional submergence and evidence for large tsunami which
occurred in 1700 [Satake et al., 1996] now seem to have convinced most people, which
seems to have led to upgrading of building code in the area. This is a good example in
which seismological study, even if it is poorly constrained, can be useful if it is followed

up by investigations from different disciplines.
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Seismicity in the Pacific Northwest
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(Heaton, T., and H. Kanamori, Seismic potential associated with subduction in the
northwestern United States, Seismol. Soc. Am. Bull., 74 (3), 933-941, 1984)
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(see, Atwater, B. F., and others, Summary of coastal geologic evidence for past great
earthquakes at the Cascadia subduction zone, Earthquake Spectra, 11, 1-18, 1995)
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Change in Building Codes in Oregon
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(R. S. Yeats, Living with Earthquakes in the Pacific Northwest, Oregon State University
Press, 1998)
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Ge 162

2.2 Location, Magnitude, and Mechanism of Earthquakes

Locating Earthquakes (LW, pp. 217-235)

Referring to Figure 1, the arrival time of P wave at station | can be written as,

t = f(R.Lv()+1, (1)

where the function f () gives the travel time between the source and station i.
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How to Locate Earthquakes
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Fig 1

Here, T, is the hypocenter location (i.e., the location of the beginning of an earthquake),

I is the location of the i-th station, V() is the wave speed which is in general a function

of the position, and t, is the origin time. For a homogeneous medium,

]1/2

[(Xi _X0)2 +(yi — yo)2 +(Zi — 20)2

F(R, V() = y

)

We want to determine 4 unknowns, I, =(X,, Y,, Z,) and t , from N observations,

t,t, b, t,, .ty
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This problem is a nonlinear problem even for the simplest case for a
homogeneous medium.

To solve a nonlinear problem like this, we start from a first approximation
I =(X, Yo, Z5) and ] (3)
Then writing
X, = X, +0X, etc,and t, =t +5t_ 4)

and taking the first order terms in 0X, etc and ot,, we set up linear equations for 5X, etc

and ot as,

sy + A®) 5, (D)
oy 0z

0 (0]

52, + Ot (5)

ot ®
0

0 0 o o

(=1, 2. 3, .....N), where ti0 is the arrival time at station i computed for the first

approximation (i.e., t’ =t +(travel time computed for the first approximation)).
This problem can be solved by the method of least squares. By iterating this, we

can determine T, =(X,, Y,, Z,) and t, which best fit the observed travel times. More

details will be discussed in the practice session.
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Earthquake Magnitude (LW, pp. 379-385)

Traditionally, magnitude scales are used to indicate the size of an earthquake.
The magnitude M is determined from the amplitude of the observed seismic waves. In

general,

M =log(A)+ f(A) (6)

where A is the amplitude of the observed seismic waves (body waves, surface waves, or

unspecified), and f(A) is an amplitude attenuation curve as a function of distance

determined for specific type of waves.

For example, in case of the traditional local magnitude M , the amplitude A is the
amplitude of the Wood Anderson seismogram in mm, and f(A) is given by a table, or by

a nomogram such as that shown in Figure 2.

53



Local Magnitude (M,)
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In case of the surface-wave magnitude, My, A is the ground-motion amplitude of

20 sec (period) surface waves in x observed at a distance of A deg. Then,

M, =log A+1.656log(A)+1.818 (7)
Although the magnitude is a useful parameter, it is difficult to attach some

specific physical quantity to it. Empirically, My is related to the total wave energy, E;,

radiated from an earthquake by

54



logE, =1.5M +4.8 (joule) (8)

In more recent studies, we use another scale, M, , which is determined from

seismic moment , M, . The seismic moment M is given by

M, = uDS )

where D is the fault offset, S is the fault area, and x is the rigidity of the crust
surrounding the fault. The unit of M is N-m. Unlike other magnitude scales, M,,

represents a specific earthquake source parameter, the overall static size of an earthquake

given by M, . The relation between M, and M, is given by

logM, =1.5M,, +9.1 (10)

This will be discussed in more detail later.

Earthquake Mechanism (LW, pp.346-356)

As shown in Figure 3, the fault motion on a vertical strike slip fault would

produce compressional and dilatational quadrants in the Earth's crust.

55



P-wave First-motion and Focal Sphere
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Fig 3

The pattern of compression and dilatation can be detected by the first motion of P
waves. In the compressional quadrant P wave is up and in the dilatational quadrant, it is
down. As viewed from above, the sense of the first motion (up or down, or compression
or dilatation) alternates in quadrant. The planes separating the compressional quadrant

and the dilatational quadrant are called the nodal planes. The fault plane coincides with
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one of the nodal planes. The other nodal plane is called the auxiliary plane. With this
method alone, we cannot distinguish the fault plane from the nodal plane, i.e., the fault
plane can be either one of the nodal planes.

Thus, from the observations of P wave first-motion data from many stations
surrounding the source we can determine the geometry of the faulting. The pattern thus
determined is usually referred to as "Mechanism of Earthquake". Faults with different
types (e.g., strike slip fault, thrust fault, and normal fault) produce different radiation
patterns of P waves. This can be easily seen, if we consider a small sphere surrounding
the source. This sphere is called the focal sphere (Figure 3).

The radiation pattern is three dimensional, and the surface of the focal sphere is
divided into quadrants of compression and dilatation. (This can be best understood using
a worn-out tennis ball with compressional quadrants painted dark.)

We need to show this three-dimensional pattern on the focal sphere on a piece of
paper. Since the pattern is point symmetric with respect to the center of the focal sphere,
we need to show only the pattern on a hemisphere. It is conventional to show the lower
focal hemisphere, but in rare cases, the upper hemisphere or the side hemisphere is
shown. We use a standard projection method, most commonly the equal-area
stereographic projection, to project the lower hemisphere to a flat horizontal plane

(Figure 4).
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Stereographic Projection of Focal Sphere
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Fig. 4

Some examples are shown in Figure 5. The projected diagram is called the
mechanism diagram. As shown in Figure 5, the stereographic mechanism diagram is

intuitive for understanding the geometry of faulting (more details in the practice session).
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Figure 6 shows the mechanism of large earthquakes along the Circum-Pacific
belt. Most of them are low-angle thrust mechanisms which are consistent with subduction
of the Nazca and the Pacific plates beneath the South American, the North American, and
the Eurasian plates. The normal fault events represents tensional failure within the

oceanic plate upon bending caused by subduction.
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Mechanism of Great Earthquakes in the Pacific
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Data

Table-1 is the travel time data obtained using "STP" which is a SCEC (Southern
California Earthquake Center) tool to extract earthquake data (parameter data and
waveform data). (For details of STP, see the SCEC Web site). The data are rearranged
in (X, y) coordinate (in km) with the Pasadena station (Latitude=34.1484°, Longitude=-
118.1711° ) as the origin. The origin time of the arrival times is arbitrary. Table-1 gives
only the first 10 stations. The actual data are in loc_dat 1 (all the data and program files
are in a FTP site on ftp.gps.caltech.edu /home/ftp/pub/hiroo/ge162.dir).

Table 1.

Earthquake-1

Reference Station (Origin of (x,y)) PAS 34.1484 -118.1711
Station Lat. Long. Elev. x (km) v(km) arrival t. (sec)
MIK 34.1370 -118.1260 235.0000 4.160 -1.264 1.453
GSsA 34.1368 -118.1283 165.0000 3.947 -1.286 1.453
KIK 34.1504 -118.1016 168.0000 6.409 0.224 1.596
PAS 34.1484 -118.1711 257.0000 0.000 0.000 1.615
GVR 34.0497 -118.1200 141.0000 4.718 -10.947 1.620
RUS 34.0505 -118.0799 37.0000 8.420 -10.856 1.753
RIO 34.1047 -117.9796 79.0000 17.670 -4.831 2.778
MWC 34.2237 -118.0529 1696.0000 10.891 8.359 2.731
LGB 33.9756 -118.1491 6.0000 2.033 -19.167 3.417
TCC 33.9947 -118.0140 195.0000 14.514 -17.038 2.731
GR2 34.1183 -118.2994 316.0000 -11.837 -3.331 3.134

Locate the earthquake taking the following steps. Ideally, you should write your
own program to carry out 2 to 6, but if you find it difficult to do so, you can use a simple
program, eqloc.f. To do 7, you will need to use this program. In case you use this

program, try to follow the steps taken in the program.
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1. Use the first approximation, (0.0, 0.0, -10.0, 0.0).

2. Compute the travel times and the partial derivatives in a homogeneous medium with
v=6 km/s which is a good average for the shallow crust. Refer to equation (1) to (5) in

class note 2.2.

o @] of (@)
X |, oY,

and —=

0 0

3. Set up the equation for the least-square solution.

am| oA aAm
X, |, o o az, |,
am)  ofm) oM t, -t
OX, o o 1o 0z, o 5%, tz_tg
oam) om)  aAm) 5Y, -t
X, | o e 9% |, 57, || (2)
S,
. . . tN _tl(\)l
o aw)| aw)|
N
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which we write as

Am =d 3)

where A is an Nx4 matrix

A am| A
OX, o oy, o 0z, o
A am| om|
Xy N |, 9% |,
am| ofw)| awm| |
A=l ox, |, o |, @z | 4)
o) am)| Aw)
8X° ‘0 8y0 0 azo ‘O

and m and d are column vectors containing the parameters to be determined and the

data, respectively, i.e.,
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tl _tlo
t, -t
S, >
t3 _t3
| 9Y, -
m= ,and d= . ®)
01,
ot,
tN _tl(\)l
4. Determine m .
The normal equation is,
ATAm = A'd (6)

If AT A is not singular, the formal solution is given by
m=(A"A)'A'd (7)
and the error estimates are determined by the variance of the data and the diagonal

elements of the inverse matrix of the normal equation (6 ). Usually, we write the

uncertainty in m, by Am,, and compute it by

Amizﬁ\/Z(tj—t;)z/(N—Np), i=1,2,3 (8)
j=1
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where N is the number of parameters (here 4), Cii are the diagonal elements of (ATA),

and t] are the computed arrival times for station j.

5. Obtain the 2nd approximation by:

X, =0+0X,

Yo =0+0Y, )
z,=—-10.+5z,

t, =0+ ot

6. Iterate 2, 3, 4, 5.

A simple program eqloc.f is in /home/ftp/pub/hiroo. This program uses 2 input
files.

i_eqgloc and c_eqloc

i_eqgloc

loc_dat_1 : Name of the travel-time data file
0.0 0.0 -10.0 0.0 : 1lst approx.

c_eqloc

10 : maximum number of interations
half_space

name of the structure
s-cal.pvel

half space
half_space
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1 : number of layers
9999. 6.0 : layer thickness, «a

s-cal.pvel
southern cal. P structure, with a slightly low surface velocity
5

1.0 4.0
3. 5.5
23.4 6.3
5. 6.8
9999.0 7.8

7. If the second line of ¢_eqloc is replaced by s-cal.pvel, it will use a more general
subroutine which computes the travel times etc for a layered model given by s-cal.pvel.
Try eqloc.f with s-cal.pvel. Output of eqloc is in 0_eqloc.

8. Vary the st approximation to see how the solution is affected.

9. Remove the data for which tj is less than 5 sec, and locate the event.

Example output

0_eqgloc
10
southern california P structure, with a
1.000 4._.000
3.000 5.500
23.400 6.300
5.000 6.800
9999.000 7.800
loc dat 1
0.000 0.000 -10.000 0.000
Earthquake-1
PAS 34.148 -118.171
X0= 6.778 0.319
y0= -4.360 0.378
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z0= -10.676 1.159

tho= 0.017 0.054
34.148 -118.171 -10.000 0.000
X0= 6.790 0.316
y0= -4.186 0.381
z0= -8.184 1.079
tho= 0.027 0.054
34.109 -118.098 -10.676 0.017
X0= 6.782 0.308
y0= -4.172 0.367
z0= -7.645 1.180
tho= 0.030 0.048
34.111 -118.098 -8.184 0.027
X0= 6.782 0.307
y0= -4.167 0.365
z0= -7.533 1.217
tho= 0.032 0.047
34.111 -118.098 -7.645 0.030

station data

Station Dist. (km) Azm. (deg) t, t.(computed) Res.
MIK 3.911 317.927 1.453 1.552 -0.099
GSA 4.040 315.481 1.453 1.563 -0.110
KIK 4.404  355.193 1.596 1.594 0.002
PAS 7.958 301.591 1.615 1.983 -0.368
GVR 7.088 196.979 1.620 1.876 -0.256
RUS 6.888 166.284 1.753 1.853 -0.100
RIO 10.909 93.540 2.778 2.377 0.401
MwWC 13.179 18.203 2.731 2.703 0.028
LGB 15.734 197.612 3.417 3.083 0.334
TCC 15.014  149.045 2.731 2.975 -0.244
GR2 18.637 272.606 3.134 3.525 -0.391
WLT 17.605 129.626 3.714 3.367 0.347
usc 20.145  239.757 3.804 3.756 0.048
WTT 23.123 219.086 4.858 4.218 0.640
PEM 21.884 73.425 3.989 4.026 -0.037
0.3273 RMS of residuals

Ge 162 Practice Session 2 P-wave First-Motion Mechanism
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Data

Table-1 is the phase data obtained using "STP" which is a SCEC tool to extract
earthquake data (parametric data and waveform data). (For details of STP, see the SCEC Web
site). The data contain station names, first motion data (C or D), quality (Q, ignore in this
problem), azimuth, and take-off angle. The azimuth and take-off angle, in, (measured from
downward vertical) are computed using a standard southern California structure. Table-1 lists
only selected 10 stations. The actual data are in mech_dat 1 in

/home/ftp/pub/hiroo/ge162.dir/practice2.dir.

Table 1. P-wave first-motion data

station Cor D Q Azimuth (°) i, (°)
BVH D 2 340.332 164.798
SMS D 2 231.855 131.689
DJJ C 2 310.759 131.679
usc C 2 114.973 123.098
LAX D 2 190.413 116.500
HLL D 2 11.487 115.842
PAS D 2 63.638 103.096
NOT C 2 320.286 101.493
MwC D 2 59.358 96.635
LKL D 2 39.880 92.397

Determine the mechanism of this earthquake taking the following steps.

1. Compute the radial distance on a mechanism diagram using the equal-area projection,

r=+2 sin(i, /2) (equal-area projection) (1)
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Remember that if iy, is larger than 90°, then 180° must be added to the azimuth (i.e., the

station must be plotted in the opposite azimuth.), and i, must be changed to 180°-ip,

2. Plot the first-motion (filled circle for compression and open circle for dilatation) on a
mechanism diagram. (Plot the data for the 10 stations listed in Table-1 manually, or with your

own program).

3. A program mplotr_2.f'is provided in practice 2.dir to plot the first-motion data on a
mechanism diagram. mplotr 2.f takes 2 input files, 1 mplotr 2 and ¢ mplotr 2. The

output is a postscript file p_mplotr 2.

i_mplotr_2

Earthquake(mech)-1 : Job 1D

L : Ffault(f) or moment tensor(m)
85. 180. 350. : dip, rake, and fault strike
mech_dat_1 : file name of the data

(For plotting only the first-motion data, the 2nd and 3rd lines are irrelevant.)
c_mplotr_2

7.0 0.1 10.5.0 0 0 1 O : these parameters control the type and
style of the plot

(change plot_opt parameter (2nd from the last) only. 1 for the Ffirst-motion
data only (in this case, the fault parameters are ignored), 3 for the data +
nodal lines)

(radius, sizef, deltlc, delt2c, shading p, sv or sh, ndens,
plot_opt., projection)
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4. The final step is to determine the mechanism by drawing two orthogonal nodal planes so that
they divide the compressional and dilatational stations. Usually there are always some
inconsistent stations, but try to find the best solution. Many methods have been developed, but
here try a few mechanisms. mplotr 2.f draws 2 nodal lines corresponding to the fault

mechanism given by dip, J, rake, A, and fault strike, ¢, (run mplotr 2 with plot opt=3 in

c_mplotr 2). These fault parameters are defined in the figure below.
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5. Assume that the fault strike is -45° from N. Plot the mechanism diagrams for (1) right-
lateral vertical strike slip, (2) vertical dip slip (north-east side down), (3) thrust fault
dipping 20° NE, (4) normal fault dipping 45° NE, and (4) an oblique-slip mechanism
(e.g., add some right-lateral component to (3)). (This problem has nothing to do with
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the first-motion data given in mech_dat 1. You can just draw a sketch of mechanism
diagrams, or run mplotr 2.f with

c_mplotr_2

7.0 0.1 10.5.0 0 50 4 0

)
Gel62

2.3. Seismicity of the Earth (LW, pp.434-477)
2.3.1 Global Seismicity
Earthquakes occur mainly:
1. Along trenches (subduction zones),
2. Along ridge-transform systems,
3. In continental interiors.
Figures 1 and 2 show seismicity in the world and California, and Figures 3 and 4 show

the mechanisms of large earthquakes in the world and California.
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World Seismicity

Fig. 1
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Selsmicity of California «
1900-2001, M,>=3.5

Fig. 2

The world largest earthquakes occur along subduction zones (e.g., the 1960 Chilean
earthquake, My=9.5, the 1964 Alaskan earthquake, M,,=9.2). More than 75 % of the seismic
energy release takes place there. Most of these events represent slip on the interface between a
subducting oceanic plate and an overriding plate (Figure 3). In these zones deep focus

earthquakes occur to a depth of about 700 km.
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Mechanism of Large Earthquakes in the World (M, >7.5, 1976-2001)
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Mechanism of Large Earthquakes in California (Mf,>6.5, 1976-2001)

Fig. 4

S
124w 122w 1200w 118w 18w 14w

Most earthquakes along ridge-transform systems are shallow and relatively small (10% in
energy release). The events on ridges have normal-fault mechanism, and those along the
transform boundaries have strike-slip mechanisms. Transform fault events are generally larger;
occasionally the magnitude reaches 8 (e.g., the 1906 San Francisco earthquake, My=8 ). No deep
focus earthquake has been found beneath ridge-transform systems.

The distribution of the events in continental interiors (15 % in energy release) is

very diffuse. Partly because of their proximity to major population centers, large intra-
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continental events are often very devastating (e.g., the 1976 Tanshang earthquake, the

1988 Armenian earthquake, the 2001 India earthquake)

2.3.2 Depth Variation (Figure 5)

Most earthquakes occur at depths shallower than 60 km. However, some
significant earthquakes occur at depths of as deep as 700 km, especially in subduction
zones (e.g. 1970 Colombia, d=653 km, M,=8.1; 1954 Spain, d=640 km, M=7.8, 1994
Bolivia, d=635 km, M,,=8.3). The largest recorded deep focus earthquake is the 1994

Bolivia earthquake.
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Depth Variation of Seismicity

Elerg)
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The variation of seismic activity as a funection of depth. The solid curve
shows the energy and the dashed curve the number of events with my > 7. The scale
at the top indicates the energy (E) and that at the bottom the number (N). Each data
point represents the value for a depth range of 50 km centered at the depth of each
data point and for the time period of 75 years from 1804 to 1874 [10].

Fig. 5

A pronounced peak in the energy release is seen at a depth of 600 km, just before

the seismic activity dies out.

2.3.3 Temporal Variation of Seismicity (Figure 6)

Figure 6 shows the temporal variation of seismicity. The energy release during the
period from 1952 to1965 dominates. This peak is a result of five large subduction-zone

earthquakes in the Pacific (1952 Kamchatka, 1957 Aleutian Is., 1960 Chile, 1964 Alaska,
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1965 Aleutian Is.). The energy release rate is not uniform in time, and fluctuates on a

time scale of at least 100 years.

Earthquake Energy Release in the 20th Century

1 T [ 1 T | T T
B Seismic wave energy  release i
g o
(old from Ms) AR
ch
T g
r K = Mean
L|.I
7 1029
2rgs/ year
] P N 1 | 1 I i | I
IB20 1900 190 1920 1930 1940 1850 1860 1970 1380
Mo,
dyne=-cm
'.'0'01 - ¥ T T T T T T T T B
erg I A Aledtian T India Kr. Kurile — Wi
o I | Ak Aloska Jodepan M Mongolo § -2
L 103} C: Chile K: Komchatka P Peru =
S0
["Mew® frarm Mw) il I SEic i 7
- | .
M 7 mlip{im 85
o i - ;
- IOM = Francisen | |80

.. o | ..
200 1210 1220 130 1940 1BB0 1960 1970 1980
» Yaar Flg 6

The average energy release is about 4.5x1024 ergs/year, which is approximately
1/4 of the energy released in volcanic eruptions, and 0.05 % of the terrestrial heat flow.
Figures 7, 8, and 9 show the distribution of great earthquakes, the temporal

distribution of damaging earthquakes, and the temporal distribution of damaging tsunami.
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Damaging Tsunami
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2.3.4 Magnitude-Frequency Relation (Gutenberg-Richter Relation)

Figure 10 shows the distribution of the number, N, of earthquakes equal to, or

larger than, magnitude M. In general, this distribution is expressed as

logN(M)=a-bM
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The results obtained for many regions indicate that the value of b (called b value)
is approximately equal to 1.

Figure 9 shows that approximately 1 earthquake with M > 8 occurs every year.

Magnitude-Frequency Relation (Global)
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Fig. 10

2.3.5 Aftershocks
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After a large earthquake (main shock), many smaller earthquakes occur near the
epicenter of the earthquake. The decay of aftershock activity follows the Omori's law

given by

t+c

where Nn(t) is the number of aftershocks larger than a given magnitude per unit time. A

modified Omori's law is given by

K
(t+c)f

n(t) =

where p is a constant, which is usually slightly larger than 1.
3.1 Review of Elasticity Theory
3.1.1 Stress
In the theory of elasticity we consider two types of forces.
Body Force

The body force f is defined by a force per unit mass in a medium (Figure 1).

Then, the body force per unit volume is pf where pis the density of the medium.
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Fi.j. |

Then the force acting on a volume element dV is
pfdv
which can be integrated over a volume V as

I pfav
\

e.g. body force due to gravity: pf= L9 (downward)

Surface Force
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The surface force is the force distributed over a surface of the body, either internal

or external. Usually it is defined by the force per unit area, 1?5 . Then the force acting on a

surface element dS is f.dS .

Stress
Consider a deformed elastic body in equilibrium (see Figure 1). Let dS be a surface

element at P which divides the medium on the + side and the - side. A unit normal vector

n (|ﬁ| =1 ) is taken from the - side to the + side. In equilibrium, the force, 1 , exerted by

the + side on dS should be balanced by the force, F exerted by the - side on dS, i.e.,

F.+F =0.

The stress at P acting on dS from the + side is then defined by

f = i
" T Am s

fn is a vector (often called a stress vector, or traction) and its dimension is force/area.
We take a Cartesian coordinate system (X, X,, X;)and write X, X,, and X,

components of f by (f,, f,, f,.). Note that f _isa function of not only the location

In>
of P but also the orientation of Nn. Hence, in order to specify the stress at P uniquely, we

need two vectors i and f, .

This situation can be understood more easily in the simple example shown in
Figure 2.
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Consider an elastic beam with one end, AB, clamped at the wall. Then, apply a
force F uniformly on the surface S at the other end BC. Let us consider the stress at P. In
(a), we consider the stress acting on S; that is perpendicular to the axis of the beam. In
this case, it is obvious that

(fins £20)=(F/S,,0)

In (b), we consider S; which is parallel to the axis. Suppose we cut the beam in two

parts along S;. The beam will be still in equilibrium without change in shape. That is, there

is no force acting on S,. Hence, in this case,

(fln’ f2n) = (Oa 0)

Stress Tensor
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For simplicity, we consider a 2-dimensional problem. The section shown in

Figure 3 depicts a 2-D medium extending to infinity in X, direction (perpendicular to the

face of the paper).

kFig. 3

Consider a surface element dS, normal to the X, axis. We call the medium on the

+ X, side M+ and that on the - X, side, M- (Figure 4). Let o,, and o,, be the X and
X, components of the stress exerted by M+on dS,. Then —o,, and —o,, are X, and X,

components of stresses exerted by M-, respectively.
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Note that the first subscript denotes the component, and the second, the direction
of the normal to the surface. oy 's with any i and j can be defined similarly.
Consider a triangular beam with an infinitesimally small cross section BOA .

Referring to Figure 5, we define the following.

n,: X, componentof N, N =cosé
n,: X, component of N, n, =siné

o,,: X component of the stress acting on AB
0,,: X, component of the stress acting on AB

S: AB x unit length in X, direction

Si: OB x unit length in X, direction
S»: OA x unit length in X, direction
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L2}
B -
.
0 A 23 xl
Fi.j. £

Then the forces acting on BOA are given as follows.

X, component X, component
force on S, -0,,S, —-0,,5,
force on S; -0,,S, -0,,5,
force on S 0 (o)
Total -0,,5,-0,5,+0,,S -0,S5, -0,S,+0,,S

In equilibrium, the total force should vanish. Since S, =S coséd =Sn,, and
S, =Ssin@ = Sn,, we obtain

Oy, = o, +o,,0,
O,y =0, N 0,0, (1)

or, in matrix notation,
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()2 =) o
Oon Oy Opn)\M
Consider an infinitesimally small square around P (Figure 6). In equilibrium, the

total moment around P should vanish. This condition leads to

01, =0y )

Oz
—y

| elle,

%

-, Fig. €

The above analysis can be extended easily to a 3-dimensional

problem, and we can derive,

O, o, O, Oi|lNh
Oy |Z| 0 Oxn Oxn|h “4)
O3 O3 O3 O3 )\

with the symmetry relations o; = o ;. Here, o, (i=1,2,3) are the X, X,, and X,

components of the stress acting on dS (at P) whose unit normal is 1.

The matrix ( oy ) above is called the stress tensor at P. (It can be shown that (o) is a

tensor.) Because of the symmetry o; = o, it has only 6 independent elements. Once we
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know the stress tensor (o, ) at P, we can calculate, using (4), the stresses on any surface

at P whose unit normal is N (Figure 7).

Fa. 7

In the above equilibrium analysis, we ignored body forces compared with surface
forces. This is justified because if we consider a small volume around P with a linear
dimension da, then the total body force is proportional to da’ while the total surface force

is proportional to da*. Hence as da—> 0, the body forces can be ignored.

Normal, Shear, Principal Stresses

We resolve the stress acting on dS into two components, one parallel to i, o, ,
and the other perpendicular to N, o,, (see Figure 8). o, is called the normal stress, and
o, 1s the shear stress. In general, o,, #0 and o, # 0. However, at any point P, it is
always possible to choose a Cartesian coordinate system (X, X,, X;) for which

0. =0 (i"'# j"). In other words, for this new coordinate system (o) is a diagonal

matrix. The non-zero diagonal components, o, 0,,,and o, are called the principal
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stresses, and X, X,, and X, axes, the principal axes. It can be shown that

O+ 0,y + 035 =0, +0, + 0.

Equations of Motion

First, consider a 1-dimensional problem illustrated in Figure 9. Figure 9 shows an

elastic rod with cross section S.

o, (x,~dx
Adzla \ 1 l)
N
{ 575 D'éc ?
/A XwdX,
=0, (x,)
R

Fg.q ° T

The equation of motion for a small part of it, ABCD (length dX,) is given by,
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pSdx U, = pf,Sdx, + o,,(X, +dx,)S —o,,(X,)S
where p is the density, U, is the displacement, and f, is the body force. Expanding

o,,(X, +dx,) around X, and retaining only the first order terms in dx,, we obtain,

ooy,
0%,

pl =pf + (5)

This is the equation of motion in 1-dimension.
A similar analysis can be made for a 3-dimensional geometry, and we obtain:

. 3, 00
pui:pfi+za J

i=t j

(i=1,2,3) (6)

These are the equations of motion expressed in terms of the stress components.

Tensor Notation

In tensor notation, if any suffix occurs twice in a single term, it is to be put equal

to 1, 2, and 3 in turn and the results are to be added. For example,

3
Q =, +a, +a; = Zaii
i=1

aljbj3 = a11b13 + a12b23 + a13b33 = a1|b|3

3
aipbpj = kZ: aikbkj
=1

94



Also, we use ; to denote differentiation by X;. For example,

ou, _
—L=u,
OX;
Also note that,
ou _ou o, ou,

Uy=—"= —=Uu,+U,,+U
YT ox, ox, ox, o

We also use the Kronecker’s delta

{lif =]
5”': o s .
01f 1#]

Note that o, =3.

In the tensor notation, (6) can be written as

pu; = pf+ Ol

Boundary Conditions

(7

From the definition of the stress, it is evident that the normal and the tangential

stresses should be continuous across any surface. In particular, at the free surface, there is

no force acting on it; hence the normal and the shear stresses should vanish there. If the

free surface is perpendicular to X, axis,
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0, =0y, =05, =0

Within the interior of continuum, the displacement U, should be continuous.
3.1.2 Strain

The displacement in continuum consists of three parts,
1. Translation (rigid body)
2. Rotation (rigid body)

3. Deformation

In the theory of elasticity, we are primarily concerned with “Deformation”.

-—t
u
Q+di
rdx _
th.to

Referring to Figure 10, let P and Q represent two points dX apart in an

elastic medium, and U and U +d0 be their displacements.

If G=0+d0,i.e., di =0, for any pair of points, U simply represents
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rigid body translation. Thus dU is considered to represent rotation and deformation. To

the first order,

o ou oy
du oX, OX, 0X dx
1 1
du, | = ou, ou, ou, dx, ()
du oX, OX, OX, dx
“oleu, ou, ouy |t
oX, OX, OX,

Denoting the matrix (u; ;) by U and (u;; ) by U” (transpose of U), we can write U as
U :E(U +U )+E(U -U") 9)

We denote %(U +U") by D and %(U —~U")by R. D is symmetric and R is anti-

symmetric. We will show that D represents deformation, and R represents rigid-body
rotation.

The elements of D, l(ui ; +U;;) =¢; can be interpreted as follows.
2 > s

Ifonly e, #0,
du, e, 0 0)fdx
du, |=| 0 0 O]] dx,
du, 0 0 0){dx

We then have, du, =e,,dx,, du, =0, and du, =0. This means that the line element dx, in
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X, direction is stretched by du, =e,,dx, in X, direction. Hence, €, represents extension
(or contraction if e,,<0) per unit length in X, direction. e,, and €,;can be interpreted
similarly.
Next consider e,, and e,,(=¢,,).

du, 0 e, 0)dx

du, |[=|e,, O O] dx

du, 0 0 0)ldx
i.e., du, =e,dx,, du, =e,dx, and du, =0. As shown in Figure 11, the angle between X,
and X, axes which is originally 7 /2 becomes 8 =7 /2 —2e,, after the deformation.
Thus, e, is equal to half the angle change between the X, axis and X, axis, and is called

the shear strain. e,; and e,; can be interpreted similarly.

X2 4
au
dzz —
/'
€2 du,
b —
@ |
eZl

FLS. i
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D is called the strain tensor (it can be shown that (€; ) is a tensor).

€, €,,, and &, represent extension or contraction, and €,,, €, and e,, represent shear.

We now show that R represents rigid body rotation. R can be written as

0 %(ul,z - u2,1) %(um - u3,1)
R= l(uzl_ulz) 0 l(un_un)
2 ’ 2 " ’
l(us]_ula) l(u32_u23) 0
27 ’ 2 - ’

Define w,, w,, and o, by

@, =—Ty(=1r,)=—(1/ 2)(“2,3 - u3,2)
@, =—1,(=1;)= _(1/2)(u3,1 - ul,s)
@y =—1,(=1,)=—1/2)U,,—-U,,)

Then,
0 -0 o,
R=| w, 0 -o
-0, o 0

Consider the case where o, = ®, =0 and o, is non-zero.
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Then, we have

du, 0 -w, 0)dx

du, |[=lew, 0 0] dx,

du, 0 0 0)ldx
ie., du =-w,dx, du, =m,dx, and du, =0. Asshown in Figure 12, this displacement
represents counter-clockwise rotation by @, around the X, axis. @, and @, can be

interpreted similarly. Thus R represents rigid body rotation.

=S
dyy
o, 4%2

£1

e N

0 dz, o

!

fFig. 1

3.1.3 Stress-Strain Relations and Elastic Constants

The relation between stress and strain is the extension of the Hooke’s law for a
spring. (i.e., F = kAl where F is the force, Al is the length change and K is the spring
constant.)

We assume that the material is isotropic and perfectly elastic. If the medium is
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perfectly elastic, the stress should be expressed as a homogeneous linear function of
strain. Since there are six independent stress components and strain components, in
general there can be 6x6=36 constants. However, if the material is isotropic, we can show
that there are only two independent constants.

Consider an elastic parallelepiped shown in Figure 13. Apply a normal stress o,
in X, direction. The extension in X, direction is €, (Figure 13). In the linear theory, €, is

proportional to o,

o 1
— O,

11 11

E

Ay
Cn
5 ] . e .
b *]
Fig. 13

T 1 .
The constant of proportionality is written as = and is called the Young’s
modulus. Note that e, is non-dimensional, so that E has the dimension of stress. Under
this stress, there will be contraction in X, and X, directions that is proportional to €.

Since the material is isotropic,

1% 1%
€, =—VE, :_EGH and e, =-ve, :_Eo-ll
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v 1is called the Poisson’s ratio.

If we apply o,,, 0,,, and o3, in X, X, and X, directions simultaneously, then by

superposition,

(o2 1%

€. :f_E(O'zz"'O-n)
O 1%

€ :%_E(O_u"'o_w) (10)
O 1%

€33 :f_E(O_U"'O-zz)

Adding the three equations in (10) we obtain

A:MZ (11)
E
where
A=e, +e, +€; (12)
and

X =0, +0, +0;,

Consider deformation of a small parallelepiped. The initial volume is

V, = dx,dx,dx, and the volume after deformation is

V =(1+¢)dx (1+e,)dx,(1+e,,)dx,
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d1'3

dZ,
ax
l ~ dx; (1 6

dxi (1t EM)

feg.ig
Then, to the first order, the volume change is
dv =V -V, =V,(e, +e, +€,;)
Hence,
A=dV/V,

Thus, A represents relative change in the volume, and is called the volumetric
strain or dilatation.

If o, =0,, =0, =0, then from (11), we obtain

E
O =
3(1-2v)

where
E

T301-2v)

(13)

103



is called the bulk modulus or incompressibility.

Substituting (11) into (10), and solving for o,,, 0,,, and o;, we obtain

vE E
o, = A+ €,
1-2v)(1+v) (1+v)
O, = vE A+ E €,
(1-2v)(1+v) (1+v)

vE E
Oy = A+ €53
(1-2v)(1+v) (1+v)

We introduce the Lame’s elastic constants A and g by

a=—YE (14)
(1—2v)(1+v)

E
_ 15
“ 00+ (13)

Then,

o, =AA+2ue,

0, =AA+2ue,, (16)

Oy, = AA+2ue,,

Next, we consider shear stress and shear strain. From Figure 15, we see that the
shear strain €, is caused by the shear stress o, :

o, =2Ge,

where G is called the shear modulus.
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Similarly,
o,; =2Ge,
o,, =2Ge,,

It can be shown (homework problem) that G is equal to the Lame’constant z . Hence,

o, =28,
O, =246, (17)
Oy =218,

Equations (16) and (17) give the stress-strain relations in isotropic media. (16) and (17)

can be written collectively as

oy = AAS; +2ugy; (18)

105



Note that, although we have introduced five elastic constants E, v, k, A, and u above,

there are only two independent constants. If we choose E and v as the basic constants

then
£ - u-_E_
31-2v) (1+v)(1-2v) 2(1+v)
If we choose A and u as the basic constants, then
yo At pl3AR2 5402, (20)
2(A+ u) A+ u 3

Some Relations in Vector Analysis

In the theory of elasticity, the following definitions and relations are often used.
Here, ¢(X;, X,, X;) is a scalar function and U(u,, u,, U,) and V(v,, v,, V,) are vectors.

We assume that these functions are continuous and differentiable.

1) grad¢ is a vector with the components

99 94 99 1)
ox,” OX, 0%,

We often use an operator

ve[2 2 2
OX, OX, OX,
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and write itas V¢.
2) divU is a scalar defined by

M My _v.g (22)
OX, OX, OX, ’

3) curlu (rot U) is a vector defined by
(%_%,%_%,%_%]zm 23)

4) Laplacian V>¢ is a scalar defined by

6‘2¢ 62¢ 6‘2¢
Vig=—"+—+
¢ o’ ox: o ox

= ¢,|| (24)

5) Vector Laplacian V(i is a vector defined by
(vzu“ Vzuzv vzus) = (Uu', Uy U3,||) (25)
We use this only in the Cartesian coordinate.
6) V?U = graddivii — curleurlt = VV -G — VxVxU (26)

For a non-Cartesian coordinate system, this should be considered as the definition of
vi.

7) curlgradg =0

8) diveurld =0
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9) If curli =0, U is called an irrotational vector, and can be written as U = grad¢ .
@ 1s the scalar potential.

10) If divli =0, then U is called a solenoidal vector, and can be written as U = curlV .
V is the vector potential.

11)  Any vector field 0 can be decomposed into an irrotational field G' and a
solenoidal field 0", i.e.

a=u'+0"
where curld' =0 and divi" =0. Using 9) and 10) G can be written as

U = grad¢ + curlv (27)

Relations 6), 7), and 8) can be easily verified. Proof of 9), 10) and 11) requires some
knowledge of Potential Theory.

3.1.4 Equation of Motion Expressed in Terms of Displacement

From (18) and the expression for €;, we obtain

Oij.j = AA 0+ p1(Uy j +Uj5)
=AM+ p(VU +A) = (A+ A + 1V,
where we assume that the medium is homogeneous, i.e., Aand y are constants.
Substituting this into (7), we obtain
Pl = pfi+(A+ A, +uVu,

or in a vector form,
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pl = pf +(A+ p)graddivi + uV>a (28)

Using (26), this can be rewritten as,
pl = pf +(A+2u)graddivd — ucurlcurld (29)
or

pl=p f+(1+ 24)V?U + (A + p)curleurld (30)

Equations (28), (29) and (30) are among the most fundamental equations in seismology.

If we decompose U into irrotational field G' (curld' = 0) and solenoidal field

u" (divd" =0), we obtain for T', using (30)

pu' =pf +(A+2u)V0' (31)
For 0", we obtain, using (28)

pu" = pf+puvia" (32)

(31) and (32) are the wave equations for the irrotational field and the solenoidal field,

respectively.
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Ge 162 Problem #3

1. Show that the Lame's elastic constant ;4~E/2(1+v) (E: Young's modulus, v: Poisson's
ratio) is actually equal to the shear modulus G defined by

0; =2Ge; (i#]))

Follow the steps described below for a 2-dimensional problem.

1) Consider a rectangular parallelepiped ABCD shown in Figure 1, and apply a normal
stress -o uniformly on BC and AD, and +c on AB and DC.

>

P>
=

W

= T
(o Oy A
-d al/ﬂ B’\/ - &
b
A BN AL
2’_,_ »

[ F.f'/j‘, 1
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Consider equilibrium of a beam with the square cross section abcd in the
parallelpiped. The square abcd 1s now deformed into a parallelogram a'b'c'd' as shown in
Figure 2.

Show that
o (+v) 0
ob E
S et @)

oa
2) Now consider equilibrium of a triangular beam with the cross section aob. The normal
stress is -oon oa and o on ob.
Show that
o=0o, and =0,
where o; and o, are the shear and normal stresses on ab, respectively (see Figure 1).
3) Referring to the square abcd, this deformation can be viewed as shear deformation due
to the shear stress o;.
Show that the corresponding shear strain €, is given by
e =(r/4)-(1/2)£d'ab’" (£d'a@b is ¢ in Figure 2)
A3)
4) From (1), (2) and (3),

tan((z/4)—g) = 22 _E=(U+V)o
oa' E+(l+v)o

(4)
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Assuming that e, is small (i.e. you can put sine=e, , cose=1), obtain the expression for G
by relating €, to o;.

Ge 162, Problem #2

Strain at a Point, Principal Strain

Consider a 2-D problem shown in Fig. 1.

X2

A line element PQ becomes P'Q' after deformation. The strain components for
this deformation are given by €, €5, and €,,.

Determine the unit elongation in the direction of PQ and the shear strain for the
directions of PQ and PT (PT is perpendicular to PQ). Follow the steps given below.

Let the displacement of P and Q be G(X)and U +du, respectively. Observe that
vector QQ" represents dui(du,, du,), where du, and du, are the X, and X, components of
du , and are given by QR and RQ" in the figure, respectively.
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1. Referring to the geometry shown in Fig. 1, show that the difference in the length
between PQ" and PQ (elongation in PQ direction) is given by:

dl = du,cos @ +du, sinax
Then dividing this by PQ, show that the unit elongation in the direction of PQ is
given by:
e, =6, co0s’ a+6e,sin’a+2¢,sinacosa

( Use the relations like du, = %dxl +% dx, and o _ cosa etc.)
OX, OX, PQ

2. Referring to the geometry shown in Fig. 1, show that the angle through which PQ is
rotated is given by:

du,cosa—du,sina Jdu, , : o, .,
= cos” a+(e,, —€,)cosasina ———-sin" a

PQ X, OX,

3. The line segment PT makes an angle a+77/2 with the X, axis. Using the result obtained
above, show that the rotation of PT is given by:

U,

. 2 ) ou,
sin”a —(&,, —€,,)cosasina ———cos” o
X X

1 2

4. Using the results of 2 and 3, show that the shear strain for the directions of PQ and PT
(i.e. 1/2 of the change in angle between PQ and PT) is given by:

e, =¢€,(cos’a—sin*a)+(e,, —€,)sinacosa

From this result we see that there are two values of ¢, differing by 772, for which
shear strain vanishes. They are given by:
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2e,
€€y,

tan 2¢ =

The corresponding strains e, are called the principal strains.
Ge 162 Problem #1

Stress at a point, principal axes and stresses

Consider a 2-D problem shown in Fig. 1.

X2

% X

Consider a (infinitesimally) small prism BOA at P with the three sides parallel to
the x; axis. Let N and T be the unit vectors normal and parallel to BA respectively (the
directions are shown in the figure.). In class, we showed that the X, and X, components of
stress acting on plane BA are given by,

[Glnj:[all O-lzj[nlj
O Oy Op)\M
1. Show that the normal stress and shear stress on the plane BA are given by,

2 c 2 :
o, =0, ¢c08 8+0,,sin"0+20,,cosfsinf

(1)
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o, =0,,(cos’ @ —sin’ @) +(c,, —0,,)cosfsin

Show that if the angle € is chosen such that

the shear stress vanishes.
The directions of N and t for this @ are called the principal directions.

If we take X, and X, axes in i and t directions, they are the principal axes. The normal
stresses on the plane normal to X, and X, axes are the principal stresses.

If x, and X, axes were the principal axes, (1) becomes
C,, =0,,008 0+0,,sin’ 0
o, =(0, —0,,)cosfsind
2. Refer to Fig. 2.

Show that the X and Y coordinates of point P is given by o,,and o, ,

respectively. The circle shown in Fig. 2 is called Moht's circle which is used for
graphical representation of the normal stress and shear stress on plane AB. Note that X,
and X, axes are the principal axes.
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3.2 Wave Equation and Seismic Waves

Wave Equations

Following (31) and (32) of 3.1.4, and ignoring the body force, we obtain for the

irrotational field G' (curld' =0),

u' =a’vu' (1)
where
o A+2u @)
Yo,

For the solenoidal field G" (divid" =0),

ﬁ" — IBZV2UII (3)

where
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/3=JZ ©
Yo,

Equations (1) and (3) are three-dimensional wave equations which are of fundamental

importance in seismology.

3.3 Seismic P Wave (Compressional Wave) and S Wave (Shear Wave)

We first examine the property of G'. Here we use a coordinate system (X, Y, Z) instead of

(X1, X2, X3), and denote the X, y, and z components of displacement by u, v, and w, respectively.

Let us consider a plane elastic wave propagating in the X direction, that is, a wave in
which T' is a function of X and t. Since all derivatives with respect to y and z are zero, we have

from curld' =0,
@:0, and ?:0

which give v=w=0. (Actually v and w are constant, but constant displacement is not
important in wave propagation problems and they are set equal to 0.) Therefore, only non-zero
=1

displacement component is U, This means, U’ represents a wave in which the particle motion is

in the direction of propagation. The propagation velocity is, from (2),
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Because of this particle motion, this wave is also called longitudinal wave (Fig.1).

W e (PM_

fmudb e tiown-
ol = | A T2M

-
P ro rmuz,o.zTL-m

Aine Aoy,

Fig. 1
Similarly, for ", we have from divi" =0,

ou

—=0
154

which gives U = 0 . Then the non-zero components are vV and w_This means, G" represents a
wave in which the particle motion is confined on the plane perpendicular to the propagation

direction; the propagation velocity is, from (4),

-E
Yo,
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Because of this particle motion, this wave is called a shear wave (Fig. 2). Since

diva" =0, it does not involve volume change.

In seismology, the longitudinal wave is often called P wave, and the shear wave

is called S wave.

WS AML {%M

\l I\FM{AU\J moTpon_

proqugatine B - ‘?%"

At A,

Fig. 2
3.4 Ray Theory

In the above, we assumed that the medium is homogeneous (in addition to being

isotropic). That is the elastic constants A and g do not vary spatially. The equations

(28), (29), and (30) in 3.1.4 were all derived with this assumption.

Once we obtain a 1 -D wave equation in the form,
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U(x,t) =c’u"(x,1) (5)
we can obtain the solution,
u(x,t)= f(x—ct)+g(x+ct) (6)

where f(&) and g(&) are twice differentiable arbitrary functions of & fand g
represent a plane wave propagating in positive and negative X directions,
respectively, with velocity c. For a wave propagating in the positive X direction, we
can consider a wave front X=Ct+constant. The line perpendicular to the wave front
determines the path along which the wave front propagates. This line (or curve, in
general) is called a ray. Thus, in case of a homogeneous medium, we can use rays to
describe wave propagation completely (ray theory). Ray theory is more intuitive than

wave theory, and has been used very extensively in seismology.

However, in the real medium, A and u are usually a function of X, y, and z. The

equation of motion is consequently far more complex than (28), (29), or (30) in 3.1.4, and

we cannot obtain simple wave equations; consequently we cannot use the ray theory (rays

cannot be defined rigorously). Fortunately, however, if the medium is only weakly

heterogeneous, we can define a “ray” approximately, and use the ray theory. This is a

common practice in seismology. The question is “what is considered weakly heterogeous

?* This problem can be discussed in detail in the Appendix to this section. Here we only

discuss this condition qualitatively.

Suppose that the wave velocity ¢(X) is a function of position X. Then the change in

velocity € over a wave length 4 is given by

Ac = Ac’
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If this is much smaller than c itself, we can consider that the medium is “weakly
heterogeneous”. The condition then can be stated as

Ac/c=Ac'/c=2xC"/w << 1
Ignoring 27 , we can say that if
@ >>C' (7)
then we can use the ray theory to discuss wave propagation problem in a heterogeneous

medium. In this sense, the ray theory represents a high-frequency approximation.

As shown in the Appendix, a harmonic wave in a I-D homogeneous medium is
given by,

u(x,t) =explio(t—x/c)] (8)

while in a 1-D weakly heterogeneous medium, it is given by

u(X,t)oc\/Iexp{ia)(t— ﬂﬂ 9)
pC c(X)

Equation (9) shows that the wavefront propagates at the local velocity c(x), and the

amplitude varies as +/1/ pC .

A similar relation can be obtained for a 3-D medium. The most important result
here is that a “wavefront” can be defined and it propagates at the local velocity, which
leads to the well-known “Snell’s Law” (see the Appendix, for more details).

If a ray is incident from a medium with velocity ¢, into a medium with velocity

C,, then the incidence angle i, and the angle of emergence i, are related by (Figure 3),
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sinl, _ sinl,
C1 CZ

(10)

In general, if the velocity varies vertically as ¢(z), then, for a given ray on a vertical plane, we
have (Figure 3)

sini(z)

c(2)

= p =const.

rua . |

Fig.3
Ge 162 Appendix to 3.4

Wave Propagation in a Slightly Heterogeneous Medium
- Solution with the WKBJ Method-

1. One-Dimensional Case

The equation of motion

@_iiEa_Uj
P " axl - ox
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: : oE . .
does not reduce to the simple wave equation because x # 0 in general. We obtain
X

o’u o°u  OE ou
+

o " ¢ ox ox
Introducing a new variable v by
U= E—I/ZV
and ignoring the term containing E”, we obtain

azv_EavarlE’zv
pat2 ox* 4 E

We consider a harmonic wave
V(x,t) =V (x)e"

Then, we have

2 N\2
(;\f +{k2+i(EEj }V =0
X
k:2 and Cz\/E
c P

where

If
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E"Y
(Ej <<k*,or @>>¢'

Then

dv

kv =0 (A-1)

Note that if k =k, = const, then the solution is
V = et _ eiijkodx

If k is a slowly varying function of X, we can solve this equation with the WKBJ method.

We seek a solution in the form
V= exp(iijxdx)
Substituting this into (1), we find that k¥ must satisfy the equation
kiK' +k*> =0 (A-2)

1-st Approximation

Since
| k" << k*

we obtain for the first approximation of x by

k" =k* or ¥V =k

2nd Approximation
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The 2nd approximation can be obtained by using x for the second term of (A-
2). Then, the 2nd approximation

, 12 12 k, 1/2
K2 =K +ic® | =(k*+ik') =k|1+i— (A-3)
k2

!

If, @ >> ¢, then % <<1, and

P
2 k

V(x) = exp{ii | (k i%k?j dx} =%exp(ii Jkax)

u(x,t) = %V exp(iot) = ﬁ exp[iiw(t + J‘%H (A-4)

This is the WKBJ solution. This solution is valid under the condition @ >>c'.

2. Vertically Heterogeneous Medium

We consider a SH wave, i.e., the displacement vector is given by (0, v(X,2), 0).
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®
Y

@0

SH wave

Zy

Then the equation of motion is given by

oV 62v+82v , OV
Poe Hlae o

As is in the 1-D case, we put

V(X,t) — ﬂfl/zeikxv(z)eiwt

Then, we obtain

where

kﬂz% and ﬂ:\/Z
o,

We introduce y(z) by
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7@ =k )=k’

If,
1Y
72 (2)>> —(ﬁj (A-5)
4\ u
then,
2/
5 +;(2(Z)V =0 (A-6)
Z

For (A-5) to be satisfied, at least @ >> 8" must be satisfied. If k;(z)—k*>=0, then this

condition is never satisfied.

Then the solution of (A-6) is
1 .
V(z) =—cexp|ti| y(2)dz
Lol o)
Then,

V(X,z,t) =

\/1; i _lkz)w exp[i (ot + ke [ G - kzdzﬂ
B

The wave front (i.e., plane of constant phase) is defined by
loct [y Jk; —k*dz = const

dz:ir k

ek
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at z=1z,

k
= zzconst
kﬂ—k
sini = dz = ! :Lzﬁk
\/d2X+d22 k2 —k? kﬂ )
1+-£
k2

sini(z)

£(2)

=const for a given ray.

However, if k, =k or i=7/2, which occurs at the turning point of a ray, the
condition (A-5) cannot be satisfied and the WKBJ method breaks down.

P |

Ge 162 Problem #4

Reflection and Transmission of SH wave at a Plane Boundary
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An incident SH wave S1, reflected SH wave Sr and refracted (transmitted) SH
wave S2 can be written as follows. (The displacement has only z component, W.)

. [sinj,  cos ]
W, =exp| lo X— y—tﬂ (1)
ool e
| (sin J, . cosj
w, = Rexp| lo X+ y—tﬂ (2)
{5
[ (sin J, . cosj,
w, =T exp Ia)( X— y—tﬂ 3)
’ L\ A By

where

sinj, _sinj, 1

B b C
Y |
S1
B S Gp
- [ 4
Al L4
- ,
L3 ¢
5‘ (f
LY L4
-~ 7’
- rs
\‘ '0
3 4
- *
» F
\‘ ’¢
el n e
. rd
- L4
LY rl
h. :
G e N X
~‘~i
j2 .
‘ih-"
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Here, the amplitude of the incident wave is assumed to be 1. R and T are reflection and
transmission coefficients respectively. C is the phase velocity along the boundary. (The
above relations are solutions of the wave equation in each layer.)

Using c, the above equations can be written as,

. [ x cosj
W = o] =——Ly-t 4
1 exp{w(c 7 y H 4
W, = Rexp ia)(§+%y—tﬂ (5)
L (x cos |,
w,=T | ———=2y-t 6
) eXP_w(C 7, y ﬂ (6)

Two boundary conditions must be satisfied at the boundary: one for displacement and the
other for stress (traction).

Show that these conditions are given by

I+R=T

— £ cos ] + 8 cos JR= —£2 cos 5,7

1 1 2

where g, and u, are the rigidity.

Solving these equations, show that
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_ — 1, 3, €08 J, + 44 3, cos j;
R= . . (7
3, €os J, + i, B, cos |,

T-= 2;“1_ﬂz cos J; _ (8)
B, €0s |, + 11, 3, cos ],

Determine the reflection and transmission coefficients for normal incidence (e.g., j,=0).

R = _;Uzﬂl +/U1ﬁ2 (9)
wh+ B
— 2:u1ﬂ2 (10)
B, + 1 By

If B, > p,, sin j,exceeds 1 for j, larger than the critical angle. In this case,

cos j, = (1-sin® j,)""?

becomes purely imaginary, i.e., cos j,= ib (b is real).
Referring to (6), briefly describe the behavior of the "transmitted" wave S2 for this case.

Also, the reflection coefficient R becomes complex. Determine the amplitude and
phase (with respect to the incident wave) of the reflected wave.

3.5 Reflection and Refraction (LW, pp. 96-104)

When the elastic constant, say velocity, changes discontinuously in the

medium, the condition (7) cannot be satisfied for any wavelength, because |C’|

becomes infinity there. Thus, in this case the ray theory cannot be used, and the wave

equation must be solved with the appropriate boundary conditions (continuity of
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displacements and traction) on the discontinuity surfaces. The problem, in general,
becomes very complicated, and complex reflection, refraction and energy coupling
between P and S waves take place. The simplest case in which a homogeneous
medium is bounded at a plane boundary by another homogeneous medium having

different elastic property (Fig. 4) has been studied by many investigators.

First let us consider a plane S wave incident at the boundary from medium 1

to 2. Let B, and S, be S wave velocities in media 1 and 2, respectively. We assume
B, <p,. Itis usually convenient to decompose an S wave into SH and SV

components. SH wave is an S wave whose particle motion is parallel to the boundary,
and the particle motion of SV wave is on the plane including the ray and

perpendicular to the boundary (this plane is called the plane of incidence) (Fig. 4).
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Since SH wave does not have a component of particle motion perpendicular
to the boundary, the situation is relatively simple. As shown in Fig. 5a, when SH

wave is incident at the boundary with incident angle, j, , reflected SH wave, S, and
refracted SH wave, S, result. The angle of emergence, j,, is related to J, by

sin j; _sin j,

s B
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Incident SH wave

! S
1\\ -h 7T
\\ ! /J’
i
@ Nalnr
\(ﬁw B,
e /!
Mdi_ ""”"JZ' \V B:>(;1
& Ba ]:).-"“i-__ ?
ey
32
Ineident SH wawe
b, Aj, S 1 3 | 3 it
! ‘B e T Ll - B >R
¥ 2 1
Ba
4, By
d’“a (5:

1

o, > a o
Ipncideut g w e 22 ‘>B F‘

D. 34

) : “. B
SLP\J, A:!J\—-Jz“k;\u‘t.z_. Ala L)
ﬁ\ $3 dz dl fJ c"‘:‘_ (51
} L “1‘36.!‘){3,)(&}

Fig. 5

This relation is similar to Snell’s law (10) of 3.4. Thus, we see that, even in this case,
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Snell’s law can be used to determine the emergence angle. The amplitude ratios

S, /S, and S, /S, are functions of j, and, of course, £,/ 5, . When ], exceeds

)
jo—sn [ 4]

)

no refracted wave results (Fig. 5b). In this case, part of the wave energy is trapped
along the boundary, and total reflection occurs. At the same time phase shift occurs

on reflection. The angle j, . is called the critical angle.
When P wave is incident on the boundary, the situation is more complicated. We
let o, and «, be the P wave velocities in media 1 and 2, respectively. We assume «,>
a,> fB,> p,. Inthis case, in addition to refracted and reflected P waves, refracted and

reflected SV waves result (Fig. 5¢). The following relation holds,

sinl, _sinl, _sin J, _sin J,

a, a, By B,

3)

where |, and i, are angles of incidence and emergence of the P wave, and j, and
J, are angles of reflection and emergence of the SV wave. When |,

exceeds
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i _in &
o =sin” | —
a2

no refracted P wave results, and part of the wave energy is trapped along the boundary. The

angle i is the critical angle.

When SV wave is incident at the boundary, the situation is even more complicated. In
this case, refracted and reflected P and SV waves result (Fig. 5d). As before, the following
relations hold

sin j, _sinj, sini, sini,

ﬂl ﬂz a, a,

©)

where j, and ], are angles of incidence and emergence of SV waves, and i,

and 1, are angles of reflection and refraction of P waves. When j, exceeds
o =sin’ (ﬁj ©

P wave no longer propagates into

medium 2. When j, exceeds

no P wave is reflected into medium 1.

When j, exceeds
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2

-1 .
s () .

then no SV wave refraction
takes place. In these cases,
part of the energy is trapped
along the boundary, and
complicated phase shift

occurs. The angles |, J,,
and j, . are the critical

angles.

When one medium is vacuum, the
boundary becomes a free surface, and only
reflections are to be considered. It is not
difficult to see from Fig. 5 that there is no
critical angle for incident SH and P waves,

but for incident SV wave

jpo, =sin” [ﬁj ©)

becomes critical angle at which no P wave reflection occurs.

Ge 162 Problem #5
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Dispersion of Love Waves

We discussed the simplest case of plane Love wave in a single homogeneous
layer overlying a homogeneous half-space. The phase velocity ¢ of Love waves can be
determined by the characteristic equation

tan(QSIHj:’uZ—S2 (1)
¢ 1S,

2 2
where S, = %—1, and S, = /1—%, and § <c<f,.
1 2

Equation (1) can be solved graphically to determine the phase velocity ¢ for given
i, My, P1, B, and H. The roots of (1) are given by the intersection of the two curves

corresponding to RHS (right-hand side) and LHS of (1) both of which are functions of
phase velocity.

For the case

H=35 km
1,=3x1011 dyne/ecm?2, f =3.5 km/sec
1, =7x1011 dyne/em?2, B,=4.6 km/sec

a) Compute the values of RHS and LHS of (1) for phase velocities
c=3.52, 3.6, 3.8, 4.0, 4.2, and 4.5 km/sec, and for periods T=20, 35, 50, and 80 sec.

b) Plot the values computed above (vertical axis) as a function of phase velocity ¢
(horizontal axis). Draw the two curves and find the phase velocity from the intersection

of the two curves (this gives the phase velocity of the fundamental mode).

c¢) Compare these phase velocities ¢(T) with the dispersion curve for Love waves for the
continental region (see Fig. 14 in class note 3.6).

Ge 162 Practice Session 3 Surface Wave Phase and Group Velocities
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Figure 1 shows the Rayleigh wave trains from an earthquake (1/2/2002, M=7.3) in the
Vanuatu Is., southwest Pacific, recorded at two TriNet stations, PAS (Pasadena) and NEE

(Needles) (The SAC files, van2.pas.lhz.sac and van2.nee.lhz.sac are in

/home/ftp/pub/hiroo/ge162.dir/practice3.dir, but they are not necessary to do this problem).
These two stations and the epicenter are almost on a great circle, and the distance between the
two stations, A, is 331 km. The unit of the time scale on the horizontal axis is sec (i.e., 2100 to

3100 sec).
; e e
._ | ] PAS LHZ
oL ﬂ | H \ I AN 02 (002), 2002 _|
. \ 17:22:50.000
f‘ A
oA/ | }\ \ \ﬂ | {U\J’W\f\ﬁww |
il | :
i NEE  LHZ |
s JAN 02 (002), 2002
, }ﬂ \ 1?:25:50.000
o A A M) \ Jf‘l\ S, | \ j \ \| ﬂ( { g \ \ \L{ '%J j\ﬁ ﬂ \
| U il | e
2 24 3
X 1047
Fig. 1
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Figures 2 and 3 show the original (top trace) and band-pass filtered records (at periods of
about 20, 30, 40, 50, and 60 sec) of the seismograms shown in Figure 1.
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Fig. 3 (NEE)

The band-pass filtered records at T=60 sec are of marginal quality. Thus, we use the data
from 20 to 50 sec.

1. Determine the group velocity, U, between PAS and NEE, at periods of 20, 30, 40, and 50 sec,
by measuring the arrival times of the wave train. (Equation 57 in class handout), and plot the
results on a U-T diagram, and compare it with that for a simple crustal structure shown at the
end.

The determination of the phase velocities, C, is a bit more difficult. Figures 4 and 5 show
the plots of the harmonic components of the records at PAS and NEE. The top trace is the
original and the six traces below it are the harmonic components at periods of 20.08, 30.12,
40.96, 51.20, 60.24, and 73.14 sec.
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In principle, the phase velocities can be determined from the phase arrival times of the
harmonic components using equation 51 in class handout. In this example, the records at PAS
and NEE have the same starting time. The difficulty is that, if only harmonic components at
discrete periods are given, it is not possible to determine the integer N. In other words, all the
peaks look exactly the same. In this exercise, we assume that the phase velocities in southern
California are approximately known within a certain range, and we determine N for each period
so that the measured phase velocities fall in this range. (Note: If all the harmonics are given, as
is the case in the real situation, we need to determine N only for one period.)

R B! ’W T {\/ﬂf 5 wﬁwwvui
Il UGN \ﬂm g I % il ﬂJ Q i TMW
AN W WAL u\ff%%fn a

U
Y [‘x'/\"'\ \ ff\\ {“ J/\ \ A f f /\‘ v
WA
ﬁ' AN ”x \ i Y
ik\;’f /ﬁ \u ,-/ “ \ / \ \] \u v\ in @{ if

\/ N \@ M
\\/ \/\ ’\ \.f JVAYAVAYA *ﬂ” A7

Fig. 4

H‘”——__

X 1042

142



nee harmonics

= T T T T

%ﬁNWWWWWWWUWWNVWW [FR,
/ WIAANAAR AN et
AT
MNP AYATAYATAPATATATATAVAT o
{TANAYAVAVAVAYATAVAVAYAATA \‘i“?ﬁ‘ﬁi‘f“*
YAVAVAVAVAVAVAVAVAVAVAYC v

L1042

¥ 1D#4
i

|
_'!‘-u—-l:h—\ .nx_-c:xa-h-h-wa:xa-u-

K 10+3

1023

&

X

J_-l’ P I i e

X102

X

| 11 | |
vc: [ X z.rqsu.—..:.mc:r\;-acr =

¥ 1042

Fig. 5
We assume that the phase velocities in southern California are within the
following ranges.

T (sec) ¢ (km/sec)
20 3.1-3.9
30 3.0-4.3
40 3.34.5
50 3.3-4.5

2. Determine the phase velocities between PAS and NEE using the pairs of harmonic
waves shown below at periods of 20.08, 30.12, 40.97, and 51.20 sec, and plot them on a
c-T diagram, and compare it with the phase velocity dispersion curve for a simple
structure given at the end.
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C or U, km/sec

Rayleigh Wave Dispersion for a Simple Crustal Structure
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Note:

Love Wave Dispersion for a Simple Crustal Structure
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These dispersion curves are computed for a simple crustal structure:

Thickness P-velocity S-velocity Density
(km) (km/sec) (km/sec) (gm/cm’)

4.0 5.5 3.18 2.6
234 6.3 3.64 2.67
5.0 6.8 3.93 2.8
100. 8.0 4.62 3.2

149



In this exercise, we use only 2 stations and the path is chosen to be a great circle.
In practice, we use multiple stations and the wave is assumed to be a plane wave and the
propagation azimuth and the phase velocities are simultaneously determined. Using a
high-density network like TriNet, the accuracy can be improved significantly, and the
method can be used for tomographic inversion.

3.6 Seismic Surface Waves (LW, pp. 116-153)

Rayleigh Wave

As we discussed in 3.5, when an SV wave is incident at a free surface, P and SV
waves are, in general, reflected. However, when the incidence angle exceeds the
critical angle, no P wave reflection occurs and part of the wave energy is trapped
along the free surface. This situation suggests existence of surface waves whose
energy is confined near the free surface. We consider here one of the simplest cases.

Consider a homogeneous elastic medium whose P wave velocity, S wave
velocity, and density are «, £, and p, respectively. This medium is bounded by a
plane surface, which we take as the x-y plane. We let the medium be in z <0 (Fig. 6).
Let us consider a harmonic surface wave propagating in X direction. Since we are
considering a surface wave as a result of the coupling between P (irrotational) and SV

(solenoidal) waves, we will look for a solution U in a form,

u=a'+a" (1)

where U' is the irrotational field satisfying

curli' =0  and u' =’V ()
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and " is the solenoidal field satisfying

divi" =0  and ua" = pvea" (3)

Since we consider only P and SV type motions propagating in X direction, G' and G" have only

x and z components (u', w') and (u" ,w") which do not depend ony. We write u', w', u",

and W" in a form,

Z a
]-TH?: {-;-'-l'.l'-gl.'-tt _,__:{
|:| R -
————
propagetion

«, B.F

. Fm'-.. i o ot iem

Fig. 6
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u'=f (z)eiw[tz)

| ia)(t—ij
=h ¢
w (2)e @)

u' = fz(z)eim(t_Zj

J

o |x

w' = hz(z)eiw(t_

At this point, the phase velocity ¢ is unknown, and we investigate whether we can find ¢ which

satisfies all the equations and the boundary conditions for surface waves.

From curld' =0, and diva" =0, we have

aul aWI aull awll
- -0, 4+ =0
0z OX OX 0z
from which
1c . | o
h(z)=—-—"f(z2) and f,(2)=-—h,(2) (%)
Il @ |l @

immediately follow.

Substituting u' into (2), and W" into (3), we have
g

£ —(%j [1—2-2} f =0 (6)
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and

" w ? C2
h, —(?j (I_Fth =0 (7)

respectively. If (1 —C—zj <0, then h, becomes a periodic function which does not

decay in the medium. We therefore require

CZ
Then, we have
iﬂsaz iQSﬂz
ff=Ae ¢ | h,=Be ¢ )
2 2
S, =, I-=, s,= 1—%
a

where A and B are constants,
The solution with the minus sign gives an infinite amplitude in the medium at z = -0

which is physically implausible; the plus sign must be taken. Thus, we have
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Qaz S E z [15) I*i
u(x,z,t):(AeCS 128 gec” je [ °) (10)
|
g 4 257 io|t—=
w(x,z,t):(—s_—“AeCS” +Bec” je [ °) (11)
|

These solutions must satisfy the stress-free boundary conditions at the free surface z =0, i.e.,

0=c, =2 M W) o0, MW =0 (12)
oX 01 0z
ou ow
0=0, =u| L+ N at 7=0 13
x ﬂ(éz 8)() (13)

Substituting (10) and (11) into (12) and (13), and setting z = 0, we have

—i(C—Z—szu /1—C—ZB=0 (14)
P B

2 2
2 l—C—zA—i[Z—%jB=O (15)
a

For non-trivial A and B to exist, we must have

C2 2 C2 1/2 Cz 1/2
2-— | =4[1-—| |1-— 16
5] -5 -5 w

or

154



C_i_sc—t+c2(2—j—l—62j—16[1—ﬂ—jj=o (17)
g p p o

2
Since LHS of this equation becomes —16[1 —’8—2] <O andlatc=0and c=/,
a

respectively, (17) has a real root at

C
0<—«l1 18
<,6'< (18)

This satisfies the condition (8) assumed previously. Thus, we have proved that the surface
wave given by (10) and (11) exists, and that it propagates with a velocity smaller than the shear

wave velocity £ . This kind of wave is called Rayleigh wave, and the propagation velocity C is

called the phase velocity. Combining (14), (10), and (11), we have

@ z 2 @ z o) t—5
u(x,z,t):A(eCS” —(l—lc—]ecsﬁ ]e () (19)

2 5
o, 2N 255 ioft-X
w(x,z,t):—iAL—SaeCS” +Si(l—lc—je°sﬂ Je - (20)
p

The amplitude ratio at z = 0 becomes

) — = e

and the phase of w is advanced by 7 /2 with respect to u,
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When o =3 p (this corresponds to the Poisson’s solid for which Poisson’s ratio v =
C2

>, namely, 4,2 —i—i ,and 2 —i. The first two do not

V3 V3

satisfy the condition (8), and therefore do not yield a surface wave. From the last value, we have

0.25), (17) has three real roots of

c=0.92p (22)

which satisfies (8). In this case, from (9), S, =0.85, and S, =0.39 . The particle motion at the

surface for simple harmonic waves can be obtained by taking the real part of (19) and (20):
u(x,t)=0.42Acosw(t—x/c) (23)
W(x,t) =0.62Asinw(t—x/c) (24)

and the amplitude ratio becomes 0.68. Equations (23) and (24) show that the orbital motion is
elliptic and counter-clockwise (for a wave propagating in positive X direction) (Fig.6).
The decay of the amplitude with depth is governed by factors like

w 7 w Z
=8,z 278,~ =842 278,
g¢ =g 4 and g’ = 4

where A is the wave length. Thus short wave length components are more quickly attenuated
than long wave length components.

In the above, the medium is assumed homogeneous. Waves like Rayleigh waves also
exist in heterogeneous (usually only in z direction) medium. In this case, the phase velocity C is
in general a function of wave period (or wave length), and therefore the propagation becomes

dispersive. Curves which relate the phase velocity to the period are called phase velocity
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dispersion curves. Calculation of such dispersion curves for a vertically heterogeneous medium

is usually made numerically,

Love Wave

As we saw in Fig. 5, SH wave is totally reflected when the incidence angle exceeds the
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critical angle j, . = sin™' (%] (,6’2 > ,31) . Also, it is totally reflected at a free surface, regardless

2
of the incident angle. Therefore if we have a layer underlain by a half space (Fig. 7), and assume
that S, > f3,, we can consider a SH wave bouncing between the free surface and the boundary
without major loss of energy into the half space. This situation suggests propagation of wave

energy which is trapped within the layer.

Al
EW?&irEui;ﬁLfrsr ——rrrr— X
%EP‘“’“‘L‘ R, 'ﬁl , P
-H P>y
Pz, J2

Fig. 7

Let us consider propagation of this kind of wave. We take the free surface and the
boundary to coincide with the plane z=0 and z=-H respectively. The half space occupies z <—H .
As before we consider a wave propagating in positive X direction. Since we consider an SH field,

the displacement vector has only y component. We let v, and v, be the displacements in the

layer and the half space, and look for the solutions in a form
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(25)

(26)

v, and v, satisfy the SH wave equation (3) in the layer and the half space respectively. Thus,

f; and f, must satisfy

2 2
£ +a’—2(c—2—1j f =0 27)
c 1
" COZ c’
f2 —C—2 l_ﬂ_zz f2:0 (28)
The solutions of these equations are
f = AcosZ S z+Bsin2S,z (29)
c c
D5,z
f,=Cec (30)

where
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c? c’
S = /——1 and S, = [I-— 31)
LB ’ B,

2
. C . .- .
For f; to vanish at Z— —0, 1-— >0, and we take only the term with positive sign in the
2

exponent of f,. At this point S; can be either real or imaginary. f, and f, must satisfy the

boundary conditions at the free surface and at the boundary. At the free surface

ov
0=0, =4 8_21 at z=0 (32)
At the boundary
ov ov
vV, =V, and H a—zl =AU, 8_22 at 7=- (33)

where 4, and u, are the rigidity of the layer and the half space, respectively. Substituting (29)
and (30) into (32) and (33) leads to

B=0 (34)
) -2s.H
Acos—SH-Ce ¢ =0 (35)
c
. *EszH
ApS sin—SH-Cu,Se ¢ =0 (36)
C

For non-trivial A and C to exist, we must have
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tanQSIH :&i

(37)
¢ M S,

This is the characteristic equation. If this equation is satisfied, the surface wave exists, and
the phase velocity ¢ is determined from (37). Since S; is required to be real, this equation implies

that S; is also real. Therefore, from (31),

B <c<p

If o—> o, or /1(= 27rc/a))—>0 then (37) gives ¢ =, and @ - 0, or 4 — oo, then (37) gives

c =/, . Since RHS of (37) varies continuously from oo to 0, as ¢ changes from S, to f£,, and

LHS changes from 0 to tanﬂﬂ ( B,/ B, )2 —1H ascchanges from S, to S, , there is at least
2

one solution of (37) between £, and S, for any value of @. For large values of @
(a) > B,/ (,6’2 /B, )2 -1H ) , more than one solution exists (Fig. 8).

Thus, the existence of the surface wave is proved. This kind of
wave is called Love wave. As is evident from the previous discussion, Love wave is of purely
SH type, and is dispersive

(i.e., ¢ depends on w).

As we can see from (35), (29) and (30), the amplitudes in the layer and the half space

become
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f =Acos<s,z (38)
C

25, (z+H)

f, = Acos%SlHeC (39)

It can be shown that for a fixed @, the solution (mode) with the lowest value of ¢ (c = ¢, in Fig.
8), gives an amplitude function which does not have a zero crossing (node). This mode is called
fundamental mode. When more than one solution exists, the modes with higher phase velocities
than c; have an amplitude function with zero crossings (nodes) (Fig. 8). These modes are called
overtones or higher modes.

We can consider this type of wave for more complex medium, for example, a medium
which has more than one layer or continuous velocity variation with depth. The computation of

the dispersion curves for such complex media must be made numerically,
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Amplitudy
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Dispersion Curve and Structure

Dispersion curves C(w)or ¢(T) are important when we use surface waves to determine

the structure of the medium. As we discussed earlier, both Love and Rayleigh waves are
dispersive in layered media, and the dispersion curves are determined by the structure.

Figures 9, 10, and 11 show several examples of dispersed Love and Rayleigh waves.
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Jan. 26, 2001, Western India M _=7.6

Pasadena

Displacement, 0.5 mm/div

Time, hour

Fig. 11

Consider a layer-over-half space (Figure 12). Let the thickness of the layer be H, and the
shear velocity in the layer and the half space be S, and f,, respectively ( 5,> ;). At short
period, the Love wave energy will be in the layer and the phase velocity approaches f,. At long
period, Love wave energy penetrates into the half space. At very long period, the velocity
approaches f,. Thus, the phase velocity dispersion curve would look like the one shown in

Figure 12.

168



T/!"/r’/#/o’/-"f/f/

LH P
J' & H inaeane

B

PQ Flod

Fig. 12

Then, how would the shape of the dispersion curve change as H varies? If H decreases,
the Love wave would "feel" the higher speed half space at a shorter period. Thus, the shape of
the dispersion curves would change as shown. For a more complex multi-layered structure, a
similar pattern is expected. Thus, we can determine the structure from the shape of the

dispersion curve.
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We can make the same argument for Rayleigh waves except that the phase velocities at
the long-period and the short-period ends are 0.92/, and 0.924, (for Poisson solid),

respectively.

Figures 13 and 14 show the examples of phase velocity dispersion curves for oceanic,

continental and shield structures.

Rayleigh Wave Phase Velocity Dispersion

Phase Velocity, km/sec

. ; ; ; | | ;
10 20 30 40 50 60 70 80

Period, sec
Fig. 13
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The structures and the data are given in the following tables.
Models
Ocean

Love Wave Phase Velocity Dispersion

Thickness P velocity S-velocity Density
(km) (km/sec) (km/sec) (g/cm’)

5.0 1.52 0.0 1.03
1.0 2.10 1.00 2.10
5.0 6.41 3.70 2.84
49. 7.82 4.61 3.34
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160. 8.17 4.30 3.44

100. 8.49 4.60 3.53
Continent
Thickness P velocity S-velocity Density

(km) (km/sec) (km/sec) (g/cm’)

15.0 5.57 3.36 2.65
18.0 6.50 3.74 2.87
17.0 7.775 4.36 3.33
25.0 7.83 4.39 3.35
35.0 7.92 4.44 3.37
40.0 8.04 4.49 3.41
50.0 8.19 4.56 3.45
50.0 8.35 4.64 3.49
50.0 8.50 4.72 3.53

Shield
Thickness P velocity S-velocity Density

(km) (km/sec) (km/sec) (g/cm’)

6.0 5.64 3.47 2.70
10.5 6.15 3.64 2.80
18.7 6.60 3.85 2.85
80.0 8.10 4.72 3.30
100.0 8.20 4.54 3.44
100.0 8.30 4.51 3.53

Data

Rayleigh Wave

Period o C S
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(sec) (km/sec) (km/sec) (km/sec)

55 4.02 3.98 4.15
50 4.02 3.96 4.14
45 4.02 3.94 4.11
40 4.02 3.90 4.09
35 4.02 3.83 4.02
30 3.99 3.73 3.94
25 3.98 3.63 3.82
Love Wave

Period O C S
(sec) (km/sec) (km/sec) (km/sec)
70 4.56 4.45 4.62
60 4.55 4.42 4.59
50 4.52 4.34 4.52
40 4.49 4.20 4.42
30 4.45 4.03 4.29
20 4.40 3.88 4.05

173



Phase and Group Velocity of Dispersive Waves

Surface waves are usually dispersive. That is, the phase velocity C is a function of
angular frequency @ . In the treatment of dispersive waves we need to distinguish phase
velocity C(w)and group velocity U (@) .

In order to understand the propagation of a dispersive wave train, we consider a

wave packet made up of many harmonic wave trains like

g(x,t) = A, exp[i(kx— at + const)] (40)

The phase velocity is given by

c=w/k (41)
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— Time

wuesl -—

Consider a case in which all components are in phase at x=0, t=0. Then, we have
constructive interference at t=0, and destructive interference elsewhere leading to
negligible disturbance. Thus, we have an impulse at X=0. At some later time t and at a
distance X, a disturbance will be observable if any of the wave trains are in phase over a

frequency band. The condition for reinforcement is
kx — wt = const.

within the frequency band. Differentiating with respect to k, we obtain

do),
x—(ajt =0 (42)

176



The ratio X/t gives the velocity with which the disturbance (wave group) at the frequency

band propagates, and is called the group velocity U. From (42),

U=—"=c+k— 43)

In general U is also a function of @ .

Determination of Phase Velocity ¢c(w)

Let a surface wave train at X = X, be

+

g(xl,t)=j_+wg(x1, ) exp(2zift)df =I 10, P)expliQrfteg)]df (@4)

—00

where

+00

g(x, f)=4g(x, f)|exp[i¢(f)]:JA g(x, t)yexp(—2zift)dt (45)

|g(x, f)| and ¢( f)are the amplitude and phase spectrum of g(X, t).

If the wave train propagates in X direction without changing the amplitude, then at
X=X,,

906, 0= [ 1804, Dlexpli27Ft-06-x)/e(H)+4 )

=J‘:\ §(x,, f)\exp[i(27zft+¢2)]df
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(46)
and

¢ = -2 10 —x)/c(f) (47)

If the wave is non-dispersive (i.e., C = C, =constant), then

g(Xz,t):g(Xl,t—X/CO) (48)

That is, the wave propagates without changing its waveform. In a dispersive medium, C is
a function of frequency, and the waveform changes with propagation.

Since, adding 27N (N is an integer) to ¢, does not change (46), (47) is actually

é, = — 21t (% —x)/c(f)+2zN (49)

Using (49), we can determine the phase velocity from the two wave trains measured at
distances X, and X, by measuring the phases ¢ and ¢, at these distances. Solving (49)

for c(f), we obtain,

_ f(Xz—Xl)
=N —p)/2n 0
or,
c(T) (XZ_X]) (51)

TNT (4T 27+ 4T/ 27)

where (—¢,T /27)—(—¢T /27x) is the phase travel time.
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In the above, the records at the two stations are assumed to have a common origin
time. In actual computations, we may use the records (seismograms) starting at different

times; at t=t, at X=X, and at t =t,at X=X,. Then, if we let i, , and y, be the Fourier

phases measured from these records, then we have

$—d=w,—y 2xf(t,-t) (52)

Substituting this in (50), we obtain

f(Xz _Xl)

°h= N-(y,—y,)/ 27+ f(t,-t)

(33)

If the propagation path is very long, and involves antipolar or polar passages, a small

correction is necessary to correct for the polar phase shift. In this case,

f(Xz _Xl)

c(f)=
N+m/4—(y,—y,)/ 27+ f(t,-t)

(54)

where m is the number of polar or antipolar passages.

Determination of Group Velocity U (w)

Once the phase velocity is determined as a function of @ (or, frequency, f), then

the group velocity U (@) can be computed from phase velocity using (43), i.e.,
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1 _d_ 1 o d(o)
Uw) do cw) (o) do

(35)

Another way of determining the group velocity is to use narrow band-pass
filtering of the seismograms.

Let a propagating wave be given by,

g(X,t):Lj Q(X,a))exp[i(a)t—kx)]da):LJ. | §(X, @) |exp[i(wt —kx+¢@)|dw
21 . 27 o

(56)

If we consider a contribution over a narrow frequency band A@ around ®,, we obtain
from (56)

wy+Aw
G(x,t)zl|g(x,w0)| cos(wt —kx+¢)dw
T

wy—Aw

sin(Azw(t - kéx+¢é)

Aw , ,
T(t_kox+¢o)

Ao .
=—0(X, @) |
T

cos(@,t —K X+ ¢,) (57)

where k, and ¢, are the values of k and ¢ at @ = @, , respectively, and Kk, and ¢, are

d¢

dk : : : .
the values of — and o at = m,, respectively. Equation (57) gives a wave train
1) @

which propagates at a speed
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1 d
U(coo>=p=d—|‘(” (58)
0

W=y

Thus, if we measure the propagation velocity of a band-pass filtered record, we can

determine the group velocity.

Ge 162
3.7 Normal Mode Theory (LW, pp. 154-172)

Since the Earth is a bounded medium, the wave propagation problem can be
treated as a normal-mode problem.
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The basic physics can be understood with a simple 1-D problem.
1. 1-D Problem

Consider free oscillations of a homogeneous elastic rod shown below.

-~ —

(i ar A -~

g PRS- =
el z

The equation of motion is
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A% A%

P o~ S ox

where p is the density and E is the Young's modulus.
For harmonic motion,

u(x,t) = y(x)e (D
then,
y'+k’y=0, k’=po’/E (2)
The solution is
y=Acoskx+Bsinkx

If both ends of the rod are free (i.e., y'=0 atXx=0 and L), then B=0 and k,=n/L
(n=integer). Then, the eigen functions are

y.=Acos(nzx/L)

and the eigen frequencies are

o, =+E/pKk,

Here, n determines the number of nodes.
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The eigen functions Yy, are orthogonal, i. e.,

L
[ PYaYnlx s, (3)

(this relation can be derived directly from (2), if y, and y,, satisfy the homogeneous
boundary conditions ay,+Y, =0 and cy, +Y, =0 atx=0and L.)

Example
If a stretched string is plucked at a point, a localized disturbance is produced. The

disturbance propagates in the string and the time history of the disturbance is given as
shown in the following figure.
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This is a seismogram. This displacement can be viewed as superposition of normal
modes as follows.
Normal modes for a string with length L, clamped at both ends are given by

y,(X) =sin(hzX/L)

The displacement of the string u(X,t) is given by the superposition of Yy, (X) with weights
A.,, and can be written as

u(x,t) = Z A sin(nzx/L)cosw,t
n=1

where @, =nzc/L are the eigen frequencies, and C is the velocity of wave traveling in
the string.

The initial (at t=0) shape of the displacement u(x,0) is then given by
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u(x,0)= i A, sin(nzx/L)

which can be considered as a Fourier series of u(X,0).

If we assume that the initial disturbance is given by a delta function at X =X,
u(x,0)=0(x—-Xx,), then A, above can be determined by multiplying u(x,0) by
sin(nzx/L) and integrating it from O to L. Since

L L L
ISiIl(ﬂﬂ'X/ L)sin(mzx/ L)dx =55nm and jé‘(x — x,)sin(nzx /L)dx = sin(nzx, / L),
0 0

we obtain
A, =(2/L)sin(nzx,/L)

Then the displacement is given by

u(x,t) = %Zsin(nﬁx/ L)sin(nzx, /L) cosw,t

n=1

The following figure shows u(x,t) for x=x,=L/4, and is essentially the same as the
seismogram shown above. This equation can be viewed as superposition of normal
modes, sin(nzX/ L)cosw,t , with the amplitudes (2/L)sin(nzX, /L) shown as

"spectrum".
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2. 2-D and 3-D Problems
The above result can be easily extended to 2-D and 3-D problems. For example,
free oscillations of a homogeneous rectangular membrane can be expressed by eigen

functions of the form,

Yy = Asin(mzx/L,)sin(nzy/L,)
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Here, m and n determine the number of nodes in X and y directions, respectively (see the
attached figure.).

RN

For free oscillations of a homogeneous elastic rectangular block, the eigen
functions can have a form
Y= Acos(lzx/ L, )cos(may /L, )cos(nzz/L,)
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the order numbers I, m and n determine the number of nodes in X, y and z directions,
respectively.

3. Free Oscillations of the Earth --- General ---

The free oscillations of the Earth can be formulated similarly as free oscillations
of an elastic sphere. The only difference is that it is more convenient to use a spherical
coordinate system (I, €, ¢) instead of the Cartesian coordinate system (X, Y, 2).

For a sphere with a laterally homogeneous structure, the eigen functions can be
written as,

= AR (NG ()P, (4) (4)

For a homogeneous elastic sphere, R(r) are Bessel functions, ©,(6) are (associated)
Legendre functions and @ () are trigonometric functions. The three indices |, m, and n
determine the number of nodes in #direction (meridional direction), ¢ direction
(longitudinal direction) and r direction (radial direction).

In general eigen frequencies depend on I, m, and n and can be written as  @)" .
However, for a spherically symmetric, non-rotating Earth model, eigen frequencies do
not depend on m.
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Surface Patterns
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Radial Patterns
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Free oscillations of the Earth can be thought of as extensions of Love and

Rayleigh waves propagating many times around the Earth. When Love waves propagate
many times around the Earth, torsional free oscillations are set up. Similarly, when
Rayleigh waves propagate around the Earth many times, spheroidal oscillations are set
up. Torsional and spheroidal oscillations (modes) with order numbers I, m, and n are

written as [T" and ,S|" and are shown in the attached figures and tables.
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Some Observed Normal-Maode

Periods
Spheroidal Toroidal
modes T(s) modes 1(s)

090 1227.52 ol 2636.38
052 3238.25 ol10 618.97
0915 426.15 ol 20 360.03
0539 262.09 o130 257.76
0545 193.81 ol a0 200.95
0560 153.24 als0 . 164.70
03150 66.90 0T 60 139.46
155 1470.85 e 756.57
S0 465.46 1T 381.65
291 415.92 S 123.56
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Spheroidal Modes, Bolivian Earthquake
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0So after 400,000 sec
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4. Free Oscillations of the Earth --- Some Details ---

The equations of motion can be written using displacements and stresses
expressed in spherical coordinates (r, 6, ¢). (Appendix 1)

Torsional Oscillations

We seek the solution in a form
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1 oY
sind Jg
¢ O»-7Y|m
)

eia)t

Y,"(0,¢) = B" (cos @)(Acos mg + B sin mg) m=0, 1, 2,

Tlm:(oa 1 é’YI 5_07YI )
sin€ Jg o0

are called the vector spherical harmonics. It is easy to show that Tlm
make up an orthogonal system:

4711+ 1)(1 +m)!

LZ” [ @ -T)sinododg =

&,=1 1f m=0
g, =2 1if m=#0

Substituting this into the equation of motion, we have

2
ﬂ(d Y +z%]+d_ﬂ(%_ﬁj+(wzp_|(|+1)ﬂ)y] ~0

dr? r dr dr\ldr r r?

if we put

dy, () _Mj

dr r

Y2(r):ﬂ(r)(

(9) can be written as
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%:lyl(r)‘klyz(r)
r r U

dy,(r) ((I?+1-2) 3 (19)
2 :( 2 ﬂ_wzpjyl(r)__Y2(r)
dr r r
The boundary conditions are
o,=0, 0,=0,0,=0
at r=r, (the Earth's surface) and r=r, (core-mantle boundary).
Note that, using Y,(r), we can write
1 " oY,"
O., = r __ela) and o =— r _Ieza)t
0 = Yal( )sin<9 0 i = Y2 (1) =0
Thus, Y,(r) gives the radial factor of stresses.
When g~=const, the above equation can be reduced to
2 2
d 32'1+%%+ ﬂ_l(l_jl) y, =0 (11)
dr= r dr U r

Equation (11) is one of the variations of the Bessel's differential equation. The general
solution is

N0=Z, 6 (12)

()]

(13)
Nulp

Kk =

where Z (&) represents a Bessel function.

196



In order to satisfy the boundary conditions, an appropriate kind of Bessel function
should be taken and k must take certain discrete values k. Since (12) depends on |,

these values depend on |, and we write these values as  k,. Using (13), the eigen

frequencies , @, can be given by

n@ = nkl\/Z
1%

Note that, since (11) does not contain m, the eigen values do not depend on m. Thus,

there are 21+1 eigen functions belonging to , @), i.e. there is degeneracy of 2|+1 degree.

For a radially heterogeneous sphere where t=u(r), the solution of (9) cannot be

given by Bessel functions, but numerical integration of (10) with appropriate boundary

conditions yields eigen functions similar to (12), and eigen values , @,. Since (10) does

not contain m, the eigen values do not depend on m.

For large |, the asymptotic expansion of R" gives

R ~e™m' | 2 cos|(l+hp+ Mg ®
7zl sin @ 2 2 4

Thus, u, represents a wave propagating in € direction. For I>>1, and [>>m,

}ﬁ‘ ~ I|Y|m| and ‘O’Y—'m
o0 op

Thus, h ¢| >> |u5|, which represents "torsional" or "Love wave" motion.

~ my,"|

Spheroidal Oscillation

We seek the solution in a form
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n 0
ur YI aYm
Uy |=Y,(D] 0 [ +y,(r) 0,,"9 e'! (15)
Us 0 1Ay
sin@ Jp
where
S{T,]I =(Ylm’ 0 :0)
_ m 1 m
Sr2n| = (O: ﬁ{l s . O’YI
’ o0 sinf@ g

are vector spherical harmonics which satisfy the orthogonality condition

20T s am s (YT am @y Azl + D)1 +m)!
[, G -8%)sinododg = [ (SL,-Sl,,,)sm@dé’dqﬁ_8m(2|+1)(|_m)! O

Using the expression (15), the equation of motion for a radially heterogeneous
sphere can be reduced to a set of ordinary differential equations for y, and y;. It can be

shown that y; and y; satisfy the orthogonality condition,

Irlz prz[yl,n yl,n' +I(I + 1)y3,n y3,n']dr = Cé‘nn'
and the eigen values , @, do not depend on m.

For I>>1 and I>>m, hrl and |u5| become much larger than Ll ¢|, and the

displacement field represents "spheroidal" or "Rayleigh wave" motion.
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Appendix 1 Cartesian, Cylindrical, and Spherical Coordinates

Strain _Tensor

# : Displacement Vector

Cartesian Coordinates (x,,%,,%;)

e = 1| O, Ouy
®olar” o

Cylindrical Coordinates (r, ¢, z)

o =, 1% u . _Ou

g Y gy LR
d

2e zléﬁi._f_.i 2 ,—_au’+£

“ rap oz’ % or
Oy M 100

2 ke, R ]

i ar r r do

Spherical Coordinates (r, 8, ¢)

S !

e e e, = t;M"+
o' % ra0 r' " rsinf d¢

i

1( du, 1 du, du, u,  1du
2e4, =—| —=—u,cotf [+ ———=, 2¢,=—2L—-—"L+-——=
% r(c’»‘&? ¥4 ) rsin@ d¢ "o r roe
J
RPE W SN
rsin@ dp or r
Stress-Strain _Relation
For all coordinate systems,
o, =Ad,e, +2Ue;
Cartesian Coordinate (1,2, 3) -5 (x:%.%)

Cylindrical Coordinates (1, 2, 3) --> (r, ¢, z)
Spherical Coordinates 1, 2,3)-> (6, ¢
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Examples
o, =Ale, +e,+e,)+2ue,
o, =2ue,
g =A(e, +Egp +,4) +20ep
o, =2e,

Equations of Motion

Cartesian Coordinates (x,.%,,%;)

u, Jdo,
Por =Pt ox

k

Cylindrical Coordinates (r, ¢, z)

1k g ro,, 13 g, 5 o, { =0,
—u, |= +-—|ro,, |+-——|0,, [+=| 0. |[+-| O,
pc?f o [P % rorl | roe| *| oz| *| r ¢
u, 3 ro; O, o, 0
Spherical Coordinates (r, 6, ¢)
2 .
az i, fr 1 a r Grr 1 a Slﬂeo’m 1 a U»o _GBH_GW
p—|u, |=p| f, |+ 5=| 1’0, |+——=—==| 5in004, |+ ———=—==| Op |+=| T,6 — Ty cOL B
2| |TA % |* Ao , | rsin@d@| . " | rsin6 d¢ i ;B
u, . ro, 8in 00, Oy O, + 0, cotl
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Appendix 2

Bessel Functions

J,(z), 1stkind, Bessel Function
N,(z), 2nd kind, Neumann Function

HW(z)=J (z)+iN,(z), Hankel Function 1st kind
H®(z)=J(z)=iN,(z), Hankel Function 2nd kind

Jm(z)=‘]%sinz, J_uz(z)=chosz

2.3 y 3
J,ﬂ{z)=1’;[(z—z—l]smz—;cosz)
J (z)=,‘i[§sinz+(i—1]coszJ
= nz\z 7

os % 7 l': I I
ae i X
= TS T —
o2 R ™ . ii{}"‘ L/ ’T—‘J‘!_ Ax,
o271 NN K T N N

-2 M AN TS - s
0z L2 LA B

-z TR T L7

-06 | | P ]

1 3 4 8 9 10 u 12 o
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cosz

Jan(2)= J%(SI—:I —casz), Tap(2)= —E[sinz 4 e
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Appendix 3

Lejehclre Func‘ltcu

P =g g (8= 1)

z=cosf
Fy(z)=1. Py(z)=x=cose,
Py(z)=(1/2) (32~ 1)=(1/4) (3cos 20+1),
Py(z)=(1/2) (55> ~3x)=(1/8) (5 cos 30+3 coss),
Py(z)=(1/8) (350 — 30+ 3) = (1/64) (35 cos 46420 co 204.9),
Py(x)=(1/8) (6325~ 70z +15z)

=(1/128) (63 cos 50+ 35 cos 39+ 30 cos 0),
Py(z)=(1/16) (2312~ 31524+ 1051 —5)

=(1/512) (231 cos 60+ 126 cos 4 + 105 cos 204 50),
Py(x)=(1/16) (4297 — 693"+ 31529 35z)

= (1/21%) (429 cos 70+ 231 cos 58+ 189 cos 30+ 175 cos 8),
Py(z)=(1/128) (643522 — 1201205+ 6930.c4 — 1260 4 35)

= (1,2W) (6435 cos B+ 3432 cos 60+ 2772 cos

+2520 cos 20 +1225),
;:R; —! % p.ci.a
s :oh Y /
- \QF\“‘ ?)Il ":. ?.[: ,_'_I‘ AL # _1;\‘/ f‘
0z AR KIS ok
a / /? b ‘)\ h\\ ? &
B VS AL VAR SNV AR VLNA /N
INKIX SEP A N S IXXYAR
=0 J}, — T R
as S
_u--’/ .“
x -LELD =0E =08 ~-04 -02 [+ (‘Y] (11 ' L0
] b . Mg o)
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Acsatigted Ln.jeuire Funcliona

]
™ m Q-0)% d"m'

n
Ph(x)-';l'!"_l_n Wﬁ,(l-xﬁ)
m
= (-x7) Edf" B @)

P(2)= (1= msind,

F(z)=3(1—x%)1x=3sin #cos #=(32) sin 29,
P(z)=3(1—2)=3sin"0=(3/2)(1—cos 28),

Py)(x) =(3/2)(1=2%)12 (823 = 1) = (3/8) (sin 84 5sin 30),
Py(2)=15(1—21).r=(15/4)(cos #—cos 38).

P(x)=15(1 - 224 =16 5in? 0= (15/4)(3 sin 0—sin 30),
P(=z)=(52)(1—z")2x(7x—3) =(5/16)(2 sin 20+ 7 sin 4¢),
PH=)=(15/2)(1—=22)(721—1)=(15/16) (3 +4 cos 20—7 cos d0),
P(x)=105(1—x%)41z = (105/8)(2sin 26—sin 48),
P}{z)=105(1—x)'=105sin' 0 =(105/8)(3— 4 cos 20+ cos 4#),

P(x)=(15/8)(1—8)A(21 24— 14t 1)
=(15/27)(2sin 047 sin 34+21sin 54),
Fyt(z)=(105/2)(1-2")2(3x?~1) =
=(105/32)(2 cos # 4 cos 30— 3 cos 54),
Py(=)=(105/2)(1==*)12(92*~1)
=(105/32) (6 sin 8+ 13 sin 38— 9sin 56),
Py(x)=045(1—2%)%e = (945/16)(2 cos #— 3 cos M +cos 50),
P3(z)=945(1— 27 =3.5-7-95in%8
=(945/16)(10 sin #— 5 sin 364-=in 5¢),
Py(z)=(21/8)(1—2%)12(334~ 3024 5)
=(21/2%)(5 sin 20+ 12 sin 40+ 33 sin 6¢),
P(x)=(1058)(1~2%)(33r' ~ 187 41)
=(105/2*)(10+17 cos 20+ 6 cos 40—33 cos £4),
P(2)=(3152)(1- 2" 2(1122-3) 5
=(318;64)(9sin 26+12'sin 49— 11sin 64),
Py(x)=(945/2)(1=2%) (112 =1)
=(845/64) (1045 cos 20— 26 cos 40+ 11 cos 68),
Fy}(x)=10395(1—2)42 2= (10395/32) (5 sin 26— 4 sin 48 +sin 64),
FP#(x)=10395({1—2*)"=3.5.7.9.11 sin*s
= (10395/32) (10— 15 c0s 28+ 6 cos 40— cos 64),
Py(z)=(7/16)(1—2*)11 (42928~ 49524 4 136 —5)
=(7/21%)(25sin 0481 sin 3¢+ 165 sin 54+ 429 5in 79),
P(x)=(63/8)(1—2%)x(143rt 11023+ 15)
=(63/2%)(75 cos 0+ 57 cos 34+ 11 cos 50— 143 cos 71),
P(x)=(315/8)(1—x)V*(143'~ 66224 3)
=(315/2")(455in #4117 sin 384 121 sin 59— 143 sin ).
Pri(x) = (3465/2)(1— =) =(13s1-3)
=(3465/2")(15 cos 0—3 cos 30— 25 cos 50 + 13 con 70),
P(x)=(10395,2)(1~x*p2(1328~1)
= (10365/27)( 25 sin 0+ 33 sin 30— 43 sin 50+ 13sin Te),

P%z)=1351352(1— =)
=(135135/2*)(5cos 0 —0 cos 34+ 5 cos 5 +cos T8),
Py(x)=135135(1=2%)""=3-5-7-9-11-13sin"¢
=(135135/2%)(35sin 9—21 sin 38+ 7 sin 54 =sin 7).
Byl(z)=(9/16)(1 -z 2( 71522 - 1001x4 4 38527 - 35)
=(9/2")( 70 sin 26 + 154 sin 49+ 286 5in 68+ 715 sin 89),
P(z)=(315/16)(1~2%) (143:9= 143+ 33*~1)
={315,21)(35+ 27 cos 20 +44 cos d¥— 143 cos B2),
P3(x)=(3165/8)(1— ) 2(39z' - 26z +3)
=(3465/2')( 18 sin 20+ 30 sin 46+ 26 sin 64— 39 sin 84),
Pyt(x)=(10395/8)(1—2%)*(B5x* — 2627+ 1)
=(10395/212)(35+40 cos 20— 36 cos 48— 104 cos 68465 cos 89)
P(x)=(135135/2) (1 - =*pPrc(hx~1)
= (135135/2%) (10 sin 28+ G sin 46— L4 sin 66+ 5 sin 8),
P¥x)=(135135/2){1—=*)*(16=1-1)
= (135135/2%) (35— B4 cos 48 +64 cos 68— 15 cos 84),
PJ(2)=20270252(1— 211"
= (2027025/2") (14 sin 20— 14 sin 4846 sin 68 —sin 84).
Py z)=2027025(1—x*)'=3-5-7-9-11-13-15sin* #
= (2027025/2" )(35 =56 cos 20+ 28 cos 40— B cos 69+ cos 84).
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Ge 162
4.1 Herglotz-Wiechert Method (LW, pp. 236-240)

Assume that T(A) and p(A) are continuous functions of A, as shown in Figures 1
and 2.

-

4

Fig.1 Fig. 2

) . A r. .
Then, from Figure 3, tani = rc(lj—. Since p=—sinl,
r Vv
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Fig. 3

da=——2P  dr (1)

A(p):2j 2 &)
- /{r] _p?
\Y

where the suffix 0 denotes the values at the surface (i.e., r =1;) and r, is the radial

distance of the deepest point of a ray.

. . r
Introducing a new variable, 7=—
Vv
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I’d77

To
p d
A(p) = 2j — 3)
, Tt =p? dn
A(p) 1s known from observation, and 7(r) = L , or V(r) is a unknown function of r which we
v(r

. . . r. . .
wish to determine. (Note that since p=—sini, p =7 at the deepest point of the ray where
\

i=7/2.)
Mathematically, this is a Volterra's integral equation of the second kind. The

solution can be given by,

A 2
I, =T, exp 1 In [£]+ (EJ -1 [dA (11)
TJo m m

The suffix 1 is used to denote values of variables at the level r,, and let A, be the value
of A for the ray whose deepest point is at T, .

To solve this, multiply (3) by and integrate with p from 7, to 7, (see Figure

1
\ p2 - 7712

4).
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Fig. 4

The suffix 1 is used to denote values of variables at the level 1, and let A, be the value
of A for the ray whose deepest point is at T, .

dp=2

o o 7o
1 dp p dr
A(p)——— I —dp 4
) NI LA =m ), -p? dn

7o o dA
—| —-cosh™ (ﬁjdp (5)
w J, dP 7

1

LHS=A(p)cosh™ [Ej
m

Since A(77,)=0 and cosh™ (ﬂ] =cosh™(1)=0,

m

0
LHS=-] cosh™ (BJd A (6)
A 771

To evaluate the integral of RHS, we change the order of integration (see Figure
5),
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) /
| £
Uil

?j ?0 ? Flg. 5

1

n
1 dr
RHS=2 ——d
jl " \/p 771 \/77

Introducing &, by

NS
\/772 _7712

sin® @ =

we obtain,
7 z
1 2
J‘ 2 2 2p 2dp=j d9=%
AP =T =P .
Then,
r01 I,
RHS=7| —dr=zln| >
T g
Hence.

A A 2
7ln (r—()] = cosh™ [BJd A= In LB] + [E} -1 dA
n 0 m 0 m m

or,
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A 2
t=r,exp| | mn (E} (ﬂ] ~1dA (11)
TJ, m m

If p(A) is known, RHS of (11) can be evaluated for a given 7, to determine I, (7,

. . . . .. r

is the apparent velocity at A=A, .). Once I, is determined, v, is given by v, =—. More
Th

details are in the practice session.

Ge 162 Practice Session 4  Herglotz-Wiechert Method

The Herglotz-Wiechert (H-W) method is an elegant 'inversion' method which determines
the velocity distribution in the Earth from a given p-A curve obtained from the observation. It is
essential that a p-A curve is given continuously as a function of A. If a low-velocity zone exists
and a shadow zone is produced, then the travel time curve is segmented. In this case the p-A
curve is not continuous and the H-W method cannot be used. In general, the H-W method is
applicable to a structure without low-velocity zones. This is the limitation of the method.

Figure 1 gives a p-A curve.
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From equations (11) in class note, we obtain,
1 A 2
n=ryexp|—— | In (£J+ [ﬁj -1 dA
TJo m U

.
n(r)= e (2

~

1))

where

Here, I, is the radial distance to the bottoming point of the ray reaching the distance A,
and
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_n
v(r)

m 3)

Since i =7 /2 at the bottoming point, the ray parameter for the ray reaching A=A, is
given by

i =——=p, @)

p, =—'—sin
Lovrn) ()

Thus, if a p-A curve is given, then for a given A, we can determine 7,. Then,
we can integrate (1) to obtain ;. Once I, is determined, then v(r;) can be computed from

v(r) =1 5)

Ui

Doing this for all A, we can determine V(r) as a function of r.

1. The following table shows the travel times (2nd column) which are consistent with the ISC
travel-time curve given in class handout. Then the travel time data are numerically differentiated
to compute the ray parameter p which is shown on the 3rd column. The unit of p is sec (i.e., the
unit of the distance is converted to radian in this computation.). The following table lists the data
up to A =30°, and a more complete table up to A =98° is given ini_p-delta 2 in
/home/ftp/pub/hiroo/ge162.dir/practice 4.dir.

Plot the travel time and p ini_p-delta 2 as a function of distance, and make sure that the
travel times are consistent with the ISC data. Also, check the consistency between t and p. An
enlarged travel-time curve is shown below. (Spot checks at A =30°, 60° ,90° are sufficient.)

Table
dist (deg) t (sec) p (sec)
0.00000 0.00000 1145.91516
2.00000 35.38889 828.24194
4.00000 63.90000 813.59973
6.00000 92.22500 807.87048
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802.14056
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Time min

1

'|JL]L[l]1|1J1L1llII'!JJliLII!'IIF!I!_.
20. 40. 60. 80. 100. 120. 140. 160. 180.
Delta deg

217



2. Then, compute 1, for A;=0° to 98° at 2° intervals by carrying out the integral given
by (1)*.

3. Then, from 1, thus computed and 7,, determine V(I,).

4. Plot v(r,) as a function of r,, and compare the result with the P-wave structure shown

in class handout (section 2.1, a numerical table, jeffreys model, for the Jeffreys model is
in practice_4.dir).

* Preferably, you should write a simple integration program (trapezoidal rule is
adequate), but if you find it difficult, a simple program hw3.f is provided in
practice 4.dir.

Note: The trapezoidal rule is given by,
L N

I f(xX)dx = Z(fH + f)AXx/2, where AX=L/(N-1),and f, = f((i—1)*Ax)
0 i=2

Gel62
4.2 Tomography (LW, pp. 240-249)

The structure of the Earth is heterogeneous in 3 dimensions. To determine such a
3-dimensional structure, various tomographic methods are used. The basic principle can

be illustrated as follows.
Consider a square area as shown in the figure.
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1l
1l
1l

X 14
" (1.3
3 il
P :/ M
X 3% 5
1

Then, assume that seismic sources (X) and stations (square) are distributed on the
sides. The velocity is a function of space. Divide the whole area into cells (i ,j). The
wave speed in cell (i ,J) is V; (or slowness s;=1/v;) which we wish to determine from

observations. If we assume that the ray paths are straight (this assumption is not valid in
general for heterogeneous media). The travel time from source p to station q can be
written as

oy = lipg / Vi = Zliqusij (D
1]

1)
where |,
geometry and paths are fixed, as in this case, the problem is linear, but the problem is in
general nonlinear, and the problem is usually linearized, as is done in the earthquake
location problem.

If the problem is linear, or is linearized, (1) can be solved by the method of least
squares or some other inversion methods.
We renumber the cells sequentially such that

is the path length in the (i ,j) cell for the p-q source-station ray. If the

k=i+(j-n,

where n, is the number of cells in a row. Then (1) can be written as

Log = Z Ikpqsk )
X
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Simple examples are given in the following.

If we place the sources p=1, 2, 3, and 4, and the receivers =1, 2, 3, and 4, as
shown, we can have the ray geometry as shown in the following figure.

N2
E=dl

cross-hole

Then equation (2) can be written as
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|111 |211 |311 t,
|112 |212 |312 t,
|113 |213 I313 t,
5 :14
s, 21
S3
Sy
S; | =
S
S
Sg
Sy
I144 |244 I344 - . ty, )

This problem can be solved with the method of least squares in the same way as
that used in the earthquake location problem.

Example 1.

%)
Il
7
W
Il
w
W
Il
v
~
Il
7
N}
Il

2, s,=8,=8,=5, =1 (checker board).
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¢ f1
2 1 2

X i)
1 2 1

X g
2 1 2

X g

The solution is given as follows.

checker_b
cross_hole_simple

cell S As

1 1.892 0.011
2 1.218 0.015
3 1.890 0.011
4 0.892 0.010
5 2.219 0.010
6 0.890 0.010
7 1.891 0.011
8 1.219 0.015
9 1.890 0.011
RMS of residual 0.01160

Actually, for this geometry the inverse problem is fairly ill-posed, and even if no
noise is applied, the solution is unstable (i.e., the standard error is large), as shown above.

If random noise of up to 10% is added to t, , the error becomes very large, as

shown below.
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checker_b
cross_hole_simple

cell S As

1: 2.149 3.187
2 0.646 4.242
3 2.091 3.190
4 1.110 2.745
5 2.083 2.750
6 0.687 2.743
7 1.478 3.176
8 2.104 4.222
9 1.538 3.179

RMS of residual 3.31218

This instability arises from the inadequate source-receiver geometry.
Example 2.

The source-receiver geometry is now changed to that shown in the following
figure.

[a—
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Then the solution becomes more stable as shown below.

No- noise case
checker_b
two_sides

cell S AS

1: 1.999 0.001
2 1.001 0.001
3 1.999 0.001
4 1.001 0.001
5 2.000 0.001
6 1.001 0.001
7 1.999 0.001
8 1.001 0.001
9 1.999 0.001

RMS of residual 0.01479

With random noise of up to 10 %:
checker_b
two_sides

cell S As

1 2.046 0.138
2 0.922 0.154
3 1.831 0.138
4 0.856 0.154
5 1.814 0.144
6 1.222 0.154
7 2.011 0.138
8 1.062 0.154
9 2.203 0.138

RMS of residual 2.90495
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Caveats

Although tomographic methods provide interesting 3-D structures of the Earth,
the following caveats are in order.

1. The results depend on the initial parameterization of the cells and rays.

2. In a heterogeneous medium, the rays are not straight, and ray bending must be
considered.

3. The effect of finite wave length must be considered in resolution.

4. The solutions are often regularized (damped) to avoid instability.

Several recent examples are shown in the following

Global Depth Slices
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J. Ritsema [written communication, 2002]
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Spectral Structure of the Structural Heterogeneity in Earth
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Figure 20a-d Power spectra as a function of depth in four Earth models in which a discontinu-
ous change has been allowed at depths: 400 km (b); 670 km (a); 1000 km (c), and 1800 km (d).

Only the model S362D1 shows a major change

in the spectral pattern across the discontinuity,

even though 400 km is also associated with a global discontinuity. The results imply a major
change in the flow pattern across the 670 km discontinuity. From Gu et al. (2000).

A. M. Dziewonski, Global seismic tomography: past, present and future, in
Problems in Geophysics for the New Millennium, Editrice Compositori, 2000.
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"Slab" Structure in Deep Interior

-1.4% 0 1.4%
Shear velocity variation (%) b

Ritsema, J., and van Heijst, H. J., Seismic imaging of structural heterogeneity in Earth's
mantle: evidence for large-scale mantle flow, Science Progress, 83 (3), 243-259, 2000.
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"Slab" Structures
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Fukao, et al., Reviews of Geophysics, 39, 291, 2001.
Gel62 Practice Session 5 (Optional) Simple Tomography

From class note, a tomography problem given below can be formulated by

4 5 6
YA TA
RSNV Ca
PR,
e
JEIRTIRR
1 12 / 3N,
4 5 6

two-side
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I111 |211 I311 tll
I112 |212 |312 t12
I113 |213 |313 t13
N :21
52 22
53
Sy
Sy |=
S6
S7
58
S9
|166 |266 |366 : : : t66 (3)

As we did in the practice session for earthquake location, this problem can be solved
using the method of least squares. (3) can be written as

Am=d 4

where A is an 18x9 matrix and M and d are column vectors containing the parameters to
be determined and the data, respectively.

The normal equation is,

ATAm=A"d (5)
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If ATA is not singular, the formal least-squares solution is given by
m=(A"A)'A'd (6)
and the error estimates are determined by the variance of the data and the diagonal

elements of the inverse matrix of the normal equation (6 ). Usually, we write the

uncertainty in m, by Am,, and compute it by

N
am =, J DG NN, L2359 ()
(e

where N, is the number of parameters (here 9) and Cjj are the diagonal elements of

(ATA)".

1. Determine the slowness Sj, i=1, 2,3,.....9, and the associated errors.
The matrix elements and the data are in o_Isq_mat ts 0.1 and o Isq rhs ts 0.1 in

/home/ftp/pub/hiroo/ge162.dir/practice5.dir, respectively. In this computation, the
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length of the side is 10 km, and errors up to 10% are added to the data. (This is the same
geometry as Example 2 in class note. The numerical values of the standard errors may be
slightly different, because of the difference in the definition.)

Actually, in the real problems, the computations of the ray paths and the path
lengths in each cell are most difficult. In this problem, they are computed and the values
are putin o_lsq mat ts 0.1. (there are small round-off errors of the order of 0.3 %.)
Check the values for the first 3 rows of o Isq mat ts 0.1.

Try to write your own program to do this problem, but if you find it difficult, you
can use the program tomo2.f provided in practice 5.dir. It takes an input file i_tomo?2
which contains the names of the files for the matrix elements and the data. It also
requires ¢_tomo2, but this should not be changed (it has a constant for regularization of

the matrix inversion.).

2. Drop the data for source #6, and try the same.

3. Drop the data for sources #5 and #6, and try the same.
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o_lIsq mat ts 0.1

checker_b

two_sides

9 18  0.1000
10.02 9.99 10.02 0.00 0.00 0.00 0.00 0.00 0.00

10.56 5.28 0.00 0.00 5.28 10.56 0.00 0.00 0.00
9.05 0.00 0.00 3.03 12.01 3.03 0.00 0.00 9.05
0.00 5.28 10.56 10.56 5.28 0.00 0.00 0.00 0.00
0.00 0.00 0.00 10.02 9.99 10.02 0.00 0.00 0.00
0.00 0.00 0.00 10.56 5.28 0.00 0.00 5.28 10.56
0.00 0.00 9.05 3.03 12.01 3.03 9.05 0.00 0.00
0.00 0.00 0.00 0.00 5.28 10.56 10.56 5.28 0.00
0.00 0.00 0.00 0.00 0.00 0.00 10.02 9.99 10.02

10.02 0.00 0.00 9.99 0.00 0.00 10.02 0.00 0.00

10.56 0.00 0.00 5.28 5.28 0.00 0.00 10.56 0.00
9.05 3.03 0.00 0.00 12.01 0.00 0.00 3.03 9.01
0.00 10.56 0.00 5.28 5.28 0.00 10.56 0.00 0.00
0.00 10.02 0.00 0.00 9.99 0.00 0.00 10.02 0.00
0.00 10.56 0.00 0.00 5.28 5.28 0.00 0.00 10.56
0.00 3.03 9.05 0.00 12.01 0.00 9.05 3.03 0.00
0.00 0.00 10.56 0.00 5.28 5.28 0.00 10.56 0.00
0.00 0.00 10.02 0.00 0.00 9.99 0.00 0.00 10.02
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o Isq rhs ts 0.1

checker_b
two_sides
9 18  0.1000
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47.28
44.36
67.07
44.95
39.69
43.15
60.62
51.73
51.76
49.93
49.19
68.50
45.47
36.96
51.15
61.99
46.84
53.53
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Ge 162
5. Earthquake Source Theory
5.1 Static Source

5.1.1 Static Displacement Field Due to a Single Point Force in Infinite Homogeneous
Medium (LW, pp. 323-331)

1. Description of the Problem

Consider an isotropic infinite homogeneous elastic medium with density p and elastic

constants 4 and g
We apply a force at point O, and want to determine the displacement U at point P.

U| =0 at infinity.

We assume that the outer boundary at infinity is constrained, i.e.,
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2. Qualitative Solution

Suppose we apply a force F to a small sphere of radius a at the origin. We
consider the displacement on the plane containing the force. It is not difficult to imagine
that the resulting displacement field is given by the arrows shown in the following figure.
The magnitude of U may be approximately determined as follows.

Consider a sphere with radius r. In equilibrium, the body force F acting
at the center of this sphere must be balanced by stresses acting on the surface. The figure
suggests that the stress on the surface of this sphere is compressional at C, shear at A, and
half shear and half compression at B.

Let o be the magnitude of this stress. Then, to the first approximation
F=drr’c (1)

Let u(r) be the magnitude of the displacement at r, then, from the geometry shown in the
figure, du/dr gives the magnitude of the strain at r.

F

47r?

2)

g,
dr
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(The negative sign is taken because U(r) decreases as r increases.) Here E represents an
appropriate elastic constant, and is of the order of 4 or . Integrating (4), and using

u(r > o) =0 , we obtain

Actually, a rigorous derivation shows (in the next section) that, if we define
the polar coordinates as shown in the figure,

LS
A Up

1o >
H Z|
u, = 2 F sin@
ur
4)
F o
u, = (1-—)cosé@
4rur 2
where
o A+u
A+2u
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Since for most solids, 4 = x and «=2/3, we see that (3) is a good approximation
of (4) and that the directions of the displacement shown in the figure are consistent with

4.

3. Elasto-static Solution of the Problem
Definition
a. Point Force of Strength F

When we consider a force in continuum, we introduce force per unit volume, or
force per unit mass. Let f be a force per unit mass, then p f gives force per unit
volume.

Consider a small volume 5V, and apply p f to this volume. Then

F=1lim(pfoV)

oV -0

defines a point force. ‘If‘ =F 1is the strength of this force.

b. Three-Dimensional Delta Function

Three-Dimensional Delta Function & () can be deined by
o(r)=0, r=#0, j&(r)dv =1
\
where V is a volume which includes the origin r=0. A convenient expression for this is
1 2
ory=——V(1/r) (5)
4

Direct differentiation shows that

Vi(1/r)y=0, ifr=0.

243



We can show that

IVZ (1/r)dV =4z, V contains the origin. (6)
Vv

Here, following the expression for the Gauss' theorem, IV V?(1/1)dV is understood to

mean L v(/r)-ndS.

Although this looks like a very simple problem, it is not that easy. We have to start
with elasto-static equation of equilibrium. From equation (29) of 3.1, we have

pf +(A+2u)graddivi — gcurleurld = 0 (7)
where f is the force per unit mass. Consider a point force of magnitude F at the origin.
pf =Fas(r) (8)

where a is the unit vector in the direction of the force. By using (5) we have

pf =—FV? (417”’} =-F { graddiv (%ﬁrj - curlcurl(%ﬂrﬂ 9)

We look for a solution in the form
u= graddiVAp —curlcurlA, (10)

This form may appear somewhat artificial, but it is suggested from the fact that any
displacement field can be represented by a sum of solenoidal and irrotational fields and
that the forcing term (9) is given in this form. Substituting (9) and (10) into (7), we have
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—Fgraddiv (ij + Fcurlcurl (ij +(A+2u) graddiv(graddiVAp — curlcurlAp)
4rr 4rr

—ucurleurl(graddivA, — curlcurlA ) =0

In the third term curlcurlﬁg is replaced by curlcurl,&p , because its divergence vanishes

anyway. Similarly, graddivAp in the fourth term is replaced by graddiv& . Using the

relation
. N N 2 re
graddivA, —curlcurlA) =V°A

and the similar relation for A , we obtain

graddiv(—Fi+(/1+2y)V2Apj+curlcurl(F i—wz/&j —0 (11)
Ay dzxr

This equation is satisfied if,

a

(A+2u)V°A, =F 2
wr

(12)

~ a
uvzﬂ =F— 13
dxr (13)

If we put Ap =A,a and K =Aa, (12) and (13) can be reduced to Poisson's equation,

2Ap=; and V2A5=i (14)
4r(A+2u)r 4ur

. 2
Since Vr ==, we have
r
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F

A = m r (15)
and
A=g (16)
Using (10)
U = graddivA, — graddivA + V> A (17)

Substituting (15) and (10) into (17), we have for the i-th component of displacement
for a unit force (F=1) in j-th direction, U/,

i 1 o or 1 0 or |
u’ = - +0; v
8w(A+2u) O% OX;  8mu O% OX; 8

1 A o'r 1 (18)

8mu A+2pu OXOX; - 8mu .
where
A+u .
a= (2/3 for most solids) (19)
A+2u

Equation (18) gives the solution of our problem. Note that uij =u (symmetric). U/ is
often called the Somigliana Tensor. We write all the components explicitly,
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r L(aﬁj o L z_a[l_x_;} 20)

B 2
8mu r 8| 1 rrjj

Let us consider the simplest case. A force with a magnitude F is applied in X,
direction. We take the polar coordinates (r, &, ¢) as shown in the figure.

2
g

& Us %,

Yy
0 z -

F %)

Then

u, sinfcosg sin@sing cosd \[u;

U, |=| cos@cosg cosfsing -—siné || u, (21)
u, —sing cos¢ 0 uj

On X, — X, plane, ¢=0,

sin@ (22)

U, =sinu; +cosOu, =
4ur
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U, = cosOu, —sinQu; = F (l—gjcosﬁ (23)
4ur 2

These are the results given by (4).

5.1.2 Static Displacement Field Due to Force Couples
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Single Couple

If we apply a force at (&, &, &;) instead of at the origin, the displacement at
(X, X, X;) can be still given by (18) with

r’ =(X _él)2 +(X, _982)2 +(X _6‘53)2 = (X _‘fi)z-

Pl

e
(12)de [z

(&1, &2, &)
e

‘ e
o X f

If we apply a force F in X, direction at &, +%d§2 , and F in - X, direction at &, —%dfz ,

the displacement at (X, X, X;) is

1 1
Fuil(gl, 52 +Ed§2’ 535 Xl, Xz, X3)_ Fuil(éjl, §2 _Edé:za 535 X1, Xz, X3)

_pou :
=Foz i +ods)

2

(24)
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Since r*=(x—&) +(%~&) +(x%-&) =(%-&)",

ar__or 05)
L, X,
(we often write this as r' = =r;.)
therefore, from (18)
j j
U - _ o4 (26)
29 OX,
Thus, the displacement for this force couple is given by
ou!
= dg, +o(d*s,) @27

2

If we make d&, >0, F — o, sothat Fo&, — M (finite), the displacement due to this
single couple (we will denote it by U; ) can be written as

1
U =M % = My Q7
2
or
1
U, =-M Zi:—lvlu;2 @7
X, ’

Thus, the displacement due to this single couple placed at the origin can be obtained by
replacing F by M in (20), taking the derivative of (20) with respect to X,, and changing
the sign.
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2
U, =—£[—2X—§—a(—x—§+3’9—§ﬂ (28)
8mu r r r

2
U, - _ﬂa{g%%} 29)
8mu | r r
u,=-M 0{—3 X1X§X3} (30)
8 r

Similarly if we apply a single couple as shown in the following figure, we obtain

2
U =M Zi: Mu;”

1

or

2
i M au. - il
OX, ’

and the X;, X,, X; components of the displacement can be given by

2

U, =—£0{X—§—3%} (31)

8mu | r r
2

U, l{z—a(—s—ﬂ @)
8mu r r r

u,--M 0{—3 al ngﬂ (33)
8 r
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Double Couple

It is evident that for a double couple as shown in the figure, the displacements can
be given by

_ an2 _ 12,21
Ui_Ma =M +u™") (34)
I
or
8uf 1 2 i i
Ui=-M 8_X=_M (Ui, +Ui) ==M (U, +Uy)) (35)
|

From the sum of (28) and (31), (29) and (32), and (30 and (33), we obtain

2 2
ulzl(zx—gj——Z“M % ghk | M X gl-3k (36)
dmu\ r mu \ r r 4rur- r r
2 2
u2=8M (21;]—2“'\/' (i;— XZ—le)z M zﬁ{l—a(l—f(—gﬂ 37)
U\ r mu \ r r 4zurs r r
U. M( x1x2x3j_ M (3 x1x2x3j (38)
’ 8mu r’ Arpur’ r’
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For double couples with different orientations, similar expressions can be obtained.

Using the polar coordinates (r, &, @),

the displacement components, U,, Uy, U, are given by
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u

r

U,

2 Mr2 (1+%)sin2 @sin2¢
T
2 M 5 (%—%)sinZHsinMﬁ
ur
M
drpur’

(l—a)sinecos 2¢

(1 + %) sin’ @'sin 2¢

(l—gj sin 26sin 2¢
2 2
(1-cr)sin @ cos 2¢

On the X, - X, plane, 6 =7x/2, U, =0, and

o) .
U ~|1+—|sin2
~[14% sin2g

u, = (1-a)cos2¢

(39)

(40)

(41)

(42)

The azimuthal variation of U, and u, is shown in the following figure.
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The displacement field on a circle X + X; = const is also shown.

Single Couple and Double Couple with Arbitrary Orientation

If the force is in k = (k,, K,, k,) direction and the arm is in I = (1, 1,, I,) direction,
then

use = %
Y

0 . P = o o
Here, Py is the derivative in | direction, and | is taken positive in the direction towards
SI

. . e B e s : 0
the force oriented in positive k direction. Then, since — =1

= and uf=u’k,
ds, o,

sc ,
U™ =u%k, |, (43)

Then, the displacement due to a unit double couple is
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U =uPi(k L, +k,10) (44)

Ge 162 Problem #6 Double Couple and Dipole

Using the expressions discussed in 5.1.2 (i.e., U™ = uf %k I,), we can write the
displacement due to a force dipole as u” =u% I, where K and I are the unit

vectors in the direction of force and the arm, respectively. k and I are parallel
but they can be of either opposite or the same direction, depending on the
orientation of the force (i.e., inward or outward).

Show that the force system with two dipoles (a) shown below is equivalent
to the double couple (b) (all the dipoles and the couples are with unit moment.).

pEy %

N / i
\\ _ 2,\
/ N ~ J 1
(

a) (b)

Ge 162
5.1.3 Elastic Dislocation

1. Qualitative Description of the Problem
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Consider a fault shown in the figure. The displacement on one side is U* and the
other side is U-, so that the displacement discontinuity is Au=u*-u-. This is called fault
offset and is often denoted by D. Since we already know the displacement field due to a
point force and force couples, we will first try to produce, by applying forces or force
couples to the medium without dislocation, a displacement field similar to that caused by

faulting.

ut

S . S "
C L 2l il by
AW AW
Tl 77 7777
u A

To o To Fus
3 ~8 1 4

N

Since an earthquake represents transition from one equilibrium state to another,
there should be no net force and no net moment. Thus, a single force or a single couple is
not appropriate to represent an earthquake. A double couple is an appropriate force
system to represent an earthquake.

Now, we try to find a double couple applied in a medium without dislocation
which yields a displacement field similar to that produced by a fault (i.e. dislocation).

As shown in the figure, to produce D over a small distance of Aw , in the
medium without dislocation, we need to apply a force couple with one force

approximately equal to
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S (1

where S is the fault area.

We reduce Aw while maintainingD =u" —u",

lim FAW= u(u” —u")S = uDS

AW—0
which means a moment
M = uDS (2)
is required to produce the offset D over S.
To produce D over an extended area S, we can distribute double couples on S as
shown in the figure. In this case, the effects of the vertical forces are cancelled within S,
and the overall force system can produce a dislocation-like displacement field.

2. Definition of Elastic Dislocation

First we need to give a precise definition of "Elastic Dislocation" . Create a thin
cavity in an elastic medium. Let one side of this cavity be ¥ and the other be X~ .

Apply force on these surfaces to move the Z* side by 0" and X~ side by G~ Then,
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make the gap very small so that ¥ and £~ form an open surface X . Then weld the two

surfaces and remove the force. Now we have a displacement discontinuity

across . This is called the elastic dislocation. Note that, for a dislocation created this

way, the traction must be continuous across .

If 0" and U are tangential to X, AU is called the shear dislocation.

—~ 4

U

3. Description of the Problem

Consider an infinite homogeneous (isotropic) elastic medium in equilibrium.
Then create a dislocation AU on X .

This dislocation causes deformation throughout the medium which is in new
equilibrium state.

We want to determine the displacement field U in the medium caused by this

dislocation.

259



4. Elasto-Static Theory of Dislocation

We use Volterra's dislocation theory to show
u“(Q) = IAuiri‘J?vde (3)
2

where UK(Q) is the k-th component of displacement at Q ; 7} is the ij component of

ij

stress on 2 due to a unit force in k-th direction at Q (the unit of ri'Jf should be

understood

as stress/force=1/area ); Au; is the displacement discontinuity (dislocation) across X. i.e.

Au; =U; (on X)-u; (on X7). Also,

2*+X" : Closed surface defining the dislocation surface.
hX : Open surface formed by £* and £~ when they are

made coincident with each other.

<

: unit vector normal to X pointing from the

negative side to the positive side.

N"=v onX*, N =v onX”

Equation (3) will be proved in the next section.
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Let us consider one of the simplest cases.
Suppose we have a very small planar shear dislocation surface dX at P which is

perpendicular to X, axis. We consider a displacement discontinuity in X, direction.

L%
DY
=== S
Pl R

Then Au, #0, Au,=Au;=0 and v =(0,1,0).

In this case (3) gives
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K k k k
u*(Q)=dX[Au, (7,,v, + 7,0, + 713‘/3)

k k k
VitV + 723‘/3)

2
k k k @
+AU (730, + T3V, +T33V; )]

(
+ Auz(
(
=dZAuzf

Note that

k k k
T, = ,u(u1,2 + u2,1)

Referring to (34) of 5.1.2, this means that (rlk2 /)= (ulk,2 + u;l) is the k-th component of

displacement, U, at Q due to a unit double couple placed on the X, — X, plane at P.
Thus,
u“(Q) = dXAu, (uU") = (uAudz)U" )

This means that u*(Q) is equal to the k-th component of displacement at Q due to a
double couple of moment M = pAu,dX placed at P. Since this relation evidently holds
for any dX, we can conclude that a shear dislocation Augs over a surface S is equivalent to

a double couple whose total moment is

M = '[ LA dS =AT.S 6)
S

262



5. Volterra's Dislocation Theory

We first introduce the following notation for the stress strain relation:

Ty = A0 Uy + (U +U; ) =Gl o (7N

where

=00 + (6,0 +0},0,) ®)

CiJ'pq

Then the following symmetry relations hold.

C C C C

iipa — “iipa — “ijgp ~ “ paij )
Note:

Among 81 components of C;,,, most of them are zero. Nonzero components are

ijpg>

C1111=C2020=Ci333= A + 21
C1122=C211=C11337C3311=C2233=C3300= 4
C12127C12217C21127C21217C13137Cr331= U

C31137C31317C23237C23327C32037C3030~ U
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Then, the equation of equilibrium can be written as:

pfi+r;;=0, or pf+cU, ;=0 (10)

1Jpq = p.qj

This notation is convenient for the derivation given in the following.

Consider an elastic medium (homogeneous, isotropic) bounded by a closed
surface S,. Within this medium consider a closed surface consisting of *° and £ . T°
and ¥ are made coincident with each other to make an open surface 2'.

We let V be the volume inside of S,, and outside of T +X .

We let u; be a solution of equation of equilibrium

CijpgUp.q = —A T, (1)

S -
OsouT—=ur = Ay,

U; is continuous throughout V. On X', u,=u’andon X", u, =u

Also, U; satisfies the boundary conditions, either u;=0 (rigid) or C n,=0 (free) on S,

iipa4 p.g
where N is a unit vector normal to S; (positive outward).
Let v; be another solution of (10) and represent the displacement field due to a

body force pJ (per unit volume). V; is continuous everywhere and satisfies the

boundary condition on S, (either v; =0 (rigid) or ¢V, ,n; =0 (free)).
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C'Jpq paj ml (12)

Multiplying (11) by v; and (12) by u; , subtracting and integrating over the volume V, we

obtain

,[ (Cupq p.6i Vi ~ Cijpg pqlul)dv __j (p v — pgiu)dV (13)

Note that

u, V. —C. u —C. u,)+(c;

(Clqu p.g-i IJpq p.q |) (Clqu p.aj ' upq p.aj upq p.q 'l lqu p.q 'J)

Owing to the symmetry of C;;,,, the second term of RHS vanishes. Hence,

ijpa>
,[ (Cllpq p.aVi ~ Cijpg pqul) dv = I (p fvi — pgiuHAV (14)

Applying the Gauss’ theorem to LHS,
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J.Sl+2*+2’ (Cupqup qvlnj Clqu p.q nj)dS :_J.VLOfivi _pgiui)dv (15)

Due to the boundary conditions on S,, the integral on S, vanishes. Since Vv; is continuous

on 2

L+ GijpgUp.qVi dS I Cupqupqvlnjds"',[ CupququIanS

__[ Vi (CpqUp.qNj + CipgUp oN; IS

In equilibrium, the traction on the X" side C; | should be balanced by that on the ¥’

IJpq P q

side, C;,,U, n; - Hence this integral vanishes.

On the other hand
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J.z C'Jpq Dq dS I Clqu pqu ( Vi )dS +J. Cuqup qul (‘H/ )dS
j CiiogVp.q AUV, dS

Hence,

'[ Cupq quuideS = IV (pfivi _pgiui)dv (16)

We put pf; =0, and, for g;, consider a unit force in k-th direction at point Q:
pg| = é]ka(Q)
Then (16) becomes

u(Q) = [, Augzjv,ds (17)

i“ij "]

This is the Volterra's relation. Ti'Jf is the stress due to a unit force in k-th direction at Q,

and its unit should be stress/force = 1/area.

6. Moment Tensor
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Applying the Velterra's relation

u (y) = L Auziiv;dS = L Au

to a small surface element AS over which v, AU and u,‘j’

where

My, is a symmetric tensor called the moment tensor. Then (19) can be written as

1 1 1 1
u U, U, U
20| ,.2 2 2
u=ju;, Uy, U,
3 3 3 3
u U, U, Us;

ijpg ™~ p.q

_ K
MpUpq
M pg = Cijpg

1 1 1 1
u1,2 + u2,1 u1,3 + u3,1
2 2 2 2
u1,2 + u2,1 u1,3 + u3,1

3 3 3 3
u1,2 + u2,1 u1,3 + u3,1
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k
iCijpgUp.q¥;dS

q

U () = CjpqUs (AU AS

AUV;AS

1 1
u2,3 + u3,2
1 1
u2,3 + u3,2

1 1
u2,3 + u3,2

are constant, we obtain

(18)

(19)

(20)

21



Using the explicit expressions for Cjp,q, (20) can be written as,

M, = AS[(Z + 2/1)AU]V1 + AUV, + AAULY; ]
M,, = AS[AAUV, + (A +2u)AU,v, + AAU,V;]
M, = AS[AAUWY, + AUV, + (A +2u) Auyv; ]

(22)

M,, = AS u(Au,v, + Au,v,)

M, = ASu(Au,v, +Au,v;)

M,, = ASu(Au,v, +Au,v,)

For shear dislocation, i.e., v L AU,
M,, =2AS pAu,v,
M,, =2AS pAu,v,
M,; = 2AS pAu,v, 23)
M,, = ASu(Au,v, +Auv,)
M,; = ASu(Au,v, +Au,v;)
M,; = AS u(Au,v, + Au,v,)
which is often written as

M=2AS (AG"V + 7 A) (23"

By taking the limit, AS => 0 ( AU;AS is kept finite), we obtain a point dislocation
source that is represented by a moment tensor My

As a special case, consider a case where
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7 =(0,1,0), and AU = (Au,,0,0).

Then, from (22)

M, =ASpAu, and M, =0 (p#1, q#2)
and, from (21)

1 1 1

u = (ul,z + Uz,l)Mlz
2 2 2

u- = (Ul,z + u2,1)M12

3 3 3
u’=(u;,+u, )M,

This is the case considered earlier.
Equation (21) can be used to determine the moment tensor from the observed

displacement UX, if the Somigliana tensor u for the medium is known.
Suppose we observe the displacement Iuk (1=12,3,.....,L) at L locations. Then,
we can compute | u'lj’q by using the known Somigliana tensor. Then (21) can be written

(1u)=(U)(My) (24)

where (,U ) is the matrix on the RHS of (21) which can be computed by the known

Somigliana tensor. Combining (24) for I=1,2,3, ....L, we obtain a set of linear equations
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with 6 unknowns M, and Lx3 data, and, for L>2 , the equations can be solved (unless the

problem is ill-posed) to obtain M.

Ge 162 Problem #7 Moment Tensor and Fault Parameters

Consider a fault model as sketched in Figure 1. Only the foot-wall block is shown.
(&1, &, &) 1s the fault coordinate system (+& is in the direction of fault strike), and (X,

X2, X3) 1s the geographical coordinate system (X1: North; X2: West; X3: Up).
The top surface of the block coincides with the surface of the Earth. D is the slip

vector of the hanging-wall block (not shown). ¢ is the dip angle of the fault plane
measured downward from the horizontal (i.e. from -&; direction.). A is the slip angle

(rake) measured counter-clockwise on the fault plane from the horizontal line as shown in
the figure (i.e. from +£ direction.). v is the unit vector normal to the fault plane. Let AS

be the fault area.
Place this fault model in a homogeneous elastic medium with the rigidity x at the

origin of the Cartesian coordinates as shown in Figure 2. The strike of the fault, ¢, is
measured clockwise on the free surface from X axis in Figure 2. We assume that AS is

small so that the fault can be considered a point source.

1) Determine the &, &, & components of the displacement vector D (magnitude D)

and the unit vector v .

2) Determine the X1, X, X3 components of the displacement vector D (magnitude D) and

the unit vector v .

3) Determine the moment tensor elements Mijj (i, j =1, 2, 3) for this fault model. Write

the result in terms of scalar moment Mg=uDAS, 6, A, and ¢. (The results are given in

5.1.4.) (Note that this is a shear dislocation. )
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4) Determine the moment tensors for the Hector Mine earthquake, the Chi-Chi Taiwan

earthquake, and the Bhuj India earthquake. The fault parameters for these events are
given below (J (dip in degree), 4 (rake in degree), ¢, (strike in degree), M (Seismic

Moment in N-m)).

1999, Hector Mine 85, 179, 336, 5.9x10"
1999, Chi-Chi, Taiwan 27, 82, 26, 4.1x10%
2001, Bhuj, India 50, 50, 65,  3.6x10%

Ge 162

5.1.4 Summary of Static Source Representation
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1. Green's Function

Apply unit point force in k direction at & = (&, &, &,). Then, the i-th component
of the displacement at X =(X,, X,, X;) is the Green' function Gf()‘(, £).

In a homogeneous whole space, this is given by the Somigliana tensor, u/ .

2. Single force at a point

The displacement for a single force F(F', F*, F*)is then

u =F*Gf (1)

3. Distributed force

The displacement due to a distributed force in V, can be written as.

U, (0)=[, PTG X HHav 3)

4. Force Couples

For a unit single couple on the X, —X, plane, the displacement is

uisc = Gil’2 (3)

For a double couple,

uiDC — Gi1,2 + Gi2,1 (4)
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In a homogeneous whole space, (3) and (4) can be also written as
u>* = -G/, and u’ = —(Gi',2 +Gi2,1) )

If the force is in k = (k;, k,, k;) direction and the arm is in I = (I, ,, I,) direction,
then

U =GPk, (5)

This can be shown as follows. Let G'" be the i-th component of displacement

. T e 0 T
due to a unit force in k direction, and — be the derivative in | direction, then
SI

oG " 0
u =2 o) 2 (GPk,) =GPk | (5)
8S| q 8Xq p pq

Then, the displacement due to a unit double couple is
u’c = GP(k 1, +k,1) (6)

For a source represented by force couples and dipoles with the strength (moment)
givenby My,

u, =M G{’ (7

5. Dislocation source

Referring to the figure below. the displacement due to an elastic dislocation AU
on the surface £ can be written as
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u' = L r'quupquS

Tipq = CquIGIi(,I
u' = chqle;,,AupquS = L m, Gy, dS

where

My = CpaAU,V,

(8)

)

(10)

(11)

In the limit of point dislocation (i.e., | AU |—> o, £=AS — 0 and | AU | AS — finite
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u'=M,G, (12)
or, exchanging the source and the observation points,

U = MkIGik)I (12"
where

My = CopuAU,V,AS = M, (13)

pakl

This is the same as the expression for the displacement field due to force couples (7).
Thus, a dislocation source is equivalent to force couples.

The explicit form of M, is:

My, =AS[(A+2u) AUy, + AU, + AUV, |
M,, = AS[ AAUW, +(A+2u) AUy, + AAU,v; |
My, = AS[ AAUY, + AAU,Y, +(A+2u) Auyy, |
M,, = 4AS (Auv, +Au,y,)
M,; = £AS (Auv, + Au,v,)
M,; = £AS (Au,v; +Au,v,)

(14)

In case of shear dislocation (i.e., AU L v), then

M., = 2uASAU,,

M, = 24ASAu,v,

M., = 24ASAUY,

M, = AS (Au,v, +Au,y,) (15)
M,; = AS (Auv, +Au,v, )

M, = LAS (Au,v; + Au,v, )
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or,
M= £AS (A : V) (15"

The following figure illustrates the force couples represented by each element of a
moment tensor.

3 3 3
(L1 (1.2) (1.3
2 2 ,
1 ] |
3 3 3
2.0 2.2) 2.3)
B 2 2
1 1 1
3 3 3
(3.0 3.2 3.3)
2 2
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6. Fault parameters and Moment tensor elements.

The fault parameters (9, 4, and ¢ ) defined in the figure below can be transformed
to moment tensor elements by ( #DS is assumed to be 1),

M,, = —sin® ¢; sin2dsin A —sin 2¢; cos Asind
M,, = —cos® ¢; sin20sin A +sin 2¢; cos A sind
M,, =sin26sin 4

1 NS . 7
M, = —Esin2¢f sin2¢0sin A —cos2¢; cos Asino @)

M,; = cos@; coso cosA +sin g, sinA cos20

M,; =—sing@; coso cos A +cos ¢ sindcos20

YMap View
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(The following part is not complete yet)
6. General Representation

Suppose that the medium is in equilibrium in the beginning (A). Then a failure
occurs in V,, (B), and displacement u; and stress o;; are produced in the medium.
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A B

The equation for static equilibrium,

o =0 (16)

1]

holds everywhere including V. In the region outside of V,, U; and o are related by
elastic constitutive relations; i.e., stress can be computed from U, . However, the elastic
constitutive relation does not hold in the failure zone V,,. Thus, o cannot be computed
from u;. If we assume hypothetical elastic constants in V,, then, we can compute the
stress in V, from U;. We denote this stress by O'in (i.e., Hooke's stress). O'in is different
from o . Then we can write (16) as

H H H
oy —(oy —oy) =0y —m; =0 (7

where

m; = (oy —0oy) (18)

m; vanishes outside of V.
The form of equation (17) suggests that —m; . can be considered as equivalent

body force. Thus, the displacement can be written as
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Ui :j (_mkI,IGik )dV (19)

0

Using the Gauss theorem,

jvo (MyGi) av = jvo m, G dV + jvo m,GKdV = LO m,GKn,dS =0

(Sp can be taken slightly outside of V). Then, (19) can be written as

u = IV m,G'dV (20)
For a point source,

L mydV —> M, @1)
and

U =M, G (22)

which is the same as (12').

m; defined by (18) can be considered as a general source representation, and is

called the seismic moment tensor.
5.1.5 Stress Relaxation

1. Description of the Problem
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Consider an elastic medium which is in equilibrium under stress o;;(F) . Let S be

an open surface defined in this medium of which the stress is O'i(jo)(f). Relax the stress
i’ by creating a cut on S and letting the material on either side

of S to move. Let AU be the resulting dislocation (displacement discontinuity). AU is
not necessarily parallel to S. We want to determine AU, and the difference in strain

energy AW between the two states, before and after the crack formation.

from of” to o

2. Qualitative Solution of the Problem

Let us consider a planar crack S under uniform shear stress o, .
If the stress is relaxed on the crack surface to o, (= const), there will be a

displacement offset Au across the crack. In general, this is not uniformon S. Let D be
the average of Au on S. If the representative dimension of the crack is L, then the
change in ¢ would be

Ae~D/(L/2)
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This strain change is caused by the change in the stress Ao = o, — o, , which we call
stress drop. Thus,

Ac =uAe=cuD/(L/2) (1)

where C is a non-dimensional constant which depends upon the shape of the crack; it is
apparent from the above argument that ¢ ~ 1.

The simplest case is a circular crack. If a is the radius of the crack, we can show
that L=2aand c=77/16 (A= u is assumed.).

Ao =(7r/16)uD/a (2)

The change in the strain energy AW is given by SGD . This is analogous to the change
in the strain energy of a spring (spring constant k) which is stretched from X, to X, . The

change in the strain energy is
AW = (1/2)K(X; = %7 ) = (1/2)K(X, + X )(X, = X,)
where (1/2)k(X, + X,) is the average force and (X, —X,)is the displacement.
Thus, for the circular crack
AW =S&D =(16/7p)a’ Ao (3)
where & =(o,+0,)/2 is the average stress.

If we use the dislocation theory, this crack can be represented by a distribution of
double couples whose total moment M is

M, =uSD=(16/7)a’Ac 4

Next, we consider a crack as shown by the figure.

283



The crack is a strip with a width of 2w and of infinite length. We consider a
uniform shear stress parallel to this strip. Because of the geometrical similarity between
this crack and a strike slip fault, we call this crack a strike-slip crack. In mechanics, this
is called Mode III crack. The argument similar to that made for the circular crack leads to

Ae=D/w  and Ao = pAs=cu(D/w), c=o(l)

we can prove that ¢ =2/ . If the crack is not infinitely long but of finite length L, the
above relation is not exact. However, when L is very long, it is a good approximation.

For practical applications, we often take one half of the crack as shown by the
hatched portion in the figure. For this crack,

Ao =2/ m)u(D/w)
AW = Lw&D = (7 /2u)WLAcG (5)
M, = uwLD = (7 /2)W’LAc (6)

Another useful geometry is shown below.
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The crack extends in the direction perpendicular to the uniform shear stress. In
this case we can derive

sz—fu)ﬂ(ﬁ/w)
T(A+2u)

We call this crack a dip-slip crack. In mechanics, this is called Mode II crack. For the
hatched portion,

AW = LwgD = ZAH2H) 21 A o5
4 A+ pu
and
M, = ulwd = 2428 o Ao
41+ 1)

These relations are summarized in the following table.

Circular Strike Slip Dip Slip

A=pw) (Mode III) (Mode II)
Srtess drop, (77 /16)uD/a 2/ ) u(D/w) AA+p)u (B/w)
Ao T(A+2u)
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Strain Energy,

(16/7p)a’ Ao

(7 /20)W LACT

T(A+2u)

I LAcE
AW =S&D W
Moment, _ (16/T)a’Ac (7/2)WLAC ZAAZH) o) As
M e S5 4+ )

Relations between stress drop, strain energy change, offset, dimension, and moment for static
cracks. Dimensions of the fault are a radius, L length, w width; initial stress is 0, ; final stress is 0 ;

stress drop is Ac = (0, —0,) ; average stress is & = 1/2(0, +0,) ; average dislocation is D .

3. Elasto-Static Theory of Crack

Here, we consider only a strike-slip crack (Mode III). In this case, the
displacement field has a component only in the direction parallel to the crack. Therefore,
the problem becomes 2-dimensional.

Consider a crack extending in X, of which the cross-section is elliptic. We will

later reduce this ellipse to a infinitesimally thin strip.

X~
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Initially the crack is not formed. We introduce initial displacement field

U® =(0,0,U;")
where U{” = A x,. Since the stress corresponding to this displacement is
UL ;
O, =l 5 2 = uA, =const, we have a uniform initial shear stress o, = uA,. Let U be
X2

the displacement after the crack is formed. Because of the symmetry of the problem, U
has only X, component. i.e.,

U:(O, 05 US) (7)
where U, does not depend on X, , and

divd =0 ®)

Thus, the equation of equilibrium

(A +2u)graddivU — geurleurlU =0 9)
gives
curlcurlU =0 (10)
If we put B B
A=curlU (11)

then, from (10),
curlA=0 (12)

Also from (11),
divA=0 (13)
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From (12) we can put
A=—gradg¢ (14)

where ¢ is a scalar potential. Substituting (14) into (13)

Vg=0 (15)
From (11) and (14),
6U37_6U350 = _%: _%: _% (16)
OX, 8 0%,  OX,  0OX

Let us consider a case where the stress on the crack is completely released,
ie, 7,,=0 onS.

ou,
# OX,

=0 on S

By (16), this condition can be restated as

9
0%,

on S

Since 2—¢ =0(see (16)), ¢ =@(X,). In the limit of a very thin crack X, =0on S; thus,
X

3
¢=conston S. Since ¢ is a potential, we can put, for the boundary condition

¢=0, on S (17)
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Thus, our problem is now reduced to a problem of finding a solution of (15), with a
boundary condition (17). Note that this problem is equivalent to the well-known electro-
static problem of finding an electro-static field due to a perfect conductor placed in
vacuum.

To solve this, we introduce elliptic coordinates (&, ,&,) by

X, =acosh& cosé, and X, =asinh{ siné, (18)
Then
W = X, +1X, =acosh(& +1&,) =acosh(s) (19)

where ¢ =& +i&,. & = const gives an ellipse with a major axis acosh &, and a minor
axis asinh & Thus, the elliptic crack is given by & = const, and the limiting case & =0

represents an infinitesimally thin crack of width 2a.
We write

p=d+¢' (20)

where ¢, represents the initial field, and ¢', the perturbation due to the crack. Since the
initial field is U{” = A)x,,

@, =—AX =—-Ajacosh{ cosé, (21)
¢ =—-Aacosh& cosé, +¢' (22)
Since V’¢=0,and V’¢, =0 (from (21)),
V¢ =0 (23)
Since ¢ =0 on S (& = const), ¢' must have the form

¢'=F(&)coss, (24)
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From V’¢' =0, we have (use Laplacian for the elliptic coordinates),

¢°F .
dg?
F(&) = Aexp(=¢,) + Bexp(+¢) (25)

Because F (&) must be finite for & — oo, we take only the first term

¢ = (Aexp(—¢;) — Ajacosh g ) cos &, (26)
From the condition that ¢ =0 at § =0,
A=Aa

¢ =—Ajasinh¢ cosé, = —% Aja(sinh ¢ +(sinh &)")
=-AjaRe(sinh ) =—AaRe(cosh* ¢ —1)"* = —A Re(w’ —a*)"?

(27)
Since, from (16)

o9 oY) 94 __ oY)

oX, OX, OX, oX,

From the Cauchy-Riemann relation, if ¢ is the real part of analytic function
—A,(W* —a*)"? of w=x, +iX,, as shown above, then U, is the imaginary part of
—-A, (W —a*)"?. Thus

U, = A Im(w* —a%)"? = %Im(wz ~a%)"? (28)
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is the solution of the problem.

With the solution,

U, = A Im(w* —a*)"? =%1m(w2 —a’)? (w=x +ix,) (28)

first, consider the displacement field on X, — X, plane ( plane of the crack ).

In this case X, =0,and W= X,

O,
U, =2 Im(x’ —a?)"?

tils
A 4= GCoalp

—A

The maximum displacement U3maX 1S
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and the average displacement is

1 ra o
3 :2_a —azo(az - X12 )del = (7[0-0 /4,u)a (30)

The average dislocation is
D=2U, =(z0,/2u)a (31)

For a partial stress drop in which stress drops from o, to o,, o, in (31) should simply
be replaced by Ao =0, —o,. If we replace a in (31) by width w, (31) leads to the
relation given in the table.

Next, let us consider the displacement on X, — X, plane. Putting X, =0, we have,
from (28)

U, =2 Im(-x> -a%)" :i(ﬁj(xg +a%)" (32)
iz H

+ sign is taken for X, >0, and - sign for x,<0.
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" opX/|

¥

Since the initial field is (ﬁj X, , the actual displacement caused by the crack is
Y7,

obtained by subtracting (ﬁl X, from (32):
Y7,

U3:U3—(ﬁ =] = (33)

\ @ h];?.
-Goa/p
The X, coordinate where the displacement decays to half is given by
X,,=(3/4)a or a=(4/3)X,, (34)
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The three-dimensional displacement is shown in the figure above.

If we use this model, we can estimate the depth of the fault from the observed
decay rate of the displacement field by using (34).

In the following examples, U, (X, =0) is plotted as a function of X, . It is readily
seen that X, ,= 10 km for Tango, 7 km for Tottori and 5 km for the San Francisco

earthquakes. From these values, W ~ 13 km, 9 km and 7 km are obtained for these
earthquakes. However, because of the incompleteness of the data set for the San
Francisco earthquake, the estimate of w for this event is very uncertain.
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1927 Tango Earthquake (M=7.5)

m2
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0 oam l‘:‘:.“ am‘““ ~L "\M:‘:"o: L 1'
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LTt bt i T ¥ | T T T T
'.F_-""t-l'—- _:f‘-_.-vﬁ ,Ir= !I\ \\-. ..i.“\ _“?Au S Tango U'
.. 5 Tt lango
v fb UL E% gl L=35km, d*13km
. PR ML i b |
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i B ¢
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295



1943 Tottori Earthquake (M=7.3)

:_ 138K e
| Jopan  Sea el Y : L) I
I—'——"- Hﬁ-—"’ u-‘“’-f-’ ¢ ) -
| = »._._.1.-_-.—.1.——‘_\‘? ! -
.-.+_ e T i _‘-_é_...gd;:ﬁ:;p.ll--:"—u:'n
| T, i 2 01520
,‘:/ e e = Distonce, hm o
’ ’ f g % ' i Uyl 25m_d+ Bim
‘i # === Usrl3smdeidin
@ B Grded | . i +
& Supplemastory — o ot Fauit Troes
e Zad Qudas amm== Apsumed Foull i""'
v 3rd Order Ead Muain Shosh I m
1906 San Francisco Earthqualke M=8
b i|dl'|'- 5
L
\g-‘.__-_
a -
gy
4. Stress

Next, let us consider the change in the stress. Since U, =0, U, =0, U (X, X,),

Y, and 7, :,uaU3 :
OX, 0%,

Using (28), we have on X, —X, plane (i.e., X, =0)

only nonzero components of stress are 7,, = i

1

2 25\1/2 :GO 2\1/2 (35)
(X; +a7) 1+@/x,))

7, =0, and 7, =0,X,
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Note: (28) gives the solution as an imaginary part of an analytic function. The
derivatives of U, with respect to X, and X, can be obtained using the following relation.

Consider an analytic function W(w) = P(X,,X,)+1Q(X,,X,)of W= X, +iX,. Then
oY oP .0Q

—=—+i—, and
ow 0OX,  OX

¥ P . 0Q P Q
ow  0(ix,)  o(ix,) OX, OX,

Hence, x is the imaginary part of (ki ,and K is the real part of N .
0%, ow 0X, ow

Since 7,, =0 and 7,, =0, 7,, =0 obtained above means that the X, — X, plane can

be considered as a stress free surface. Thus, it is convenient to take this plane as a free
surface in modeling a shallow fault. In this case, we consider one half of the crack as
shown by the hatched part as the actual fault plane.

The sress 7,, changes as a function of X, on X, —X; plane as shown in the following
figure.
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—t (o)) -~
N\H-\. i ’
= __.fi —
On X, —X, plane (X,=0), we have
7, =0, |x |<a
(36)
Ty =0 X —S———77 X |>a
32 071 (Xlz _a2)1/2 > 1

As shown in the figure z,, has a singularity at X, =a of the order of (x,—a) ™"

(i.e.,
square-root singularity). This singularity is typical of this type of thin cracks. Near,

X, =a,le,at X, =a+& (e<<a), and

1 a _i»
o,X RO, |—€ (36"
071 (Xl _a)l/z(xl +a)1/2 0

T3 =

2
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5.2 Elasto-Dynamic Source ---Summary of 5.2.1. and 5.2.2. ---

5.2.1 Displacement Field due to a Point Force and Force Couples
(Time-dependent case)

The derivation is more complex than that for the static case, but is similar. The
displacement field consists of near-field and far-field. The field consists of
"compressional" and "shear", propagating at P and S wave velocities, respectively. The
near-field term yields displacement between P and S waves, as shown in the figure on
page 3.

The following relation holds.

ul(t;7) =u) (—7;-1)
5.2.2 Force Couples
The derivation is essentially similar to that for the static case. In general, the

displacement field consists of near-field and far-field.

Far field:
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M'(2)

u~= 3
47oNr

Near field
M)
U= 2.2
47pv°r
The displacement is schematically shown on page 7
The most important relation is given by equation 17', which gives the radiation
pattern and the amplitude of far-field P and S waves. The radiation pattern is exactly the

same as that for the static field.
For a shear faulting, S wave is much larger than P wave.

3
| maxu, | =(£J 1
|maxu,| (V, 5

5.2 Elasto-Dynamic Source

5.2.1 Displacement Field due to a Point Force and Force Couples
(Time-dependent case)

Single Force

The method is essentially the same as that used for static problem.

The equation of motion is:

300



2—

’OZTL; = pf +(A+2u)graddiva — ucurlcurla

A point force is given by:

pf =Fas(r)h(t) = —Fh(t)V? (ij
4rr

= —Fh(t){graddiv (ij — ucurlcurl (iﬂ
drr 4rr

We seek a solution in the form
U = graddivA, — ucurlcurlA,

Then, we obtain,

~ Fhty. O°A
A+2u)V°A = a+ L
( #) P Agxr L ot’
~ Fh(t) . 0*A
VA = a+
HVA drr r ot?
Putting
A,=Aad and A =Aa
A
via —— O a+i2 =
P Az(A+2mr vy ot
2
VIA = Fh(t)a+i26 /}
4rur v, ot
where
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V,=AJ(A+2u)/ p and Vv =\ ulp

are P- and S-wave velocities, respectively.

Note that, the solution of an inhomogeneous scalar wave equation,

1 &*p(x,y,z,t
V2¢(Xa yazat _C_z%:_g(x’ yazat)

is given by,

1 ¢ 9,n¢,txR/c)
¢(X9 y’z’t):EJ’V R dé:d?]dé,

where R*=(x—&)’+(y-n)’+(z-¢)

Wit )

(2,4, 2)

Using this relation, and carrying out the integration,
we obtain

Ap(r,t):i{lj‘wh(tir/vpiv)vdv—ljmh(tiv)vdv}
4p| rdo rJo
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A1) =%Ef h(t+r/v, iv)vdv—%jowh(tiv)vdv} (13)

Then, for a unit force (F=1),

. 2 0o +
u! :L 0 lj (httr/v,tv)—h(ttr/v,+v))vdv +%M5ij
4mp | OXOX; | T o r

(14)

This solution gives both outgoing and converging waves. For outgoing waves, we
take the minus sign, and rewriting it

i

' :Eaxiaxj

Z2p7t e X X X X
L or I vh(t—v)dv + 12r 'rz‘ h(t—r/vp)+4 12 [5".— IerJh(t_r/Vs)

v, 7Z',0Vp 7olN §

(15)

u’ is called Love tensor.

It is easy to show that ifa & function force is applied at Q ( Yo Ya. y3) at time 7,

then the displacement at P (Xl’ X, X ) at time t is given by,

) 2p-b /v XX, XX,
yo L or L_lﬁﬂ—r—VMv+ L% st—r—r/v,) e — (aw-;;

' =47zp X0, Jrw, 4mpvir r? dmovir| "

jd(t—r—r/vs)

(15
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where
r’= (Xi —Yi )2

The 2nd and the 3rd terms decay as 1/r and represent propagating P and S waves,

respectively. These terms are called far-field. The first term decays as 1/r”, and
represents displacement between P and S wave arrivals. This term is called near-field.

The time history is schematically shown in the figure below.

Reciprocity

It is evident that

ul () =ui(t;7).

However, since t and 7 appear as t—7,
U (t;7) = u) (zs1)
but
ul (t;7) =ul(-7;-b)

5.2.2 Force Couples
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The displacement field for single couples and double couples can be
obtained by differentiating (15) with respect to appropriate coordinates.

Qualitative Derivation

For a point force F(t) placed at Q, the displacement at P due to the 2nd or 3rd
term is

uccF(z)/r

where 7 =t—r/v (v: wave velocity).

L/_} u/\ﬂ;:_(?)
Y L r
a ¥
a
o I—T(T-;\)
? r+(‘(

a
s
28 i o [
For a force at Q’ (short distance a
away from Q),
F(r—a/v)/(r+a)

Then for a couple

Uoe F(2)/T=F(r—a/V)/r+a)=F(r)/r—(1/r1-a/r(F(r)—(a/V)F'(z))
=aF(r)/r’ +aF'(r)/rv=M(z)/r* +M'(7)/ v
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The first term decays as 1/r7; hence, at large r, we have M'(z)/rv which is called far
field. At short distance, the first term, M (z)/r?, dominates, which is called near field.

Recovering the term we obtain

Azmv?’

M@ | M'(@)
U= 2,2 3
4oV Ampvr

(16)

The following figure illustrates the contributions of near-field and far-field
displacements.

e
FFA*LJ\__

Sum e ,/L; J\_

A small A Jarge

The actual displacement field is more complicated because we need to include the
contribituion of the 1st term in (15') too. However, at far field, the second term in (16)
essentially gives the displacement field which propagates at either P or S wave.
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The figure below shows the near-field (+far-field) displacement observed for the
1999 Chi-Chi, Taiwan earthquake.

m

Displacement,
™

Time, sec

Flasto-dynamic theory

Here, we consider only the far-field term. If we place a double couple with a
moment M (t) on X —X, plane as shown in the figure,
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we have at large r (far-field),

2
U = ! 2| Lo riny,M(t=r/v,)
drpv,r | v,

(17)

+

pE— (=27717> + 728, + 118, )Mt =T /V,)

where y, =X/Tr.

If we take the polar coodinates (r, 6, @),
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y, =sinfcos@, y,=sinfsing, y,=cosl,

Then

u, | sin® @sin 2¢

u, |= M'(t—r/v 0

ug 4rprv; ( ») 0

’ (17)
| 0

+4 =M'(t—r/v,)| 1/2sin26sin2¢
rv
TS sin & cos 2¢

Thr first term on RHS represents P wave and the second term, S wave.
On X —X,plane, @=7x/2 and

1

u, = 3
4rprv,

M'(t—r/v,)sin2¢

r

u,=0 (18)
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1

u,= 3
4mprv;

P M'(t—r/v,)cos2¢

The amplitude distribution is sketched in the following figures.

AIz 12
1 uir- (P u\mwp) HT ( S WAL
. ’/\\ =
(N\|/ _

/

e{; {1
> T + -
X? v 7({

Note that the pattern (radiation pattern) is identical to that for the static case. The
amplitude ratio

3
|maxur|: A zl
|maxu, | (V, 5

Also the time history of the displacement is given by the time derivative of the moment

time function. It is also important that the amplitude decays as 1/r in contrastto 1/r>
for the static field.

5.2.3 Radiation from a Double-Couple Source

The attached four figures show the waveforms computed for the following:
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Fig. 1 and Fig. 2 show the responses in a whole space (a=6 km/sec, /3.5 km/sec, p=2.6
g/cm3). The "depth" is 10 km. This means that the displacements are computed at a
level 10 km above the source. The mechanism is a N-S striking vertical strike slip with

and the seismic moment is 1027 dyne-cm. The source time function is a triangle with a
rise-time of 0.2 sec and fall-off time of 0.2 sec.

Fig. 1.

Station azimuth=90°. The transverse components are shown at 20 km distance
intervals. P-wave arrivals are aligned.
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Fig. 2.
Station azimuth=45°. The vertical components are shown at 20 km distance
intervals. P-wave arrivals are aligned.
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Fig. 3. and Fig. 4 show the responses in a southern California crustal model given below.

Thickness (km) o (km/sec)
5.5 5.5
10.5 6.3
19.0 6.7
7.8

S (km/sec)

3.18
3.64
3.87
4.5

p (g/cm3)

24
2.67
2.8
3.0

The depth is 11 km. The mechanism is a vertical strike slip and the seismic
moment is 1027 dyne-cm. The source time function is a 1/2 cycle cosine with half-width

of 0.2 sec.
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Fig. 3. Station azimuth = 90°. The transverse components are shown at 20 km distance
intervals.
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Fig. 4.
Station azimuth =45°. The vertical components are shown at 20 km distance
intervals.
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5.2.3 Elastic Dislocation = ---- Summary ----

The equivalence between an elastic dislocation and a double couple shown for the
static problem holds for the dynamic case, too. A point dislocation given by D(t) over

an infinitesimally small area is equivalent to a double couple with moment
M (t) = uD(t)S
Moment tensor, M, (g? ,1), can be defined in a similar manner.

The displacement due to a point double couple is given by
ui (Xat) = M kl (g,t) * Gik’I (Xa g’t)

where * denotes convolution (i.e., h(t) = f (t)*g(t) means h(t) = J.jw f(t—7)g(r)d7).

In the frequency domain,
6,(%,0) = My, (£, )G (%.£, @)

This is formally equivalent to the expression we obtained for the static case. In practice,
both the time-domain and the frequency-domain formulations are used for inversion. The
time-domain representation is most commonly used in body-wave inversion, and the
frequency-domain representation is more commonly used in inversion studies of normal
modes.
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5.2.3 Elastic Dislocation
1. Equivalence Between Double Couple and Dislocations
The equivalence between elastic dislocation and a double couple we showed for

the static case holds for the dynamic case. In particular, the displacement field due to a
point elastic dislocation D on S, can be computed with a double couple with a moment of

M, = uDS . For a finite source, we use a distribution of double couples.

To prove this, we use the Volterra's theory (next section):

uk(Yat):I OOdZ'-LAUi()A(,T)Ti';l/jds (1)

where

T = /15iju|k,| (-7;-t)+ /J(uik,j (-7;-t)+ ulj(,i (—7;-1))
= A5,U\ () + p(uf (6 7) +Uj (7))

(by reciprocity). ri‘; is the i-j component of stress at time —7 on X

dueto a & function force applied in K direction at Q at time -t.
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Thus, for a small planar dislocation dX at P which is perpendicular to the X,
axis, and on which u, , has discontinuity, Au,(7)

(19)
2y
.
9 —
i f.“‘i 4
a— 7 |
(7,1 = J._M Au,(r)r dzdr @)

where

7 = p(Uf5 (B7) + Uy, (67)) =~ (G7) + Uy (5 7))

322



It is easy to see that 7,/ u is the k th component of displacement at Q at time t due to a
o function double couple applied at 7 on X, —X, plane.

Then it is clear from (2) that this dislocation is equivalent to a double couple of
moment pdXAu, (7).

2. Volterra's Dislocation Theory (Dynamic Case)
We use the same geometry and notation as those used for the static case.

The equations of motion for Uj and Vj are

CiipgUp.q (X 1) — pli (X, 1) = —p i (X, 1) (3)
CipaVp.q (X, 1) = PV (X,1) = —p0; (X, 1) (4)
f,=0,=0 anduj=vj =0 fort< -T Q)
Define
V,(X,t) =V, (X,~t) (6)
g(X.0)=g(X-1) (7
then
gxXH=v (X,t)=0  for t>T (8)

For v, and 0;, we have,

Ciquvp,qj(x’t)_pﬁ(xat) =-pG;(X,1) 9)
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Forming (3) x V; - (9) x uj and integrating it with t and V

j Tt J’ ((3)xXV, — (9)xu, )dV (10)

Using the symmetry relations for ¢ and the relation

ijpg
o _ . IR, -
_(Viui - uivi) = Vil — UV,
ot

We have from (10)

+o0 _ _ +00 a . .
.L dtle+2 AS | g (ViU —Ui¥, N | —LO dta(ViUi —uV)

-[ "ot avprug )
—0 \%

(1)

The second term of LHS vanishes because
J”wdtg(vu —u¥) = (VU —u v*)\“”
. 8t 171 11 171 11 —0
=V, (+00)U, (+00) — U, (+00)V (+00) — V. (=00 )i, (—00) + U, (—00)V (—0) = 0
(owing to (5) and (8)).
As in the static case, we introduce

fi=0, and pg;(X,t) =0,0(X, = ¥)S(X, = ¥,)S(X; = Y;)O(t +5)
then,

PT (X)) =06,0(X —Y)I(X, = Y,)0(X; — Y;)0 (-t +58) (12)
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Substituting these into (11),

uk(y,s) = J‘ dt_[ Au, (X, t)r,ledS (13)

where z' =C; (X,t) is for pg,(X,t)given by (12). From the definition, r is the ij

'JPq p.q
component of stress at time -t due to a ¢ function force applied in k direction at Q and at
time -S.

Changing s to t and t to 7, we have

U (7.1) = j dtj AU, (%, 7)ztv,dS (14)

This is the Volterra's relation used in (1).

3. Seismic Moment Tensor

In (14), the more explicit expression for r'j‘ is

( 7, t) Clqu pq(X -7 t) ClJpq pq(X,t—T)
Substituting this in (14),
uk(y,t)zj dfj ol (Kot =)AU, (%, 7S (15)

For a point source ( dS =dX — 0, Au, —» o, with Au,dZ = constant),
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U (3.1) = L dre,, U (Xt - 2)AU, (%, 7)v,dE (16)

Introducing M, by

M, (X,7) =y, AU (X, 7)v,dZ (17)

1pq

we obtain,
o +o0 - .
u (y,t):L M, (X, DU (X,t - 7)dz (18)

M o is the seismic moment tensor.

The above integral is convolution of M, and u,k)_q . Hence taking the Fourier transform of

q
this, we obtain,

0 (¥,0) =M (X, )0 (X, @) (19)

where U*(V,®) etc are the Fourier transform of u*(y,t) etc, respectively.

5.2.4 Stress Relaxation Model and Cracks (Dynamic Case)
1. Description of the Problem
Consider an elastic medium which is in equilibrium under stress. Consider an

open surface S. For simplicity, assume that the shear stress on this surface is
uniform and o, At time t = 0 relax the stress on this surface from o, to o,. Then

the static stress drop is Ao, =0, —0,.
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As discussed earlier, the resulting average dislocation D and Ao are related by
Ao, =cuD/a (1)
where a is the representative dimension of the crack and ¢ is a non-dimensional "shape

factor" which is of the order of 1. Thus, if we plot D as a function of time, it would look
like the curve shown below.

oK
5
"

Fort<0 D=0. At t=0 when the stress is relaxed the side of the crack starts
moving. After time 7, the medium is in another equilibrium state in which dislocation
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D=aAo,/cu
is produced.
The behavior between t = 0 and t =7 depends on how stress is relaxed on S. If
stress relaxation takes place smoothly, the change in D may be also relatively smooth.
The time constant 7 depends on o, and Ac. To solve this problem rigorously using

elasto-dynamics is difficult. In most cases no analytic solution is available, and we have
to resort to numerical methods.

2. Qualitative Analysis of the Problem

Infinite Instantaneous Crack

First let us consider the simplest case. Consider an infinite homogeneous elastic
medium under uniform shear stress o,. At time t = 0, relax this stress over an infinite

plane S (parallel to the applied shear stress ) instantaneously. In order to see the
displacement for t > 0 this problem can be replaced by the following problem.

Consider an homogeneous half space bounded by a plane S.

Apply a uniform shear stress o, at t =0 over the entire surface of S instantaneously.
This is equivalent to relaxing the uniform shear stress o, over S in an infinite medium.
Then at time t, the point P on S will be moved to P'. Let this displacement be u(t).
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The disturbance applied to the surface propagates into the medium with shear
velocity . Attimet, it propagates as far as St. Thus, the instantaneous strain is

e=u(t)/ gt
Since this is caused by the applied shear stress o,

o, = ue = pu(t)/ pt

u(t) = (o, / 1) pt )
This gives the displacement for infinite instantaneous crack. From (2)

U(t) =(o,/ u) = constant 3)

Note that the particle velocity is proportional to the initial stress, o, .

et)

0 3
tt)= 2=
W et) /ut

This problem can be solved analytically.
The equation of motion for x>0 1is
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o’u 1 o4

x Fa @

The solution is U(z)=F(z) where z=x-/t.

The boundary condition at x=0 is

ou
—+0,=0, =0
'u(?X 0y
uF'(2)=-o,, F(2)=-0,z/ u=—(o,/ pu)(x-pt)
U= (o, H)(BL=X) t>x/f

which gives (2).

3. Finite Instantaneous Crack

Next let us consider a strike-slip crack shown in the figure.
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At t=0, uniform shear stress o, is applied in X, direction instantaneously over a surface

(x,=0, | X [<£a). Letus consider the displacement at point O, the middle point of the
crack. For small t (before the effect of the edge reaches this point), the displacement of
this point should be the same as for infinite crack. Thus, the initial velocity should be
given by o,/ 1. The effect of the edge arrives at this point at time t=a/ f, and
eventually the motion stops when a final equilibrium state is achieved. This is given by
the solution of the static problem, i.e., U=0c,a/ . Hence, the displacement time
function may be schematically given by the following figure.
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One useful functional form which approximates this function is
u(t) = (o,a/ u)(1-exp(=ft/a)) )

This problem can be solved numerically. The equation of motion in the medium
is

1 o°u o’u
Vi (6)
potm ox
and the boundary condition is
au
p—+0,=0 (x,=0,]x<a, £0) )

oX,

The numerical solution is shown in the figure below and the displacement at the middle
point is compared with the approximate solution given above. Note that the numerical
solution shows a slight overshoot.

-2 Y - Af/g L5 L £F Y.

(Burridge, R., Phil. Trans. Roy. Soc. London, 265, 353-381, 1969)

332



-
n
]

uw, (umit, G“G-&u )

teme , (umt &5 )

4. Finite Propagating Crack

Let us consider the same geometry as before. Instead of applying the stress
instantaneously, we apply a propagating stress,

c=c,H({ttx/V), |x[<a (8)

where H(1) is the Heaviside step function and V is the rupture velocity. V is usually
slightly smaller than £ . In this case, the final value of U is the same as before.

However, the point O starts feeling the edge effect even in the beginning, because at t =
0, the two edges are very close to this point. Thus, the motion is decelerated compared
with the previous example. The effect of the edge | X, |= a will reach the point O at time

a(l/ B +1/V)=2a/ p after the stress application. Thus, the average velocity would be
( pp g y

o.a/
2a/p

TS

~o,8/2u ©)

The schematic displacement time function may look like the one shown in the figure.
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A useful functional form would be
U(t) = (0,8 )1 —exp(~ft/ 2)) (10)

A result of numerical computation is shown in figure below (this is

computed for a slightly different geometry). Note that, in this case there is no overshoot
and that the agreement with (10) is very good.

(Hanson, M. E., A. R. Sanford, and R.J. Shaffer, J. Geophys. Res., 76,
3375-3383, 1971)
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time | umt (Y7p)

The above description, however, is very simplified. In a real propagating crack,
the initial velocity could be faster than o, /2u due to the stress concentration near the

crack tip. Equation (10) should be considered only approximate.

5. Comparison with the data

Regardless of all the details, the particle-motion velocity is governed by the
relation,

U=o,f/u
If 0,=100 bar, =3 km/sec, and u =3x10" dyne/cmz, then

U~1m/sec

The observation of U is difficult because of the complexity of faulting and the
propagation effects, but the ground-motion velocity observed very close to a fault can be
used as a good proxy of U at least approximately. The following figure shows several
examples of observed ground-motion velocity very close to the source. This comparison
suggests that the above estimates are approximately correct, i.e., the magnitude of the
driving stress is of the order of about 100 bar. However, the result from the 1999 Chi-

Chi, Taiwan, earthquake stands out, suggesting that ground-motion velocity significantly
larger than 1 m/sec can occur under certain conditions.
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6. Frictional Stress Release

In actual earthquake faulting, the stress on the fault plane is released against

frictional stress o, opposing the motion.
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It is also possible that, at a certain time, say 7, , the fault motion slows down due

to some locking mechanism. In this case, the time history of the stress drop on the fault
surface may be schematically given by the curve shown in the figure above.

Actual stress release pattern can be very complex as shown by figure (b) below.

(a)

Since the details of the stress release are presently unknown, it is not meaningful
to consider overly detailed models.

If the stress release is simple as shown on the left, then the fault motion
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is driven by o,, =0, —0; (o =0,) which is called the effective (tectonic) stress.
The particle velocity of the side of the crack (fault) will be given by o, [/ u or
0,.0/2u depending upon whether the stress application is instantaneous or not

(or in general co,,f/ u , C=constant).

Thus, if we can determine the approximate time function of the source dislocation
function, we can determine the effective tectonic stress o, from the initial slope and the

stress drop Ao, from the final dislocation (static field).

It is important to note that since only o,, and Ao, appear in these expressions
we cannot determine the actual tectonic stresses o, and o, , and the frictional stress, o,

by seismological methods alone.

7. Static Stress Drop and Dynamic Stress Drop

Referring to the figure shown above, the static stress drop of an earthquake, Ao,
is defined by

Ao, =0,-0, (11)

where o, and o, are the initial and the final stresses, respectively. This definition is

straightforward and unambiguous.
The dynamic stress drop, Aoy, is the stress that drives fault motion.

Unfortunately, the definition of dynamic stress drop is not universal, and is
ambiguous. For the simplest stress release pattern shown by figure (a) above, it is the
same as the effective tectonic stress and is equal to the static stress drop, i €.,

Aoy, =0y (=0,-0;)=Ac(=0,-0)) (12)

In this case, the dynamic stress drop is unambiguous.
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However, for more complex stress release patterns in which friction changes as a
function of slip as shown by figure (b) above, we can define Ao, by

Aoy =0,-0; (13)
where

_ 1 (o

5, :BL o, ds (14)

(s: slip).

This definition is similar to (12 ) and reasonable. In general, 6; # Ac,. Thus, it

is important to distinguish Ao, and Ao;.

Ge 162 Practice Session 6, Retrieval of Source Parameters

Figure 1 shows the ground-motion displacement, U (1), of the Jan. 26, 2001,
Bhuj, India, earthquake recorded at ESK (Eskdalemuir) in Scotland.

Estimate the seismic moment M, and the approximate duration of the source (as

viewed from ESK). It is also possible to constrain the depth, H, but, for simplicity, we
fix H, except in the last step where the effect of H on the waveform will be examined.
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India 1/26/2001 Station ESK  Displacement

ESK BHZ -
JAN 26 (026), 2001
03:19:34.866 i

0.01

Displacement, cm
=

-0.01

Time, sec

Fig. 1
The following is the general principle.
1) Waveform in the whole space.

As discussed in class, the far-field waveform in the Haskell model can be
approximated by a trapezoidal function

T 7,,t) (D

where 7, and t, are the two time constants of the source. The area under T(t; 7,,t,) is
unity. Then, the P-wave form in a whole space is given by
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_ M0R9¢ .
ul(t)_ 3T(t—r/(l, z-Oatc) (2)
4pra

2) The source and receiver effects and the geometrical spreading.

In the real earth, the structure near the source and the receiver complicates the
wave form. Here, we use a simple half space. Then, we need to include the near-source
reflections pP ans sP, and the effect of the free surface near the station. Here, the near-
source effect is approximated by

CsH=oM)+ad(t-t)+ao(t-t,) 3)

The first, second, and third terms represent, the direct P, pP, and sP, respectively. a,, a,,
t,, and t, depend on the radiation pattern, the depth, and the structure. In particular,
changing the depth has a large effect on the waveform.

The receiver effect is simply given by a scalar factor, C,. (For SH wave, C,=2.)

The geometrical spreading factor is also simplified by a scalar factor g, and 1/r in
(2) is replaced by g/ R. where R; is the radius of Earth.

Including these, the wave form is now modified to,

U, () =;—90Rul (t)*Cq (1) (4)

E

Even for this simplified problem, computation of (4) is not that simple because of
the complexity of C4(t)=1+a,0(t—t)+a,0(t—t,). A simple program pwsyn2g asc.fis
provided in /home/ftp/pub/hiroo/gel62.dir/practice 6.dir. The output of this program is
u,(t).

Run this program for various 7,, t., and the depth H.. The constants, a,, a,, t,,
and t, are computed in the program from the fault parameters and the depth. This
program computes the displacement in cm for a unit moment (M, =10*" N-m).
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(Another program pwsyn2g.f which does the same and outputs the results in SAC format
is also provided.)

3) Observed Waveform

To simulate the observed waveform at the station, we need to add the effects of

attenuation. The attenuation function, F(t; t¥), for t* = Isec is shown in Figures 2, and the
file is in practice_6.dir (o_futtm.asc (ASCII file) and o _futtm (SAC file)).

I
Tutt

JAN 00 (000, 1900 |
00:00:00.000

G4

Q-function (t*=1sec]

I
Time, sec
Fig. 2

The synthetic ground-motion displacement can be computed by

342



Uy () = U, () * F () )

This can be directly compared with the observed record, U (t), shown in Figure 1.

4) Determination of M,

Once the waveforms are matched satisfactorily, the amplitude ratio of the
observed waveform

amplitude(U (1))
amplitude(u, (t))

gives the seismic moment, M, of the earthquake in the unit of 10° N-m.

Since many approximations have been made, the waveforms cannot be matched
completely, but try to match the overall waveform and the amplitude of the first 1 cycle.

Here, we use only one station, and the mechanism (i.e., radiation pattern) is
assumed. However, if we have more than one station, we can determine the mechanism
by matching the amplitudes at different stations with the same M.

In general, matching the displacement record is much easier than matching the

velocity record, V (t), shown in Figure 3, because high-frequency components which are
harder to model have been removed in the displacement record.
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Fig. 3

The relevant parameters needed for the computation are in the following.

Bhuj, India, Earthquake

O.T. 03:16:41.0, 1/26/2001
Lat. 23.40°, Long. 70.32°, Depth (H), 10-40 km

Dip(J )= 64°, rake(A)=60°, strike( §, )=66°

Eskdalemuir

Lat.=55.3167°, Long.=3.2050°, Elevation=242m
Epicentral Distance (A)=61°, Azimuth=321°, Takeoff Angle (in)=18°
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Source Crustal Structure (Half Space)

a =6.0 km/sec, B =3.46 km/sec, p=2.67 g/cm’

For the mechanism and the takeoff angle given above, the radiation pattern factor for P-
wave at the source

R, =0.914 (this is computed in the program)

Geometrical spreading factor computed for a standard Earth model

g=0.35

Steps for Practice

1. Compute u,(t) for
H=10 km, 7,=8 sec, t.=12 sec

using pwsyn2g asc.f. Plot, o Pamp.asc (direct P wave), o_pPamp.asc (pP wave),
o_sPamp.asc (sP wave), and o Ptotalamp.asc (sum of all). These are ASCII files with
simple 2-column t vs. u,(t) data.

Observe, how P, pP and sP phases interact. Note that the far-field waveform in a
whole space discussed in class should be a one-sided pulse, while the observed U (t) is

two sided. The interaction between these phases is the primary reason why the observed
displacement is two-sided.

2. Convolve o_Ptotalamp.asc with F(t; t*=1 sec) to compute u,(t). Program convg3m.f
is provided, but you may want to write a simple program for convolution.*
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3. Compare U,(t) with U(t) to determine M. The starting time is arbitrary so that you
can shift the waveform arbitrarily in comparison.

4. Try 1, 2, and 3, for different combinations of 7,, and t, (fix H) and find the best

solution.

5. Compute U, (t) using a source time function shown below, and compare it with U (t).

Vary H from 5 to 35 km, and see the difference in the synthetic waveforms. (This source
time function is not a trapezoid, which means that the source model is different from the
Haskell model.)

Suggested source time function

0.0sec 0.0
2.0 0.0
4.0 0.2
8.0 1.0
22.0 0.0
100.0 0.0

6. (Optional)

Compute the velocity v, (t;) =[u;(t,,)—U,(t)]/ At for the best model, and
compare it with V().

Explanation of the Programs

pwsyn2g.f

pwsyn2g.f takes input file i_pwsyn2g. Only the parameters in bald face need to be
changed. (do not change ¢ pwsyn2g.)

1_pwsyn2g
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line 1 station id

line 2 rho, a, dt, *, *, * (density in g/cm®, P-velocity in km/s(S-
velocity is assumed to be o/1.732), dt of data (0.05 sec for VBB)

line 3 Tfif, dip, rake (fault strike, dip and rake)

line 4 1ih, Ffis, H(depth), g, * (take-off angle, station azimuth,
depth, g factor)

line 5 flag for the choice of source time function (do not change)
line 6 nt (# of points where time function is defined_

line 7 t1, y(tl) (time, amplitude (amplitude is arbitrary; the
amplitude is eventually normalized in the program.)

line 8 t2, y(t2)

etc
Example
ESK
2.67 6.0 0.05 0.01 0.01 0.01
66. 64. 60.
18. 321. 10. 0.35 1.0
1
6
0.0 0.0
2.0 0.0
10.0 1.0
14.0 1.0
22.0 0.0
100.0 0.0
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(tg, ¥4

(t5, ¥3)

{t1. 1) (ta. ¥2)

(ta» ¥uT)

The output file o pwsyn2g contains the parameters used and other computed parameters.

Output files o Pamp.asc, o pPamp.asc, o sPamp.asc, and o Ptotalamp.asc contain the
time series for P, pP, sP, and the sum in ASCII format.

convg3m.f

This program computes convolution of X(t)and y(t) . The result is

z(t) = x(®)* y(t) -

i_convg3m
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line 1 file name of Xx(t)
line 2 file name of y(t)
line 3 file name of z(t)

Example
i_convg3m

o_Ptotalamp.asc
o_futtm.asc
o_Ptotalamp q.asc

* convolution of ¥ (i=1,2, ,I)andy; (j=12, ,m)is

|
zk:(ZXiykijAt k=12, ,I+m
i=1

(if k—=i<0, then y, . =0)

Ge 162

349



6. Retrieval of Seismic Source Parameters
6.1 Far Field Body Waves
1. Introduction

Far-field body waves are widely used to determine the source mechanism (fault
plane solution), seismic moment, and rupture patterns (complexity). The method is
conceptually simple, but the actual procedure involves many steps. These steps include
the calculation of the following:

. Source time function (Dislocation time history)
. Source finiteness function (rupture function), T (t;7,,t,)

. Radiation pattern, R

. Response of source and receiver structures, C, (t)and Cj (1)
. Geometrical spreading function, g(A,h)

. Attenuation (Q operator), q(t)

. Instrument response, (1)

~N N D BW N

The displacement at far-field is then given by,

%ﬂi’mm%,tc)*q H*Co®* ) *1t)

c 'E

u(Ab) =
where M is the seismic moment, p is the density, v, is P- or S-wave velocity, and R,
is the radius of Earth.
These steps are described in detail in the following.
2. Radiation Pattern from a Point Double Couple

The radiation pattern from a point double couple has been already given with
respect to the coordinates fixed to the double couple.
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For actual applications it is convenient to express the radiation pattern by using a
geographical coordinate system. For a fault model shown in the figure, the displacement
at point P can be given by:

33

Lh \
‘ 4 P(r o, 4)

v (¢ (p, %)

- (1)
u.(r,t)= R'M(t-r/a)
4roro
u,(r t):;R"M(t—r/,B) @)
o drpr B
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1 ’ 3)

u,(r,t)= R'M(t—r/
(11 prm—ys ( B)
where

R =s.(3cos’ i, —1)— g sin 2i, — pg sin’ i, 4)
R? = %SR sin 2i, + 0 cos 2i, +% Pg sin 2, %)
R’ =—q, cosi, — p, sinij, (6)
g, =—(cosAcoso)sing+(sinAcos2d)cos @ (7)
p. =(sinAsindcosd)sin2¢ +(cos Asind)cos2¢  (8)
S; =sin Asinod coso 9)
gz =sin Acos2d sin ¢ + cos A cos O cos ¢ (10)

Pr =cos Asind sin 2¢ —sin Asin o cos & cos 2¢ (11)

If the azimuth of the fault strike ( X, axis) ¢, and the azimuth of the station (point

P) ¢, are measured clockwise from N, then ¢ (measured counter-clockwise from &
axis) in the above formula should be given by

¢ =i —9 (12)

By using (1) to (12) we can compute the far-field displacements of body waves
from a fault of arbitrary geometry. The station coordinates are given by (T, i,, ¢) rather

than the conventional (r, €, ¢).
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3. Source Finiteness-- Haskell Model

One of the useful kinematic source models is the Haskell(1964) model. In this
model, a seismic source is represented by a rectangular fault with length L and width W.
The dislocation (fault offset), D, on the fault plane is uniform in space, and its temporal
variation is given by a linear ramp function with a rise time 7,

The rupture propagation is assumed instantaneous in the width direction.
Lengthwise, the rupture propagates from one end of the fault to the other with a
uniform rupture speed V. In this sense, the rupture propagation is one-dimensional

unilateral.

Assume that the rupture propagates from A to B over a length L. If the seismic
moment per unit fault length is m, the moment per line element dl is mdl.

Staligw_

The far-field time function due to this line element is given by a box-car function of
width 7, and height mdl/z,.
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If AP is very large compared with AB, the displacement at P (station) can be given by

mdls(t—L—LJrICOS@]
v. V Y}

c c

[
Lo
= {—'a )

where r = AP, v is either P or S wave velocity, R, the radiation pattern and V is the

rupture velocity. S(t) is defined above, and is called the local dislocation rate function.
Therefore, for a source propagating from A to B, we have

u(r,t)= Py mJ'OLs[t—i—\L/+ Ictf(a]dl (13)
Introducing the following variables,
r=t-r/v,, t,=L/V—-Lcos®/v,, t =It,/L, dl=Ldt/t, (14)
we obtain,

u(r,z) = R_M, tCs(r—tl)dtl (15)

dzprv; t, Jo

where M, =mL is the total seismic moment.

Introducing a function r(t;), as shown in the figure,
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we obtain

RM o
u(r,z) = 477,0&3 L rt)s(z—t)dt,
’ (16)

RM +00
= 47[prflc3 j r(t,)s(z—t,)d,

—00

which is convolution of r(t) and s(t). r(t) is called the rupture function.

1 i
TO _L _.E
' c
$2| ’ [s:4 \tc' = ] 'ST\_
T o Y T, 1

I'-"

o o T
[

The above convolution yields a trapezoidal function T(t; t t,)

given by the following figure.

}.{t;<12
i
) L tz
1 =
s> X X
O tll tz

Note that

+00 4+t
I T, t)dt=| T(tt,t,)dt=1 (17)
-0 0
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Thus, the pulse width at the station in the azimuth ® is

L L
wW®)=7,+———cos®
(©)=1, YERY

c

If 7, is small, the pulse shape at ® =0, ® = 7/2 and ® = 7 may be schematically

shown by the following figure.

_[\_@:0
Sed

\fA el oy
|
|
I W
st @ag

Note that S is always equal to 1.

The amplitude spectrum of T (t; 7,, t.) is given by

_ |Sin(0)% /2)||sin(a)tC /2)|
@2 || @t./2) ]

"I:(a); 7, 1.)

Note:
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In applying the above results to body-wave radiation in the real earth, another
factor needs to be considered. For example, if AB is horizontal, we let the take-off angle

of the ray be i,, and the azimuth of the station from AB measured on the earth’s surface
be ®. Then the phase velocity along the Earth’s surface is v, /sini, . Then we replace

r/v, and v, in the argument of S(t) by T and v, /sini, respectively, where T is the travel
time. Hence we have, instead of (14) and (15),

RM L
u(r,z =—°I s(r—t )dt 20
(r.7) 477,0rv§tC 0 ( ]) 1 29)
where,
7=t-T, and t,=L/V —Lcos®sini, /V, (21)

For example, directivity observed for the 1999 Landers earthquake is illustrated in
the following figure.
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Directivity has strong influence on the distribution of strong ground motion as

shown for the 1994 Northridge earthquake.

1994 Northridge Earthquake (M=6.7)

Ground Velocities - North Component
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17 January 1994 Northridge Earthquake, M=6.7
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4. Response Function at the Source and Receiver

If the source is shallow, the reflections from the free surface (and other structures)
complicates the source wave as shown by the following figure.

Source Response (Half Space)
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A similar situation occurs near the station too. These effects are usually included
as the source and receiver response functions.

5. Geometrical Spreading of Body-Wave Energy
5.1 Energy Density and Energy Flux

In an elastic medium with density p, the elastic energy per unit volume is given
by
&= pu’ (22)

where U is the displacement and U is the particle velocity.

Consider a plane wave propagating in X direction with velocity V.
Then, the energy flux per uinit area per unit time is given by

g = pUv (23)

5.2. Radiated Energy from a Source

Consider an elastic wave radiating from a double couple source at O.
Consider a small sphere with radius r around O.

Then elastic wave energy emitted per unit time from the source within a ring
defined by i, and i, +di, is

E, =27R; sini,rdi, p,u’v, (24)
where R; is the radius of the Earth, and

M

= RP
47prv;

u

362



Here the subscript h signifies the values of the variables at the source, and R” is the
radiation pattern.

5.3 Energy arriving at station P

From the figure above, the energy arriving at station P (per unit time, per unit area
of wave front) is

PollgVy (25)
where subscript 0 signifies the value of the variables at the station.

5.4. Geometrical Spreading Factor g(A,h)/R;

Since the total energy emitted in a ring defined by i, and i, +di, arrives in a ring
defined by Aand A+dA, we obtain from (23), (24), and (25),

RedAcosi,27R; sin Ap,Ugv, = Eq (26)

from which we obtain

MR" 1 v, sini,  |di MR" 1
Uy =——— [T T TR g(ah) (27)
4mp vy Re \ poV,sinAcosi, |dA|  4zp, Vv, R:
where
Vv, sini di
g(Ah) = |—Lohsinh || (28)
PoV, sin Acosi, |dA|

g(A,h)/R; is called the geometrical spreading factor.

6. Effect of Anelasticity
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Usually, the anelasticity of the medium is given in terms of quality factor Q. If
we write the quality factor of P and S waves by Q, and Q,, the amplitude attenuation of

P and S waves of angular frequency @ during the propagation can be given by

( © de ox £_2 ﬁ]
w _ZIQ““ ma 2o (29)

where the integral is taken along the ray path. Since Q, and Q, are functions of depth
and therefore of the path length, S, we may write these

o @
——t_ |, and ——t 30
exp( > aj an exp( > ’Bj (30)
where
t :j£ , and t; = ds (31)
Qaa Qﬂﬂ

Empirically, t, and t; do not vary significantly with the distance, and t, =0.5to 1 sec

and t; =3 to 4 sec for distance ranges A> 35 degrees.

In order to maintain causality of P and S pulses, the phase spectrum needs to be
modified too.

In time domain, we can represent the effect of attenuation by “Futterman Q
operator”

qt;t,) and q(t; ty) (32)

These functions are shown below for t, =1 sec and t; =4 sec.
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7. Instrument Response

Since seismographs have their own frequency response, they modify the

waveforms. In the following, the impulse response of the VBB and WWSSN-LP
instruments are shown.
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8. Simplified Expressions for a Point Source

The following simplified expressions are not exact, but are useful for understanding
the basic principles for retrieval of source parameters.

8.1 Retrieval of Seismic Moment M

We approximate a finite source by a point source with a moment rate function
M o(1). The area under M o (1) 1is the seismic moment M, and the width of M NOIE

approximately equal to the rupture time 7, = L/V where L is the length scale of the

source and V is the rupture speed.

In the following, we use the vertical component of P wave for illustration purposes.
We assume that the observed seismogram has been corrected for the instrument, 1(t),
attenuation, q(t), and the response of the source strucuture, C,(t), and the response of the

receiver structure is given by a scalar C,. Then, from the first equation in this section,

we can write the vertical component of P wave, u, (1), as

M, (DR g

u,(t)= —C 33
(¥ 4rpo Re (33)
From which,
M, (1) = Z2%Re NG (34)
° RgC,
Integrating,
3 7
MO:MI u, (bt (35)
RgC, Jo
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where 7, is the duration of the P wave record.

Using (35), we can estimate M, from seismograms.

8.2 Determination of Radiated Energy from P waves.

Since S waves are severely attenuated during propagation to teleseismic distances,
we usually use P waves to estimate the radiated energy in P waves, E_, and then estimate

the total radiated energy, E. If we consider a small sphere around the source, and write

the P wave on the spherical surface by U (1), the total energy radiated by P waves is

given by,
T T R 2
E, =I dSJ. puenU 2 (tydt = j ds j Pty [—3I\7I0(t)} dt
s Jo s Jo drp.a, v
(36)
1 ) oo,
= P, {—3“‘ R°dS j Mg (Dt
drp.onr |Jds 0
Substituting (34),
2
167 R 1 1 (%
E,=— a—E——I U (t)dt 37
a lsph h[ijzcéO p() ( )
where
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1
47r?

ijdsE?:i
s 15

for P waves is used.

(38)

Using (37), we can estimate E, from the observed record at a station. For a point

source, we can show that

and

E. =E, +E, =24E,

Ge 162 Problem #8 Interpretation of Far-field Body Wave

Figure 1 shows the P-wave seismograms (WWSSN long-period response)

(39)

(40)

observed for the May 2, 1983 Coalinga, California, earthquake. The numbers attached to

each seismogram is the amplitude.
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In order to determine the source parameters (seismic moment, source duration),
we must remove the effects of

1. Radiation pattern, R

2. Response of source and receiver structures, C (t)and C(t)
3. Geometrical spreading, g(A,h)

4. Attenuation (Q operator), q(t)

5. Instrument response, |(t)

Fortunately, Hartzell and Heaton (1983) have removed all of these effects, and
obtained a trapezoidal displacement at point P, as shown in Figure 2.
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As we discussed in class, the displacement u(r, t) at far-field due to a Haskell
type source is given by
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RM o RM
ur =g [ rOs(e-t)d = e T (e ) (1)

c c

where p is the density, Vv, is P- or S-wave velocity, M, is the seismic moment, and
7 =t-r/v,. Note that the amplitude of T(z;7,,t;) is 1/t., and the area under itis 1. t; is
given by

i _L Lcos®
Vo

c

where O is the angle between the rupture direction and the ray.

1. Check the dimension of the right-hand-side of equation (1) to make sure that it is the
dimension of "length".

2. We assume that the medium is homogeneous with « = 6 km/sec, £ =3.5 km/sec and
p=2.6 g/cm3, and the radiation pattern R is equal to 1. We also assume that the fault

plane AB and P are on the same plane. The take-off angle of the ray to P is 30 degrees
(note that this is different from © ), and the distance is r=1000 km. The rupture

propagation is assumed to be one dimensional unilateral (A to B) with a rupture speed
V=2.5 km/sec.

(1) Determine the rise time 7, and t, from Figure 2.

(2) Determine the seismic moment M.

(3) Estimate the fault length L.

(4) Assuming that the fault width W=L/3, estimate the average dislocation.

(5) Estimate the particle velocity (average) of one side of the fault.

(6) Estimate the static stress drop (use the strike-slip geometry for simplicity).

(7) Sketch the (trapezoidal) waveform that would be observed at point P1, P2, and P3, all
at a distance of 1000 km, but in three different azimuths, as shown in Figure 3.
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(Note: The solution obtained by Hartzell and Heaton is slightly different from the above.)

6.2 Excitation of Surface Waves and Free Oscillations
1. One Dimensional Problem

We first consider a one-dimensional problem shown below.

o*u o’u
Poe B tPf M

where fis the force per unit mass.

iot

Consider a harmonic excitation pf(x,t) = F(x)e
Putting u(x,t) =U (x)e'"* we have

2
—pw’U =EdXL2J +F (2)
Let y;, 1=1,2... be the eigen functions of the homogeneous equation of (2) i.e.,
2
—payy;, = Ed—{i
dx 3)

Then vy, 's constitute an orthogonal system. That is,
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L
_[Opyny| dx =cé,,

“4)
Then we can expand U in y,, i.e.,
U= Zaiyi
(5)
where
L
8 = _1.[ py;Udx
¢ (6)
Multiplying (2) by Y, and integrating it from X=0 to X=L, we obtain
L L
—cw’a, =E yiy,dx + | Fy, dx
ZI: 4 .[0 ! .[0
Using (3) and (4),
—Ccw’a, = —Cowa, + J.OLFyndx
1 L
= Fy,dx
" (e’ - a)f)J.O Yo (7)
U= i{_ 2yn > }J. Fy.dx
ol C(o” — o) (8)
i S y L
L u=¢" {——”} Fy,dx
nZ::‘ c(0’ - o) jo (9)

Now let us consider excitation by a step function force H(t). Since
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H(t)——j —e"do
o (10)

we have from (9)

0 1 o iot
3 u(t)zz_;[—y—gjoli:yndx}zj { %}da)

— 00

(11)

The poles are at w =0, w =, +is, ¥ =-o, +i¢.

Since any physical system must have at least small attenuation, these poles are slightly
above the real axis (see Morse and Feshbach, p. 1334).

} ... ,_,.."__Q._H_‘,B.w-..“b-_-——, i -
— / \

o

'[A

Carrying out the integration along the path given above, we have, for t >0,

u(t) = Z[y“j Fy.d }(1 cosa)t) (12)

The first term
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u(t):Zw:{ynLL Fyndx}ﬁ (13)

gives the permanent deformation, and the second term
C - cosa,t
uct)=- “I Fy dx |—- 14
®) ;[yoy }anﬁ (14)
gives the free oscillation.
2. Torsional Oscillation

For torsional oscillations of a sphere, the eigen functions and the force are
vectors.

(15)
0 F
o 1 oy - |
nyl =yl,n : I ’ F= F0
sind 0¢
m F¢
oY,
06

The expression for step function excitation can be derived in a manner similar to the one-
dimensional case.

ar, t>=2[ny.'“jv F- nv.”’dV}“_L“f‘n":t) (16)

m
nCI na)l

I,m,n

where

nC|m = Iv Pn ylm “n ylmdv
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3. Spheroidal Oscillation

n 0
! oy,
V"= 0 [+ ! 17
nyl yl,n O y3,n 80 ( )
1 oY"
sin@ O¢
Then
m (1-cos a)l "t)
u(r,t F. y"dv |~——n 12 18
();[V.I 87 } o (18)
Again
S W R (19

4. Displacement due to a point Moment Tensor
Displacement due to force couples can be obtained by differentiating (16) and

(18) in appropriate directions. Then the displacement due to a point moment tensor M
can be written as

QFH=Y [(M:8) J'(F, t)]lcc"é“m’;t (20)

Lmn nGr n @
where ¢ is the strain tensor computed at the source for each I, m, and n.
5. Comparison with observations
Several examples are shown in the following.

1. 1994 Bolivia Deep earthquake
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2.2001 Bhuj India earthquake
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1/26/2001 Bhuj, India, Earthquake (band pass filtered, 0.0025 to 0.02 Hz
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3. 1999 Russia-China Border earthquake
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Russia-China Border 4/8/1999, PAS Band-Pass Filtered (0.0033 to 0.022 Hz)
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Russia-China Border, PAS Synthetic (BP)
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7. Summary of Seismic Source Parameters

1. Fault Geometry

Usually given by the following three parameters: ¢, =fault strike; & = dip
angle, A= slip angle (rake).

2. Fault Dimension

L and W or a (radius). Area S.
(S=LW) (S= rzad)

3. Dislocation (Fault Offset), D

In general, D(T,t)
Usually only the average D is used
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D= AU

4. Seismic Moment (Moment)
M, = uSD

5. Seismic Moment Tensor

M, =CAUV;AS - (in general)
M = puAS(AU :v) (shear dislocation)

This can be related to the fault parameters (5.1.4).
6. Stresses

Initial stress* o,

Final stress* o,

Static stress drop Ao, = (0, —0,)oc D

Frictional stress* o

Effective tectonic stress (Dynamic stress drop) Ao, =, —&; o D

Average stress* o =(o0, +0,)/2

* This cannot be determined with seismological methods

7. Energy

Radiated Energy E, « pvj I u*dtdS
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Potential Energy Change*

(Strain Energy + Gravitational Energy) AW =3DS
Frictional Energy Loss* E. =5,DS
Fracture Energy* Es

AW = E; + E; + E; = (Radiated Energy) + (Non-Radiated Energy)
* This cannot be determined with seismological methods
8. Rupture Mode and Rupture Speed
Unilateral, Bilateral, Radial, Two-Dimensional

V, usually 75 to 90% of S velocity
Directivity
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Unilateral Faulting

1992 Landers (M=7.3)
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Bi-lateral Fault
1995 Kobe Earthquake
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Asymmetric Bi-lateral Fault

1906 San Francisco Earthquake
1976 Tangshan Earthquake
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Rupture Velocity

1992 Landers Earthquake
Wald and Heaton (1994) Average 2.7 km/sec (75 % of "S")
Range 1.0 to 4.0 km/sec
Cohee and Beroza (1994) Average 2.5 km/sec

Dreger (1994) 2.9 km/sec (80% of "S")
1989 Loma-Prieta Earthquake

Wald et al. (1991) 2.7 km/sec

Steidl et al. (1991) 3.0 km/sec (83% of "S")

Beroza (1991) 80 % of "S"

1985 Mexico Earthquake
Mendoza and Hartzell (1989) 2.6 km/sec (70% of "S")

9. Complexity

Multiple Events, "Fractal" structure at short wave length?
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Fault Rupture Pattern

1992 Landers Earthquake Wald and Heaton [1994]

Observed Computed
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Complexity of Fault Surface and Rupture Pattern

o TIEPTEE

small earthquake

Large earthquae

10. Energy (or Moment) Magnitude

M, =(ogM,-16.1)/1.5 (M, in dyne-cm)
M, =(ogM,-9.1)/1.5 (M, in N-m)

From the energy budget, the radiated energy, Eg, is given by
E.=AW -E, =DS(5-5,)

As mentioned above, the initial stress o, the final stress o, and the frictional stress &

cannot be determined directly with seismological methods, and E; above cannot be
determined. However, note that
o, 0, Ao,

_5f):58( )

+(0,-&¢)) = DS(

+(0,-04))
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If we assume that o, is equal to &, (i.e., the stress on the fault plane is equal to the

average frictional stress when fault motion stops), then,

_ Ao —
E, =+ BSAc, = 2% Bs =A% 1,
2 2u 2u

For most large earthquakes, Ao, /2u~1/(2x10%), and we have, approximately,
E.=M,/(2x10%)

Once E; is determined we can define a magnitude scale M, using the Energy-
Magnitude relation backward,

logE; =1.5M, +11.8 (E; in ergs)
or,

M, =(ogM,-16.1)/1.5 (M, in dyne-cm)

393



Earthquake Energy Release in the 20th Century

26
10 T T T T T T T T

Seismic wove energy release

My
w

E, ergs/year
/Il‘

(=]
I

(old from Ms)

(=]
(3]
&5

— Mean

7 x 1024 |
ergs/year
023 i i 1 L | 1 L I
IBS0 1900 1910 1920 1930 1940 1950 1960 1970 1980
MO
dyne-Tcm
wﬂ," 10 — T T T T T | =
erg ~ A Aleution 1. Indio Kr . Kurile Mw
1078} Ak - Aloska  J:Japan M Mongolo a5
- 10°%}- C: Chile K:Kamchatka P Peru Ak
i K, A 90
("New" from WMw) )
- |029 -
i Philipping] 8.9
al | RSP i T %
lGZ B !025 ! 13 g !l W e =0 %)
1900 1910 1920 1930 1940 150 1B&0 1970 1980

Year

394



Ge 162
8. Physics of Earthquakes

8.1 Scaling Relations

For understanding the overall physics of earthquakes without going into details, it
is useful to investigate scaling relations between several macroscopic source parameters.

1. Moment versus Fault Area
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[closed circles: interplate, open circles: intraplate, Kanamori, H., and D. L.
Anderson, Theoretical basis of some empirical relations in seismology, Bull. Seis. Soc.
Amer., 65 (5), 1073-1095, 1975]

By definition,

M, < Ac.a’ circular

Ao WL rectangular

For a circular fault,
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logM, =%10g8 +log(g7z—3/2AUSj

If Ao, is constant, then, logM ~ %log S. From the attached figure, we see,

Ao, ~ 60bars  on the average
Ao, ~ 30bars interplate (plate boundary)
Ao, ~ 100 bars intraplate

2. Seismic Moment vs. Source Dimension

The scaling relation shown above has been extended to small earthquakes as
shown below.

r Lines of constant stress drop (bars)

-
@

-
-

-
L]

Seismic Moment (Nm)

10,0 3 107 11':3" S, 10
Source Dimension (m)
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[Modified from Abercrombie, R., and P. Leary, Source parameters of small earthquakes
recorded at 2.5 km depth, Cajon Pass, Southern California: Implications for earthquake
scaling, Geophys. Res. Lett., 20, 1511-1514, 1993]

The Loc M, scaling is seen, and this is generally interpreted as evidence for

constant stress drop, but the fairly large scatter in Ao, should be noted.

8.2 Physics of Earthquakes

The heterogeneity of properties and structures of fault planes seems to have a
profound influence on dynamics of faulting. Although we cannot resolve every detail of
fault zone heterogeneities, we want to interpret macroscopic seismological data in terms
of the overall processes occurring on a fault plane.

8.2.1 Energy Budget

As we discussed in 5.1.5, the total potential energy (strain energy + gravitational

energy) change in earthquakes is given by

AW zé(ao+0'1)[_)8 (1)

Then the energy budget can be written as

AW =E, +E, +E4 )

where E; and Eg are the radiated energy and the fracture energy, respectively, and E.
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is the frictional energy. In this model, separation of E; and E. is somewhat arbitrary

(both represent non-radiated energy, i.e., dissipation), but, E;, and E. are commonly

defined by the hatched and cross-hatched areas shown in the figure below, respectively,

1e.,
E, =0, DS 3)

However, here the fracture energy, E, is the energy dissipated during rupture

over a volume surrounding the fault zone.

(In this diagram, the energies are interpreted as those per unit area.)

The radiated energy, E, is what we can measure from the radiated seismic

waves, as shown in 6.1, but because of the practical difficulty in measuring it accurately,
E; has not been fully used in seismology for the purpose of understanding the physics of

earthquakes.
Only recently, it became possible to measure E; accurately enough so that we

can investigate the physics of earthquakes in terms of energy budget.

8.2.2 The Radiation Efficiency
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The ratio of the fracture energy, Eg, to the radiated energy, E;, determines the

characteristics of fracture, or an earthquake. Alternatively, the radiation efficiency
defined by

e = Ex (Eg + Ep) 4)

can be used for the same purpose. Referring to the figure above,
s = Ex (Ao ,DS/2) = Ex (Ac M, /2u) =2(E, /M) (Ao, | 1) (5)

Thus, we can determine 77, , from the observed macroscopic parameters,
€ =E; /M, and the static strain drop, As =Ao,/ u .

8.2.3 Observations

General Observation

The results for large earthquakes are summarized in the following figure.
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earthquakes (the Bolivia earthquake and the Russia-China earthquake) have small
radiation efficiencies. (Venkataraman and Kanamori, 2004)

Except for the very large deep focus earthquake, the 1994 Bolivian earthquake,
and tsunami earthquakes, the radiation efficiency, 7, is larger than 0.25, which means

that the fracture energy for most large earthquakes, regardless of their tectonic
environment, are comparable or less than Ej.

Deep Focus Earthquake
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It is difficult to accurately determine the size of the fault plane, S, for deep focus
earthquakes. However, for the 1994 Bolivian earthquake (My=8.3, depth=635 km), the
largest deep-focus earthquake ever recorded, the source parameters could be determined
well enough to investigate the energy budget.

As we discussed in 5.1.5, we cannot determine AW itself, but we can estimate its

lower bound,
AW, = Ao, DS/2 (6)

from Ao, D,and S.

The result for the 1994 Deep Bolivian earthquake (M,=8.3) showed that
AW,=1.4x10"8 J and Eg =5x10'¢ J, which is only 3 % of AW, ; the difference AW,—
Er=1.35x10'® J, was not radiated, and must have been deposited near the focal region,
probably in the form of thermal energy. This energy 1.35x10'¢ J is comparable to the
total thermal energy released during large volcanic eruptions such as the 1980 Mount
Saint Helens eruption. The thermal energy must have been released in a relatively small
focal region, about 50x50 km?, within a matter of about 1 min. The mechanical part of the
process, I.e. the earthquake observed as seismic waves, is only a small part of the whole
process. Thus, the Bolivia earthquake should be more appropriately viewed as a thermal
process rather than a mechanical process.

With this much of non-radiated energy, the temperature in the focal region must
have risen significantly. The actual temperature rise, AT, depends on the thickness of the

fault zone, which is not known, but if it is of the order of a few cm, the temperature could
have risen to above 10,000 °C.

Shallow Earthquakes
Although the situation for shallow earthquakes may be different from that for

deep focus earthquakes, a simple calculation shows that if o; is comparable to Ao, about

10 MPa, the effect of shear heating is significant. If the thermal energy is contained
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within a few cm around the slip plane during seismic slip, the temperature can easily rise
to 100 to 1000 °C.
We consider a gross thermal budget during faulting under a frictional stress o.

LetS and D be the fault area and the displacement offset respectively. Then the total
heat generated during faulting is Q=0; DS. If we assume that the heat is distributed

during seismic faulting within a layer of thickness W around the rupture plane, the

average temperature rise AT is given by
AT=Q/CpSw=c; D/Cpw (7)
The figure below shows AT as a function of magnitude. If a fault zone is dry (no

fluid), melting may occur and friction may drop. If fluids exist in a fault zone, fluid

pressurization could occur.
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The key question is how thick the fault slip zone is. Geologists have examined
many old fault zones which were formed at depths and were brought to the surface by
long-term uplift (i.e., exhumed faults). Some fault zones have a very narrow (about 1
mm) distinct slip zone where fault slips seem to have occurred repeatedly. The
Punchbowl fault, California, implies that earthquake ruptures were not only confined to
the ultracataclasite layer, but also largely localized to a thin prominent fracture surface.
They suggest that mechanisms that are consistent with extreme localization of slip, such
as thermal pressurization of pore fluids, are most compatible with their observations. In
other cases, several narrow slip zones were found but evidence shows that each slip zone
represents a distinct slip event (i.e., an earthquake). Thus, geological evidence suggests a

narrow slip zone, at least for some faults, but this question will remain debatable.
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If a fault zone is narrow and rough, and if the material in the fault zone behaves as
viscous fluid, it is also possible that elastohydrodynamic lubrication plays an important
role in reducing friction for large events. An interesting consequence of this is that as the
slip and slip velocity increase, the hydrodynamic pressure within a narrow zone becomes
large enough to widen the gap thereby suppressing high-frequency ground motion caused
by the fault asperities rubbing against each other. During the recent Chi-Chi, Taiwan,
earthquake, the observed ground-motion near the northern end of the fault was extremely
large (> 2.5 m/s, the largest ever recorded), but short period acceleration was not
particularly strong so that the damage to ordinary structures by shaking was minor. This
could be a manifestation of the high-speed lubrication effects. However, since this is the
only earthquake for which such large slip and slip velocity were instrumentally observed,

whether this is indeed a general behavior or not is yet to be seen.

State of Stress

The results obtained for large earthquakes suggest that the average stress level
along mature faults where large earthquakes occur must be low because of the dominant
thermal effects such as frictional melting and fluid pressurization, or of
elastohydrodynamic lubrication. Because of melting or pressurization, a fault zone is
self-organized into a low stress state. That is, even if the stress was high in the early
stage of fault evolution, it would eventually settle in a low stress state after many large
earthquakes. This state of stress is consistent with the generally held view that the
absence of heat flow anomaly along the San Andreas fault suggests a shear strength of
about 200 bars or less . The stress in the crust away from active mature faults can be high
as has been shown by many in-situ measurements of stress. The stress difference is
large, and a kbar type stress may be involved in small earthquakes, but the events are in
general so small that it is hard to determine the stress parameters accurately. What is

important, though, is that as long as the length of the fault is small, the state of stress in
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the fault zone would not affect the regional stress drastically. However, as the fault
grows to some length (e.g. Japanese intra-plate earthquakes like Tango, Tottori, Nobi
etc), then some sort of self-organization occurs and the fault settles at a stress level

somewhat higher than that on more active plate boundaries.

8.3. Earthquake as a Complex System

Large-magnitude earthquakes are rare events. To a very good approximation, the
rate of occurrence of earthquakes falls exponentially as a function of magnitude, as
shown in the following figure which shows the distribution of the number, N, of
earthquakes equal to, or larger than, magnitude M for the world (a) and southern
California (b). Approximately 1 earthquake with M > 8 occurs every year somewhere in
the world, and approximately 1 earthquake with M > 5.5 occurs every year somewhere in

southern California.
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Frequéncy (cumulative) of Earthquakes (S. California, 1981-1984)
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In general, this distribution is expressed as
log N(M)=a—bM (®)
where a and b are constants.
The results obtained for many regions indicate that the value of b (called b value)

is approximately equal to 1. This relation is called the Gutenberg-Richter relation,

Ishimoto-Iida relation, or simply the magnitude-frequency relation. Since

M oclogE; /1.5
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equation (1) means
N oc Eg*" 9)
that is, the relation between N and E; is given by a power law. If b=1 and
E,ocr’ (r:size)

Then,

(N/NY)=(r/r)? (10)

This relation suggests "self-similarity" in 2-D.

The observation that b value is constant and close to 1 has attracted many
researcher’s attention. This relationship can be interpreted as a result of complex
interaction between many elements in a system which has a large number of degrees of
freedom. Such systems are often illustrated by a mechanical slider block model (shown

below) a sand-pile model and a percolation model.

ROUGH
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Ge 162 9. Plate Motion and Great Earthquakes

Earthquakes occur in the Earth's crust and mantle due to stresses caused by global
plate motion. The actual pattern of stress distribution is probably very complex, but we

expect that the activities of great and large earthquakes must reflect the global plate

motion.
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Present motions of plates over hot spots. The relative motions were determined from fault strikes and spreading rates on rise boundaries;
with an appropriate constant rotation added, absolute motion of each plate over the mantle was determined. The lengths of arrows are
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The world greatest earthquakes occur at subduction zones (e.g., 1960 Chilean
earthquake, and the 1964 Alaskan earthquake), but not every subduction zone has
experienced a great earthquake (e.g., the Marianas, the Tonga-Kermadec). It is possible

that the length of earthquake catalog is too short to be representative of long-term
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seismicity. With this caveat in mind, we investigate the level of seismic activity and
plate motion. Ideally, the seismic activity along a subduction zone should be defined by

the energy release per unit length along the subduction zone, and unit time, i.e.,
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§=ﬁj: [/ Eqdiat

where L and T are the length of the subduction zone and the time period involved,
respectively.

Unfortunately, the available seismic record is too short to compute this. So, we
take the magnitude, M, of the largest earthquake that occurred in a particular
subduction zone as a parameter that represents € for that subduction zone. Then, it is

reasonable to assume that

M _ocV

w

where V is the convergence rate. However, the plot of M, versus V does not show any

obvious trend. This suggests that other factors may be controlling seismicity. Another
potentially relevant parameter is the age, T, of the subducting plate. However, no

obvious negative correlation is seen between M, and T.
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Then, we can try a 3-parameter regression between M, V and T. The result is
shown in the following figure. The horizontal axis shows the observed M, and the

vertical axis shows M, predicted by the regression relation.
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(Ruff, L., and H. Kanamori, Seismicity and the subduction process, Phys. Earth Planet.
Inter., 23, 240-252, 1980)

If this regression is valid, this provides a useful method for assessing the seismic
potential of subduction zones for which no great earthquake has occurred. This pattern

suggests that the subduction zones where a relatively young plate is subducting at a
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relatively fast rate are more likely to have great earthquakes, and those with an old plate
subducting at a moderate rate are less likely to have great earthquakes. The end-member

subduction zones are the Chilean type and the Mariana type, shown below.
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(Uyeda, S., and H. Kanamori, Back-arc opening and the mode of subduction, J. Geophys.
Res., 84 (B3), 1049-1061, 1979)
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Another interesting implication of this correlation is the seismic potential of the
Pacific Northwest (i.e., Oregon-Washington coast). The Juan de Fuca plate is subducting
beneath the states of Oregon and Washington. The background seismicity there is very
low, as shown below, and until mid 1980's, it was generally believed that the seismic
potential in the Pacific Northwest is low (i.e., great earthquakes are unlikely). However,
the age of the Juan de Fuca plate is very young, about 10 My, and it is subducting at a
rate of 3 cm/year. Thus, in view of the regression relation shown above, one would

expect a large, M ,=8.5 to 9, earthquake there. This suggestion motivated the interest of

geologists who started extensive investigation for finding palaeo-seismological evidence.
Geological evidence for regional submergence and evidence for large tsunami which
occurred in 1700 [Satake et al., 1996] now seem to have convinced most people, which
seems to have led to upgrading of building code in the area. This is a good example in
which seismological study, even if it is poorly constrained, can be useful if it is followed

up by investigations from different disciplines.
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Seismicity in the Pacific Northwest
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(Heaton, T., and H. Kanamori, Seismic potential associated with subduction in the
northwestern United States, Seismol. Soc. Am. Bull., 74 (3), 933-941, 1984)
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Change in Building Codes in Oregon
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(R. S. Yeats, Living with Earthquakes in the Pacific Northwest, Oregon State University
Press, 1998)
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