John Carlstrom CMB-S4 Co-Spokesperson on behalf of the CMB-S4 Collaboration #### "Moore's Law" of CMB sensitivity #### Next generation experiment: CMB-S4 - A next generation, Stage 4, ground-based experiment to pursue <u>inflation</u>, <u>relic particles</u>, <u>neutrino properties</u>, <u>dark energy</u>, galaxy and structure evolution and new discoveries. - Enormous increase in sensitivity over the combined Stage-3 experiments now being deployed (>100x current Stage 2) to enable CMB-S4 to cross critical science thresholds. - O(400,000) detectors spanning 20 270 GHz using multiple telescopes, large and small, at South Pole and Chile to map most of the sky, as well as deep targeted fields. - Broad participation of the CMB community, including those on the existing CMB experiments (e.g., ACT, BICEP/Keck, CLASS, POLARBEAR/Simons Array, Simons Obs & SPT), U.S. National Labs and the High Energy Physics community. - International partnerships expected and desired. Twice yearly open community workshops to advance CMB-S4 7th CMB-S4 workshop, Argonne March 5-7, 2017 #### Next Workshop: September 6-8, 2018 at Princeton University registration page available through <u>cmb-s4.org</u> #### CMB-S4 Science Collaboration 10 Oct 2016 [astro-ph.CO] arXiv:1610.02743v1 ## CMB-S4 Science Collaboration established Science and Technology Books available at http://cmb-s4.org #### CMB-S4 Science Book First Edition #### CMB-S4 Collaboration August 1, 2016 Kevork N. Abazajian¹, Peter Adshead², James Aguirre³, Zeeshan Ahmed⁴, Simone Aiola⁵, Yacine Ali-Haimoud⁶, Steven W. Allen^{7,4}, David Alonso⁸, Adam Anderson⁹, James Annis⁹, John W. Appel⁶, Douglas E. Applegate¹⁰, Kam S. Arnold¹¹, Jason E. Austermann¹², Carlo Baccigalupi¹³, Darcy Barron¹⁴, James G. Bartlett¹⁵, Ritoban Basu Thakur¹⁰, Nicholas Battaglia⁵, Daniel Baumann¹⁶, Karim Benabed¹⁷, Amy N. Bender¹⁸, Charles L. Bennett⁶, Bradford A. Benson⁹, Colin A. Bischoff¹⁹, Lindsey Bleem¹⁸, J. Richard Bond²⁰, Julian Borrill^{21,14}, François R. Bouchet¹⁷, Michael L. Brown²², Christopher Brust²³, Victor Buza²⁴ Karen Byrum¹⁸, Giovanni Cabass²⁵, Erminia Calabrese⁸, Robert Caldwell²⁶, John E. Carlstrom^{10,18}, Anthony Challinor¹⁶, Clarence L. Chang¹⁸, Hsin C. Chiang²⁷, David T. Chuss²⁸, Asantha Cooray¹, Nicholas F. Cothard²⁹, Thomas M. Crawford¹⁰, Brendan Crill³⁰, Abigail Crites³¹, Francis-Yan Cyr-Racine²⁴, Francesco de Bernardis²⁹, Paolo de Bernardis²⁵, Tijmen de Haan¹⁴, Jacques Delabrouille¹⁵, Marcel Demarteau¹⁸ Mark Devlin³, Sperello di Serego Alighieri³², Eleonora di Valentino¹⁷, Clive Dickinson²², Matt Dobbs³³, Scott Dodelson⁹, Olivier Dore³⁰, Joanna Dunkley⁵, Cora Dvorkin²⁴, Josquin Errard³⁴, Thomas Essinger Hileman⁶, Giulio Fabbian¹³, Stephen Feeney³⁵, Simone Ferraro¹⁴, Jeffrey P. Filippini², Raphael Flauger¹¹ Aurelien A. Fraisse⁵, George M. Fuller¹¹, Patricio A. Gallardo²⁹, Silvia Galli¹⁷, Jason Gallicchio³⁶, Ken Ganga¹⁵, Enrique Gaztanaga³⁷, Martina Gerbino³⁸, Mandeep S. S. Gill⁷, Yannick Giraud-Héraud¹⁵, Vera Gluscevic³⁹, Sunil Golwala³¹, Krzysztof M. Gorski³⁰, Daniel Green¹⁴, Daniel Grin⁴⁰, Evan Grohs⁴¹, Riccardo Gualtieri², Jon E. Gudmundsson³⁸, Grantland Hall²⁴, Mark Halpern⁴², Nils W. Halverson⁴³, Shaul Hanany⁴⁴, Shawn Henderson²⁹, Jason W. Henning¹⁰, Sophie Henrot-Versille⁴⁵, Sergi R. Hildebrandt³¹, J Colin Hill⁴⁶, Christopher M. Hirata⁴⁷, Eric Hivon¹⁷, Renée Hložek⁴⁸, Gilbert Holder², William Holzapfel¹⁴ Wayne Hu¹⁰, Johannes Hubmayr¹², Kevin M. Huffenberger⁴⁹, Kent Irwin^{7,4}, Bradley R. Johnson⁴⁶, William C. Jones⁵, Marc Kamionkowski⁶, Brian Keating¹¹, Sarah Kernasovskiy⁷, Reijo Keskitalo^{21,14}, Theodore Kisner^{21,14}, Lloyd Knox⁵⁰, Brian J. Koopman²⁹, Arthur Kosowsky⁵¹, John Kovac²⁴, Ely D. Kovetz⁶, Nicoletta Krachmalnicoff¹³, Chao-Lin Kuo^{7,4}, Akito Kusaka¹⁴, Nicole A. Larsen¹⁰, Massimiliano Lattanzi⁵², Charles R. Lawrence³⁰, Maude Le Jeune¹⁵, Adrian T. Lee^{14,21}, Antony Lewis⁵³, Marc Lilley¹⁷, Thibaut Louis¹⁷, Marilena Loverde⁵⁴, Amy Lowitz⁵⁵, Philip M. Lubin⁵⁶, Juan J. F. Macias-Perez⁵⁷, Mathew S. Madhavacheril⁵, Adam Mantz⁷, David J. E. Marsh⁵⁸, Silvia Masi²⁵, Philip Mauskopf⁵⁹, Jeffrey McMahon⁴¹ Pieter Daniel Meerburg²⁰, Alessandro Melchiorri²⁵, Jean-Baptiste Melin⁶⁰, Stephan Meyer¹⁰, Joel Meyers²⁰ Amber D. Miller⁶¹, Laura M. Mocanu¹⁰, Lorenzo Moncelsi³¹, Julian B. Muno⁶, Andrew Nadolski², Toshiya Namikawa⁷, Pavel Naselsky⁶², Paolo Natoli⁵², Ho Nam Nguyen⁵⁴, Michael D. Niemack²⁹, Stephen Padin^{10,18}, Luca Pagano⁶³, Lyman Page⁵, Robert Bruce Partridge⁴⁰, Guillaume Patanchon¹⁵, Timothy J. Pearson³¹, Marco Peloso⁴⁴, Julien Peloton⁵³, Olivier Perdereau⁴⁵, Laurence Perotto⁵⁷, Francesco Piacentini²⁵, Michel Piat¹⁵, Levon Pogosian⁶⁴, Clement Pryke⁴⁴, Benjamin Racine⁶⁵, Srinivasan Raghunathan⁶⁶, Alexandra Rahlin⁹, Marco Raveri¹⁰, Christian L. Reichardt⁶⁶, Mathieu Remazeilles²², Graca Rocha³⁰, Natalie A. Roe²¹ Aditya Rotti⁴⁹, John Ruhl⁶⁷, Laura Salvati²⁵, Emmanuel Schaan⁵, Marcel M. Schmittfull¹⁴, Douglas Scott⁴² Neelima Sehgal⁵⁴, Sarah Shandera⁶⁸, Christopher Sheehy⁶⁹, Blake D. Sherwin¹⁴, Erik Shirokoff¹⁰, Eva Silverstein⁷, Sara M. Simon⁴¹, Tristan L. Smith⁷⁰, Michael Snow⁷¹, Lorenzo Sorbo⁷², Tarun Souradeep⁷³, Suzanne T. Staggs⁵, Antony A. Stark⁷⁴, Glenn D. Starkman⁶⁷, George F. Stein²⁰, Jason R. Stevens²⁹, Radek Stompor¹⁵, Kyle T. Story⁷, Chris Stoughton⁹, Meng Su⁷⁵, Rashid Sunyaev⁷⁶, Aritoki Suzuki¹⁴, Grant P. Teply¹¹, Peter Timbie⁵⁵, Jesse I. Treu⁵, Matthieu Tristram⁴⁵, Gregory Tucker⁷⁷, Sunny Vagnozzi³⁸, Alexander van Engelen²⁰, Eve M. Vavagiakis²⁹, Joaquin D. Vieira², Abigail G. Vieregg¹⁰, Sebastian von Hausegger⁶², Benjamin Wallisch¹⁶, Benjamin D. Wandelt¹⁷, Scott Watson⁷⁸, Nathan Whitehorn¹⁴, Edward J. Wollack⁷⁹, W. L. Kimmy Wu¹⁴, Zhilei Xu⁶, Ki Won Yoon⁴, Matias Zaldarriaga³⁹ Wow! So, what's next? #### Planck 143 GHz zoom in 50 deg² #### Ground based (SPT) 150 GHz 50 deg² 7x finer angular resolution 7x deeper #### Ground based (SPT) 150 GHz 50 deg² #### **Point Sources** Active galactic nuclei, and the most distant, star-forming galaxies SPT 0418-47 #### Ground based (SPT) 150 GHz 50 deg² # Active galactic nuclei, and the most distant, star-forming galaxies SPT 0418-47 New ALMA 0.04" resolution obs. (6km baselines) z=4.22 HST/W SPT0418-47 @ z= 4.224 #### **Clusters of Galaxies** S-Z effect: "Shadows" in the microwave background from clusters of galaxies #### CMB observations probe cosmology, fundamental physics and astrophysics - Sum of the neutrino masses, $(\sum m_{\nu})$ through impact on growth of structure #### **Evolution of Structure** - e.g., stacked CMB lensing, therma and kinematic SZ effects on Reionization galaxy positions Inflation - diffuse kSZ Dark Energy Accelerated Expansion - Spectral index of fluctuations, n_s Afterglow Light Development of - non-Gaussianity 400,000 yrs. Galaxies, Planets, etc. - Inflationary gravitational waves? Inflation First dusty star forming galaxies and proto-clusters about 400 million yrs. **Light relics / Neutrinos** Big Bang Expansion - Number of relativistic species 13.7 billion years (Neff or "dark radiation") Dark Energy - Probe growth with SZ clusters, CMB lensing, correlation with galaxy surveys - Is GR correct on large scales? #### Status of primary CMB TT measurements Figure from Planck 2015 Results XI #### Constraints on cosmological parameters need improved polarization #### Constraints on cosmological parameters need improved polarization #### Status of CMB polarization measurements #### Status of CMB polarization measurements #### Light relativistic relics, N_{eff} Searching for relic particles by their contribution to the energy density If perfect decoupling and 3 neutrinos, then $N_{\text{eff}} = 3.00$. Imperfect decoupling and effects of e⁺e⁻ annihilation give $$N_{\rm eff} = 3.046$$ #### Light relativistic relics, N_{eff} Searching for relic particles by their contribution to the energy density N_{eff} = 2.99 ± 0.17 (Planck TT,TE,EE+lowE+lensing +BAO) Highly significant detection of neutrino background #### Late-time information #### - neutrino masses from gravitational lensing of the CMB Planck 2018: $\Sigma m_{\nu} < 0.12 \text{ eV}$ at 95% C.L. TT,TE,EE+lowE+lensing +BAO Abazajian et al., 2015 #### need improved polarization #### CMB lensing Planck 2018 lensing-deflection reconstruction (projected mass map). #### Cosmic Discord? Hints of new physics? Planck TT spectra are smoother than expected by $\sim 3\sigma$ Planck TT + TE + EE + low E $$A_{ m L}=1.180\pm0.065$$ Planck Parameters 2018 Parameter scatter from large to small scales is a bit large compared to expectations (2 to 3σ) Planck Parameters 2018 (also Addison et al. 2016, Planck LI 2017) H₀ from CMB and local distance ladder in 3.6σ tension $$H_0 = (67.27 \pm 0.60) \text{ km/s/Mpc}$$ Planck 2018 TT+TE+EE $H_0 = (73.48 \pm 1.66) \text{ km/s/Mpc}$ Cepheids + SNe, Riess et al. 2018 No sign of systematics, e.g., CMB data sets agree where they overlap → need more data! ## The path forward is through extremely challenging multifrequency polarization measurements ### CMB-S4 Concept (from CDT report) #### Three Science Priorities - Inflation: r < 0.001 (95% conf.) or detection for r > 0.003 - Light relics: constrain $\Delta N_{\rm eff}$ < 0.06 (95% conf.) - Legacy Cosmology and Astrophysics Survey ## CMB-S4 Concept (from CDT report) | | | Frequency [GHz] | | | | | | | | | | |--------------------------------------|--|-----------------|------------|-------------|-------------|--------------|--------------|-------------|---------------|---------------|-------| | Science | Item | 20 | 30 | 40 | 85 | 95 | 145 | 155 | 220 | 270 | Total | | "r" survey
f _{sky} ~3-8% | 14 x 0.5-m cameras
detectors
Angular resolution [FWHM] | • • • | 260
77' | 470
58' | 17 k
27' | 21 k
24' | 18 k
16′ | 21 k
15' | 34 k
11' | 54 k
8′.5 | 168 k | | isky 3 070 | 1 x 6-m telescope
detectors
Angular resolution [FWHM] | 130
11' | 250
7:0 | 500
5.'2 | • • • • | 25 k
2.′2 | 25 k
1.'4 | | 8.7 k
1′.0 | 8.7 k
0′.8 | 68 k | | N _{eff} & Legacy | | | | | | | | | | | | | survey | 2 x 6-m telescopes
detectors | 290 | 640 | 1.1 k | | 50 k | 50 k | | 17 k | 17 k | 136 k | | $f_{sky} = 40\%$ | Angular resolution [FWHM] | 11' | 7:0 | 5.2 | | 2.2 | 1.4 | | 1.′0 | 0.8 | | total detectors: 372,000 I 4x 0.5m small telescopes, e.g., like BICEP Array 3x 6m large telescopes, e.g., like Simons Obs. #### CMB-S4 Concept Telescopes at Chile and South Pole (established, proven CMB sites) Planck 353 GHz polarized intensity map in celestial coordinates (scale 0-100uK) Figure from Clem Pryke Chile South Pole observable sky best atmosphere; 24/7 observing South Pole excellent for ultra deep fields Chile excellent for wide sky coverage (Nothern site would allow full sky coverage) #### Inflation reach of CMB-S4 A detection of primordial B modes with CMB-S4 would provide evidence that the theory of quantum gravity must accommodate a Planckian field range for the inflaton. Conversely a non-detection of B modes with CMB-S4 will mean that a large field range is not required. Requirement: <u>upper limit of r < 0.001</u> at 95% c.l., or <u>detection for r > 0.003</u> This drives the specifications for the CMB-S4 deep survey, #### N_{eff} - thermal relics σ(N_{eff}) constraint leads to orders of magnitude improvement of constraint on the freezeout temperature of any thermal relic CMB-S4 Requirement: $\Delta N_{eff} < 0.06$ at 95% C.L. This drives the specifications for the CMB-S4 wide survey Green, Meyers in CMB-S4 Science Book Also Baumann, Green & Wallisch, "A New Target for Cosmic Axion Searches" arXiv:1604.08614 ## Cosmology, Astrophysics and Large Scale Structure #### CMB-S4 will lead to transformative advances: - CMB-lensing to map the mass distribution of the universe over a unique redshift range, exploit 3D tomography with optical shear and redshift surveys, and measure neutrino mass sum. - SZ effects to trace all baryons and flows over a range of epochs and constrain reionization - Provide definitive survey of high-z galaxy clusters with "built in" CMB-lensing mass calibration - Provide mass profile and gas temperature and density profiles of galaxies as function of type and redshift to determine role of baryon feedback in galaxy evolution. - Tremendous discovery potential and more... #### A Millimeter Wave Synoptic Survey - large sky area good for finding rare objects #### Long-term ~daily monitoring of 1000s of square degrees at multiple wavelengths, polarization - always on, can check for GW, neutrino sources - ~mJy sensitivity per day for either variation or new transients #### Thermal detection of Solar System objects - new view / search for outer solar system objects #### A Solar System Census thermal flux from dwarf planets to ~100 AU, Earth mass planets to ~1000 AU #### **CDT: Timeline & Cost** #### Seven year construction project: Figure 13: CMB-S4 strawperson schedule. CDT's total construction project cost vetted by DOE lab budget review is \$412M in 2017 equivalent USDs and includes 45% contingency Operations expected to last seven years (FY27-33) #### Summary ## The CMB has a lot to offer and we have a plan to get it, CMB-S4 The science is spectacular. We will be searching for primordial gravitational waves and testing single field slow roll inflation, searching for new relics, determining the neutrino masses, mapping the universe in momentum, investigating dark energy, testing general relativity on large scales, measuring the impact of baryon feedback in structure evolution and much much more. Go to <u>cmb-s4.org</u> for more information, including documents, reports, workshops, wiki's, join email lists, etc. #### Backup Slides #### CMB-S4 power spectra projections