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“Moore’s Law” of CMB sensitivity
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Space based experiments

Stage−I − ≈ 100 detectors

Stage−II − ≈ 1,000 detectors

Stage−III − ≈ 10,000 detectors

Stage−IV − ≈ 100,000 detectors
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from 2013 Snowmass documents



Next generation experiment: CMB-S4

• A next generation, Stage 4, ground-based experiment to pursue inflation, 
relic particles, neutrino properties, dark energy, galaxy and structure 
evolution and new discoveries. 

• Enormous increase in sensitivity over the combined Stage-3 experiments 
now being deployed (>100x current Stage 2) to enable CMB-S4 to cross 
critical science thresholds. 

• O(400,000) detectors spanning 20 - 270 GHz using multiple telescopes, 
large and small, at South Pole and Chile to map most of the sky, as well 
as deep targeted fields. 

• Broad participation of the CMB community,  
including those on the existing CMB experiments (e.g.,  
ACT, BICEP/Keck, CLASS, POLARBEAR/Simons  
Array, Simons Obs & SPT), U.S. National Labs and the 
High Energy Physics community.   

• International partnerships expected and desired.
Recommended by P5



Next Workshop:
- September 6-8, 2018 at Princeton University 

registration page available through cmb-s4.org

Twice yearly 
open community 

workshops to 
advance CMB-S4

7th CMB-S4 workshop, Argonne March 5-7, 2017

http://cmb-s4.org


CMB-S4 Science Collaboration

CMB-S4 Science Collaboration 
established 

Science and Technology Books 
available at http://cmb-s4.org viii
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Planck

Wow!  So, what’s next?
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zoom in  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7x finer angular 
resolution
7x deeper 

Ground based (SPT) 
150 GHz
50 deg2
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New ALMA 0.04" resolution obs. 
(6km baselines)

SPT0418-47 @ z= 4.224
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Inflation
- Spectral index of fluctuations, ns 
- non-Gaussianity
- Inflationary gravitational waves?

CMB observations probe cosmology,  
fundamental physics and astrophysics

Dark Energy 
- Probe growth with SZ clusters, 

CMB lensing, correlation with  
galaxy surveys

- Is GR correct on large scales? 

Light relics / Neutrinos
- Number of relativistic species  

(Neff or “dark radiation”)
- Sum of the neutrino masses, (∑mν) 

through impact on growth of structure
 

graphic from NASA website

Evolution of Structure 
- e.g., stacked CMB lensing, thermal  

   and kinematic SZ effects on  
   galaxy positions Reionization 

-  diffuse kSZ

First dusty star  
forming galaxies 
and proto-clusters



Status of primary CMB TT measurements

Figure from Planck 2015 Results XI 

Cosmic Variance  
limited

Can be improved

Only ~ 10% of 
sky measured

Fit by standard ΛCDM  
 - only six parameters -  
Ωbh2  Ωch2  θs  As  ns  τe



Constraints on cosmological parameters

Fit by vanilla 6-parameter ΛCDM model

Enormous precision and accuracy*: 
     Flat universe (Ωk < 0.005) 
     Ωbh2 = 0.0224 ± 0.0001  
     Ωch2 = 0.120 ± 0.001  

 (>50σ detection of non-baryonic dark matter) 

But extensions to ΛCDM model  
are not well constrained. 

need improved polarization*Planck 2018 TT,TE,EE+lowE+lensing +BAO 



Constraints on cosmological parameters

Inflation checklist: 
✓ Flat geometry (Ωk = 0.001 ± 0.002)  
✓ Superhorizon correlation 
✓ Harmonic peaks (9+) 
✓ Gaussian random fields 
     (fNLlocal = 0.8 ± 5.0, fNLequil = −4 ± 43, fNLortho = −26 ± 21)* 
✓ Departure from scale invariance!  
     (ns = 0.965 ± 0.004) 
    Inflationary gravitational waves (tensors) (r < 0.11)

need improved polarization*Planck 2018 TT,TE,EE+lowE+lensing +BAO 



Status of CMB polarization measurements

E modes

Planck 2018 EE 
τe=0.054 ± 0.007

from reionization feature

TT

lensing 
B modes

TE

Planck I 2018



Status of CMB polarization measurements

E modes

lensing 
B modes

Dashed line:  
Inflation B modes 
 r = 0.1

lensinglen
sin

g

r < 0.07 at 95% C.L. 
BICEP/Keck & Planck arXiv:1510.09217 need improved polarization



Light relativistic relics, Neff 

Searching for relic particles by their contribution to the energy density

If perfect decoupling and 3 neutrinos, then Neff = 3.00.  
Imperfect decoupling and effects of e+e- annihilation give

 Neff = 3.046



Neff causes l-dependent  
phase offset

Light relativistic relics, Neff 

Searching for relic particles by their contribution to the energy density

Neff = 2.99 ± 0.17  (Planck TT,TE,EE+lowE+lensing +BAO)
Highly significant detection of neutrino background

Compensating for Neff by  
increasing helium fraction, YP

need improved polarization



Late-time information 
- neutrino masses from gravitational lensing of the CMB

Image from ESA

Abazajian et al., 2015

Planck 2018:
Σmν < 0.12 eV at 95% C.L. 

TT,TE,EE+lowE+lensing +BAO

need improved polarization



CMB lensing
Planck 2018 lensing-deflection 

 reconstruction (projected mass map). 

40σ detection 
but low s/n per mode

CMB-S4 will measure modes with s/n > 1  
up to L ~ 1100 over most of the sky.

500 1000
L
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
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stage 2, EB
stage 2, TT
stage 3, EB
stage 3, TT
stage 4, EB
stage 4, TT

CMB-S4 EB noise Signal

from improved polarization



Cosmic Discord ?  Hints of new physics?

AL = 1.180± 0.065
Planck Parameters 2018

Planck TT + TE + EE + low EPlanck TT spectra are smoother  
than expected by ~ 3σ

TT (l ≤ 801)

TT (l ≥ 802)
Planck Parameters 2018

(also Addison et al. 2016, Planck LI 2017)

Parameter scatter from large to  
small scales is a bit large compared  
to expectations (2 to 3σ)

Cepheids + SNe, Riess et al. 2018 
H0 = (73.48± 1.66) km/s/Mpc

Planck 2018 TT+TE+EE
H0 = (67.27± 0.60) km/s/Mpc

H0 from CMB and local 
distance ladder in 3.6σ tension

No sign of systematics, e.g., CMB data sets agree  
where they overlap ➞ need more data!



inflationary
gravity wave 
B modes

10 nK ➝

BB reionization bump 
CLASS exploring 
from the ground;  

target of LiteBIRD

BB recombination bump
a key target of CMB-S4

Foregrounds for 90% of sky

lensing
B modes

E modes

The path forward is through extremely challenging  
multifrequency polarization measurements



CMB-S4 Concept 
(from CDT report)

• Three Science Priorities 
- Inflation:  r < 0.001 (95% conf.) or detection for r > 0.003
- Light relics: constrain ΔNeff < 0.06 (95% conf.)
- Legacy Cosmology and Astrophysics Survey



3x 6m large  
telescopes, e.g.,  
like Simons Obs.

14x 0.5m small 
telescopes, e.g., 
like BICEP Array

e.g.,%BICEP%Array

CMB-S4 Concept 
(from CDT report)

total detectors: 372,000

Neff$&$Legacy  
survey$$

fsky$=$40%

“r”$survey  
fsky$~388%



CMB-S4 Concept 
Telescopes at Chile and South Pole  

(established, proven CMB sites)

Chile 
observable skySouth Pole 

best atmosphere;  
24/7 observing

Planck 353 GHz polarized 
intensity map in celestial 
coordinates (scale 0-100uK)

Figure from Clem Pryke

South Pole excellent for ultra deep fields 
Chile excellent for wide sky coverage  

(Nothern site would allow full sky coverage)



Inflation reach of CMB-S4 

φp
BK14/Planck 

CMB-S4 
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for nominal 3% fsky  and 106  realistic detector years, r = 0

A detection of primordial B modes with CMB-S4 would provide evidence that the 
theory of quantum gravity must accommodate a Planckian field range for the inflaton. 

Conversely a non-detection of B modes with CMB-S4 will mean that a large field range 
is not required.

Requirement: upper limit of r < 0.001 at 95% c.l., or detection for r > 0.003 
This drives the specifications for the CMB-S4 deep survey, 



Neff  - thermal relics

σ(Neff) constraint leads to 
orders of magnitude 
improvement of 
constraint on the freeze-
out temperature of any 
thermal relic

CMB-S4 Requirement: 
 ΔNeff < 0.06  
at 95% C.L.  

 
This drives the 

specifications for the 
CMB-S4 wide survey

Green, Meyers in CMB-S4 Science Book 
Also Baumann, Green & Wallisch,  “A New Target for Cosmic Axion Searches” arXiv:1604.08614

QCD phase  
transition 
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Cosmology, Astrophysics and  
Large Scale Structure

CMB-S4 will lead to transformative advances: 

- CMB-lensing to map the mass distribution 
of the universe over a unique redshift range, 
exploit 3D tomography with optical shear and 
redshift surveys, and measure neutrino mass sum. 

- SZ effects to trace all baryons and flows over a range 
of epochs and constrain reionization

- Provide definitive survey of high-z galaxy 
clusters with “built in” CMB-lensing mass 
calibration

- Provide mass profile and gas temperature and density 
profiles of galaxies as function of type and redshift to 
determine role of baryon feedback in galaxy 
evolution. 

- Tremendous discovery potential and more…

Planck 2013

 1.5’ 100,000 clusters

CMB-S4 cluster count vs redshift
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ALMA at 0.04" 

SPT0418-47 @ z= 4.224

A Millimeter Wave Synoptic Survey

• ~1M galaxies
- large sky area good for finding rare objects

• Long-term ~daily monitoring of 1000s of 
square degrees at multiple wavelengths, 
polarization
- always on, can check for GW, neutrino sources
- ~mJy sensitivity per day for either variation or new transients

• Thermal detection of Solar System objects
- new view / search for outer solar system objects

credit: IceCube/NASA



A Solar System Census 
thermal flux from dwarf planets to ~100 AU,  

Earth mass planets to ~1000 AU 

much past 1000 AU: 
parallax & proper motion 

become too small to detectfrom Gil Holder



CDT: Timeline & Cost

Seven year construction project:

CDT’s total construction project cost vetted by DOE lab budget 
review is $412M in 2017 equivalent USDs and includes 45% 
contingency

Operations expected to last seven years (FY27-33)



Summary

The CMB has a lot to offer and we have a plan 
to get it, CMB-S4 

The science is spectacular.  We will be searching for 
primordial gravitational waves and testing single field slow 
roll inflation, searching for new relics, determining the 
neutrino masses, mapping the universe in momentum, 
investigating dark energy, testing general relativity on large 
scales, measuring the impact of baryon feedback in 
structure evolution and much much more.

Go to cmb-s4.org for more information, including 
documents, reports, workshops, wiki’s, join email lists, etc.
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Target

Stage 2  
1000  

detectors

Stage 3  
10,000  

detectors

Stage 4
CMB-S4  
~400,000 
detectors

≳10-5

10-6

10-8

Sensitivity 
(μK2) σ(r)

0.035

0.006

0.0005

σ(Neff)

0.14

0.06

0.027

σ(Σmν)

0.15eV

0.06eV

0.015eV

Dark Energy 
F.O.M

0.15eV ~180

~300-600

1250

Boss BAO 
prior

Boss BAO 
prior

DESI BAO 
+τe prior

DES+BOSS 
SPT clusters

DES + DESI 
SZ Clusters

DESI +LSST 
S4 Clusters

Science Book  
Figure 3
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Planck
SPT - S13
ACT 148 GHz
ACT 220 GHz

SPT 150 GHz
SPT 220 GHz

SPT 95 GHz

Story et al., 2013 
George et al., 2014 
Das et al., 2014

primary CMB

(cosmology)

secondary CMB, foregrounds

(cosmology & astrophysics)
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