Cospar 2018

PICO Probe of Inflation and Cosmic Origins

C. R. LAWRENCE Jet Propulsion Laboratory, California Institute of Technology

FOR THE PICO COLLABORATION

Pasadena Convention Center 2018 July 21

©2018 California Institute of Technology. Government sponsorship acknowledged.

Probe Mission \equiv a NASA astronomy mission costing between \$400 M and \$1 B

- There is at present no Probe line
 - NASA Planetary Science has two mission lines in this cost range

Discovery — \leq \$500 M; science open

New Frontiers — \leq \$1 B; science in five specified areas

- The 2010 Decadal did *not* recommend space missions between \$250 M and \$1 B
- In preparation for the 2020 Decadal, NASA set up ten "Probe Mission Studies"

The Astrophysics Probe Mission Concept Studies Portfolio:

•	Inflation Probe (PICO)	Hanany, U Minn
•	Galaxy Evolution Probe	Glenn, U Colorado
•	STROBE-X	Ray, NRL
•	Cosmic Evolution through UV Spectroscopy (CETUS)	Danchi, GSFC
•	Transient Astrophysics Probe	Camp, GSFC
•	AXIS	Mushotzky, U Maryland
•	Cosmic Dawn Intensity Mapper	Cooray, UC Irvine
•	Probe of Extreme Multi-Messenger Astrophysics (POEM	MA) Olinto, U Chicago
•	(EarthFinder)	Plavchan, George Mason
•	(Starshade Rendezvous)	Seager, MIT

NASA Preparation for 2020 — II

- Studies are to produce 50-page reports + cost estimates to be submitted to NASA and the Decadal Panel in December 2018
- Possible outcomes
 - Panel recommends a Probe line of competed missions
 - Panel recommends specific missions
 - Some combination of the above
 - Panel does what it did in 2010
- Our desired outcome
 - Panel recommends a competed Probe line, and also recognizes in some way that a 4th-generation space CMB mission is a high priority

The PICO Collaboration

- Open to all subscribe!, contribute!
- Wiki: https://z.umn.edu/cmbprobe
- Mailing list: cmbprobe@lists.physics.umn.edu

- We considered both imagers and spectrometers
- And concluded that there is a strong case for both...
- ...but not combined in a single mission
- PICO will be designed and costed as an imaging mission

Ambition

- Energy scale of inflation, $r \sim 10^{-4}$
- N_{eff} and $\Sigma m_{
 u}$
- τ
- Cosmic star formation history
- Physics of the Galactic magnetic field

THIS AMBITION DEMANDS A SPACE MISSION

N.B.—PICO is a lightly-funded concept study, not a mission proposal.

Goal: convince the decadal committee to recommend a Probe line.

The study is in progress, not finished. Things will change.

Figures here are from:

Young et al., Proc. SPIE 10698-143 (2018)

Sutin et al., Proc. SPIE 10698 (2018)

PICO in Brief

- All-sky polarimetry
- 21 bands from 20 to 800 GHz
- 1.4-m aperture telescope
- Diffraction-limited resolution:
 38' to 1'
- 12,996 TES bolometers
 - Multichroic pixels up to 464 GHz

Three bands per pixel

- Two TESs per band
- Six bolos/pixel
- 5-year survey from L_2
 - Falcon 9 launch
- 0.6 μK_{CMB} arcmin map depth
 - \sim Planck/80

The 1-rpm spin axis precesses around the satellite-Sun axis with an angle of 26° , defining the shadow cone. Precession periods between 10 and 48 hours are being considered.

- Open Dragone had 1/4 the diffraction-limited field of view (DLFOV) of the cross Dragone, but was easier to pack inside the spacecraft volume while avoiding sidelobes
- Largest cross Dragone that met PICO volume constraints had a 1.2-m aperture and f/D = 2.5, while the largest open Dragone had a 1.4-m aperture and f/D = 1.42.
- Smaller f/D means smaller focal plane for same number of pixels \Rightarrow lower mass and cost

Telescope and Focal Plane

Aperture Stop, 6 K Focal Plane, 100 mK	Primary	у, 15 К	$ \begin{array}{c} $	129 GH 155 GH	Az 385 GHz Az 462 GHz	799 GHz
← 50 cm	Sec	ondary, 10	к S	trehl =	0.8 contours	
	PICO o	ptical system	1		Initial Open-D	$ragone^{b}$
	Primary	Secondary	Telescope paramete	rs ^b	Fundamental design	parameters
Reflector size ^{a} (cm)	270×205	160×158	Aperture (cm)	140	Aperture (cm)	140
Radius of curvature (cm)	∞	136.6	<i>F</i> -number	1.42	$\theta_0 \ (deg)$	90
Conic constant, k	0	-0.926	h (cm)	624.2	$\theta_e \ (\text{deg})$	20
Normalization radius (cm)	524.8	194.1	$\alpha ~(\mathrm{deg})$	74.2	$\theta_p \ (\text{deg})$	140
4th Zernike Coefficient (cm)	2018.4	-61.1	$\beta ~(\text{deg})$	62.3	L_m (cm)	240
9th Zernike Coefficient (cm)	-37.0	16.7	L_m (cm)	229.3		
10th Zernike Coefficient (cm)	-2919.8	-15.1	L_s (cm)	140.5	Derived para	neters
11th Zernike Coefficient (cm)	-1292.7	22.3			<i>F</i> -number	1.42
12th Zernike Coefficient (cm)	120.6	-3.8	Focal Surface		h (cm)	624.2
13th Zernike Coefficient (cm)	-74.5	4.9	Ellipse major axes (cm)	$69 \ge 45$	α (deg)	38.6
19th Zernike Coefficient (cm)	-75.8	3.4	Ellipse major axes (deg)	$19 \ge 13$	β (deg)	101.4
20th Zernike Coefficient (cm)	-398.9	6.3	Radius of curvature (cm)	455	L_s (cm)	122.2
21st Zernike Coefficient (cm)	-319.5	23.3			Primary, f (cm)	312.1
22nd Zernike Coefficient (cm)	-276.6	-8.5			Secondary, a (cm)	131
23rd Zernike Coefficient (cm)	-201.6	-3.2			Secondary, e	1.802
24th Zernike Coefficient (cm)	-127.4	-1.9				
25th Zernike Coefficient (cm)	-55.0	0.1				

^a The maximum physical size of the reflectors. ^b Telescope parameters follow the definitions in Granet 2001.¹¹

Frequency Coverage

• Multichroic pixels up to 462 GHz. Single-color pixels in bands G, H, and I.

• 25% bandwidth, all bands

Focal Plane

Strehl = 0.8 contours shown for each pixzel type

Stokes Q (black crosses) Stokes U (red Xs) for an example wafer

Optical Loading and NET

Noise

Pixel	Band	FWHM	Bolometer NEP	Bolometer NET	N _{bolo}	Array NET	Polarization map	o depth
Type	GHz	arcmin	aW/\sqrt{Hz}	$\mu K_{CMB} \sqrt{s}$		$\mu K_{CMB} \sqrt{s}$	μK_{CMB} -arcmin	Jy/sr
A	21	38.4	4.89	112.2	120	13.6	19.2	6.69
В	25	32.0	5.33	103.0	200	9.56	13.5	7.98
A	30	28.3	4.92	59.4	120	5.90	8.31	7.93
В	36	23.6	5.36	54.4	200	4.17	5.88	9.59
A	43	22.2	5.33	41.7	120	4.01	5.65	13.9
В	52	18.4	5.73	38.4	200	2.86	4.03	16.8
C	62	12.8	8.29	69.2	732	3.13	4.42	37.0
D	75	10.7	8.98	65.4	1020	2.47	3.47	48.1
C	90	9.5	7.76	37.7	732	1.49	2.10	44.5
D	108	7.9	8.18	36.2	1020	1.21	1.70	57.0
C	129	7.4	7.35	27.8	732	1.09	1.53	69.7
D	155	6.2	7.36	27.5	1020	0.91	1.28	84.6
E	186	4.3	12.30	70.8	960	2.52	3.54	383
F	223	3.6	12.70	84.2	900	3.05	4.29	579
E	268	3.2	8.55	54.8	960	1.87	2.62	369
F	321	2.6	8.16	77.6	900	2.73	3.84	518
E	385	2.5	4.54	69.1	960	2.35	3.31	318
F	462	2.1	4.00	132.6	900	4.66	6.56	403
G	555	1.5	6.47	657.8	440	33.1	46.5	1569
H	666	1.3	5.74	2212	400	117	164	1960
I	799	1.1	4.97	10430	360	560	816	2321
Total					12996	0.46	0.65	

Table 3. PICO frequency channels and noise.

• Noise is equivalent to Planck/80 (!!)

- Raw sensitivity is necessary, but not even close to sufficient
- Foregrounds and systematics will determine what a mission can do
- To justify spending most of \$1 B to reach two orders of magnitude below Planck, we the CMB community will have to demonstrate feasibility in a way that we have never done before
 - Simulations starting from time-ordered data with realistic (i.e., nasty, complicated, numerous) instrument and mission systematics, and foregrounds are necessary.
- We can't yet do this, but we're getting closer.

Foregrounds

Amplitude ratio between total polarized foregrounds and CMB as a function of both multipole moment and frequency, as defined by $f(\ell, \nu) = [C_{\ell}^{\text{fg}}(\nu)/C_{\ell}^{\text{CMB}}]^{1/2}$, with parameters derived from 78% of the sky as estimated by Commander.

- The CMB-S4 Concept Definition Task Force (CDT) found that the introduction of non-Gaussian, small-scale structure in the synchrotron foreground model led to substantially greater foreground residuals.
- For CMB-S4, the problem was solved by moving the 20 GHz channel to one of the 6-m telescopes.
 - Having roughly the same angular resolution at the lowest frequency as at higher frequencies worked in simulations
- The same solution is not available to PICO!
- Moreover, we still haven't quite got a valid way to introduce non-Gaussian small-scale structure into our all-sky simulated foreground.
- There's still a lot left to do...

Possible Probe Schedule

- December 2020 Decadal review recommends Probe line in astrophysics
- 2021, maybe into 2022 NASA gets approval for Probe line
- 2022, maybe into 2023 NASA drafts call for proposals
- 2023 call for proposals, and proposals due
- 2023, maybe into 2024 step 1 selection
- 2024 step 1 (Phase A) studies
- 2025 selection
- 2025-2029,2030 build
- 2030 launch

• Great science

- Demanding hardware and software
- It will happen...
 - ...but it will take a while