Daniel Lenz COSPAR 2018, Pasadena July 20th

New large-scale CIB in collaboration with O. Doré, G. Lagache, B. Hensley

Jet Propulsion Laboratory California Institute of Technology

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Conclusions

- New CIB maps for ~30%
 of the sky, 217-857 GHz
- Fewer systematics, larger
 sky fraction than
 previous work
- Powerful for crosscorrelations and delensing

Conclusions

- New CIB maps for ~30%
 of the sky, 217-857 GHz
- Fewer systematics, larger
 sky fraction than
 previous work
- Powerful for crosscorrelations and delensing

CIB x CMB lensing

What is the CIB?

Extragalactic background light

 Made up from dust in galaxies at z=1-3

First detected in
 FIRAS data
 (Puget+ 1996)

Daniel Lenz, JPL/Caltech

What is the CIB?

Extragalactic background light

 Made up from dust in galaxies at z=1-3

First detected in
 FIRAS data
 (Puget+ 1996)

Daniel Lenz, JPL/Caltech

Why study the CIB? Star-formation!

- Strong constraints on star
 formation history
- Probe dust temperature across cosmic times
- Understand star
 formation in DM halos

Why study the CIB? Grav. lensing!

- CIB kernel and the CMB lensing kernel are well matched
- Internal de-lensing and CIB is very
 complimentary for
 BB reconstruction

Why study the CIB? Grav. lensing!

- Cross-correlation of CIB and CMB lensing strongly detected in Planck data
- Lots of room for improvement: Sky fraction, CIB data, new CMB lensing map

Planck collaboration (2013, XVII)

How to obtain CIB maps?

- Galactic thermal dust and CIB dust dominate on large scales at ~200 to 1000 GHz
- * How to disentangle them?

How to obtain CIB maps?

- Galactic thermal dust and CIB dust dominate on large scales at ~200 to 1000 GHz
- * How to disentangle them?

- A. Fit different frequency channels with modified blackbody spectra
- B. Use the different angular power spectra of these components (GNILC)
- C. Use template maps of Galactic dust (e.g. HI-based)

Correlation of dust and gas

- * Linear relation to first order (Boulanger+ 1996)
- * But better model required to get to CIB levels

Daniel Lenz, JPL/Caltech

8

HI4PI Survey

- * Merges data from Effelsberg and Parkes
- * Replaces LAB as state-of-the-art full-sky HI survey
- * Higher sensitivity & resolution, fewer systematics, full sampling

9

Two challenges

- * Spectrally
 - * O(1000) velocity channels in HI
 - * Need to control overfitting

Two challenges

- * Spectrally
 - * O(1000) velocity channels in HI
 - * Need to control overfitting

- * Spatially
 - Dust-to-gas ratios vary over the sky
 - * Need to preserve large-scale CIB power

HI-based dust models

• $I = \epsilon^{\text{HVC}} N^{\text{HVC}} + \epsilon^{\text{IVC}} N^{\text{IVC}} + \epsilon^{\text{LVC}} N^{\text{LVC}}$ • Velocity separation difficult for IVC complex structures and large scales HVC **Radial Velocity**

LVC

HI-based dust models

Daniel Lenz, JPL/Caltech

HI-based dust models

- Generalised linear model (GLM)
- $I = \sum_{i} \epsilon^{i} T_{B}^{i}$
- Regularised:
- $|\text{Data}_i \text{Model}_i|^2 + \alpha \cdot |\epsilon_i|$
- Accounts for all features along line of sight

Preliminary Results (give us two weeks)

Maps: Smaller regions

Total intensity

Daniel Lenz, JPL/Caltech

Maps: Large-scale map

~30% of the sky, 5 frequencies, 10 arcmin

Daniel Lenz, JPL/Caltech

- Patch-by-patch analysis
- Full sky PDFvery Gaussian
- Molecular gas adds skewness

Daniel Lenz, JPL/Caltech

Comparison to earlier work Maps

Based on spatial information: GNILC

- Power-spectrum based
- Designed to
 remove CIB from
 Galactic dust
 maps
- Over-subtraction of CIB

-0.15 -0.05 0.05 0.15 MJy sr⁻¹

Planck (2016 XLVIII)

Large-scale CIB maps from Planck data

Daniel Lenz, JPL/Caltech

HI-based: Planck (2014 XXX)

- ~10 individual fields, HI data from the GBT
- Two larger fields from EBHIS and GASS
- * One field cleaned at a time
- Manual fine-tuning

Daniel Lenz, JPL/Caltech

- Different data sets, resolutions, sky regions
- * Apples-to-apples comparison yields great agreement

- * Different data sets, resolutions, sky regions
- * Apples-to-apples comparison yields great agreement

Comparison to earlier work Power spectra

CIB auto power spectra

* Great agreement with Planck (2014 XXX)

- * Extends to larger scales
- * Maps will be public

Daniel Lenz, JPL/Caltech

CIB - CMB lensing cross power

- Great agreement
 with Planck
 (2013 XVIII)
- Extends to larger scales
- GNILC x Phi
 shows weaker
 correlation

CIB - CMB lensing cross correlation coefficient

- > 60% correlation for 1
 >= 100
- ~10-15% higher than with GNILC CIB
- Powerful in combination
 with Planck lensing map
 for BB de-lensing

Daniel Lenz, JPL/Caltech

Conclusions

- * Large-scale Planck CIB maps for 5 frequencies
- * Significant improvement in component separation
- Better understanding of systematics
- * Large scales are challenging!

Conclusions

- * Large-scale Planck CIB maps for 5 frequencies
- * Significant improvement in component separation
- Better understanding of systematics
- * Large scales are challenging!
- * CIB is powerful probe of large-scale structure
- Study cosmic star-formation
- * De-lensing for current and future CMB experiments

Thank you!

Daniel Lenz, JPL/Caltech

Daniel Lenz, JPL/Caltech

29

Daniel Lenz, JPL/Caltech

- * Separating one region at a time removes large-scale power
- * Essential for CIB reconstruction at low 1

Spatial selection

- * Use consistency checks and cross correlations
- * Difficult trade-off!

Daniel Lenz, JPL/Caltech

Spatial selection

Offsets in the HI/ dust correlation (smoothed)

- * Build dust models that preserve large-scale power
- * Use consistency checks and cross correlations
- Difficult trade-off!

Daniel Lenz, JPL/Caltech

Based on spatial information: GNILC

Planck (2016 XLVIII

- Very similar morphologies despite totally different spatial selections
- * Yet differences remain!

- Very similar morphologies despite totally different spatial selections
- * Yet differences remain!

- * Differences can be partially attributed to the underlying HI data
- * Radial velocity cuts have strong effect

Daniel Lenz, JPL/Caltech

Comparison to earlier work: Large field

Planck (2014 XXX)

This work

Large-scale CIB maps from Planck data

Daniel Lenz, JPL/Caltech

Planck 2014 - This work

Daniel Lenz, JPL/Caltech