The South Pole Telescope: New Results and Current Status

Bradford Benson U. Chicago, Fermilab July 21, 2018

The South Pole Telescope (SPT)

10-meter sub-mm quality wavelength telescope
100, 150, 220 GHz and
1.6, 1.2, 1.0 arcmin resolution

2007: SPT-SZ

960 detectors 100,150,220 GHz

2012: SPTpol

1600 detectors 100,150 GHz *+Polarization*

2016: SPT-3G ~16,200 detectors 100,150,220 GHz *+Polarization*

The SPT-3G Collaboration (July 2018) ~70 scientists (~half postdocs and students) across ~20 institutions

Case McGillColorado

Center for Astrophysic:

[mmm]

) MU

Argonr

ological Physics

Funded By:

The SPT Surveys: 5000 deg²

Between first two SPT surveys, we have surveyed 5000 deg² to ~Planck depths or better

	Obs. Years	Area (deg²)	95 GHz (uK- arcmin)	150 (uK- arcmin)	220 (uK- arcmin)
SPT-SZ	2007-11	2500	40	17	80
SPTpol- Main	2012-16	500	12	5	-
SPTpol- Deep	2012-16	100	10	3.5	-
SPTpol- Summer	2012-16	2500	47	28	-
SPT-3G (projected)	2017-23	1500	3.0	2.2	8.8

Bradford Benson I South Pole Telescope

2013: Planck 30μK RMS fluctuations on 3 K background

Credit: ESA (Planck)

Planck 143 GHz 50 deg²

The moon (for scale) SPTpol 150 GHz 50 deg²

The moon (for scale)

6x deeper 6x finer angular resolution

SPTpol 150 GHz. 50 deg²

The moon (for scale)

SPTpol 150 GHz. 50 deg²

Point Sources

Active galactic nuclei, and the most distant, star-forming galaxies

ALMA Z=4.224 HST/WFC3

SPT 0418-47

SPTpol: mm-Wavelength Transients

- First ~1.3 years of SPTpol survey used for mm-wave transient search (SPTpol: Whitehorn et al., 2016, ApJ, 830, 142)
 - Detected one ~15 mJy candidate consistent with gamma-ray burst afterglow, but measured at low significance (Prob=0.01)
 - Search using rest of SPTpol underway.
 SPT-3G survey will be 10x more sensitive to mm-wave transients.

07/21/2018 Bradford Benson I South Pole Telescope II

SPTpol 150 GHz. 50 deg²

Clusters of Galaxies "Shadows" in the microwave background from clusters of galaxies. The Sunyaev-Zel'dovich (SZ) effect

Sunyaev-Zel'dovich (SZ) Clusters

- First SZ-discovered clusters of galaxies found in 2008 (SPT, Staniszewski+2008), with Planck+ACT, there are *now >1000 SZ-identified clusters*
- SZ uniquely provide "clean" samples of the most massive, high-redshift clusters of galaxies. Useful for:
 - Growth of structure / cosmological constraints
 - Cluster astrophysics and formation at high-redshift

Unique High-z Cluster Sample

The Chandra-SPT Survey

(McDonald+13,14,16,17; Chiu+14; Hlavacek-Larrondo+15; Mantz+17)

- X-ray imaging of <u>100 SPT SZ -selected</u> <u>clusters</u> out to z = 1.85
- Evidence for long-standing (10 Gyr) feedback-cooling balance
- Early (z > 2) enrichment of ICM
- Initial formation of cool cores at $z \sim 2$
- Non-evolution in baryon fraction
- Central galaxy growth driven by gas-rich mergers at z > I

The Phoenix Cluster (McDonald+12,13,15; Russell+17) Slide from Mike McDonald

- Most X-ray luminous cluster known
- Massive central starburst (~800 Msun/yr)
- Powerful AGN outburst
- Molecular gas influenced by AGN

CMB TT Power Spectrum: Planck x SPT

(SPT) Hou et al. (2017) 1704.00884

CMB TT Power Spectrum: Planck x SPT

2.15

0.15

2.25

 $100\Omega_b h^2$

1.045

1.043

 θ_{MC}

1.041

0.13

0.14

 $\Omega_m h^2$

- Planck in SPT-patch and SPT are consistent (PTE=0.3) over range they both measure well (650 < l < 2000)
- SPT cosmology in 2500d patch consistent with Planck full-sky cosmology (PTE=0.032), with slight shift in some parameters including l > 2000 data

FIG. 2.— The parameter estimates for the three sets of in-patch bandpowers for various ℓ_{max} values. The estimates are based on the multipole range of $650 \le \ell \le \ell_{\text{max}}$. There is a noticeable trend in the 150×150 density parameters towards better agreement with PlanckFS as ℓ_{max} is lowered.

1.89

2.35

 ${}^{9}_{109} {}^{1.93}_{A_s} e^{-2 au}$

0.91

1.97

0.97

0.94

ns

67

71

 H_0

75

(SPT) Hou et al. (2017) 1704.00884 (SPT) Aylor et al. (2017) 1706.10286

SPTxSPT

 150×150

CMB TT Lensing: Planck + SPT

FIG. 4.— The reconstructed lensing map on a zenithal equal-area projection. The map has been smoothed with a Gaussian kernel with FWHM = 2 degrees.

CMB TT Lensing: Planck + SPT

CMB TT Lensing: Planck + SPT

SPTpol Polarization

SPTpol 150 GHz

- 9.4 μ K-arcmin between 2000 < ℓ < 4000.
- Smoothed by 4 arcmin FWHM Gaussian.

Henning et al. (2017) 1707.09353

07/21/2018 Bradford Benson I South Pole Telescope 20

SPTpol Temperature Power Spectrum

- SPTpol Temperature power spectrum from 50 < l < 8000

- Lowest ℓ measurements reported from SPT

Henning et al. (2017) 1707.09353

SPTpol TE Power Spectrum

Henning et al. (2017) 1707.09353

07/21/2018 Bradford Benson I South Pole Telescope

SPTpol: Polarization Power Spectrum

- Most precise constraints on EE, TE spectrum at $\ell > 1050$ and > 1475, respectively.
 - EE Point source power limit: $De^{PS} < 0.1 \ \mu K^2$ at 95% confidence

• *9 acoustic peaks measured in TE, EE spectrum!* Henning et al. (2017) 1707.09353 07/21/2018 Bradford Benson I South Pole Telescope

SPTpol: LCDM Constraints

- SPTpol low-ell ($\ell < 1000$) data in good agreement with Planck cosmology
- Adding SPTpol hi-ell ($\ell < 1000$) data pushes $\sigma_8 2.1 - \sigma$ and $H_0 1.7$ σ higher than Planck TT:
 - $\sigma_8 = 0.770 + -0.023$
 - $H_0 = 71.2 \pm -2.1 \text{ km s}^{-1} \text{ Mpc}^{-1}$
 - Will need to re-visit these results with new Planck 2018 data to see effects of polcalibration and tau!
- SPTpol 500d data reduces ACDM+N_{eff} parameter volume by factor of ~3 when added to Planck

Henning et al. (2017) 1707.09353

SPT-3G "First Light" for 2018 Season

• SPT-3G installed in January 2017

SPT-3G 1500
 deg² survey
 began in
 February 2018

The SPT-3G 1500 deg² Survey

New SPT-3G 1500 deg2 survey overlaps with BICEP-array, to optimize Inflation r-constraints from CMB-de-lensing

	Obs. Years	Area (deg²)	95 GHz (uK- arcmin)	150 (uK- arcmin)	220 (uK- arcmin)
SPT-SZ	2007-11	2500	40	17	80
SPTpol- Main	2012-16	500	12	5	-
SPTpol- Deep	2012-16	100	10	3.5	_
SPTpol- Summer	2012-16	2500	47	28	_
SPT-3G (projected)	2017-23	1500	3.0	2.2	8.8

07/21/2018 Bradford Benson I South Pole Telescope 26

SPT-3G: CMB Power Spectra

07/21/2018 Bradford Benson I South Pole Telescope 27

SPT-3G: Inflation and De-lensing

- Deep polarization data provides high S/N lensing maps, measures lensing modes with S/N>1 out to L~700 over 1500 deg². Ideal for:

- Cross-correlation with optical surveys (DES, LSST, Euclid)
- CMB cluster lensing
- CMB de-lensing to better constrain Inflationary B-modes.
 - Joint BICEP-array, SPT-3G constrains achieves $\sigma(r) \sim 0.0025$

SPT-3G: Inflation and De-lensing

- Deep polarization data provides high S/N lensing maps, measures lensing modes with S/N>1 out to L~700 over 1500 deg². Ideal for:

- Cross-correlation with optical surveys (DES, LSST, Euclid)
- CMB cluster lensing
- CMB de-lensing to better constrain Inflationary B-modes.
 - Joint BICEP-array, SPT-3G constrains achieves σ(r) ~ 0.0025

SPT-3G: Cracks in LCDM Cosmology?

- New SPT-3G polarization data will offer cross-check of LCDM cosmology, from new constraints at high-ℓ, polarization and lensing power spectrum.
 - SPT-3G + Planck TT (l < 800) will have more constraining power than full Planck data set on base LCDM parameters
 - Improved CMB constraints on LCDM extension parameters (e.g., neutrino mass, effective number of relativistic species, primordial Helium)

Future Surveys from the South Pole

- Next scientific advances requires greatly improved throughput.
- Investigating novel 5-meter Three Mirror Anastigmat (TMA) telescope design:
 - 424k/136k/63k F λ pixels at λ =1/2/3mm
 - Monolithic mirrors (low scattering)
 - Boresight rotation (measure pol. errors)
 - Comoving baffle (low pickup)

https://www.osapublishing.org/ao/upcoming_pdf.cfm?id=320108

SPT Summary

• SPT is providing exciting new results on Astrophysics:

- Hi-z star-forming galaxies
- Cluster cosmology and astrophysics
- mm-wave transients

• New high-I constraints on CMB polarization:

- Slight tension with Planck/LCDM from SPTpol TE/EE spectrum
- New SPTpol results soon on:
 - CMB lensing, B-mode, updated TT/ TE/EE power spectra,

Future from South Pole is bright!

- Broad science goals from SPT-3G survey
- Joint constraints between BICEP-array and SPT-3G on Inflation, De-lensing
- Future large aperture survey instrument
- Planning for future collaborations with Planck experts!