

Overview of LFI maps generation and their characteristics

Davide Maino

University of Milano, Dept. of Physics on behalf of the Planck collaboration

COSPAR 2018, July 14-22 2018, Pasadena, CA, USA

Davide Maino — Overview of LFI maps generation and their characteristics

Operations

- Planck was launched on 14 May 2009 and the 2018 data release is the official final one and includes
 - temperature and polarisation maps
 - temperature and polarisation power spectra
 - ancillary data product based (e.g. foreground maps)
- It is based on the full set of 48 months of LFI observations
- Data are of incredible quality!

Data Processing Overview

- planck*
- DPC approaches data reduction with specific tasks aiming to estimate and correct instrumental systematic effects
- There are three main logical levels:
 - Level 1: H/K and Science telemetry from the satellite are transformed into raw timelines and stored into dedicated databases with the associated time information
 - Level 2: instrument information is gathered and ingested into the Instrument Model, removal of systematic effects, flag data of suspected quality, photometric calibration and creation of maps and ancillary products
 - Level 3: more science here with component separation, power spectra estimation and extraction of cosmological parameters
- Each step is internally validated (with dedicated sims) and most of the DPC work is spent cross-checking internally and between the two instruments

LEFI pipeline

FIRMO

• We revised the flagging procedure to produce a more conservative and homogeneous criteria for data selection \rightarrow a slightly higher flagging rate

	30 GHz	44 GHz	70 GHz
Missing [%]	0.15425	0.15425	0.15433
Anomalies [%]	0.82402	0.50997	0.84842
Manoeuvres [%]	8.03104	8.03104	8.03104
Usable [%]	90.99060	91.30474	90.96621

This is the most important and critical aspect of data reduction pipeline:

$$V(t) = G(t) imes [B \star (D_{
m Solar} + D_{
m orbital} + T_{
m sky}) + T_0]$$

- 2013: only 15 months of data \rightarrow no accurate determination of $D_{\rm orbital} \rightarrow$ use only $D_{\rm Solar}$ from *WMAP* 9-yr: 0.3% calibration accuracy
- 2015: 48 months of data → internal self-contained estimation of D_{Solar} using $D_{orbital}$: 0.2% calibration accuracy. High-precision cosmology with temperature data but improvements are crucial for polarisation

Phot. Calib. + Limiting factors

- Problems revealed by internal null-test when considering Survey 2 and Survey 4
- Due to *Planck* scanning strategy, Survey 2 & 4 present a minimum of the dipole modulation → possible large impact of systematics
- \blacksquare Several dedicated E2E sims \rightarrow inclusion of polar. component of sky signal
- \blacksquare Each LFI horn feed two radiometers (M and S) with polarisation angles at 90°

Photometric Calibration -'

- Pattern difficult to explain in terms of instrum. effects but it is consistent with polarized foregrounds effect
- Since M and S are perpendicular, any polarized signal is obseved with opposite sign (confirmed by sims)

Photometric Calibration - II

- \blacksquare Solution is to include $\mathcal{T}_{\rm sky}$ (both temperature and polar) in the calibrator
- Iterative approach including: gain calibration, map-making and component separation
 - $\fbox{0}$ $\mathcal{T}_{\rm sky}$ is the full best-fit from 2015 data release including: CMB, synch, free-free, thermal and spinning dust and CO for temperature maps and polarized components for CMB, synch and thermal dust
 - **1** Estimate G including this T_{sky} in the calibrator
 - 2 Compute frequency maps from these new gains
 - 3 Determine new astrophysical model from these new maps
 4 Iterate step (1) to (3)
- The process converges: as a Gibbs sampler iterating through all involved conditional PDF converging to the joint maximum likelihood

Photometric Calibration - II

- Process is computationally expensive: 1 iter. takes 1 week
- We stop the process after 4 full complete iterations
- Oscillating pattern greatly removed: possible residual? cesa

Photometric Calibration - 11

■ Took same quantity but with surveys stacked together → suppress random signal

Photometric Calibration - IV

- Magnitude decreases by a factor of 1.5-2 (high gal. lat)
- Morphology similar and dominated by few Ecliptic meridians scans
- Gain uncert. dominated by few strong modes → suppression with iteration
- Not formal convergence → low-level residual still present

Photometric Calibration @ 70 GHz

- At 70 GHz the approach is the one adopted in 2015
- Galactic pol. signal is noise dominated and iterative approach fails to converge
- We provide a gain correction template based on 30GHz difference (properly scaled in a ML approach)
- Results with 70GHz have this template removed

Map-making

- Calibrated TOI for each radiometer are input of madam map-making code, together with pointing data
- The algorithm is a maximum-likelihood destriping and estimates in this fashion the amplitude of the 1/f-noise baseline, subtract from the timelines and then simply bins the resulting TOI into a map
- Maps produced at different levels:
 - Frequency maps, HR (Half-Ring) maps and Survey maps
 - Low resolution maps used for the computation of the noise covariance matrix

Planck-LEI 30 GHz

Davide Maino — Overview of LFI maps generation and their characteristics

Planck-LFI 70 GHz

Davide Maino — Overview of LFI maps generation and their characteristics

- Quality of LFI maps is assessed and verified by a set of null-tests in an almost automatic way
- Several data combination (radiometer, horn-pairs, frequency) on different time-scales (1 hour, survey, full-mission): difference at horn level at even/odd surveys clearly reveals side lobe effect
- Null-test power spectra are used to check total level of systm. effects to be compared w.r.t. white noise level and systematic effects analysis

EFL Internal Validation - Null tests

Davide Maino — Overview of LFI maps generation and their characteristics

- Compute power spectra in multipole range around the first acoustic peak removing the unresolved point source contributions. Spectra are consistent within errors. 30 and 44/70 have different approaches to gain applied
- Hausman test assess consistency at 70 GHz showing no statistically significant problem
- Spectra from horn-pairs and from all 12 radiometers: χ² analysis shows compatibility with null-hypothesis

esa

Systematic effects 2015

FIAMO

- Assessment of overall systematic is unchanged
- \blacksquare No more specific effect simulations \rightarrow concentrate effort on those effects impacting on calibration uncertainty (treated separately)
 - ADC improved wrt to the 2015
 - Gain smoothing procedure
 - Far-sidelobes and Dipole uncertainty
- Overall effects together

Systematic effects - 2018

plan

- Good agreement between 2015 and 2018 systematic simulations
- Null spectra from odd-even-year are very close to systematic error expectations
- A few multipoles ($\ell = 2, 3$ @30GHz and $\ell = 2$ @44 and 70GHz) out of the 1σ range in TT: extra noise $\lesssim 0.04 \mu K^2$ @70GHz
- \blacksquare EE null spectra are in line with sims with only $0.1 \mu {\rm K}^2$ excess at 70 GHz for $\ell=10$

- At $\ell\gtrsim$ 100: extra noise induced by systematics is well traced by simulations and accounted for in noise estimation
- At large scales: clear overall improvement with the new calibraton scheme
- A few multipoles require attention since extra noise is not traced by sims
- Sytematic sims could be used to create a template useful for a ML approach in more scientific oriented analysis

Davide Maino — Overview of LFI maps generation and their characteristics