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Abstract 
 
By combining experimental interventions with search procedures for graphical causal 
models we show that under familiar assumptions, with perfect data, N - 1 experiments 
suffice to determine the causal relations among N>2 variables when each experiment 
randomizes at most one variable. We show the same bound holds for adaptive learners, 
but does not hold for N > 4 when each experiment can simultaneously randomize more 
than one variable.  This bound provides a type of ideal for the measure of success of 
heuristic approaches in active learning methods of causal discovery, which currently use 
less informative measures. 
 
 
 
 
Three Methods and Their Limitations 
 
Consider situations in which the aim of inquiry is to determine the causal structure of a 
kind of system with many variables, for example the gene regulation network of a species 
in a particular environment. The aim in other words is to determine for each pair X, Y of 
variables in a set of variables, S, whether X directly causes Y (or vice-versa), with respect 
to the remaining variables in S, i.e., for some assignment of values V to all the remaining 
variables in S, if we were to intervene to hold those variables fixed at values V while 
randomizing X, Y would covary with X, or vice versa. Such a system of causal relations 
can be represented by a directed graph, in which the variables are nodes or vertices of the 
graph, and X → Y indicates that X is a direct cause of Y. If there are no feedback 
relations among the variables, the graph is acyclic.  We are concerned with the most 
efficient way to determine the complete structure of such a directed acyclic graph, under 
some simplifying assumptions. 
Suppose that, before collecting data, nothing is known that will provide positive or 
negative evidence about the influence of any of the variables on any of the others. There 
are several ways to obtain data and to make inferences: 
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1. Conduct a study in which all variables are passively observed, and use the 
inferred associations or correlations among the variables to learn as much as 
possible about the causal relations among the variables. 

2. Conduct an experiment in which one variable is assigned values randomly 
(randomized) and use the inferred associations or correlations among the variables 
to learn as much as possible about the causal relations. 

3. Do (2) while intervening to hold some other variable or variables constant. 
 
 
Procedure 1. is characteristic of non-experimental social science, and it has also been 
proposed and pursued for discovering the structure of gene regulation networks (Spirtes, 
et. al, 2001). Consistent algorithms for causal inferences from such data have been 
developed in computer science over the last 15 years Under weak assumptions about the 
data generating process, specifically the Causal Markov Assumption, which says that the 
direct causes of a variable screen it off from variables that are not its effects, and the 
Faithfulness Assumption, which says that all of the conditional independence relations are 
consequences of the Causal Markov Assumption applied to the directed graph 
representing the causal relations. Consistent search algorithms are available based on 
conditional independence facts - the PC-Algorithm, for example (Spirtes, et al., 2000) - 
and other consistent procedures are available based on assignments of prior probabilities 
and computation of posterior probabilities from the data (Meek, 1996; Chickering, 2002).  
We will appeal to facts about such procedures in what follows, but the details of the 
algorithms need not concern us. 
 
There are, however, strong limitations on what can be learned from data that satisfy these 
assumptions, even supplemented with other, ideal simplifications. Thus suppose we have 
available the true joint probability distribution on the variables, and there are no 
unrecorded common causes of the variables (we say the variable set is causally 
sufficient), and there are no feedback relations among the variables. Under these 
assumptions, the algorithms can determine from the observed associations whether it is 
true that X and Y are adjacent, i.e., whether X directly causes Y or Y directly causes X, 
for all variables X, Y, but only in certain cases can the direction of causation be 
determined.  For example, if the true structure is 
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various search algorithms will find this structure uniquely. But if the true structure is  
 

 
 

X 

Y Z 

W 



then no consistent2  search algorithm can determine more than that all pairs of variables 
are adjacent in the true graph. That is, nothing about the direction of causation can be 
determined from a joint distribution generated by this structure.  
 
For several reasons, experimental intervention, in particular on a potential cause is a 
preferred method of estimating causal relations, and it is the standard method described in 
many methodology texts. Randomization guards against the possibility that there is an 
unrecorded common cause of the manipulated variable and other variables. But even 
when we assume there are no such unrecorded confounding variables, randomization is 
informative about some of the directions of causal relations. By randomizing X and 
observing which other variables in a set covary with X, we can determine which variables 
are influenced by X, but the associations of other variables with X do not themselves 
determine which of those variables are influenced directly and which indirectly. So 
randomizing X does not, for example, distinguish among the following structures: 
 

 
 
That is why it is sometimes recommended that we manipulate the system to keep some 
variables constant while we randomize others, as in method 3. If S = {X, Y, Z} we might 
randomize X while intervening to hold Z constant and see if Y covaries with X. If so, X 
is a direct cause of Y with respect to Z. If not, we may have to intervene to hold Z 
constant at other values and see if X and Y covary. If X and Y never covary for any fixed 
value of Z, then X is not a direct cause of Y. This procedure therefore has two difficulties 
that render it infeasible for large sets of variables: for each pair, X, Y, we must 
experimentally manipulate all remaining variables in S to hold them constant while 
varying X or varying Y (or both) and in the worst case we must do such a distinct 
experiment for every consistent assignment of values to the remaining variables. For 
continuous variables this is of course impossible, but even if each variable has only M 
values, in the worst case3 we require at least 
 
(N choose 2) M(N-2) 
 
different experiments to determine the entire structure. Suppose we have measured the 
messenger RNA (mRNA) expression levels of 10 genes and divide the expression levels 
into high, medium and low values. We would require in the worst case at least 295,245 
experiments. 

                                                
2 By a consistent search algorithm we mean an algorithm that provably recovers as much about the 
graphical structure as is determined by the joint probability distribution, for all graphs and probability 
distributions satisfying the assumptions specified. 
3 The worst case occurs with a complete graph and our randomizations are on effects before causes. 
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Various modifications of the control procedure might improve these worst case results, 
and for many probability distributions over the possible causal structures the expected 
case number of experiments would presumably be much better. But we propose a 
principled result: By combining procedure 1 with procedure 2, under the assumptions so 
far listed, for N > 2, in the worst case, the complete causal structure on N variables can be 
determined with N - 1 experiments, counting the null experiment of passive observation 
(procedure 1) as one experiment, if conducted. Further, this is the best possible result 
when at most one variable is randomized in each experiment.  
 
The Idea 
 
Consider the case of N = 3 variables. There are 25 directed acyclic graphs on 3 vertices. 
In figure X we show the graphs sorted into sub-classes that are indistinguishable without 
experimental intervention. 
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Given the joint distribution prior to an intervention, a consistent search algorithm will 
return the equivalence class of the graph - that is, the disjunction of all graphs in the box 
to which the true graph belongs. An experimental intervention, say one that randomizes 
X, provides extra information: the fact that the distribution of X has been randomly 
assigned by an external intervention tells us that in the resulting experimental data none 
of the remaining variables influence X. We can use that as prior information in applying a 
consistent search algorithm to the experimental data. If X is manipulated, the resulting 
joint distribution on X,Y and Z will give us, through such search procedures, information 
about whether X is a direct cause of Y or Z, or an indirect cause of one or the other. Thus 
suppose we randomize X and we find the following in the experimental distribution: Y 
and Z covary with X, and Y and Z are independent conditional on X. Then we know that 
X causes Y and Z, which tells us that the true graph is in box 6 or in box 11, and further, 
we know Y does not cause Z directly, and Z does not cause Y directly, because they are 
independent conditional on all values of X. (The Markov and Faithfulness assumptions 
imply that when Y and Z are independent conditional on X, there is no direct causal 
relation between Y and Z.) The top graph in box 6 must therefore be the true graph. By 
combining search procedures (in this case used informally) with experimentation, we 
have determined the truth with a single experiment. (We were lucky: if we had begun by 
randomizing Y or Z, two experiments would have been required.) When we randomize X 
and follow up with a consistent search procedure, which requires no additional 
experimentation, all of the direct connections between the remaining variables can be 
estimated. Only the directions of some of the edges remain unknown. Those directions 
can clearly be determined by randomizing each of the remaining variables.   
 
In some cases, we lose something when we experiment. If when X is randomized, X and 
Y do not covary, we know that X does not cause Y, but we do not know whether Y 
causes X or neither causes the other, because our manipulation of X has destroyed any 
possible influence of Y on X. Thus in the single structure in box 9, if we randomize X, 
and Y and Z do not covary with X, every structure in which X is not a direct or indirect 
cause of Y or Z, and Y is not a cause of Z and Z is not a cause of Y, is consistent with our 
data. There are four such graphs. Subsequent experimental manipulation of Y will tell us 
the answer, of course. 
 
So, with N variables, N experiments clearly suffice to determine the structure uniquely. 
In fact, because of the assumption of acyclicity and because the associations among the 
variables not randomized in an experiment are still informative about the adjacencies 
among these variables, N - 1 experiments always suffice when N > 2.  To illustrate, 
consider the first graph in box 11 and suppose we make the worst choices for the 
sequence of variables to randomize: first X, then Y, then Z. 
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Randomizing X we find only that X does not cause Y or Z, and that Y and Z are adjacent. 
Randomizing Y, we find that Y does cause X but does not cause Z, and one X and Z are 
adjacent. We reason as follows: Z must be a direct cause of X, because we know they are 
adjacent but we now know X is not a cause of Z. Similarly, Z must be a direct cause of Y 
because they are adjacent  and Y does not cause Z. Y must be a direct cause of X, 
because Y is a cause of X and Y is not a cause of Z (so there cannot be a pathway 
Y→Z→X). We have found the true graph, and only 2 experiments were required. We 
show in the appendix that the same result, that at most N-1 experiments are required, is 
true for all N > 2. 
 
The result does not hold for N = 2, where there are only 3 possible structures: no edges, 
X→Y, and X←Y. Suppose X→Y. Suppose we randomize nothing, merely observe non-
experimental values. If we find X, Y are associated, then a second experiment is required 
to determine the direction of the effect. Suppose instead, we begin by randomizing X. If 
we find X, Y are not associated, a second experiment is required to determine whether Y 
causes X. 
 
The proof of the bound has three perhaps surprising corollaries. (1) Any  procedure that 
includes passive observation in which no variables are randomized exceeds the lower 
bound for some cases, when the passive observation is counted as an experiment. (2) 
Controlling for variables by experimentally fixing their values is never an advantage. (3)   
“Adaptive” search procedures (Murphy, 1998; Tong and Koller, 2001) choose the most 
“informative” next experiment given the results of previous experiments. That is, they 
choose the next experiment that maximizes the expected information to be obtained. We 
also show that no adaptive procedure can do better than the N-1 lower bound on the 
number of experiments required to identify the structure in the worst case. 
Implementations of adaptive search procedures generally have to make simplifying 
assumptions in order to make updating of the distribution over all possible graphs 
computationally tractable or must use greedy heuristics to select the next intervention that 
is deemed most informative with respect to the underlying causal structure given the 
evidence from the previous experiments. The success of such a heuristic is commonly 
measured by comparing it to a strategy that randomly chooses the next experiment no 
matter what the evidence is so far. Other comparisons are to uniform sampling or to 
passive observation - the latter obviously only provides limited directional information. 
These comparisons indicate whether the heuristic is achieving anything at all but give 
little insight into how well the strategy compares with an ideal procedure. The bound we 
provide provides such an ideal, at least in the case when only passive observational and 
single intervention experiments are considered. 
 
 
 
Discussion 
 
A variety of theoretical issues remain. Expected complexities can differ considerably 
from worst case complexities, and we have not investigated the expected number of 
experiments required for various probability distributions on graphs. When the variable 



set is not known to be causally sufficient, which is the typical scientific situation, there is 
a consistent search procedure, the FCI Algorithm (Spirtes et al., 1993; 2000), which 
unsurprisingly returns more limited information about the structure. When there are 
unrecorded common causes, some structures cannot be distinguished by independence 
and conditional independence relations alone, but can be distinguished by attention to 
changes in the covariation of variables in different experiments. In general, the number of 
experiments required is larger than N-1 but we have no bound to report. Further, we do 
not know by how much the N - 1 bound can be improved by experiments in which two or 
more variables are randomized simultaneously. However, for N>4, multiple intervention 
experiments do reduce the total number of experiments required to identify the causal 
structure even in the worst case, although it may initially seem that information on the 
potential edges between intervened upon vertices is lost. For example, in the case of five 
vertices, three such multiple simultaneous randomization experiments suffice even in the 
worst case; in the case of six vertices, four experiments will do. 
 
The N-1 bound can be considered proportional to a minimum cost of inquiry when all 
experiments, including passive observation, have the same cost. Costs may differ when 
one experiment simultaneously randomizes several variables. In practice there is a cost to 
sample size as well, which can result in complicated trade-offs between cost and the 
confidence one has in the results. 
 
In practice, with real data, search procedures tend to be unreliable for dense graphs. The 
reasons differ for different algorithms, but basically reflect the fact that in such graphs 
conditional probabilities must be assessed based on many conditioning variables. Each 
conditioning set of values corresponds to a subsample of the data, and the more variables 
conditioned on, the smaller the sample, and the less reliable the estimate of the 
conditional joint probability of two variables. Some search algorithms, such as PC and 
FCI, test for conditional independence relations and use the results as an oracle for 
graphical specification. So it would be of interest to know the effects on the worst case 
number of experiments required when a bound is placed on the number of variables 
conditioned on in the search procedure. 
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Appendix: Proofs 
 
We assume the reader's familiarity with some fundamental ideas from directed graphical 
models, or Bayes nets, including the property of d-separation (Pearl, 1988) and search 
algorithms that exploit that property (Spirtes, et. al, 2000). 
 
 
Assumptions:  
 
We make the following assumptions in our proof of the worst case bound on the number 
of experiments required to identify the causal graph underlying N variables. 
 
Faithfulness: The distribution over the variables is faithful to a directed acyclic graph on 
the variables in the data. 
Full scale D-Separation: It is possible to condition on any subset of variables to 
determine d-separation relations. 
Perfect Data: The data is not supposed to be of any concern. In particular, we are not 
concerned with weak causal links, insufficient or missing data. The data is such that we 
can identify the conditional independencies if there are any. 
Interventions: Interventions are possible on every variable. 
 
 
Definitions: 
 
An experiment randomizes at most one variable and returns the joint distribution of all 
variables.  
A procedure is a sequence of experiments and a structure learning algorithm applied to 
the results of these experiments. 
A procedure is reliable for an N vertex problem iff for all DAGs on N vertices the 
procedure determines the correct graph uniquely. 
A procedure is order reliable for an N vertex problem iff it is reliable for all non-
redundant orderings of experiments. 
A procedure is adaptive iff it chooses at each step one from among the possible 
subsequent experiments as a non-trivial function of the results of the previous 
experiments. 
 
 
Claims 
 
Proposition 1: For N > 2, there is an order reliable procedure that in the worst case 
requires no more than N - 1 experiments, allowing only single interventions. 
 
Proof: Consider a graph with N vertices where N > 2 and let X1,…, XN specify an 
arbitrary ordering of these vertices. Let each experiment consist of an intervention on one 
variable. Perform N - 1 experiments, one intervention on each Xi where 1 ≤ I ≤ N-1. By 
Lemma 1 below, applying the PC algorithm to the first experiment determines the 



adjacencies among at least X2,…, XN.  The k-th experiment determines the directions of 
all edges adjacent to Xk : iff Xj is adjacent to Xk, then Xk is a direct cause of Xj if and 
only if Xj covaries with Xk when Xk is randomized (since if Xk were only an indirect 
cause of Xj, and since Xj and Xk are adjacent, Xj would have to be a direct cause of Xk, 
and there would be a cycle); otherwise, Xj is a direct cause of Xk. XN has not been 
randomized, but its adjacencies with every other variable have been determined by the N-
1 experiments. Suppose XN and Xk are adjacent. Since Xk has been randomized, Xk is a 
cause of XN if and only if XN covaries with Xk when Xk is randomized. In that case, if Xk 
were an indirect but not a direct cause of XN, then XN would be a direct cause of Xk, 
because XN and Xk are adjacent, and hence there would be a cycle. If XN and Xk do not 
covary when Xk is randomized, then, since they are adjacent, XN is a direct cause of Xk. If 
Xk and XN are not adjacent, then this missing edge would have been identified in one of 
the interventions on Xj, where j ≠ k. These are all of the cases. Q.E.D. 
 
Lemma 1: If G is a causal graph over a set of variables V, and G' the manipulated graph 
resulting from an ideal intervention on variable X in G, then for all pairs of variables Z,Y 
distinct from X, Z and Y are d-separated by some S ⊆ V in G if and only Z and Y are d-
separated by some S' ⊆  V in G'.  
 
Proof:  G' is identical to G except that all edges into X in G do not occur in G'.   
 
L-to-R: First assume Z and Y are d-separated by some S ⊆ V in G.  Then no undirected 
path between Z and Y in G d-connects those variables relative to S.  Suppose for reductio 
that Z and Y are not d-separated by S in G'.  Then some path between Z and Y in G' must 
now be active, i.e., constitutes a d-connection. The paths between Z and Y in G' are a 
subset of those in G.  Thus some path between Z and Y that was inactive in G must now 
be active in G'. Thus all nodes on such a path that were inactive in G must now be active 
in G'.  But if X was inactive on a path in G relative to S, it will still be inactive in G' 
relative to S.  For it to be otherwise, X would either have to switch from a non-collider to 
a collider, which cannot happen by removing edges into X, or for X to be a collider in G 
with no ancestor in S but to be a collider in G' with an ancestor, which also cannot 
happen by removing edges into X. A similar argument applies equally to non-X nodes, so 
Z and Y are d-separated by S in G'. 
 
R-to-L: Next assume that Z and Y are not d-separated by some S ⊆ V in G, that is, they 
are d-connected by every S ⊆ V in G.  Then Z and Y are adjacent in G, and an 
intervention on X does not remove this adjacency, thus they are still adjacent in G' and 
thus  d-connected by every S ⊆ V in G'.  Q.E.D.  
 
Proposition 2: No order reliable procedure randomizing a single variable at each step 
requires fewer than N -1 experiments for an N variable problem in the worst case. 
 
Proof: In order to show that N-1 experiments are in the worst case necessary given N 
variables let X1, …, XN again specify an arbitrary ordering of the N vertices. Suppose 
only N-2 interventions were performed in sequence, one each on X1 to XN-2. Suppose that 
in the true underlying causal graph XN-1 and XN happen to both be (direct) causes of each 



Xi, where 1 ≤ i ≤ N-2, and that XN-1 and XN are adjacent. It does not matter in which 
direction this edge is pointing, but assume, without loss of generality, that XN is a parent 
of XN-1. Note that in this case all of the interventions on X1, …, XN-2 will indicate that 
there is an edge between XN and XN-1, but none will be able to direct it. Hence, an (N - 
1)th experiment is required. Q.E.D. 
 
 
Comment: A similar situation occurs when each Xi, where 1≤ i ≤ N - 2, is a (direct) 
common cause of XN and XN-1 and when, again, XN is the parent of XN-1 or vice versa. 
Here also, none of the N-2 experiments will be able to identify the direction of the edge 
between XN and XN-1. It follows that N-1 experiments are sufficient and in the worst case 
necessary to identify the causal graph underlying N vertices. N - 1 is a tight bound for the 
worst case number of single intervention experiments. 
 
The fact that the sequence of experimental interventions is arbitrary in the previous proof 
suggests that this result is still true for the worst case even when the choice of the next 
experiment is adaptive, that is, even if at each point during the sequence of experiments 
the “best” experiment given the evidence from the previous experiment is chosen. 
Although Proposition 3 follows from the previous two proofs as a corollary, the proof 
below emphasizes the aspect that no adaptive strategy will do any better in the worst 
case. 
 
Proposition 3: Every reliable adaptive procedure for which each experiment randomizes 
a single variable requires, in the worst case, at least N -1 experiments for an N vertex 
problem. 
 
Proof: Clearly N -1 experiments are sufficient to identify the causal graph underlying N 
vertices since they are sufficient for the non-adaptive case. In the following we will show 
that in the worst case N - 1 experiments are necessary even if an adaptive strategy is 
adopted for the experimental sequence. The situation can be viewed as a game between 
experimenter and nature: The experimenter specifies an experiment and nature returns the 
independence relations true of the graph, possibly modified by the experimental 
intervention. At each point in the game, however, nature may return the independence 
relations implied by the largest equivalence class of graphs that are consistent with the 
independence relations supplied to the experimenter in the previous experiments. The 
claim of proposition 3 amounts then to the claim that there always exists a strategy for 
nature that ensures that the experimenter requires N-1 experiments to reduce the 
equivalence class of graphs over the N variables to one, i.e. to identify the underlying 
causal structure uniquely. Consequently, no matter what the experimenter's adaptive 
strategy is, it will take N-1 experiments in this game. 
 
Nature's strategy is as follows: Let V1, V2,… be the sequence of variables the 
experimenter intervenes upon. When the experimenter intervenes upon variable Vi, 
nature maintains the equivalence class of graphs that satisfy the following conditions: 
The class contains all the graphs that have complete subgraphs among the non-intervened 
variables, i.e. Vi+1,…,VN and Vk is a direct cause of Vj , where 1 ≤ k ≤ i and 1 ≤ j ≤ k with 



j ≠ k. In other words, whichever variable the experimenter intervenes upon, it is the sink 
of all the variables that have not yet been intervened upon, that is VN is a (direct) parent 
of all other vertices, VN-1 is a parent of V1,…, VN-2  etc. Then V2 is a parent of V1 only 
and V1 is a child of all other vertices. Note, that the equivalence class of graphs nature 
maintains is the set of graphs which are all isomorphic to each other among the variables 
not intervened upon. 
 
Now consider the adaptive strategy of the experimenter trying to identify the graph. At 
each stage in the game, she has no information about the directions of the edges among 
the non-intervened variables. So, in particular, after N-2 experiments, she has no 
information on the direction of the edge between VN-1 and VN. Hence an (N-1)th 
experiment is required. It follows that even with an adaptive strategy, N-1 experiments 
are in the worst case necessary to identify the causal graph among N variables. Q.E.D. 
 
 
Other Types of Experiments 
 
In the previous two proofs an experiment was always assumed to consist of an 
intervention on one particular variable. However, it might be thought that other types of 
experiments, such as passive observations or interventions on more than one variable 
might improve the worst case result of N-1 experiments. While it is true that multiple 
interventions (randomizing more than one variable at a time) can shorten the 
experimental sequence, this is not the case for passive observational studies. We call a 
passive observational experiment a null-experiment. 
 
The above proofs indicate that the worst case always occurs for particular complete 
graphs. If one were to run a null-experiment at any point in the experiment sequence 
when the underlying graph is complete - the most likely time would probably be at the 
beginning - then one would realize that one is confronted with a complete graph. 
However, this information (and more) is obtained anyway from two sequential 
experiments, each consisting of an intervention on a particular variable. The null-
experiment paired with any other experiment cannot generate more information about the 
graph than two single intervention experiments, since a single intervention experiment 
also identifies all adjacencies except for those into the intervened variable. But a second 
intervention on a different variable would identify these interventions, too. So the only 
advantage of the null-experiment is in the case where only one experiment is run. The 
above proofs only apply to graphs of three or more variables, which certainly cannot 
always be identified by one experiment alone. In fact, even for two variables, two 
experiments are needed in the worst case (see discussion in main body of the paper). 
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