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Statistical genetics: predict the effect of genes on observable outcomes
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Statistical genetics: predict the effect of genes on observable outcomes

Problem:  
indirect associations 
“population structure” 
Goal:  
separate these effects

genotypes correlate with 
geographic location
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Novembre et al, Nature 2008
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Novembre et al, Nature 2008
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Confounding by population structure

genes phenotypes 
       y

latent 
population 
structure

• Population structure: common cause of genes and phenotypes 
• Goal: estimate causal effect 
• Problem: generative mechanism is unknown

graphical model
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Linear Mixed Models for Regression

Lippert, Christoph, et al. "FaST linear mixed models for genome-wide association studies." Nature Methods 8.10 (2011): 833-835. 
Rakitsch, Barbara, et al. "A Lasso multi-marker mixed model for association mapping with population structure correction." 
Bioinformatics 29.2 (2013): 206-214.

• Linear mixed model (LMM): widely appreciated in genetics 
• Linear regression + correlated noise. 
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Linear Mixed Models for Regression

Lippert, Christoph, et al. "FaST linear mixed models for genome-wide association studies." Nature Methods 8.10 (2011): 833-835. 
Rakitsch, Barbara, et al. "A Lasso multi-marker mixed model for association mapping with population structure correction." 
Bioinformatics 29.2 (2013): 206-214.

• Linear mixed model (LMM): widely appreciated in genetics 
• Linear regression + correlated noise. 

Multivariate noise: 
• Allows to express similarities between samples 
• Typical choice in genetics: 
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LMMs: why using a linear kernel?

Lippert, Christoph, et al. "FaST linear mixed models for genome-wide association studies." Nature Methods 8.10 (2011): 833-835. 
Rakitsch, Barbara, et al. "A Lasso multi-marker mixed model for association mapping with population structure correction." 
Bioinformatics 29.2 (2013): 206-214.

Equivalent model formulation with a linear kernel: 

We see that w and w’ play similar roles, but: 

• w is assumed to be a large, sparse vector (causal) 

• w’ is dense and unobserved (confounder)
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Solving linear mixed models

Lippert, Christoph, et al. "FaST linear mixed models for genome-wide association studies." Nature Methods 8.10 (2011): 833-835. 
Rakitsch, Barbara, et al. "A Lasso multi-marker mixed model for association mapping with population structure correction." 
Bioinformatics 29.2 (2013): 206-214.

• This results in a standard linear regression problem 
• O(n^3) scaling if done naively 
• State of the art for many applications in biology

A solution can be obtained by transforming X and y:
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This talk: linear mixed model for binary classification

Goal: generalize the LMM paradigm to classification 

Idea: probit regression model with correlated noise: 

Challenge: exact inference becomes intractable due to the nonlinearity 

Solution: approximate inference (this talk) 
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Deriving a loss function

For simplicity, assume  

Likelihood that all examples are correctly classified:
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Deriving a loss function

For simplicity, assume  

Likelihood that all examples are correctly classified:

Objective function: negative log likelihood + regularizer.

Define                      .

Lasso regularizer: 
Favors sparsity
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Minimizing the loss function

Minimizing the objective function leads to two computational problems: 

(i)  intractable high-dimensional integral 

(ii) the l1-norm regularizer is not everywhere differentiable
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Minimizing the loss function

Minimizing the objective function leads to two computational problems: 

(i)  intractable high-dimensional integral 
Solution: Expectation Propagation (EP) 

(ii) the l1-norm regularizer is not everywhere differentiable
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Minimizing the loss function

Minimizing the objective function leads to two computational problems: 

(i)  intractable high-dimensional integral 
Solution: Expectation Propagation (EP) 

(ii) the l1-norm regularizer is not everywhere differentiable 
Solution: Alternating Direction Method of Multipliers (ADMM)
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Minimizing the Likelihood Term
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Minimizing the Likelihood Term
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Minimizing the Likelihood Term
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Minimizing the Likelihood Term

Still intractable 
integrals. Need 
approximate inference 
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Minimizing the Likelihood Term

We use Expectation Propagation to approximate 

by a Gaussian  

Then:

[J. Cunningham et. al., Gaussian 
probabilities and EP, arxiv 2011. ]
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Comparison to other methods

Uncorrelated Probit: 

GP classification: 

LMM Lasso: 

• The correlated probit model can be seen as a generalization of 
various other models. 

• We compared the performance gain over these methods in our 
experiments.
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Experiments (Simulated Data)

• Generate artificial data from the model 

• Varied the amount of non-zero weights  

• Compute accuracies for different levels of sparsity
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Experiments (TBC)

• Predict Tuberculosis based on gene expression levels. 

• Confounding by populations structure.

Tuberculosis data set: 
Berry et. al., Nature 466, 2010.
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• Tuberculosis data set 

• Correlate w with largest eigenvalue of 

Experiments (TBC)

Tuberculosis data set: 
Berry et. al., Nature 466, 2010.
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• Algorithm for sparse feature selection in binary classification, where the 

data are confounded 

• Signals found by our model are less correlated with the confounders 

• Improved prediction performances 

• Future: employ scalable MCMC to sample from the posterior 

• Data subsampling is possible 

• problem: high-dimensional feature space dimensionality d.

Conclusion and Outlook 
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Thank you. 
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