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Statistical genetics: predict the effect of genes on observable outcomes
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Statistical genetics: predict the effect of genes on observable outcomes

genotypes correlate with
geographic location
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cultural factors
climate factors
economic conditions
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Statistical genetics: predict the effect of genes on observable outcomes

genotypes correlate with
geographic location

—
Problem:
indirect associations cultural factors
“population structure” climate factors
. economic conditions
Goal: political factors

separate these effects
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Novembre et al, Nature 2008
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Novembre et al, Nature 2008
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Confounding by population structure
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e Population structure: common cause of genes and phenotypes
e Goal: estimate causal effect
e Problem: generative mechanism is unknown
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Linear Mixed Models for Regression

 Linear mixed model (LMM): widely appreciated in genetics
e Linear regression + correlated noise.

X € R™™ . genotypes
y € R" : phenotypes

w € R? : weight vector

=X'wt+e e~N(0,X)

Lippert, Christoph, et al. "FaST linear mixed models for genome-wide association studies.” Nature Methods 8.10 (2011): 833-835.
Rakitsch, Barbara, et al. "A Lasso multi-marker mixed model for association mapping with population structure correction.”
Bioinformatics 29.2 (2013): 206-214.
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Linear Mixed Models for Regression

 Linear mixed model (LMM): widely appreciated in genetics
e Linear regression + correlated noise.

X € R™™ . genotypes
y € R"™ : phenotypes

w € R? : weight vector
yi=X'w+e €e~N(0,X)

Multivariate noise:
» Allows to express similarities between samples
« Typical choice in genetics:  » — \, I+ A\ X' X

Lippert, Christoph, et al. "FaST linear mixed models for genome-wide association studies.” Nature Methods 8.10 (2011): 833-835.
Rakitsch, Barbara, et al. "A Lasso multi-marker mixed model for association mapping with population structure correction.”
Bioinformatics 29.2 (2013): 206-214.
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LMMs: why using a linear kernel?

Equivalent model formulation with a linear kernel:
y=X'w+X'w +e w ~N(O,MNI), e~N(0,NI)

We see that w and w’ play similar roles, but:
e wis assumed to be a large, sparse vector (causal)

» w’ is dense and unobserved (confounder)

Lippert, Christoph, et al. "FaST linear mixed models for genome-wide association studies.” Nature Methods 8.10 (2011): 833-835.
Rakitsch, Barbara, et al. "A Lasso multi-marker mixed model for association mapping with population structure correction.”
Bioinformatics 29.2 (2013): 206-214.
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Solving linear mixed models

A solution can be obtained by transforming X and v:

N BBT, yl — B_ly, XIT — B—IXT

Yy =X"w+e, e~N(0,1I)

e This results in a standard linear regression problem
e O(n"3) scaling if done naively
« State of the art for many applications in biology

Lippert, Christoph, et al. "FaST linear mixed models for genome-wide association studies.” Nature Methods 8.10 (2011): 833-835.
Rakitsch, Barbara, et al. "A Lasso multi-marker mixed model for association mapping with population structure correction.”
Bioinformatics 29.2 (2013): 206-214.
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This talk: linear mixed model for binary classification

Goal: generalize the LMM paradigm to classification

Idea: probit regression model with correlated noise:

Y = sign(XiTw +€), e€~N(0,X)

Challenge: exact inference becomes intractable due to the nonlinearity

Solution: approximate inference (this talk)
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Deriving a loss function

For simplicity, assume V; :y; =1

Likelihood that all examples are correctly classified:

P(V; : y; =sign(X, w+¢)) = N(e X w, T)d"e
R
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Deriving a loss function

For simplicity, assume V; :y; =1

Likelihood that all examples are correctly classified:

P(V; : y; =sign(X, w+¢)) = N(e X w, T)d"e
R

Objective function: negative log likelihood + regularizer.

Define p(w) = X'w.

e . n 1 .
Lw) = —log [ N(gpu(w),X)d"e + Aollwll; Lasso regularizer:
R+ W—l .
\—,—/ =:£reg (w) Favors SparS]ty
=:£loss(w)
R
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Minimizing the loss function

Lw) = —log [ N(&pu(w),E)d" e + Ao||w|];
Ri _.Ereg(w)
=:[.l?’;(w)

Minimizing the objective function leads to two computational problems:

(i) intractable high-dimensional integral

(i1) the li-norm regularizer is not everywhere differentiable
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Minimizing the loss function

Lw) = —log [ N(gp(w),E)d" e+ lol|w|l;
Ri _.Ereg( )
=:[.l?’;(w)

Minimizing the objective function leads to two computational problems:

(i) intractable high-dimensional integral
Solution: Expectation Propagation (EP)

(i1) the li-norm regularizer is not everywhere differentiable
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Minimizing the loss function

Lw) = —log [ N(&p(w),E)d" e+ Aol|w|]]
R} s E::_g_( )
=:El?’;(w)

Minimizing the objective function leads to two computational problems:

(i) intractable high-dimensional integral
Solution: Expectation Propagation (EP)

(i1) the li-norm regularizer is not everywhere differentiable
Solution: Alternating Direction Method of Multipliers (ADMM)
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Minimizing the Likelihood Term

L(w) = -—log . N(ep(w),X)d" e + /\0||'w||%
h =:Lres (w)
=:£losa(w)
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Minimizing the Likelihood Term

Lw) = —log RHN(G;#(w),E)d"€+ Aol |wl[3
. —:Lres (w)
=:£loss(w)

pleln, ) = };6 R? N (€ 1, 5)

N(e;p, X)) dre
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Minimizing the Likelihood Term

1

L) = ~log | Nlepw),B)d" + Molfull
~——  =:Lrex(w)
— i )]

1le € lR"]N(eu,E)

3 —
p(€|ﬂa ) f|Rn (:' /.L, dn(:'
pp(w) = Epep(w),n) €,
Sp(w) = Epgelu).s) [(€ — pp(w)) (€ — pp(w)) ']
Ap = pp — p

Vw£IOSS(w) — Aluz—IX_r’
H(w) = —X[EZ Y2, —ApAp )Tt —27x T
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Minimizing the Likelihood Term

1

Cw) = —log [ Nlesuw).D)d% + dolull
~——  =:Lrex(w)
=)

1le € lR"]N(e'u,E)

3 —
p(€|p’7 ) fIRn 6 ,U, d’"’é
po(w) = Ep(eluw)m) le], < Still intractable
Sp(w) = Epgeuw).s) [(€ — pp(w))(€ — pp(w)) '] «— lintegrals. Need
Ay — approximate inference
H = fp — H
Vw£IOSS(,w) — A,LLE_IXT,
H(w) = —X[EZ Y2, —ApAp )Tt —27x T
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Minimizing the Likelihood Term

Lw) = —log [ N(&p(w),X)d" e + Aollwl|]
Ri Lree(w)
=:£loss(w)

1le € lR"]N(egu,E)

fan (€ p, X) dme
[J. Cunningham et. al., Gaussian
probabilities and EP, arxiv 2011. ]

We use Expectation Propagation to approximate p(€lp, )

by a Gaussian q(€:pq:2q) = N(& g, Xy)

Then: Hp = lg Yp= X
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Comparison to other methods

e The correlated probit model can be seen as a generalization of
various other models.

» We compared the performance gain over these methods in our
experiments.

Uncorrelated Probit: y = sign(X'w+¢€), €~ N(0,I), w ~ Laplace(.;\g)
GP classification: y = sign(f), f~ N(0,X(X))

LMM Lasso: y=X'w+e, €e~N(0,3), w~ Laplace(.;\g)
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Experiments (Simulated Data)

e Generate artificial data from the model
 Varied the amount of non-zero weights w;

« Compute accuracies for different levels of sparsity

100 Toy Experiment
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Experiments (TBC)

e Predict Tuberculosis based on gene expression levels. Tuberculosis data set:
Berry et. al., Nature 466, 2010.

» Confounding by populations structure.

100 AUCs in Tuberculosis Dataset
—$— correlated probit

B 4GP

90 + uncorrelated probit
v LMM-LASSO
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Experiments (TBC)

e Tuberculosis data set Tuberculosis data set:
Berry et. al., Nature 466, 2010.

e Correlate w with largest eigenvalue of X
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Conclusion and Outlook

 Algorithm for sparse feature selection in binary classification, where the
data are confounded
« Signals found by our model are less correlated with the confounders

« Improved prediction performances

e Future: employ scalable MCMC to sample from the posterior
» Data subsampling is possible

« problem: high-dimensional feature space dimensionality d.
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Thank you.
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