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Constraint-based Causal Learning
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How important is the choice of variables in

learning causal relationships? Would you have learnt the

same relationships if you had
chosen a subset of the
variables?



Maximal Ancestral Graphs

Maximal Ancestral Graphs

Capture the conditional independencies of the joint probability P over a set of variables under Causal Markov and Faithfulness

conditions

Directed edges denote causal ancestry.
Bi-directed edges denote confounding.

No directed cycles.

No almost directed cyclesA - B = -+ - C & B.

Are closed under marginalization.
« G=V,E)isaMAG, G[, = (V\L,E') is also a MAG.

Can also handle selection (not here).
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Partially Oriented Ancestral Graphs

Summarize pairwise features of a Markov equivalence class of MAGs.
Circles denote ambiguous endpoints.
Can be learnt from data using FCI.

FCI:

* Sensitive to error propagation.

* Order-dependent (if you change the order of variables in the data set you get a different result).

Extensions of FCI [4]:

* Order independent (iFCI) [1]: D causes E in all
* output does not depend on the order of the variables. Markov
* Conservative FCI (cFCl) [3]: equivalent
* Makes additional tests of independence for more robust orientations. MAGs
* Forgoes orientations that are not supported by all tests. A
* Majority rule (mFCI) [3]: \
* conservative FCl that orients ambiguous triplets based on CcC —» D—» E

majority of test results for each triplet. / 8 and C are either
B

confounded or B causes C




What happens when you marginalize out variables?
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What happens when you marginalize out variables?
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What happens when you marginalize out variables?
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Finding NAncp

A * (X,Y) € NAncp: X is not an ancestor of Y in all
MAGSs represented by P.

B\ /C * X has no potentially directed pathto Y.
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Finding NAncp

* (X,Y) € NAncp: X is not an ancestor of Y in all
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MAGs represented by P
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* X has no potentially directed path to Y.
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Finding NAncp
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Finding Ancp

A * (X,Y) € NAncp: Xis an ancestor of Y in all MAGs
represented by P.

PAG.

B\ /C * Take the transitive closure of directed edges in the

N 4— m 4+—— O



Finding Ancp

A A * (X,Y) € NAncp: Xis an ancestor of Y in all MAGs
represented by P.

PAG.

B\ /C * Take the transitive closure of directed edges in the

- (D,E),(D,F)
(E,F)

n4¢—m —— O
m <----0
[ ]

\A F



Finding Ancp

A A * (X,Y) € NAncp: Xis an ancestor of Y in all MAGs

/ \ represented by P.
B C B C
* Take the transitive closure of directed edges in the
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Finding Ancp

* (X,Y) € NAncp: Xis an ancestor of Y in all MAGs
represented by P.

A

A/ A\
B/ \ i . ;
\ / \ / Take the transitive closure of directed edges in the
PAG.

- (D,E),(D,F)
(E,F)

Some relations are
not so obvious!

M4¢—m 4—— T

A causes D in all
MAGSs repr. by P.



Finding Ancp

Theorem:
X If (X,Y) is not in the transitive closure of PAG P, X is an ancestor of Y if and
/ \ only if 3 UV, U#V such that:
1. There are uncovered potentially directed paths from X to Y via U and
U. .V Vin P, and
2. <U,X,V>is an unshielded definite non-collider in P.
/| Uncovered

« ¥ potentially
directed path
(every triplet is an
unshielded non-
collider).




Finding Ancp

A A~ * (X,Y) € NAncp: Xis an ancestor of Y in all MAGs

/ \ o represented by P.
B C B e
ot * Take the transitive closure of directed edges in the
\ / L PAG.
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Ambiguous relationships

A " If (X,Y) & Ancp U NAncp: Ambiguous
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Marginal Consistency

Under perfect statistical knowledge:

* Ancestral relations in the marginal are ancestral in
the original PAG (over V' \ L)
* Anc(P[,) € Anc(P)y\ (d=0, ==0)

* Non-ancestral relations in the marginal non-
ancestral in the original PAG (over V \ L)
* NAnc(P[,) € NAnc(P)y\,, (c=0, ~0)

marginal P[,
Anc N Anc
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©
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o

In reality:

* Ancestral relations in the marginal can be:
* non-ancestral in the original PAG (d).
* ambiguous in the original PAG ()

* Non-ancestral relations in the marginal can be:
* Ancestral in the original PAG (c).
* ambiguous in the original PAG ()

marginal P[,
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Experiments

* 50 DAGs of 20 variables.

* Graph density: 0.1 and 0.2.

e Continuous data sets with 1000 samples.

* 100 random marginals of 18 and 15 variables.

* Algorithms used (pcalg) [2]:
* FCI
* iFCI
* mFCl



Results (Ancestral relationships)

18 variables 15 variables

1
0 0

iFCI mFClI iFCI mFCI
1
0 .

iFCI mFCI iFCI mFCI

. Ancestral in marginal non- i ;
. Ancestral in both. g Ancestral in marginal

ancestral in original. ambiguous in original.



Results (Non Ancestral Relationships)

18 variables 15 variables
1
0 0
iFCI mFCl iIFCI mFCl
1 1
0 0
iFCI mFClI iFCI mFCl
. Non-Ancestral in both. Non-Ancestral in marginal, Non-Ancestral in marginal

ancestral in original. ambiguous in original.



Conclusions

* Constraint-based methods are sensitive to marginalization.

 Consistency of causal predictions drops for denser networks/smaller
marginals.

* Non-causal predictions are very consistent.
* Majority rule FCl outperforms other FCl variants.



Ranking based on marginal consistency

e Can you use marginal consistency to find more robust predictions?
* Are predictions that are frequent in the marginals more robust?

 Compare with bootstrapping.



Results

18 variables
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Conclusion/Future work

* Ranking by marginal consistency can help identify robust causal
predictions.

. Boots_tr)apping is more successful in ranking causal predictions (by a small
margin).

* Ranking by marginals can become much faster by caching tests of
independence.

e Try it for much larger data sets (number of variables).

* Combine with bootstrapping.

* Try to identify a marginal that maximizes marginal consistency.
* Try to identify a graph that is consistent for more marginals.
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