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Would you have learnt the 
same relationships if you had 
chosen a subset of the 
variables?

How important is the choice of  variables in 
learning causal relationships?



Maximal Ancestral Graphs
• Maximal Ancestral Graphs
• Capture the conditional independencies of the joint probability 𝑃 over a set of variables under Causal Markov and Faithfulness 

conditions

• Directed edges denote causal ancestry.

• Bi-directed edges denote confounding.

• No directed cycles.

• No almost directed cycles 𝐴 → 𝐵 → ⋯ → 𝐶 ↔ 𝐵.

• Are closed under marginalization.

• 𝐺 = 𝑉, 𝐸 is a MAG, 𝐺[𝐿 = 𝑉 ∖ 𝐿, 𝐸′ is also a MAG.

• Can also handle selection (not here).
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Partially Oriented Ancestral Graphs
• Summarize pairwise features of a Markov equivalence class of MAGs.
• Circles denote ambiguous endpoints.
• Can be learnt from data using FCI.

• FCI:

• Sensitive to error propagation.

• Order-dependent (if you change the order of variables in the data set you get a different result).

• Extensions of FCI [4]:

• Order independent (iFCI) [1]: 

• output does not depend on the order of the variables.

• Conservative FCI (cFCI) [3]:

• Makes additional tests of independence for more robust orientations.

• Forgoes orientations that are not supported by all tests.

• Majority rule (mFCI) [3]: 

• conservative FCI that orients ambiguous triplets based on

majority of test results for each triplet.
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What happens when you marginalize out variables?
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Finding 𝑁𝐴𝑛𝑐𝑃
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• (𝑋, 𝑌) ∈ 𝑁𝐴𝑛𝑐𝑃: 𝑋 is not an ancestor of 𝑌 in all 
MAGs represented by 𝑃.

• 𝑋 has no potentially directed path to 𝑌.

PAG 𝑃
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Some relations are 
not so obvious!

𝐴 causes 𝐷 in all 
MAGs repr. by 𝑃.



Finding 𝐴𝑛𝑐𝑃
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Theorem: 
If (X,Y) is not in the transitive closure of PAG P, X is an ancestor of Y if and 
only if ∃ U,V, U≠V such that:

1. There are uncovered potentially directed paths from X to Y via U and 
V in P, and

2. <U,X,V> is an unshielded definite non-collider in P.

Uncovered 
potentially 
directed path
(every triplet is an 
unshielded non-
collider).
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Ambiguous relationships
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• If  (𝑋, 𝑌) ∉ 𝐴𝑛𝑐𝑃 ∪ 𝑁𝐴𝑛𝑐𝑃: Ambiguous
relationship.

• If you marginalize out variables, (non) ancestral 
relationships can become ambiguous.
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In reality:

• Ancestral relations in the marginal can be:
• non-ancestral in the original PAG (d).
• ambiguous in the original PAG (e)

• Non-ancestral relations in the marginal can be:
• Ancestral in the original PAG (c).
• ambiguous in the original PAG (f)

Marginal Consistency
Under perfect statistical knowledge:

• Ancestral relations in the marginal are ancestral in 
the original PAG (over 𝑉 ∖ L)

• 𝐴𝑛𝑐 𝑃[𝐿 ⊂ 𝐴𝑛𝑐 𝑃 𝑉∖𝐿 (d=0, e=0)

• Non-ancestral relations in the marginal non-
ancestral in the original PAG (over 𝑉 ∖ L)

• 𝑁𝐴𝑛𝑐 𝑃[𝐿 ⊂ 𝑁𝐴𝑛𝑐 𝑃 𝑉∖𝐿 (c=0, f=0)
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Experiments

• 50 DAGs of 20 variables.

• Graph density: 0.1 and 0.2.

• Continuous data sets with 1000 samples.

• 100 random marginals of 18 and 15 variables.

• Algorithms used (pcalg) [2]:
• FCI

• iFCI

• mFCI



Results (Ancestral relationships)

Ancestral in both. 
Ancestral in marginal non-
ancestral in original. 

Ancestral in marginal 
ambiguous in original. 
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Results (Non Ancestral Relationships)

Non-Ancestral in both. 
Non-Ancestral in marginal, 
ancestral in original. 

Non-Ancestral in marginal 
ambiguous in original. 

density 0.1

density 0.2

18 variables 15 variables



Conclusions

• Constraint-based methods are sensitive to marginalization.

• Consistency of causal predictions drops for denser networks/smaller 
marginals.

• Non-causal predictions are very consistent.

• Majority rule FCI outperforms other FCI variants.

.



Ranking based on marginal consistency

• Can you use marginal consistency to find more robust predictions?

• Are predictions that are frequent in the marginals more robust?

• Compare with bootstrapping.



Results

18 variables 15 variables bootstrapping

density 0.1

density 0.2



Conclusion/Future work

• Ranking by marginal consistency can help identify robust causal 
predictions.

• Bootstrapping is more successful in ranking causal predictions (by a small 
margin).

• Ranking by marginals can become much faster by caching tests of 
independence.

• Try it for much larger data sets (number of variables).
• Combine with bootstrapping.
• Try to identify a marginal that maximizes marginal consistency.
• Try to identify a graph that is consistent for more marginals.
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