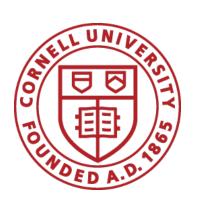
Causal Inference by Minimizing the Dual Norm of Bias

Nathan Kallus

Cornell University and Cornell Tech

www.nathankallus.com



Matching Zoo

- It's a zoo of matching estimators for causal effects:
 - PSM, NN, CM, CEM, GenMatch, Mean-Matching
- What are the inherent differences?
- What does it mean to match on covariates?
- This talk:
 - New classification: worst-case bias minimizing (WCBM)
 - Encompasses many existing methods
 - Reveals motivation as optimality for particular structure
 - Gives rise to new kernel matching estimators

Set-up

- tl;dr: measure SATT under unconfoundedness using a covariate-matched control sample
- Subjects i = 1, ..., n:
 - Two treatments: "treatment" $(T_i=1)$ & "control" $(T_i=0)$
 - $\mathcal{T}_0 = \{i : T_i = 0\}, \ \mathcal{T}_1 = \{i : T_i = 1\}$
 - Observe: covariates X_i , treatment T_i , and outcome $Y_i = Y_i(T_i)$
 - Unseen counterfactual potential outcomes $Y_i(0), Y_i(1)$
 - $X=(X_1,...,X_n), T=(T_1,...,T_n)$ are the whole sample
- Assume unconfounded:

$$\mathbb{E}[Y_i(t) \mid T_i, X_i] = \mathbb{E}[Y_i(t) \mid X_i], \ \mathbb{P}(T_i = t \mid X_i) > 0$$

Want to measure SATT:

SATT =
$$\frac{1}{n_1} \sum_{i \in \mathcal{T}_1} (Y_i(1) - Y_i(0))$$

Set-up

Estimate by making a matched control sample

$$\hat{\tau}_W = \frac{1}{n_1} \sum_{i \in \mathcal{T}_1} Y_i - \sum_{i \in \mathcal{T}_0} W_i Y_i$$

$$W_i \ge 0 \qquad \sum_{i \in \mathcal{T}_0} W_i = 1$$

- "Honest" weights W(T,X) that only depend on T,X
 - No causal effect mining allowed!
- Weight types:
 - General weights $\mathcal{W}_0^{\text{general}} = \{W_{\mathcal{T}_0} \in \mathbb{R}_+^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$
 - Matched subset w/o rep:

$$W_0^{\text{w/o rep.}} = \{W_{\mathcal{T}_0} \in \{0, 1/n_0'\}^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$$

– Matched multi-subset w/ rep:

$$\mathcal{W}_0^{\text{w/rep.}} = \{W_{\mathcal{T}_0} \in \{0, 1/n'_0, \dots\}^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$$

Decomposing Bias

- Define "bias" (misnomer more like error)
 - bias = $\mathbb{E}\left[\hat{\tau}_W \text{SATT}|X,T\right]$
- Let $f_0(x) = \mathbb{E}[Y_i(0) \mid X_i = x], \ \epsilon_i = Y_i(0) f_0(X_i)$

Theorem:
$$\hat{\tau}_W - \text{SATT} = B(W; f_0) + E(W)$$

$$B(W;f) := \frac{1}{n_1} \sum_{i \in \mathcal{T}_1} f(X_i) - \sum_{i \in \mathcal{T}_0} W_i f(X_i)$$

$$E(W) := \frac{1}{n_1} \sum_{i \in \mathcal{T}_1} \epsilon_i - \sum_{i \in \mathcal{T}_0} W_i \epsilon_i$$

And, under unconfoundedness,

$$\mathbb{E}[E(W) \mid X, T] = 0$$

$$\mathbb{E}[\hat{\tau}_W - \text{SATT} \mid X, T] = B(W; f_0)$$

Worst-Case Bias

- Under unconfoundedness, our bias is $B(W;f_0)$
- Involves an unknown function f_0
- Consider guarding against any possible such function
 - -B(W;f) scales linearly in f
 - Consider worst-case relative to a magnitude $||f|| \in [0, \infty]$
 - I.e., minimize

$$\max_f \frac{|B(W;f)|}{\|f\|}$$

Worst-Case Bias

- For worst-case bias to be well-defined, assume:
 - $\|\cdot\|$ is a semi-norm on $\mathcal{F} = \{f : \|f\| < \infty\}$
 - (implies F is a linear subspace)
 - $-\mathcal{F}/\{f:||f||=0\}$ forms a Banach space
 - (complete normed vector space)
 - Contrasts $f \mapsto B(W; f)$ are continuous maps for any W
 - (equivalently, $\exists M(W): B(W;f) \leq M(W) \|f\|$ since continuous operators on B space = bounded operators)
- The dual space \mathcal{F}^* = {continuous linear operators}
- Is a Banach space with norm $\|A\|_* = \sup_{\|f\| \le 1} A(f)$

Dual Norm of Bias

Dual norm of bias is the normalized worst-case bias:

$$\mathfrak{B}(W; \mathcal{F}) = \max_{f} \frac{B(W; f)}{\|f\|}$$

$$= \max_{\|f\| \le 1} B(W; f)$$

$$= \|B(W; \cdot)\|_{*}$$

Definition 1. A matching method W(T,X) is said to be worst-case bias minimizing (WCBM) if for some W and $\|\cdot\|$ satisfying assumptions we have

$$W(T,X) \in \arg\min_{W \in \mathcal{W}} \mathfrak{B}(W;\mathcal{F}) \neq \mathcal{W}.$$

Existing Methods as WCBM

- Surprising fact: most covariate-matching methods are WCBM!
- → Reveals structural motivations of different matching methods
 - Choose the method that matches your structural beliefs
- \Rightarrow WCBM is the *right* framework

Nearest-Neighbor Matching

- NNM: Find a control match for each treated unit and minimize the sum of pairwise distances per $\delta(x,x')$
 - Can be with or without replacement
 - Hansen, 2004 & 2006; Rubin, 1973; Cochran, 1953
 - Classically, not necessarily minimal sum of distances
- Usually, Mahalanobis

$$\delta(x, x') = \sqrt{(x - x')\hat{\Sigma}^{-1}(x - x')}$$

Nearest-Neighbor Matching

Theorem: Nearest neighbor matching wrt $\delta(x, x')$ with replacement is WCBM with

$$||f|| = \sup_{x \neq x'} \frac{f(x) - f(x')}{\delta(x, x')}$$

and either
$$\mathcal{W}_0 = \{W_{\mathcal{T}_0} \in \mathbb{R}_+^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$$

or $\mathcal{W}_0 = \{W_{\mathcal{T}_0} \in \{0, 1/n_1, \dots\}^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$

Nearest-Neighbor Matching

Theorem: Nearest neighbor matching wrt $\delta(x, x')$ without replacement is WCBM with

$$||f|| = \sup_{x \neq x'} \frac{f(x) - f(x')}{\delta(x, x')}$$

and either
$$\mathcal{W}_0 = \{W_{\mathcal{T}_0} \in [0, 1/n_1]^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$$

or $\mathcal{W}_0 = \{W_{\mathcal{T}_0} \in \{0, 1/n_1\}^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$

Caliper Matching

- CM: find smallest caliper size and pairs such that all pairwise distance can fit within the caliper
 - Raynor, 1983; Cochran & Rubin, 1973
 - Classically, not necessarily optimal caliper
 - When with replacement, (almost) same as NNM

Theorem: Caliper matching wrt $\delta(x, x')$ without replacement is WCBM with $||f|| = ||f||_{\partial(\hat{\mu}_n, \delta)}$ where

$$\|f\|_{\partial(\mu,\delta)} = \mathbb{E}_{\mu\otimes\mu}\left[rac{(f(x)-f(x'))}{\delta(x,x')}\mid x
eq x'
ight] \quad \text{and} \ \hat{\mu}_n \ \text{is the EDF}$$

And either
$$\mathcal{W}_0 = \{W_{\mathcal{T}_0} \in [0, 1/n_1]^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$$

or $\mathcal{W}_0 = \{W_{\mathcal{T}_0} \in \{0, 1/n_1\}^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$

Coarsened Exact Matching

- CEM: match exactly within each stratum, as defined by a coarsening function $C: \mathcal{X} \to \{1, \dots, M\}$
 - E.g., if there are 5 treated subjects and 3 control subjects in a given stratum then each of the control subjects is given weight proportional to 5/3 (weights sum to one)
 - lacus et al., 2011

Theorem: CEM with coarsening fn C is WCBM with

$$||f|| = \begin{cases} \sup_{x \in \mathcal{X}} |f(x)| & |f^{-1}(C^{-1}(j))| = 1 \,\forall j, \\ \infty & \text{otherwise,} \end{cases}$$

and
$$\mathcal{W}_0 = \{W_{\mathcal{T}_0} \in \mathbb{R}_+^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$$

Mean Matching

 MM: subsample the control population to have similar sample mean to treated population wrt

$$M_V(W) = \left\| V^{-1/2} \left(\frac{1}{n_1} \sum_{i \in \mathcal{T}_1} X_i - \sum_{i \in \mathcal{T}_0} W_i X_i \right) \right\|_2$$

- Rubin, 2012; Rubin, 1973; Greenberg, 1953
- Classically, not necessarily optimal

Theorem: Mean matching is WCBM with

$$||f||^2 = \begin{cases} \beta^T V \beta + \beta_0^2 & f(x) = \beta_0 + \beta^T x, \\ \infty & \text{otherwise.} \end{cases}$$

and
$$\mathcal{W}_0 = \{W_{\mathcal{T}_0} \in \{0, 1/n_1, \dots\}^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$$
 (w/ repl) or $\mathcal{W}_0 = \{W_{\mathcal{T}_0} \in \{0, 1/n_1\}^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$ (w/o repl)

Kernel Matching

- Most matching methods are WCBM
- Each corresponded to particular structure / functional space
- What about other spaces?
- In ML, reproducing kernel Hilbert spaces (RKHS) are very common for generalizing learned function
 - E.g. kernelized SVM, kernel ridge regression, kernel PCA, ...
- Via WCBM, kernels can be used for matching too!

Reproducing Kernel Hilbert Space

- HS = inner product space that is a Banach space
- RKHS = HS with continuous evaluations
- By Riesz representation theorem, PSD kernel $\mathcal{K}(x,x') \longleftrightarrow \mathsf{RKHS}$
 - Polynomial kernel $\mathcal{K}_s(x,x') = (1+x^Tx'/s)^s$
 - Spans polynomials $deg \leq s$ (finite-dim)
 - Exponential kernel $\mathcal{K}(x,x')=e^{x^Tx'}$
 - Infinite dimensional C₀-universal
 - Gaussian kernel $\mathcal{K}_s(x,x') = e^{-s^2 ||x-x'||^2}$
 - Infinite dimensional C₀-universal

Kernel Matching

• Kernel Gram matrix $K_{ij} = \mathcal{K}(X_i, X_j)$

Theorem:

$$\mathfrak{B}^{2}(W;\mathcal{F}) = \frac{1}{n_{1}^{2}} e_{n_{1}}^{T} K_{\mathcal{T}_{1},\mathcal{T}_{1}} e_{n_{1}} + W_{\mathcal{T}_{0}}^{T} K_{\mathcal{T}_{0}\mathcal{T}_{0}} W_{\mathcal{T}_{0}} - \frac{2}{n_{1}} e_{n_{1}}^{T} K_{\mathcal{T}_{1},\mathcal{T}_{0}} W_{\mathcal{T}_{0}}$$

- Minimize over different domains
 - → different matching methods

Kernel Matching

General weight kernel matching

$$\mathcal{W}_0 = \{ W_{\mathcal{T}_0} \in \mathbb{R}_+^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1 \}$$

Discrete kernel matching with replacement

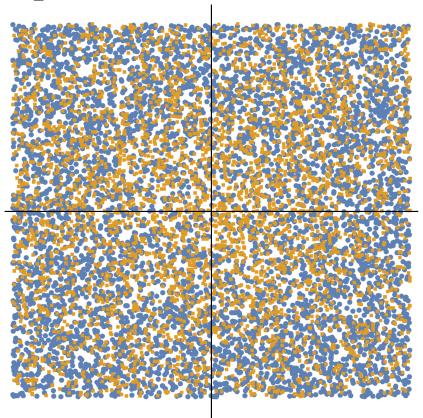
$$\mathcal{W}_0 = \{W_{\mathcal{T}_0} \in \{0, 1/n_1, \dots\}^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$$

Discrete kernel matching without replacement

$$\mathcal{W}_0 = \{W_{\mathcal{T}_0} \in \{0, 1/n_1\}^{\mathcal{T}_0} : \sum_{i \in \mathcal{T}_0} W_i = 1\}$$

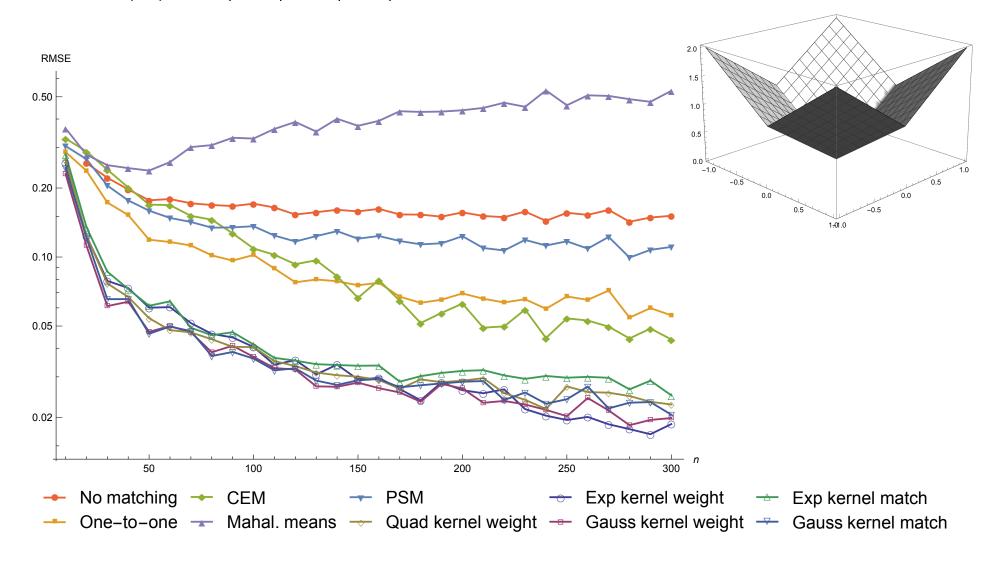
Numerics

- Hypothetical observational study
- $X_i \in \mathbb{R}^2$ distributed uniformly on $[-1, 1]^2$
- $T_i \sim \text{Bernoulli}(0.8/(1+\sqrt{2}\|X_i\|_2))$
- $Y_i(0) = f_0(X_i) + \epsilon_i$
- $\epsilon_i \sim \mathcal{N}(0, 0.1)$
- Various forms for f_0
- Measure RMSE



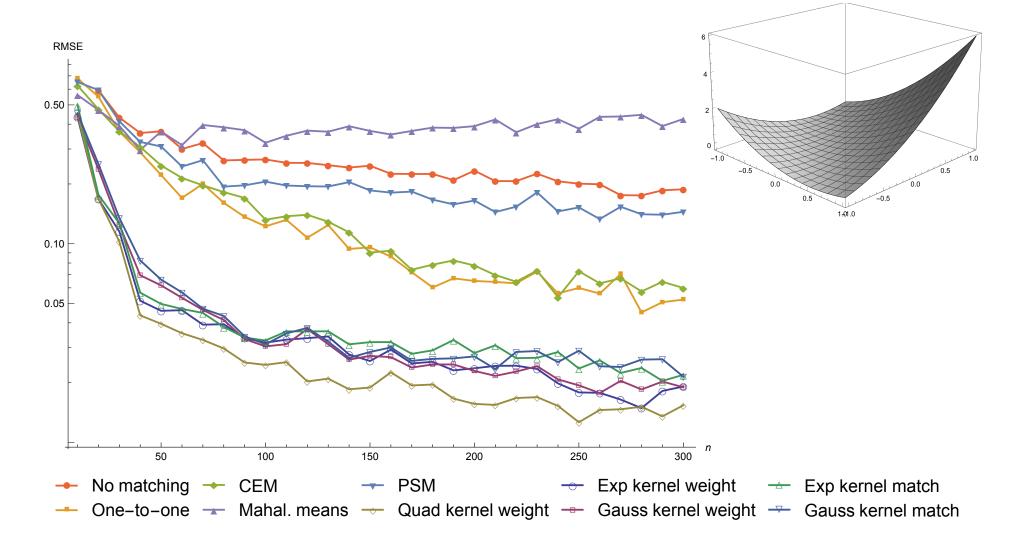
Numerics: L1 norm

$$f_0(x) = |x_1| + |x_2|$$



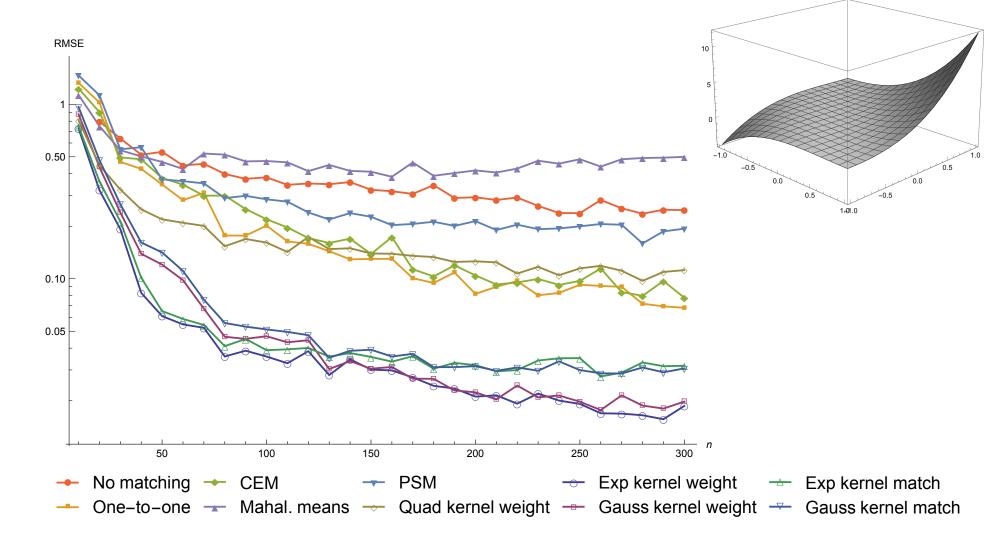
Numerics: quadratic

$$f_0(x) = (x_1 + x_2) + (x_1 + x_2)^2$$



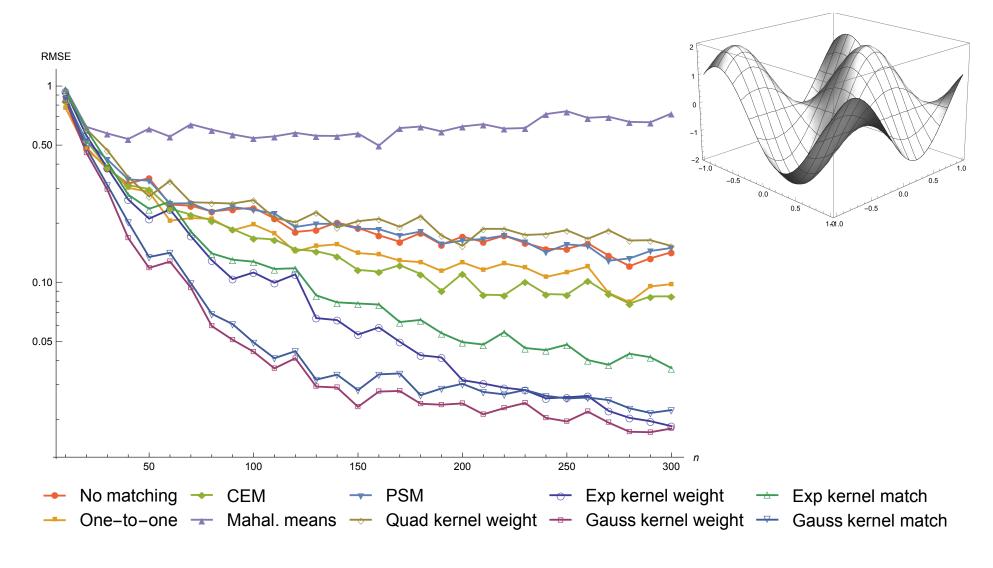
Numerics: cubic

$$f_0(x) = (x_1 + x_2)^2 + (x_1 + x_2)^3$$



Numerics: sinusoidal

$$f_0(x) = \sin(\pi(x_1 + x_2)) + \cos(\pi(x_1 - x_2))$$



... huh?

- WCBM offers a general framework for matching estimators
- Structure → imbalance metric and matching methods that minimize imbalance
- This recovers existing matching methods and uncovers structural underpinnings
- New methods: kernel matching