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Matching Zoo

It’s a zoo of matching estimators for causal effects:

PSM, NN, CM, CEM, GenMatch, Mean-Matching

What are the inherent differences?

What does it mean to match on covariates?

This talk:

New classification: worst-case bias minimizing (WCBM)
Encompasses many existing methods
Reveals motivation as optimality for particular structure

Gives rise to new kernel matching estimators



Set-up

tl;dr: measure SATT under unconfoundedness using a
covariate-matched control sample

Subjects i =1, ..., n:
— Two treatments: “treatment” (7;=1) & “control” (T;=0)
— Observe: covariates X;, treatment 7}, and outcome Y,=Y,(T))

* Unseen counterfactual potential outcomes Y;(0), Y (1)
e X=(X;....,X,), T=(T},...,T,) are the whole sample

Assume unconfounded:
ElY;(¢) | Ti, Xi] = E[Y;(¥) | Xi], P(T; =¢] X;) >0
Want to measure SATT:
SATT = - e, (Yi(1) — Y;(0))
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Set-up

* Estimate by making a matched control sample
Tw = n% Zz‘eﬂ Y — ZiETO WsY;
W; >0 ZieTo W;=1
* “Honest” weights W (T, X) that only depend on T, X
— No causal effect mining allowed!
 Weight types:
— General weights W5 = {Wr, e R] : 3, W; = 1}
— Matched subset w/o rep:
Wy /o TP = (W € {0, 1/mp} 0 3y Wi = 1}
— Matched multi-subset w/ rep:
Wyl P = (W € {0,1/nfy, .. .} S, 0r Wi =1}



Decomposing Bias

e Define “bias” (misnomer — more like error)
bias = E |7y — SATT| X, T
e Let fo(z) = E[Y;(0) | X; = x|, ¢ = Yi(0) — fo(Xi)

Theorem: 7y — SATT = B(W; fo) + E(W)
B(W; f) = ,,%1 Zieﬂ f(Xi) — ZieTO Wi f(X:)
E(W) = n% DieTi € — 2iety, Wit

And, under unconfoundedness,

EE(W)| X, T] =0

E|7w — SATT | X,T] = B(W; fo)




Worst-Case Bias

* Under unconfoundedness, our bias is B(W; fy)
* Involves an unknown function fo

* Consider guarding against any possible such function
— B(W:; f) scales linearly in f
— Consider worst-case relative to a magnitude||f|| € |0, o]

— l.e., minimize

| B(W;.f)]
AR T




Worst-Case Bias

 For worst-case bias to be well-defined, assume:
— ||| isa semi-norm on F = {f : || f|| < oo}

e (implies F is a linear subspace)

— F/A{f : ||fl| = 0} forms a Banach space

* (complete normed vector space)

— Contrasts f — B(W; f) are continuous maps for any W

* (equivalently, IM (W) : B(W; f) < M(W) || f|]
since continuous operators on B space = bounded operators)

e The dual space F* = {continuous linear operators}
e |s a Banach space with norm ||4]|, = SUP| rl1<1 A(f)



Dual Norm of Bias

* Dual norm of bias is the normalized worst-case bias:

B(W;F) =maxy B(||V][”/|if)

= max <1 B(W; f)
|B(W;-)

I,

Definition 1. A matching method W (T, X) is said to be worst-case bias min-
imizing (WCBM) if for some W and ||-|| satisfying assumptions we have

W(T, X) € argminyew B(W;F) #W.



Existing Methods as WCBM

e Surprising fact:
most covariate-matching methods are WCBM!

e — Reveals structural motivations of different
matching methods

— Choose the method that matches your structural beliefs

e = WCBM is the right framework



Nearest-Neighbor Matching

e NNM: Find a control match for each treated unit and
minimize the sum of pairwise distances per §(z,z’)

— Can be with or without replacement
— Hansen, 2004 & 2006; Rubin, 1973; Cochran, 1953

— Classically, not necessarily minimal sum of distances

e Usually, Mahalanobis
O(x,z") = \/(:13 — )Nz — 2




Nearest-Neighbor Matching

Theorem: Nearest neighbor matching wrt 6(z, z') with
replacement is WCBM with

| £l = sup, . 25525

and either Wy = {Wp, e RP° : 3, - W; =1}
or Wy = {WTO €1{0,1/n1,.. }TO : ZzET =1}




Nearest-Neighbor Matching

Theorem: Nearest neighbor matching wrt 6(x, z")
without replacement is WCBM with

|f1| = sup, . 255

and either Wy = {Wy, € [0,1/n1]70 : >, . Wi =1}
or W = (Wi, € {0, 1/m ) - S We = 1)




Caliper Matching

 CM: find smallest caliper size and pairs such that all
pairwise distance can fit within the caliper
— Raynor, 1983; Cochran & Rubin, 1973
— Classically, not necessarily optimal caliper

— When with replacement, (almost) same as NNM

Theorem: Caliper matching wrt 0(z, z") without
replacement is WCBM with || f{| = || fl5,, 5y Where

1 Flla¢.6) = Enen [“%g;;;f;@’» |z # az} and /i, is the EDF

And either Wy = {Wy, € [0,1/n4]7° : >0, Wi = 1}
or Wy = {Wr, € {0,1/n1}7 - ZzET =1}




Coarsened Exact Matching

 CEM: match exactly within each stratum, as defined
by a coarsening function C : X — {1,..., M}
— E.g., if there are 5 treated subjects and 3 control subjects

in a given stratum then each of the control subjects is
given weight proportional to 5/3 (weights sum to one)

— lacus et al., 2011

Theorem: CEM with coarsening fn C is WCBM with
= { Sopeen @1 17O =1

o0 otherwise,

and Wy = {Wz, eR[° : 3, - W; = 1}




Mean Matching

e MM: subsample the control population to have
similar sample mean to treated population wrt

My (W _HV 1/2( DieT, Xi— ZzETWX) ,

— Rubin, 2012; Rubin, 1973; Greenberg, 1953

— Classically, not necessarily optimal

Theorem: Mean matching is WCBM with
o | B'VB+B f(x) =Po+ B,
IF1P=1 7

otherwise.
and Wy = {Wr, €{0,1/n4,...}7°: ZZGT =1} (w/ repl)
or Wo = {Wry, €{0,1/n1}70 : >, o W; = 1} (w/o repl)




Kernel Matching

Most matching methods are WCBM

Each corresponded to particular structure /
functional space

What about other spaces?

In ML, reproducing kernel Hilbert spaces (RKHS) are
very common for generalizing learned function

— E.g. kernelized SVM, kernel ridge regression, kernel PCA, ...
Via WCBM, kernels can be used for matching too!



Reproducing Kernel Hilbert Space

 HS =inner product space that is a Banach space
e RKHS = HS with continuous evaluations

* By Riesz representation theorem,
PSD kernel K(z,z") < RKHS

— Polynomial kernel K(z,2') = (1 +2'2'/s)*
* Spans polynomials deg < s (finite-dim)

/
ZCTCU

— Exponential kernel K(z,2") = e
e Infinite dimensional Co-universal

2
/
—s*||e—a|]

. /
— Gaussian kernel Kq(z,2") =e
* Infinite dimensional Cp-universal



Kernel Matching

* Kernel Gram matrix K;; = K(X;, X)

Theorem:
%Q(WQ'F) — %eglKTl,Tlenl + W%)K%%W% — 2T K7 7Wrg

niy Ni

* Minimize over different domains
— different matching methods




Kernel Matching

* General weight kernel matching

Wo = {Wr e R : 3, Wi =1}
* Discrete kernel matchmg with replacement
Wo = {Wr, E{O,l/nl,...}TO :ZzeT ; =1}

* Discrete kernel matching without replacement
Wo = {Wr, €{0,1/n1}7° : 3, Wi =1}



Numerics

Hypothetical observational study

X; € R? distributed uniformly on [-1, 1]?
T; ~ Bernoulli(0.8/(1 + v/2 | X;]|,))

Yi(0) = fo(Xi) + € '
e; ~N(0,0.1)
Various forms for fo
Measure RMSE




Numerics: L1 norm

fo(z) = |z1] + |22

RMSE
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Numerics: quadratic

fQ(ZL‘) — (561 + ZCQ) + (561 + ZE2)2
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Numerics: cubic

fo(x) = (x1 + 22)% + (21 + 22)°
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Numerics: sinusoidal

fo(x) = sin(m(x1 + x2)) + cos(m(x1 — x2))
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... huh?

WCBM offers a general framework for matching
estimators

Structure — imbalance metric and matching
methods that minimize imbalance

This recovers existing matching methods and
uncovers structural underpinnings

New methods: kernel matching



