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Dynamical form

What do these systems have in common?
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The traditional view

Dynamical form is either a secondary consideration or a modeling
assumption.

gather data from a single system
(choose a model to parameterize the system)
fit a function to particular trajectories or fit a transfer function
only after the fact, consider classifying dynamical form
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The advantages of directly discerning dynamical kinds

Helpful to know if two or more systems of causally connected variables
have the same dynamical form:

could tell if a system exhibits distinct dynamical regimes
could validate complex computer models
data from multiple experiments can be pooled prior to model selection
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What it takes to find kinds

Two requirements:

1 a rigorous definition of dynamical kind
2 an empirical test for sameness of dynamical kind
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Dynamical symmetry

Definition (Dynamical symmetry)
Let V be a set of variables. Let σ be an intervention on the variables in
Int ⊂ V . The transformation σ is a dynamical symmetry with respect to
some index variable X ∈ V − Int if and only if σ has the following
property: for all xi and xf , the final state of the system is the same
whether σ is applied when X = xi and then an intervention on X makes it
such that X = xf , or the intervention on X is applied first, changing its
value from xi to xf , and then σ is applied.

B. Jantzen (VT) June 29, 2016 9 / 36



Example: Pressure and additive symmetry

p1 :=p1 (1)
p2 :=p1 + ρgh (2)

p1 p2 h

P P 0
P + c P + c 0
P + c P + c + ρghf hf

p1 p2 h

P P 0
P P + ρghf hf
P + c P + c + ρghf hf
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Dynamical symmetry with respect to time

Definition (Dynamical symmetry with respect to time)
Let t be the variable representing time, and let V be a set of additional
dynamical variables such that t /∈ V . Let σ be an intervention on the
variables in Int ⊂ V . The transformation σ is a dynamical symmetry with
respect to time if and only if for all intervals ∆t, the final state of the
system is the same whether σ is applied at some time t0 and the system
evolved until t0 + ∆t, or the system first allowed to evolve from t0 to
t0 + ∆t and then σ is applied.
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Example: Scaling and exponential growth
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A focus on temporal dynamics

Algorithm described assumes (noisy) data decribing desterministic
systems that change through time.

Symmetries of differential equations in time familiar from physics.
Can be relaxed – nothing special about this sort of dynamics.
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Symmetry structure

Definition (Symmetry structure:)
The symmetry structure of a collection of dynamical symmetries,
Σ = {σi |i = 1, 2, . . . } is given by the composition function ◦ : Σ×Σ→ Σ.
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Dynamical kind

Definition (Dynamical kind)
Two systems are of the same dynamical kind (same dynamical form) iff
they have the same symmetry structure.
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Overview

1 collect data for target variable(s) as a function of time, before and
after intervention

2 transform the data to build polynomial models of dynamical
symmetries

3 compare symmetries
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Phase 1: Sampling
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Phase 2: Transformation


t x

t0 a00
t1 a10
t2 a20
...

...




t x̃

t0 b00
t1 b10
t2 b20
...

...


w�

〈 
x x̃

a00 b00
a10 b10
a20 b20
...

...


〉
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Phase 2: Transformation


t v0 v1

t0 a00 a01
t1 a10 a11
t2 a20 a21
...

...
...




t v0 v1

t0 b00 b01
t1 b10 b11
t2 b20 b21
...

...
...


w�

〈 
v0 v1 ṽ0

a00 a01 b00
a10 a11 b10
a20 a21 b20
...

...
...

,


v0 v1 ṽ1

a00 a01 b01
a10 a11 b11
a20 a21 b21
...

...
...


〉
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Phase 3: Comparison

1 Use 10-fold cross-validation to estimate the error of two models:

separate model – one which assumes the systems are of different
dynamical kinds and fits separate polynomials to the symmetries of
each
joint model – one which assumes the systems are of the same
dynamical kind and pools the data for each initial condition before
fitting the symmetries with polynomials

2 Compare the error of the two models:

If errorjoint >> errorseparate then conclude they are different types;
Else, conclude they are the same dynamical kind.

B. Jantzen (VT) June 29, 2016 21 / 36



Phase 3: Comparison

1 Use 10-fold cross-validation to estimate the error of two models:
separate model – one which assumes the systems are of different
dynamical kinds and fits separate polynomials to the symmetries of
each

joint model – one which assumes the systems are of the same
dynamical kind and pools the data for each initial condition before
fitting the symmetries with polynomials

2 Compare the error of the two models:

If errorjoint >> errorseparate then conclude they are different types;
Else, conclude they are the same dynamical kind.

B. Jantzen (VT) June 29, 2016 21 / 36



Phase 3: Comparison

1 Use 10-fold cross-validation to estimate the error of two models:
separate model – one which assumes the systems are of different
dynamical kinds and fits separate polynomials to the symmetries of
each
joint model – one which assumes the systems are of the same
dynamical kind and pools the data for each initial condition before
fitting the symmetries with polynomials

2 Compare the error of the two models:

If errorjoint >> errorseparate then conclude they are different types;
Else, conclude they are the same dynamical kind.

B. Jantzen (VT) June 29, 2016 21 / 36



Phase 3: Comparison

1 Use 10-fold cross-validation to estimate the error of two models:
separate model – one which assumes the systems are of different
dynamical kinds and fits separate polynomials to the symmetries of
each
joint model – one which assumes the systems are of the same
dynamical kind and pools the data for each initial condition before
fitting the symmetries with polynomials

2 Compare the error of the two models:

If errorjoint >> errorseparate then conclude they are different types;
Else, conclude they are the same dynamical kind.

B. Jantzen (VT) June 29, 2016 21 / 36



Phase 3: Comparison

1 Use 10-fold cross-validation to estimate the error of two models:
separate model – one which assumes the systems are of different
dynamical kinds and fits separate polynomials to the symmetries of
each
joint model – one which assumes the systems are of the same
dynamical kind and pools the data for each initial condition before
fitting the symmetries with polynomials

2 Compare the error of the two models:
If errorjoint >> errorseparate then conclude they are different types;

Else, conclude they are the same dynamical kind.

B. Jantzen (VT) June 29, 2016 21 / 36



Phase 3: Comparison

1 Use 10-fold cross-validation to estimate the error of two models:
separate model – one which assumes the systems are of different
dynamical kinds and fits separate polynomials to the symmetries of
each
joint model – one which assumes the systems are of the same
dynamical kind and pools the data for each initial condition before
fitting the symmetries with polynomials

2 Compare the error of the two models:
If errorjoint >> errorseparate then conclude they are different types;
Else, conclude they are the same dynamical kind.

B. Jantzen (VT) June 29, 2016 21 / 36



Outline

1 Introduction

2 Theoretical background

3 The algorithm

4 Performance of the algorithm

5 Stochastic causation

6 Conclusions

B. Jantzen (VT) June 29, 2016 22 / 36



Simulated data

1 Generalized logistic growth:
ẋ = rx

(
1− x

K

)
vs. ẋ = rx

(
1−

(
x
K

)β)

Symmetries (β = 1): σp(x∆t ) = Kx
(1−e−p)x+e−pK

2 Two-species Lotka-Volterra competition:

ẋ1 = r1x1 (1− (x1 + α12x2)/K1)

ẋ2 = r2x2 (1− (x2 + α21x1)/K2)

Symmetries: f (r2/r1)
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ẋ1 = r1x1 (1− (x1 + α12x2)/K1)
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vs. ẋ = rx

(
1−

(
x
K

)β)
Symmetries (β = 1): σp(x∆t ) = Kx

(1−e−p)x+e−pK

2 Two-species Lotka-Volterra competition:
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Accuracy: single dependent variable
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(a), (b) generalized logistic growth, different dynamical kinds

(c) accuracy discerning different kinds

(d), (e) generalized logistic growth, same dynamical kind

(f) accuracy detecting similarity of kind
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Accuracy: two dependent variables

0.0 0.2 0.4 0.6 0.8 1.0
time

0
20
40
60
80

100
120
140
160
180

p
o
p
u
la

ti
o
n

(a)

0.0 0.2 0.4 0.6 0.8 1.0
time

0
20
40
60
80

100
120
140
160

p
o
p
u
la

ti
o
n

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r2/r1

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

(c)

0.0 0.2 0.4 0.6 0.8 1.0
time

0
20
40
60
80

100
120
140
160
180

p
o
p
u
la

ti
o
n

(d)

0.0 0.2 0.4 0.6 0.8 1.0
time

0
20
40
60
80

100
120
140
160
180

p
o
p
u
la

ti
o
n

(e)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
r1

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

(f)

(a), (b) Lotka-Volterra competition, different dynamical kinds

(c) accuracy discerning different kinds

(d), (e) Lotka-Volterra competition, same dynamical kind

(f) accuracy detecting similarity of kind
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Noise and normality
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(a) Accuracy as a function of standard deviation of normally distributed noise for
logistic growth models.

(b) Accuracy as a function of the α-parameter of the skew normal distribution for
logistic growth systems.

(c) Accuracy versus standard deviation of normally distributed noise for
two-species Lotka-Volterra systems.

(d) Accuracy versus α for Lotka-Volterra systems.
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Dynamical symmetry

Definition (Dynamical symmetry)
Let V be a set of variables. Let σ be an intervention on the variables in
Int ⊂ V . The transformation σ is a dynamical symmetry with respect to
some index variable X ∈ V − Int if and only if σ has the following
property: for all xi and xf , the final probability distribution over V is the
same whether σ is applied when E [X ] = xi and then an intervention on X
makes it such that E [X ] = xf , or the intervention on X is applied first,
changing its expected value from xi to xf , and then σ is applied.
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The two variable case

Suppose

x :=x + ε

y :=f (x ; y0) + η

where
f (x0; y0) = y0

p(x , y) = px(x)pη(y |x) = px(x)pη(y − f (x ; y0))

To satisfy the symmetry condition for transformation, σ, must have:

p(x0 + δx)pη(y − f (x0 + δ;σ(y0))) = p(x0 + δ)pη(y − σ(f (x0 + δ; y0)

f (x0 + δ;σ(y0))) = σ(f (x0 + δ; y0)
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Recasting the logistic growth example

x :=x + ε

x∆t(x ; y0) :=
(K − x0)y0x

(K − y0)x0 + (y0 − x0)x

where y0 = x∆t(x0).

Symmetry condition:

σ(x∆t(x0 + δ; y0) = x∆t(x0 + δ;σ(y0))

σp(x∆t ) =
Kx

(1− e−p)x + e−pK
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Summary

It is possible to directly assess sameness of dynamical kind.

Can be done with no prior knowledge or assumptions about the
underlying dynamics.
Method relies on comparing information about dynamical symmetries
implicit in sets of trajectories.

The algorithm presented is accurate and robust under noise and
variation of the underlying error distribution.
The algorithm presented can be extended to stochastic causation.
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Automated discovery

The algorithm presented is a key component of fully automated
discovery.

Most kinds are useless for finding law-like regularities.
Dynamical kinds are almost guaranteed to be rich in such regularities.
Comparing sameness of dynamical kind is critical for automatically
choosing a domain for scientific investigation.
The EUGENE project is aimed at automating this and other
components of scientific inference that have resisted algorithmic
solution.
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