Split-door criterion for causal identification: Natural experiments with testable assumptions

Amit Sharma, Jake M. Hofman, Duncan J. Watts Microsoft Research, New York amshar@microsoft.com, jmh@microsoft.com, duncan@microsoft.com

NATURAL EXPERIMENTS RELY ON UNTESTABLE ASSUMPTIONS

Canonical causal inference problem

Estimate the effect of cause *X* on outcome *Y* using observational data.

Natural experiments are a popular way of estimating the effect of X on Y. For example, using Z as an auxiliary instrumental variable.

However, assumptions for valid identification are untestable:

- Exclusion: Z does not directly cause Y, except through X
- As-if-random: Z is not caused by the unobserved confounders U.

SPLIT-DOOR: USING ADDITIONAL DATA TO REMOVE CONFOUNDING

Split-door criterion: Y split up as $Y_R + Y_D$

If X, Y_R and Y_D are random variables generated by the process shown in the above graphical model, then $X \perp \!\!\! \perp \!\!\! Y_D$ implies that the effect of X on Y is not confounded by U_Y .

Assumptions

- * Connectedness: Any unobserved confounder U_{Υ} that causes both X and Y_R also causes Y_D and the causal effect of such U_{Υ} on Y_D cannot be zero.
- $^{\circ}$ Statistical Independence: If X and Y $_{D}$ are statistically independent, then they are also causally independent in the graphical model.

Causal estimate: P(Y|do(X = x)) = P(Y|X = x).

ALGORITHM FOR FINDING NATURAL EXPERIMENTS

Assume X, Y_R and Y_D are observational time-series. Divide the data into equally-spaced time-intervals *t*.

Split-door algorithm

For each time interval t,

- Check X LY_D using an empirical independence test, such as mutual information.
- If $X \coprod Y_D$, then use the observed conditional probability P(Y | X = x) to estimate the causal effect in the interval t.
- Average over all time-intervals where X ⊥ Y_D to obtain the mean causal effect of X on Y.

HOW DOES SPLIT-DOOR COMPARE WITH OTHER IDENTIFICATION STRATEGIES?

Weaker assumptions than instrumental variables.

Instrumental Variable	Split-door criterion
Assumption: $Z \perp\!\!\!\perp Y \mid X, U$ and $Z \perp\!\!\!\perp U$.	Assumption: $Y_D \not\sqsubseteq U$ for each confounder U.
Requires independence between observed and unobserved variables.	Requires dependence between observed and unobserved variables.
Best suited for arguably randomized Z.	Best suited for time-series data.

Generalizes notion of a large, sudden shock in time-series data.

Shock-IV criterion	Split-door criterion
Assumption: YD Ł U	Assumption: Y _D Ł U
Criterion: X has a large, sudden spike and Y_D is constant w.r.t. time.	Criterion: X L Y _D . More general, admits diverse variations in data.

Provides control for data selection, rather than conditioning on observed variables.

Back-door criterion	Split-door criterion
Assumption: Y_D is a perfect proxy for U. Constant Y_D => Constant U	Assumption: $Y_D \not \! \! \perp U$ for each confounder U.
Unlikely to be true, because U may have unknown confounders.	Plausible assumption when $Y^{}_{\rm D}$ and $Y^{}_{\rm R}$ are components of same Y.

APPLICATION: CAUSAL IMPACT OF A RECOMMENDER SYSTEM

Observational log data

Anonymized toolbar logs for *Amazon.com*

- Dates: September 2013 to May 2014.
- 23.4 million visits by 2.1 million users.
- 1.38 million unique products.

Restrict analysis to products with at least 10 page views on any single day during the nine month period.

• Filtered set: over 22,000 products.

Causal question

How much traffic does the recommender system cause that would not have happened in its absence?

X: Visits to focal product's webpage.

 $\mathbf{Y}_{\mathbf{R}} :$ Number of click-throughs from focal to recommended product.

 $\mathbf{Y}_{\mathbf{D}}$: Direct search visits to recommended product.

FINDING NATURAL EXPERIMENTS

Use t=15 days and Fisher's exact test for checking independence of X and $Y_{\rm D}.\,$

NAÏVE CTR OVERESTIMATES EFFECT OF RECOMMENDATIONS

DISCUSSION: DATA-DRIVEN IDENTIFICATION STRATEGIES

- Split-door criterion allows us to find natural experiments for 12K products, over half of all products.
- Distribution of products that satisfy Split-door criterion similar to overall distribution of products w.r.t. page visits, and product category.

Data-driven strategies hold promise as more finegrained data becomes available.

REFERENCES

- Instrumental variable: Angrist, Joshua D., and Jörn-Steffen Pischke. Mostly harmless econometrics: An empiricist's companion. Princeton University Press, 2008.
- Shock-IV criterion: Sharma, Amit, Jake M. Hofman, and Duncan J. Watts.
 Estimating the causal impact of recommendation systems from observational data. Proc. Sixteenth ACM Conference on Economics and Computation. ACM, 2015.
- Back-door criterion: Pearl, Judea. Causality. Cambridge University Press, 2009.