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Abstract

We consider the problem of estimating causal ef-
fects from observational data and propose a novel
framework for matching- and weighting-based
causal estimators. The framework is based on
expressing the bias of a causal estimator as an
operator on the unknown conditional expectation
function of outcomes and formulating the dual
norm of the bias as the norm of this operator
with respect to a function space that represents
the potential structure for outcomes. We give
the term worst-case bias minimizing (WCBM) to
estimators that minimize this quantity for some
function space and show that a great variety of
existing causal estimators belong to this fam-
ily, including one-to-one matching (with or with-
out replacement), coarsened exact matching, and
mean-matched sampling. We propose a range of
new, kernel-based matching and weighting esti-
mators that arise when one minimizes the dual
norm of the bias with respect to a reproducing
kernel Hilbert space. Depending on the case,
these estimators can be solved either in closed
form, using quadratic optimization, or using in-
teger optimization. We show that estimators
based on universal kernels are consistent for the
causal effect. In numerical experiments, the new,
kernel-based estimators outperform all standard
causal estimators in estimation error, providing
a successful balance between generality and effi-
ciency.

1 Introduction

Compared to controlled experiments, observational studies
are uniquely characterized by a lack of control on mem-
bership in the treatment and control groups. While in con-
trolled experimentation, randomization ensures compara-
bility and hence unbiased and consistent estimation of ef-

fect; in observational studies, valid inference about a causal
effect of treatment requires adjusting the groups so that
they become comparable. Comparable for the purpose of
causal inference means as similar as possible in some ob-
served covariates. The covariates constitute the relevant
information known about each observational subject and,
as long as these covariates account for any confounding
between the effects of treatment and the effects of self-
selection, making the groups comparable with respect to
these makes the groups comparable for the purpose of
causal inference.

Matching and weighting have been some of the most popu-
lar ways to achieve this comparability [6, 32, 44]. In match-
ing, we sample a (multi-)subset from the groups to get sam-
ples that are more similar to one another than the original
samples. For example, in one-to-one matching [31], one
composes a matched sample out of pairs of treated and con-
trol subjects so that the total pairwise distance between co-
variate vectors is small or even minimal, mimicking a ran-
domized matched-pair experiment [14]. If we allow sub-
jects to be paired with replacement, we can have a sample
with duplicates. Weighting is a generalization where we
can assign weights that are not integer multiples. For exam-
ple, in coarsened exact matching (CEM) [19], one coarsens
the covariates to create strata and re-weights the samples so
that they have equal frequency in each stratum, mimicking
a randomized block experiment [9].

Matching and weighting is employed for two purposes: (a)
to reduce error due to confounding and (b) to reduce er-
ror due to imbalance. In a controlled experiment, (a) is
achieved by randomization and (b) is achieved by, e.g.,
blocking (see [21] for more about balance in controlled ex-
periments). For example, in an experiment on the effect
of a drug on mortality, a randomized block design that en-
sures balance in important covariates such as age is gener-
ally more powerful than a completely randomized design,
while both are unbiased (unconfounded). In observational
studies, a very popular matching method to achieve (a) is
propensity score matching (PSM) [33]. However, because
it does nothing toward purpose (b) and because it depends



on strong modelling assumptions to fit a correct propen-
sity model, it is sometimes advocated that one match on
the covariates themselves rather than estimated propensity
scores [22]. A related weighting method is propensity score
weighting (PSW) [15]. However, it too does nothing to-
ward (b) and relies on strong modelling assumptions. Even
if the model is correct, the estimated weights can be very
unstable leading to a practice of ad hoc trimming, which
may re-introduce confounding bias [8, 7]. Here, partly for
these reasons, we focus on matching and weighting that
address both (a) and (b) by balancing the covariates them-
selves rather than imputed estimates of propensities.

In this paper, we develop a novel and encompassing frame-
work for estimators that balance the covariates via weight-
ing and matching. There are many different such estima-
tors and each addresses imbalance differently. Our frame-
work teases out how a particular notion of imbalance cor-
responds to a notion of structure. By decomposing the er-
ror of matching and weighting estimators, we formulate the
bias of the estimator as an operator on the conditional ex-
pectation of outcomes given covariates. This conditional
expectation function is unknown (or else there would be
no need to experiment) and when one considers what the
worst-case bias may be over a space of possible such func-
tions one recovers the dual norm of the bias if the space is
a Banach space. The dual norm of the bias is an observable
quantity, expressed only in terms of the given data. We term
any estimator that chooses matched subsamples or weights
by minimizing the worst-case bias as worst-case bias min-
imizing (WCBM). A surprising result is that a great variety
of standard methods used in the practice of causal inference
are all WCBM. This observation leads us to consider new
methods that are WCBM. Using reproducing kernel Hilbert
spaces (RKHS) to express structure we obtain a new class
of kernel-based matching and weighting causal estimators.
These have desirable properties like consistency and per-
form exceptionally well in practice.

All proofs are given in Section 9.

2 Set up

We begin by describing the set up. We consider an ob-
servational study with n subjects. We index the subjects
by i = 1, . . . , n. We let this order be arbitrary so that
the subjects are exchangeable (later, we consider subjects
comprising an iid process). Of these, n

1

received a treat-
ment whose effect is of interest (denoted by T

i

= 1) and
n

0

received a control treatment against which we want to
compare (denoted by T

i

= 0). Let T
0

= {i : T
i

= 0} and
T
1

= {i : T
i

= 1} be the sets of subjects that received treat-
ment and control, respectively. We let T = (T

1

, . . . , T

n

)

denote the collection of treatment assignments, which con-
stitutes part of the observed data.

Using Neyman-Rubin potential outcome notation [39], we

let Y

i

(0), Y

i

(1) be the (real-valued) potential outcomes
for subject i. We observe the outcome for the treatment
to which subject i was exposed, Y

i

= Y

i

(T

i

). And,
Y (1 � T

i

) represents the unobserved, counterfactual out-
come we would have observed if subject i were exposed to
the opposite treatment. Y (1�T

i

) is missing data. Through-
out the paper, for these to be well defined, we assume that
the stable unit treatment value assumption (SUTVA) holds
[35], which requires that which treatment one of subjects
experiences not affect the outcomes of another subject and
that potential outcomes are fixed as which treatment is ex-
perienced changes (so only which one we observe, and
hence Y

i

, is affected).

Let X
i

, taking values in some X , be the side covariates that
we observe for subject i. Let X = (X

1

, . . . , X

n

) denote
the collection of all baseline covariates of all n subjects,
which constitues part of the observed data. The space X
is general; assumptions about it will be specified as nec-
essary. As an example, it can be composed real-valued
vectors X ✓ Rd that include both discrete (dummy) and
continuous variables.

We denote by TE

i

= Y

i

(1)�Y

i

(0) the unobservable causal
treatment effect for subject i. The primary quantity of inter-
est for estimation is the sample average (causal) treatment
effect on the treated sample (SATT):

SATT =

1

n1

P

i2T1
TE

i

=

1

n1

P

n

i=1

T

i

(Y

i

(1)� Y

i

(0)).

We consider estimators for SATT based on weighting. We
restrict to honest weights that only depend on the observed
X, T and not on any observed outcome data. (If we used
outcome data one might complain that we are mining for
an effect that is not there.) In particular, we will consider
the choice of a weighting function W = W (X, T ) that
produces a weight W

i

2 R for each subject i, leading to
the estimator

⌧̂

W

=

P

n

i=1

(�1)

Ti+1

W

i

Y

i

.

Because we are estimating SATT and we in fact observe
Y

i

(1) for each i 2 T
1

, we always set W
i

= 1/n

1

for i 2 T
1

,
leading to estimators of the form

⌧̂

W

=

1

n1

P

i2T1
Y

i

�
P

i2T0
W

i

Y

i

.

We also always assume
P

i2T0
W

i

= 1.

The bias of the estimator resulting from weights W is the
difference between it and SATT, conditioned on all the ob-
servable data upon which the weights are based:

bias = E [ ⌧̂

W

� SATT|X,T ] .

We let W = W
0

⇥ W
1

denote the space of allowable
weights, where W

0

and W
1

are the space of weights for
the control and treated sample, respectively. We required



that W
0

✓ {WT0 2 RT0
:

P

i2T0
W

i

= 1} and that
W

1

= {(1/n
1

, . . . , 1/n

1

)}. If all weights in W
0

are ra-
tional with a fixed denominator, we call ⌧̂

W

a matching es-
timator because it is equivalent to constructing a (multi-)set
from the control subjects to match the treated sample. We
note some special cases of W

0

that correspond to a variety
of existing classes of estimators for SATT:

• General weights:

Wgeneral
0

= {WT0 2 RT0
:

P

i2T0
W

i

= 1}.

• Nonnegative (probability) weighting:

Wnonnegative
0

= {WT0 2 RT0
+

:

P

i2T0
W

i

= 1}.

• Matching with fixed size n

0
0

and without replacement:

Ww/o rep.
0

= {WT0 2 {0, 1/n0
0

}T0
:

P

i2T0
W

i

= 1}.

• Matching with fixed size n

0
0

and with replacement:

Ww/ rep.
0

= {WT0 2 {0, 1/n0
0

, . . . }T0
:

P

i2T0
W

i

= 1}.

Note that, as estimators for a population effect (if we are
to assume random sampling of subjects from a popula-
tion), both SATT and ⌧̂ preclude regression adjustments
[11]. Nonetheless, without parametric assumptions nec-
essary for such adjustments, assuming random sampling,
SATT is the uniform minimum variance unbiased esti-
mator for the treatment effect on the treated population
[24]. In fact, matching and weighting are often regarded as
means of reducing model dependence [16]. Specifically, if
one matches very closely, then simple difference estimators
and complicated regression estimators are all very close, so
the point of which estimator to use after matching is largely
moot.

A standing assumption in this paper, essential for causal in-
ference from observational data, is that of weak ignorability
in expectation.
Assumption 1. For each t = 0, 1 and i = 1, . . . , n, con-
ditioned on X

i

, Y
i

(t) is mean-independent of T
i

and each
value of T

i

is possible. That is, for each t = 0, 1 and
i = 1, . . . , n,

E [Y

i

(t)|T
i

, X

i

] = E [Y

i

(t)|X
i

] , and

P
�

T

i

= t

�

�

X

i

�

> 0.

Ignorability, also known as unconfoundedness, means that
we have the right covariates needed to separate the effect
of the treatment itself from the effect of self-selection. For
example, in an observational study, self-selection for “treat-
ment” might imply affluence, which might imply good out-
comes regardless of treatment, so if we control for income
in X

i

we can isolate this effect. The form of ignorability we
use is termed “weak” because it need only apply for each
t = 0, 1 separately, and it is termed “in expectation” be-
cause only mean-independence, rather than full stochastic
independence, is assumed.

Aside: alternative frameworks for causal inference

The Neyman-Rubin potential outcome framework is not
the only framework used to describe causal relationships.
Other frameworks for causality include, most notably,
Pearl’s framework of causal Bayesian networks and do-
calculus [25] as well as structural equation models (SEM)
[12]. We do not consider the SEM framework because of
its need for a priori models, the common restriction to lin-
ear relationships, incompatible notation, and the less clear
question of model-free identifiability.

Pearl’s framework generalizes both potential outcomes and
SEM [28, 27]. Inference in this framework depends on
directed acyclic graph (DAG) models to describe a priori
causal relationships. The standard practice in applications
of the Neyman-Rubin framework is generally to condition
on all observed covariates X that are potentially relevant
[36], but one can easily come up with DAG constructions
where the inclusion of a covariate in such conditioning
can (asymptotically) bias causal estimates, the simplest of
which is the M -graph [40, 26]. In effect, a causal DAG,
correctly specified, can specify the correct subset of the co-
variates X that should be included in order to achieve As-
sumption 1. The estimation or validation of a causal DAG
from data is an active field of research, e.g. [17, 42, 29].

3 Decomposing the bias

We define the conditional expectation of the control poten-
tial outcome given the covariates x as follows:

f

0

(x) = E
⇥

Y

i

(0)

�

�

X

i

= x

⇤

.

The non-random function f

0

does not depend on i due
to exchangeability. By the law of iterated expectation,
the residual ✏

i

= Y

i

(0) � f

0

(X

i

) has mean 0, is mean-
independent of X

i

, and is uncorrelated with any function
of X

i

.

By conditioning on X

i

, we can decompose the error of the
estimator into two terms: error that can be controlled by
matching on X

i

and the orthogonal residual error, which
cannot be controlled by X

i

but which disappears in expec-
tation due to ignorability.
Theorem 1. Under Assumption 1, the bias of ⌧̂

W

is

E [ ⌧̂

W

� SATT|X,T ] = B(W ; f

0

),

where B(W ; f) :=

1

n1

P

i2T1
f(X

i

)�
P

i2T0
W

i

f(X

i

).

Moreover, letting

E(W ) =

1

n1

P

i2T1
✏

i

�
P

i2T0
W

i

✏

i

,

we have that

⌧̂

W

� SATT = B(W ; f

0

) + E(W ),

E [E(W )|X,T ] = 0.



4 The dual norm of the bias

The target of weighting or matching for causal inference
is to eliminate bias in comparing the treatment and control
samples. Theorem 1 provides an explicit form of the bias
in terms of the observed covariates X . However, it involves
the unknown function f

0

: X ! R. As alluded to in Sec. 1,
we consider weighting schemes that guard against any pos-
sible such function by minimizing the worst-case bias over
the unit ball of a Banach space. A normed vector space is a
Banach space if the corresponding metric space is complete
(see [23] and Ch. 10 of [34] for more on Banach spaces).

Let V denote the vector space of all functions X ! R un-
der usual pointwise addition and scaling. Let F ✓ V be
a subspace of functions, against which we wish to guard.
Endow this space with a semi-norm k·k : F ! R (a semi-
norm can assign zero magnitude to nonzero vectors). For
f /2 F , let us write kfk = 1. Thus, the assumption that
f

0

2 F is encapsulated by kf
0

k < 1.

Given only that kf
0

k < 1, we will consider weighting or
matching schemes that choose W to minimize the worst-
case bias,

maxkfkkf0k |B(W ; f)| = kf
0

kmaxkfk1

B(W ; f),

where the equality holds because B(W ;↵f) = ↵B(W ; f)

is degree-1 homogeneous and k↵fk = |↵| kfk is degree-
1 positively homogeneous and symmetric. Clearly, it only
matters that kf

0

k < 1 and the particular finite value of it
does not change which W minimizes the above. In light of
this, we define the worst-case bias as

B(W ;F) = maxkfk1

B(W ; f).

Since
P

n

i=1

(�1)

Ti+1

W

i

= 0, we have that B(W ; f) is in-
variant to constant shifts to f , i.e., B(W ; f) = B(W ; f +

c), where c 2 R represents a constant function x 7! c.
To eliminate this irrelevant mode of F , we can just con-
sider the quotient space F/R, which consists of the equiv-
alence classes [f ] = {f + c : c 2 R} endowed with the
norm k[f ]k = min

c2R kf + ck. Note that by construction,
B(W ; [f ]) = B(W, f) is well defined. For brevity, we will
simply refer to F and k·k when we mean F/R and the cor-
responding norm.

We will consider spaces (F , k·k) that satisfy the following
conditions:
Assumption 2. The space F is a Banach space.
Assumption 3. For each W 2 W , f 7! B(W ; f) is a
continuous mapping F ! R.

Since B(W, f) is also linear in f , these assumptions imply
that, for each W , the operator B(W, ·) is in the continuous
dual space of F . Hence,

B(W ;F) = kB(W ; ·)k⇤

is precisely the dual norm of the bias, where the dual norm
of a continuous linear operator A on a Banach space with
norm k·k is kAk⇤ = supkuk1

A(u). This also guarantees
that B(W ;F) is finite and well-defined.

Definition 1. A weighting (or matching) method W (T,X)

is said to be worst-case bias minimizing (WCBM) if for
some W and (F , k·k) satisfying Assumptions 2 and 3 we
have

W (T,X) 2 argmin

W2W B(W ;F) 6= W.

Let B
min

(F) = min

W2W B(W ;F) be the optimal value.
Clearly, if a weighting method W (T,X) is WCBM with
(F , k·k) and W then the bias of ⌧̂

W

is bounded by

|B(W ; f

0

)|  kf
0

kB
min

(F).

5 Existing methods as WCBM

Surprisingly, a great many methods for causal inference
that are standard in practice are also in fact WCBM. On the
one hand, this interpretation gets at the core of the struc-
tural motivations behind many of these methods (e.g., “if
you believe the conditional expectation is Lipschitz and
nothing more then you should pairwise match”) and allows
one to choose a method appropriate to one’s beliefs about
problem structure. On the other hand, these results provide
motivation that WCBM is the right framework in which to
think about weighting and matching for causal inference
and this motivates us to consider new WCBM methods in
Sec. 6.

5.1 One-to-one matching

One-to-one (pairwise) matching is by far the most common
matching method. In one-to-one matching, each treated
subject is paired with exactly one control subject so that
the sum of pairwise distances is minimized as measured by
some distance metric �(x, x

0
) on X [31]. Usually, the Ma-

halanobis metric is used:

�(x, x

0
) =

q

(x� x

0
)

ˆ

⌃

�1

(x� x

0
,

where ˆ

⌃ is the pooled sample covariance matrix. One-
to-one matching can be done either without replacement
(each control subject used at most once) or with replace-
ment (each control subject could be reused and matched to
two or more treated subjects). The estimate of SATT is the
average pairwise differences of outcomes. This estimator
is exactly ⌧̂

W

where the weight on control subject i is 1/n
1

times the number of times subject i was matched, i.e., the
matched control sample is the (multi-)set of control sub-
jects that got matched to treated subjects.

One-to-one matching is WCBM.



Theorem 2. One-to-one matching with pairwise distance
metric �(x, x

0
) with replacement and without replacement

are both WCBM with

• kfk = sup

x 6=x

0
f(x)�f(x

0
)

�(x,x

0
)

, the Lipschitz constant of f ;

• F = {f : kfk < 1};

• W
0

is either Wnonnegative
0

or Ww/ rep.
0

(with n

0
0

= n

1

) if
with replacement; and

• W
0

is either
n

WT0 2 Wnonnegative
0

: n

1

W

i

 1 8i
o

or

Ww/o rep.
0

(with n

0
0

= n

1

) if without replacement.

Remark 1. Note that even if the weights are not restricted
to be multiples of 1/n

1

, the optimal unrestricted weights
will end up to be multiples of 1/n

1

regardless. That is, the
optimal weighting is optimal matching for Lipschitz func-
tions.
Remark 2. Note that (F , k·k) is not a Banach space. In
particular, constant functions have zero Lipschitz constant.
However, as required, F/R is a Banach space and evalu-
ation differences are continuous because they are bounded
by the magnitude.
Remark 3. Algorithmically, one-to-one matching with re-
placement amounts to finding the control subject of min-
imal distance to each treated subject in a greedy manner.
One-ton-one matching without replacement amounts to
minimum-sum-of-distances bipartite matching with unbal-
anced parts, which is easily solved by the Ford-Fulkerson
algorithm [10].

An alternative to optimal pairwise matching is caliper
matching whereby we only match subjects that are within a
distance �

0

from one another. This method is also WCBM.
Corollary 3. Caliper matching with pairwise distance met-
ric �(x, x

0
) and threshold �

0

(if feasible) with replacement
and without replacement are both WCBM with

• kfk = sup

x 6=x

0
f(x)�f(x

0
)

max{�0, �(x,x0
)} ;

• F = {f : kfk < 1};

• W
0

is either Wnonnegative
0

or Ww/ rep.
0

(with n

0
0

= n

1

) if
with replacement; and

• W
0

is either
n

WT0 2 Wnonnegative
0

: n

1

W

i

 1 8i
o

or

Ww/o rep.
0

(with n

0
0

= n

1

) if without replacement.

5.2 Coarsened exact matching

CEM [19] is a weighting method whereby one coarsens
the covariates into a few (M ) strata via a coarsening func-
tion C : X ! {1, . . . ,M}, and then one matches exactly
within each stratum. For example, if there are 5 treated sub-
jects and 3 control subjects in a given stratum then each of

the 3 control subjects is given weight proportional to 5/3,
whereas if there were 0 treated subject the weights would
be 0. The case of a stratum containing only treated sub-
jects is not allowed (no extrapolation). ([20] suggests that
in this case one estimates the “feasible average treatment
effect on the treated,” meaning to modify the sample of in-
terest from the treated sample to the subset that has good
matches.) Under Assumption 1, lack of any overlap is rare
for large n.
Theorem 4. CEM with coarsening function C : X !
{1, . . . ,M} is WCBM with

• F =

�

f :

�

�

f

�1

(C

�1

(j))

�

�

= 1 8j = 1, . . . ,M

 

, i.e., pi-
ece-wise constant on the coarsening partitions;

• kfk = sup

x2X |f(x)| for f 2 F , otherwise 1; and

• W
0

is either Wgeneral
0

or Wnonnegative
0

,

assuming that each partition that contains a treatment sub-
ject also contains a control subject (no extrapolation).

5.3 Mean-matched sampling

Very often, practitioners will evaluate the quality of a
matched control sample by measuring the Mahalanobis dis-
tance between the matched control sample and the treated
sample:

M

V

(W ) =

�

�

�

V

�1/2

⇣

1

n1

P

i2T1
X

i

�
P

i2T0
W

i

X

i

⌘

�

�

�

2

,

where X ✓ Rd and V is some positive definite matrix usu-
ally taken to be V =

ˆ

⌃, the pooled sample covariance ma-
trix of X . This distance is a rotated 2-norm between the
sample means. Mean-matched sampling finds a matched
control sample of a prescribed size to minimize this dis-
tance.
Theorem 5. Mean-matched sampling n

0
0

subjects (with or
without replacement) from the control set is WCBM with

• F =

�

x 7! �

0

+ �

T

x : � 2 Rd

 

;

• kx 7! �

0

+ �

T

xk =

p

�

T

V � + �

2

0

and kfk = 1
otherwise; and

• W
0

is either Ww/ rep
0

or Ww/o rep
0

, respectively.

Remark 4. Since finite, the space (F , k·k) is always a Ba-
nach space and evaluations (and hence their differences)
are always continuous. See Thms. 5.33 and 5.35 of [18].

6 Kernel WCBM methods

In the previous section we saw that a variety of standard
methods for causal inference are WCBM. Each was re-
covered using a different form of structure on the condi-
tional expectations of outcomes. In this section we de-
velop a range of new WCBM based on kernels and their



corresponding reproducing kernel Hilbert spaces (RKHS).
Kernels are standard in machine learning (ML) as ways to
generalize the structure of learned conditional expectation
functions, like classifiers or regressors [37]. Kernels have
many applications in statistics [3, 13, 45]. The same way
kernels are used to generalize the structure of learned func-
tions in ML, we can use these to generalize the structure of
f

0

. This will lead to new methods for causal inference that
are potentially very powerful.

A Hilbert space is an inner-product space such that the
norm induced by the inner product, kfk2 = hf, fi, yields
a Banach space. An RKHS F is a Hilbert space of func-
tions for which, for every x 2 X , the map f 7! f(x) is
a continuous mapping [3]. Continuity and the Riesz rep-
resentation theorem imply that for each x 2 X there is
K(x, ·) 2 F such that hK(x, ·), f(·)i = f(x) for every
f 2 F . The symmetric map K : X ⇥ X ! R is called
the reproducing kernel of F . The name is motivated by the
fact that F = closure (span {K(x, ·) : x 2 X}). Thus K
fully characterizes F . Prominent examples of kernels for
X ⇢ Rd are:

(i) The polynomial kernel K
s

(x, x

0
) = (1 + x

T

x

0
/s)

s,
whose RKHS spans the finite-dimensional space of
all polynomials of degree up to s.

(ii) The exponential kernel K(x, x

0
) = e

x

T
x

0
, the

infinite-dimensional limit of the polynomial kernel.

(iii) The Gaussian kernel K(x, x

0
) = e

�kx�x

0k2

. The
corresponding RKHS is infinite-dimensional [43].

For X 2 Xn and a kernel K, the Gram matrix is K

ij

=

K(X

i

, X

j

), which is always positive semi-definite (PSD).
Generally, we normalize the covariate data before putting
it in a kernel so that the sample has zero sample mean and
identity pooled sample covariance

Some kernels have a special property, known as universal-
ity, that allows them to approximate any continuous func-
tion arbitrarily well. Both the Gaussian and exponential
kernels are universal [41].

Definition 2. For X compact Hausdorff, a kernel is univer-
sal if for any continuous function g : X ! R and ✏ > 0,
there exists f 2 F in the corresponding RKHS such that
sup

x2X |f(x)� g(x)|  ✏.

As we will see in Sec. 6.1, universality is one way to guar-
antee model-free consistency.

Note that any RKHS F satisfies Assumptions 2 and 3. As
such it gives rise to WCBM matching and weighting meth-
ods.

Theorem 6. Let F be an RKHS with kernel K. Let K be

the Gram matrix on X . Then,

B(W ;F) =

⇣

1

n

2
1
e

T

n1
KT1,T1en1 +W

T

T0
KT0T0WT0

� 2

n1
e

T

n1
KT1,T0WT0

⌘

1/2

.

Remark 5. If WT0 2 {0, 1/n0
0

}T0 then B(W ;F) is ex-
actly the kernel maximum mean discrepancy (MMD) statis-
tic between the treated sample and the matched control
sample. Kernel MMD is a common test statistic in two-
sample goodness-of-fit testing [13, 38]. We can interpret
minimizing this discrepancy as trying to make the two sam-
ples appear to come from the exact same distribution.

Next, we review the various possible methods this can give
rise to. We will see that these kernel methods can offer
superior inferential power.

In the following, we let k
0

= KT0T1en1/n1

.

Kernel weighting with general weights

For general unconstrained weighting, we can find the op-
timal weights in closed form. A basic application of La-
grange multipliers to Theorem 6 yields

argmin

WT02Wgeneral
0

B(W ;F) =

⇢

u+

1�u

T
en0

v

T
en0

e

n0 :

KT0T0u = k

0

KT0T0v = e

n0

�

.

If KT0T0 is invertible, this consists of a single point. Gen-
erally, the Gram matrix for the Gaussian and exponential
kernels is invertible with probability one.

Kernel weighting with nonnegative weights

For nonnegative weights, we can formulate a linearly-con-
strainted convex-quadratic optimization problem to find the
optimal weights:

argmin

WT02Wnonnegative
0

B(W ;F) =

argmin

W2Rn0
+ :e

T
n0

W=1

�

WKT0T0W � 2k

T

0

W

�

.

This problem can be solved in polynomial time with in-
terior point methods [4] and is amenable to solution with
off-the-shelf solvers like Gurobi.

Kernel matching with replacement

For matching with replacement, we can formulate a linear-
integer-constrainted convex-quadratic optimization prob-
lem to find the optimal weights:

argmin

WT02Ww/ rep.
0

B(W ;F) =

1

n

0
0

argmin

W

02Zn0
:e

T
n0

W

0
=n

0
0

⇣

1

n

0
0
W

0
KT0T0W

0 � 2k

T

0

W

0
⌘

,



Figure 1: Various effect functions in Section 7

(a) `1 norm (b) Quadratic (c) Cubic (d) Sinusoidal

where we used the change of variables W 0
= n

0
0

WT0 . This
problem is NP-hard (reducible to number partitioning for
rank(KT0T0) = 1), but it is also amenable to solution by
off-the-shelf integer programming solvers like Gurobi.

Kernel matching without replacement

For matching without replacement, we can formulate a
linear-integer-constrainted convex-quadratic optimization
problem to find the optimal weights:

argmin

WT02Ww/o rep.
0

B(W ;F) =

1

n

0
0

argmin

W

02{0,1}n0
:e

T
n0

W

0
=n

0
0

⇣

1

n

0
0
W

0
KT0T0W

0 � 2k

T

0

W

0
⌘

.

Again, the problem is generally “hard” but can be solved in
practice using off-the-shelf integer programming solvers.

6.1 Consistency

Next, we express conditions for our kernel estimators to
have bias converging to zero. That is, despite the confound-
ing in the data, we can match on X to achieve zero bias.
Definition 3. A Banach space is said to be B-convex if
there exists N 2 N and ⌘ < N such that for every
g

1

, . . . , g

N

with kg
i

k  1 8i there exists a choice of signs
so that k±g

1

± · · · ± g

N

k  ⌘.

It is easy to verify that all the Banach spaces so far con-
sidered are B-convex. In particular, every Hilbert space
or finite-dimensional Banach space is B-convex (see [23]
Ch. 9). We use this condition to characterize consistency.
Theorem 7. Suppose Assumption 1 holds and that

(i) the subjects i = 1, 2, . . . form an iid process;

(ii) for each n, W is WCBM with
(F , k·k), W such that W

0

◆
�

WT0 2 {0, 1/n0
0

}T0
: n

0
0

2 N, n0
0

 n

0
0

 n

0

 

for some fixed n

0
0

� 1;

(iii) f

0

2 Closure1(F), i.e.,
8✏ > 0, 9g

0

2 F : sup

x2X |f
0

(x)� g

0

(x)|  ✏;

and

(iv) either

(a) F is B-convex and

E
h

maxkfk1

(f(X

1

)� E [f(X

1

)|T = 1])

2

�

�

�

T = 1

i

< 1

or
(b) F is a Hilbert space and

E
⇥

maxkfk1

(f(X

1

)� E [f(X

1

)|T = 1])

�

�

T = 1

⇤

< 1.

Then,

E [ ⌧̂

W

� SATT|X,T ] �! 0 almost surely, as n ! 1.

Moreover, if Var
�

Y

1

�

�

X

1

�

is bounded and max

i

W

i

! 0,
then

⌧̂

W

� SATT �! 0 in probability, as n ! 1.

Remark 6. One way to satisfy condition (iii) is to have
f

0

2 F , i.e., to make the correct structural assumption.
Universal kernels, however, always satisfy condition (iii)
whenever f

0

is continuous.

Remark 7. Note that the result is quite strong: for almost
all realization of subjects, the bias is eventually zero. This
is stronger than the average over subjects (a coarser notion
of bias) being zero. In particular, as shown, under some
additional conditions, we get convergence of the estimation
error to zero in probability.

Remark 8. If Y
1

|X
1

is homoscedastic then Var

�

Y

1

�

�

X

1

�

is
trivially bounded (constant). Matching estimators achieve
max

i

W

i

! 0 if we let the size of the matched control
sample grow. For weighting, a constraint can be added.

7 Numerical experiments

In this section, we study the comparative efficiency of vari-
ous causal estimators, including our new kernel estimators.

Consider the following fictitious observational study with
one treatment and control. Subjects are drawn at random



Figure 2: RMSE (on log scale) of various causal estimators for various effect functions in Section 7
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● No matching ◆ CEM ▼ PSM ○ Exp kernel weight △ Exp kernel match
■ One-to-one ▲ Mahal. means ◇ Quad kernel weight □ Gauss kernel weight ▽ Gauss kernel match

from a population. For each subject we observe a two-
dimensional vector of covariates X

i

2 R2. In the popula-
tion, these are distributed as uniform on [�1, 1]

2. Each sub-
ject has either received treatment or control and we observe
T

i

. In the population, T
i

is distributed as Bernoulli with
probability 0.8/

�

1 +

p
2 kX

i

k
2

�

, which ranges 0.27 ⇠
0.8.

The potential outcomes are distributed as

Y

i

(0) = f

0

(X

i

) + ✏

0i

, Y

i

(1) = f

1

(X

i

) + ✏

1i

,

where ✏

0i

, ✏

1i

⇠ N (0, 0.1) is independent noise. We fo-
cus on the case of small residual noise (variance not ex-
plained by X

i

) so to tease out the comparative efficiency in
matching X (if residual noise is big, any method that only
matches on X will do badly). We let f

1

be any function
whatsoever. We consider a variety of possible cases for f

0

:

(a) `

1

norm: f
0

(x) = |x
1

|+ |x
2

|;

(b) quadratic: f
0

(x) = (x

1

+ x

2

) + (x

1

+ x

2

)

2;

(c) cubic: f
0

(x) = (x

1

+ x

2

)

2

+ (x

1

+ x

2

)

3;

(d) sin: f
0

(x) = sin(⇡(x

1

+ x

2

)) + cos(⇡(x

1

� x

2

)).

These are shown in Figure 1.

For each n = 10, 20, . . . , 300, we produce 100 replicates.
For each experiment we consider a variety of estimators:

(a) No matching: we take the whole control sample to be
the matched sample (W

i

= 1/n

0

);

(b) One-to-one: we match n

1

control subjects using opti-
mal bipartite matching on the matrix of pairwise Ma-
halanobis distances between treated and control sub-
jects;

(c) CEM: we find the largest b � 0 such that coarsen-
ing each of the covariates into even bins {[�1, �1 +

2

b�1

), . . . , [1 � 2

b�1

, 1]} leaves no box (product of
two bins) that contains only treated subjects, then we
perform exact matching within each box;



(d) Mahal. means: we match n

1

control subjects with re-
placement to minimize the Mahalanobis distance be-
tween the means of the two samples;

(e) PSM: we match n

1

control subjects using propen-
sity score matching by fitting a logistic regression to
impute propensity scores and doing optimal bipartite
matching on imputed scores;

(f) Quad kernel weight: we use nonnegative kernel
weighting with the quadratic kernel;

(g) Exp kernel weight: we use nonnegative kernel weight-
ing with the exponential kernel;

(h) Gauss kernel weight: we use nonnegative kernel
weighting with the Gaussian kernel;

(i) Exp kernel match: we match n

1

control subjects with
replacement using kernel matching with the exponen-
tial kernel; and

(j) Gauss kernel match: we match n

1

control subjects
with replacement using kernel matching with the
Gaussian kernel.

We use Gurobi v6.5 (www.gurobi.com) to solve all
quadratic and integer optimization problems. For each
estimator, we compute ⌧̂

W

� SATT. Then, we mea-
sure the RMSE over the 100 replicates, RMSE =

(

ˆE
100

h

(⌧̂

W

� SATT)

2

i

)

1/2

. We plot the results in Figure
2. Note the log scale.

The results clearly show the power of our approach. In each
case, every one of our exponential- or Gaussian-kernel-
based estimators outperforms standard causal estimators by
an order of magnitude (base 10). The advantage is par-
ticularly noticeable in smaller samples and for our kernel
weighting methods. This can be explained by the fact that it
can be difficult to find a good control pair for every treated
subject in small samples, and similarly it can be difficult
to have a fine enough coarsening of the data without cre-
ating a stratum that only has treated subjects. At the same
time, by optimizing the mismatch as characterized by the
dual norm of the bias one can achieve small mismatch with
even small samples. This is in agreement with the observa-
tion made by [21] that one only requires a small sample to
have a very small objective in a multi-criterion partitioning
problem.

Another observation is that matching based on parametric
models can be fragile. This can be seen here for PSM,
which is based on a misspecified logistic model, and also
for estimators that match on X itself. We also see that
mean-matched sampling does very poorly in every exam-
ple, even doing worse than no matching. Indeed, matching
the means only makes sense if the effect is purely linear.
A linear model assumption is very fragile and even small

violations can trip up mean-matched sampling. Similarly,
matching per the quadratic kernel depends on an assump-
tion of quadratic effect. Indeed, the estimator based on
the quadratic kernel does the best of all estimators when
the effect is quadratic (panel b). However, unlike linear,
a quadratic model is generally more robust as quadratics
can better approximate a wider range of functions. Accord-
ingly, we see that the estimator based on the quadratic ker-
nel has reasonable performance even when the effect is not
quadratic (panels a and c), while extreme violations trip it
up (panel d).

Overall, the universal kernels (exponential and Gaussian)
seem to do the best by far. They appear to provide a good
balance between generality of model with efficiency of bal-
ancing. They are general enough so that we can ensure con-
sistency even if the true effect is not in the corresponding
RKHS. And, fully optimizing mismatch as measured by
the dual norm of the bias in their RKHS can lead to small
objective value even for moderate n.

8 Conclusion

We presented a novel framework for matching and weight-
ing estimators for causal inference from observational data.
The framework is based on minimizing the dual norm of the
bias operator with respect to a space of possible conditional
expectation functions. Many existing methods common in
practice appear to fit this framework. We developed new,
kernel-based estimators using the framework and showed
they satisfy consistency. Our new estimators prove exceed-
ingly successful in a numerical experiment.
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9 Appendix A: Proofs

Proof of Theorem 1. Let us write SATT as

SATT =

1

n1

P

i2T1
Y

i

� 1

n1

P

i2T1
Y

i

(0).

It is then clear that SATT differs from ⌧̂

W

only in the sec-
ond term, that is,

⌧̂� SATT =

1

n1

P

i2T1
Y

i

(0)�
P

i2T0
W

i

Y

i

(0)

=
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) +
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✏

i

,

where we recognize the last term as E(W ). For each term
of E(W ) we have

E
⇥

(�1)

Ti+1

W

i

✏

i

�

�

X,T
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= (�1)
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i

(E [Y
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(X
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where the first equality is by definition of ✏
i

and the fact
that W

i

= W

i

(X, T ) and the second is by Assumption
1.

Proof of Theorem 2. Let D be the distance matrix D

ii

0
=

�(X

i

, X

i

0
). For this choice of (F , k·k), by linear optimiza-

tion duality we get

B(W ;F) =

1

n1
sup

vi�vi0Dii0 8i,i0
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This describes a min-cost network flow problem with
sources T

1

with inputs 1, sinks T
0

with outputs W
i

, edges
between every two nodes with costs D

ii

0 and without ca-
pacities. Consider any source i 2 T

1

and any sink i

0 2 T
0

and any path i, i

1

, . . . , i

m

, i

0. By the triangle inequality,
D

ii

0  D

ii1 +D

i1i2 + · · ·+D

imi

0
. Therefore, as there are

no capacities, it is always preferable to send the flow from
the sources to the sinks along the direct edges from T

1

to
T
0

. That is, we can eliminate all other edges and write

B(W ;F) =

1

n1
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02T0
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In the case of with replacement and W
0

= Wnonnegative
0

,

using the transformation W

0
i

= n

1

W

i

, we get

min

W2W
B(W ;F)

=
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This describes a min-cost netwrok flow problem with
sources T

1

with inputs 1; nodes T
0

with 0 exogenous flow;
one sink with output n

1

; edges from each i 2 T
1

to each
i

0 2 T
0

with flow variable S

ii

0 , cost D
ii

0 , and without ca-
pacity; and edges from each i 2 T

0

to the sink with flow
variable W

0
i

and without cost or capacity. Because all data
is integer, the optimal solution of W

0
= n

1

W is integer
(see [1]). Hence, since Ww/ rep.

0

✓ Z/n
1

, the solution is the
same when we restrict to W

0

= Ww/ rep.
0

. This solution (in
terms of W 0) is equal to sending the whole input 1 from
each source in T

1

to the node in T
0

with smallest distance
and from there routing this flow to the sink, which corre-
sponds exactly to one-to-one matching with replacement.

In the case of no replacement and for W
0

= {W 2
Wnonnegative

0

: n

1

W

i

 1 8i}, using the transformation
W

0
i

= n

1

W

i

, we get

min

W2W
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=
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This describes the same min-cost netwrok flow problem ex-
cept that the edges from each i 2 T

0

to the sink have a
capacity of 1. Because all data is integer, the optimal so-
lution of S and W

0
= n

1

W is integer (see [1]). Hence,
since Ww/o rep.

0

✓ Z/n
1

, the solution is the same when we
restrict to W

0

= Ww/o rep.
0

. The optimal S
ii

0 is integer and
so, by

P

i

02T0
S

ii

0
= 1, for each i 2 T

1

there is exactly
one i

0 2 T
0

with S

ii

0
= 1 and all others are zero. S

ii

0
= 1

denotes matching i with i

0. The optimal W 0
i

is integral and
so, by W

0
i

 1, W 0
i

2 {0, 1}. Hence, for each i 2 T
0

,
P

i

02T1
S

ii

0 2 {0, 1} so we only use node i at most once.
The cost of S is exactly the sum of pairwise distances in the
match. Hence, the optimal solution corresponds exactly to
one-to-one matching without replacement.

Proof of Corollary 3. Apply Theorem 2 with the metric
�

0
(x, x

0
) = I

[x 6=x

0
]

max {�(x, x0
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0

}.



Proof of Theorem 4. This choice of space leads to

B(W ;F) =

M

P

j=1

�
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�

�
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I
[C(Xi)=j]

�
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.

That is, the worst-case f assigns ±1 to each partition in
order to make the difference of values in that partition be
nonnegative. Then clearly the optimal choice of W 2 RT0

is to make each of these absolute values equal zero. This
happens exactly when, for each i 2 T

0

,

W

i

=

1

n1

|i02T1:C(Xi0 )=C(Xi)|
|i02T0:C(Xi0 )=C(Xi)|

=

1

n1

num treatment subjects in same partition as i
num control subjects in same partition as i ,

where 0/0 = 0 and we never encounter dividing a positive
integer by 0 due to the no-extrapolation assumption. Be-
cause the weight is nonnegative, the solution is unchanged
when restricting to nonnegative weights.

Proof of Theorem 5. By duality of norms,

B(W ;F) = sup
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The optimal W minimizes this discrepancy over subsam-
ples from control with the allowable size.

Proof of Theorem 6. We have
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which when written in block form gives rise to the result.

Proof of Theorem 7. First we show B
min

(F) ! 0 a.s.
by showing that we can construct a feasible ˜

W such that
B(

˜

W ;F) ! 0 a.s. Let p(x) = P (T = 1|X = x). By As-
sumption 1, 0 < p(X) < 1 a.s. So there exists ↵ > 0 such
that q(x) = ↵p(x)/(1 � p(x)) is a.s. in (0, 1). For each i,
let ˜
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i

2 {0, 1} be Bernoulli with probability q(X
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). Then
we have that X
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By construction of ˜

W
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i

, we see that E [⇠

i

] = 0 (i.e., Bochner
integral). By (iv), k⇠k⇤ has (a) second or (b) first mo-
ment. By (i), each ⇠

i

is independent. Therefore, by [2]
for (iv)(a) (since B-convexity of F implies B-convexity

of F⇤ [30]) or by [5] for (iv)(b), a law of large num-
bers holds yielding, a.s., kA

0

k⇤ ! 0 and kA
1

k⇤ ! 0.
Since (n
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)] < 1 a.s., we have that
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Since true for any ✏ > 0, |B(W ; f

0

)| ! 0 a.s. By
Assumption 1 and Theorem 1, E [ ⌧̂
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By Theorem 1, ⌧̂
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) + E(W ). By
the strong law of large numbers, 1
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2 ! 0. Since both convergence
in L

2

and convergence a.s. imply convergence in probabil-
ity, we get the desired result.


