Fairness and efficiency for probabilistic allocations with endowments

Federico Echenique
Caltech

Antonio Miralles
Università degli Studi di Messina.
UAB-BGSE

Jun Zhang
Nanjing Audit U.

National University Singapore, Dec 4 2019
Antonio and Jun:
Discrete allocation
For example

- Jobs to workers
- Courses to students
- Organs to patients
- Schools to children
- Offices to professors.
Desiderata

- Efficiency
- Fairness
- Property rights.
Pareto optimality.

An assignment is efficient if there is no alternative (feasible) assignment that makes everyone better off and at least one agent strictly better off.
Alice *envies* Bob at an assignment if she would like to have what Bob got.

An assignment is *fair* if no agent envies another agent.
Fairness requires randomization.

If Alice and Bob want the same office \Rightarrow flip a coin.
When there is a conflict between efficiency and fairness, policy makers (and society?) often prioritize fairness.

Hence fairness is a priority in market design.

So we’ll work with random assignments.
Pseudomarkets

Can we be fair and efficient?

Yes: use pseudomarkets
Assign workers to jobs.

- L jobs.

- A lottery: $x^i = (x_1^i, x_2^i, \ldots, x_L^i)$

- x_l^i = probability that i is assigned job l.

Pseudomarkets: Hylland and Zeckhauser 1979
Assign workers to jobs.

- L jobs.
- A lottery: $x^i = (x_1^i, x_2^i, \ldots, x_L^i)$
- x_l^i = probability that i is assigned job l.
- utility function $u^i(x^i)$
- for ex. $u^i(x^i)$ can be an exp. utility.
A lottery x^i satisfies

$$\sum_{i} x^i \leq 1$$

A lottery is an element of

$$\Delta_- = \{ x \in \mathbb{R}^L_+ : \sum_{j=1}^{L} x_j \leq 1 \}$$

$u^i : \Delta_- \rightarrow \mathbb{R}$ (cont. & mon.)
Agents: $I = \{1, \ldots, N\}$.

Objects: $S = \{s_1, \ldots, s_L\}$.

$u^i : \Delta_- \rightarrow \mathbb{R}$ (cont. & mon.)
An allocation is $x = (x^i)_{i=1}^N$, with $x^i \in \Delta_L$, s.t

$$\sum_{i \in I} x^i_s = 1$$
i envies j at x if \(u^i(x^j) > u^i(x^i) \)

An allocation \(x \) is *fair* if no agent envies another agent at \(x \).
An allocation x is \textit{fair} if no agent envies another agent at x.

$$x^i = (1/L, \ldots, 1/L) \implies \text{no envy}$$
An allocation x is *Pareto optimal* (PO) if there is no allocation y s.t.

$$u^i(y^i) \geq u^i(x^i) \text{ for all } i \text{ and } u^j(y^j) > u^j(x^j)$$

for some j.

Hylland and Zeckhauser (1979)
An *HZ-equilibrium* is a pair \((x, p)\), with \(x \in \Delta_N\) and \(p = (p_s)_{s \in S} \geq 0\) s.t.

1. \(\sum_{i=1}^N x^i = (1, \ldots, 1)\)
2. \(x^i\) solves

\[
\max \{u^i(z^i) : z^i \in \Delta_- \text{ and } p \cdot z^i \leq 1\}
\]

Condition (1): supply = demand.
Condition (2): \(x^i\) is \(i\)'s demand at prices \(p\) and income = 1.

Observe:

- Income is independent of prices
- Not a “closed” model (Monopoly money).
Suppose that each u^i is linear (expected utility).

Theorem (Hylland and Zeckhauser (1979))

There is a HZ equilibrium allocation. It is envy-free and PO.
This paper:

Fair assignment with endowments.
Why endowments?

- Endowments are relevant for *any* problem where we don’t start from scratch.
- Existing allocation matters. Want agents to buy into market design, hence respect property rights.
Why endowments?

- Endowments are relevant for *any* problem where we don’t start from scratch.
- Existing allocation matters. Want agents to buy into market design, hence respect property rights.
- School choice:
 - Property rights are captured by priorities.
 - As property rights, priorities are equivocal; not transparent.
 - Endowments are explicit property rights.
 - For ex., guarantee a:
 1. chance at a good school;
 2. neighborhood school;
 3. slot for a sibling.
This paper:
- Assignment with endowments
- Make agents *unequal*
- Conflict between no-envy and property rights.
No envy: fairness for equals
Agents have unequal endowments
No envy may violate property rights.
This paper:

▶ We propose a notion of fairness for unequally endowed agents
▶ Prove it can be achieved with efficiency and individual rationality.
▶ Can be obtained as a market outcome.
▶ And respecting general constraint structures.
Related Literature

- Justified envy w/endowments: Yilmaz (2010)

More references in the paper...
Each i has an *endowment* $\omega^i \in \Delta$.

ω^i is an initial lottery.

Suppose that $\sum_i \omega^i = (1, \ldots, 1)$.

For example, suppose schools are allocated via a lottery. Admission probabilities reflect: neighborhood school (walk-zone priority), sibling priority, or test scores.
Agents: \(I = \{1, \ldots, N\} \).

Objects: \(S = \{s_1, \ldots, s_L\} \). Suppose \(N = L \).

For each \(i \in I \),

\[u^i : \Delta_- \rightarrow \mathbb{R} \]

\[\omega^i \in \Delta \]

\[\sum_i \omega^i = (1, \ldots, 1) \]
A *Walrasian equilibrium* is a pair \((x, p)\) with \(x \in \Delta^N\), \(p \geq 0\) s.t.

1. \(\sum_{i=1}^{N} x^i = \sum_{i=1}^{N} \omega^i\); and
2. \(x^i\) solves

\[
\text{Max} \{ u^i(z^i) : z^i \in \Delta_- \text{ and } p \cdot z^i \leq p \cdot \omega^i \}
\]
Proposition (Hylland and Zeckhauser (1979))

There are economies in which all agents’ utility functions are expected utility, that posses no Walrasian equilibria.
Budget set

p

ω^i
Budget set

\[\omega_i \]

\((1, 1)\)

simplex

\(p\)

\(\omega^i\)
no Walras’ Law
non-responsive demand

\[\omega^i \]
HZ Example

3 agents; exp. utility

<table>
<thead>
<tr>
<th></th>
<th>u^1</th>
<th>u^2</th>
<th>u^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_A</td>
<td>10</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>s_B</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Endowments: $\omega^i = (1/3, 2/3)$.
3 agents; exp. utility

<table>
<thead>
<tr>
<th></th>
<th>u^1</th>
<th>u^2</th>
<th>u^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_A</td>
<td>10</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>s_B</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Endowments: $\omega^i = (1/3, 2/3)$.

Obvious allocation:

$x^1 = x^2 = (1/2, 1/2)$

$x^3 = (0, 1)$
HZ Example

Obvious allocation

\(\omega^i \)

Echenique-Miralles-Zhang

Fairness & Efficiency
HZ Example

\[\omega^i \]

1/2 2/3

1/3

Echenique-Miralles-Zhang Fairness & Efficiency
HZ Example

Echenique-Miralles-Zhang Fairness & Efficiency
HZ Example

\[\omega^i \]

\[\frac{1}{2} \] \quad \[\frac{1}{3} \] \quad \[\frac{2}{3} \]
Moreover, . . .

- the first welfare theorem fails.
- There are Pareto ranked Walrasian equilibria.
Our results
Let x be an allocation.

- x is **weak Pareto optimal** (wPO) if \nexists an allocation y s.t. $u^i(y^i) > u^i(x^i)$ for all i.

- ε-**weak Pareto optimal** (ε-PO), for $\varepsilon > 0$, if \nexists an allocation y s.t. $u^i(y^i) > u^i(x^i) + \varepsilon$ for all i.
Property rights

Let x be an allocation.

- x is **acceptable** to i if $u^i(x^i) \geq u^i(\omega^i)$.
- x is **individually rational** (IR) if it is acceptable to all agents.
Justified envy

\[i \text{ envies } j \text{ at } x \text{ if } u^i(x^j) > u^i(x^i). \]

Such envy will be tolerated (i.e. not be justified) only if \(j \)'s endowment is “good enough.”
i envies j at x if $u^i(x^j) > u^i(x^i)$.

Such envy will be tolerated (i.e. not be justified) only if j regards x^i as \textit{unacceptable}.
Justified envy

\[i \text{ envies } j \text{ at } x \text{ if } u^i(x^j) > u^i(x^i). \]

Such envy will be tolerated (i.e. not be justified) only if
\[u^j(\omega^j) > u^i(x^i) \]
i has *justified envy* towards j at allocation x if

\[u^i(x^j) > u^i(x^i) \text{ and } u^j(x^i) \geq u^j(\omega^j). \]
Let \(x \) be an allocation.

\(x \) has *no justified envy* (NJE) if no agent has justified envy towards any other agent at \(x \).
Observe: NJE and IR imply *equal treatment of equals*.
Let x be an allocation.

x has *no justified envy* (NJE) if no agent has justified envy towards any other agent at x.
\begin{itemize}
 \item i has \textit{strong justified envy} (SJE) towards j at x if $u^i(x^j) > u^i(x^i)$ and $u^j(x^i) > u^j(\omega^j)$.
 \item For $\varepsilon > 0$, i has \textit{ε-justified envy} (ε-JE) towards j at x if $u^i(x^j) > u^i(x^i)$ and $u^j(x^i) > u^j(\omega^j) - \varepsilon$.
\end{itemize}
Justified envy

no ε-justified envy \implies no justified envy \implies no strong just. envy
Theorem

Suppose utility functions are concave.

1. ∃ an allocation that is ε-IR, ε-PO and has no ε-justified envy;
2. ∃ an allocation that is IR, wPO and has no strong justified envy.
3. Moreover, if utility functions are expected utility ∃ an allocation that is IR, PO and has no strong justified envy.
Theorem

Suppose utility functions are quasi-concave, and that

♠

Then there exists continuous functions $m^i : \Delta \to \mathbb{R}_+$ and $(x, p) = ((x^i)_{i=1}^I, p) \in (\Delta^I_-) \times \Delta$, such that

1. $\sum_i x^i = \sum_i \omega^i$ (x is an allocation; or, "supply equals demand").

2. x is Pareto optimal, individually rational and has no justified envy.

3. $x^i \in \text{argmax}\{u^i(z^i) : z^i \in \Delta_- \text{ and } p \cdot z^i \leq m^i(p)\}$
- Given as primitive a set A^C of allocations.
- The *feasible* allocations.
- Assume A^C is convex and compact.

For example:
- Distributional constraints.
- Geographical constraints.
- etc.
i has an *justified envy* towards j at an allocation $x \in \mathcal{A}^c$ if

$$u^i(x^j) > u^i(x^i), \quad u^j(x^i) \geq u^j(\omega^j) \text{ and } x_{i\leftrightarrow j} \in \mathcal{A}^c.$$
Constraints

\(i, j \in I \) are of equal type if

\[
\text{for all } x \in A^c, \ x_i \leftrightarrow j \in A^c.
\]
Theorem

Suppose agents’ utility functions are concave and that $\omega \in \mathcal{A}^C$.

1. For any $\varepsilon > 0$, there exists an allocation that is ε-IR, ε-PO and has no equal-type ε-justified envy;

2. There exists an allocation that is IR, wPO, and has no strong equal-type justified envy.
Ideas
Theorem

Suppose utility functions are concave.

1. ∃ an allocation that is ε-IR, ε-PO and has no ε-justified envy;

2. ∃ an allocation that is IR, wPO and has no strong justified envy.

3. Moreover, if utility functions are expected utility ∃ an allocation that is IR, PO and has no strong justified envy.
Consider problem

$$\text{Max} \sum_{i} \lambda_i u^i(x_i)$$

s.t. x is an allocation.

Obtain a NJE allocation from this problem

by choosing right welfare weights, $(\lambda_i) \in \Delta^N$.

(Actual proof uses an approximation to this problem, hence the ε).
KKM Lemma

Echenique-Miralles-Zhang

Fairness & Efficiency
Theorem

Suppose utility functions are quasi-concave, and that

\[\therefore \]

Then there exists continuous functions \(m^i : \Delta \to \mathbb{R}_+ \) and \((x, p) = ((x^i)_{i=1}^I, p) \in (\Delta_-^I) \times \Delta \), such that

1. \(\sum_i x^i = \sum_i \omega^i \) (\(x \) is an allocation; or, “supply equals demand”).
2. \(x \) is Pareto optimal, individually rational and has no justified envy.
3. \(x^i \in \argmax\{u^i(z^i) : z^i \in \Delta_- \text{ and } p \cdot z^i \leq m^i(p)\} \)

\[\therefore \exists l \text{ s.t. for any } i \in I \text{ and } x^i \in \Delta_-^l, \text{ decreasing consumption of any object } k \neq l \text{ in favor of } l \text{ leads to an increase in } u^i; \text{ and } \omega_i^l > 0. \]
\[e^i(v, p) = \inf \{ p \cdot x : u^i(x) \geq v \}, \]
for \(p \in \Delta^L \) and \(v \in \mathbb{R} \).

Let \(v^i = \sup u^i(\Delta^L) \) be the utility of agent \(i \) when she is satiated.
For any scalar $m \geq 0$ and $p \in \Delta^L$, let

$$\mu^i(m, p) = \text{median}(\{e^i(u^i(\omega^i), p), m, e^i(v^i, p)\}).$$

Consider the function

$$\varphi(m, p) = \sum_i \mu^i(m, p) - \sum_i p \cdot \omega^i.$$

Observe that

- $e^i(u^i(\omega^i), p) \leq e^i(v^i, p)$.
- μ^i is continuous and $m \mapsto \mu^i(m, p)$ weakly monotone increasing.
- φ is continuous and $m \mapsto \varphi(m, p)$ weakly monotone increasing.
- $\varphi(m, p) \leq 0$ for $m \geq 0$ small enough as $e^i(u^i(\omega^i), p) \leq p \cdot \omega^i$.

Echenique-Miralles-Zhang

Fairness & Efficiency
in the case that \(\sum_i e^i(v^i, p) < \sum_i p \cdot \omega^i \), we let \(m^i(p) = e^i(v^i, p) \).

in the case that \(\sum_i e^i(v^i, p) \geq \sum_i p \cdot \omega^i \), we have that \(\varphi(m, p) \leq 0 \) for \(m \geq 0 \) small enough, and \(\varphi(m, p) \geq 0 \) for \(m \geq 0 \) large enough. So \(\exists m^* \geq 0 \) with \(\varphi(m^*, p) = 0 \). Now let \(m^i(p) = \mu^i(m^*, p) \).
Suppose that i envies j at x^*. This implies that i is not satiated, hence $m^i(p^*) < e^i(v^i, p^*)$.

It also implies that $m^i(p^*) < m^j(p^*)$ as $m^i(p^*) < p^* \cdot x^j = m^j(p^*)$.

On can then show that, by defn. of m^j, $m^j(p^*) = e^j(u^j(\omega^j), p^*)$.
We obtain that
\[p^* \cdot x^i = m^i(p^*) < m^j(p^*) = e^j(u^j(\omega^j), p^*), \]
and hence \(u^j(x^i) < u^j(\omega^j) \) by definition of expenditure function. So \(i \)'s envy is not justified.