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IMPLICATIONS OF PARETO EFFICIENCY FOR
TWO-AGENT (HOUSEHOLD) CHOICE

FEDERICO ECHENIQUE AND LOZAN IVANOV

Abstract. We study when two-member household choice behav-
ior is compatible with Pareto optimality. We ask when an external
observer of household choices, who does not know the individuals’
preferences, can rationalize the choices as being Pareto-optimal.
Our main contribution is to reduce the problem of rationalization
to a graph-coloring problem. As a result, we obtain simple tests
for Pareto optimal choice behavior. In addition to the tests, and
using our graph-theoretic representation, we show that Pareto ra-
tionalization is equivalent to a system of quadratic equations being
solvable.

1. Introduction

We study the implications of efficiency for choice behavior. Con-
cretely, for a given collective of agents, we want to describe the choices
that are consistent with Pareto optimality, when we are ignorant about
the individual agents’ preferences. We develop a series of simple nec-
essary conditions (tests) for choice to be consistent with efficiency; the
tests lead up to a necessary and sufficient condition.

Consider a household (a two-person collective) that has to select
an alternative from a finite set. For instance, a couple may have to
decide how to spend their income, or two researchers who work at
the same laboratory may have to choose which projects to fund with
their common grants. We focus on the two agent case here because
it is the simplest and most primitive environment in which to study
Pareto efficient choice. The two-person problem entails a significant
simplification because if, say, alternatives a and b are Pareto efficient,
and we determine that one agent ranks a over b, then we pin down the
other agent’s preferences to ranking b over a. This is not the case in the
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general n person problem. In a sense, there is a “dimension reduction”
that is very helpful in the two-agent case. We imagine that the main
applications of our results are to household choice and, as we explain
below, to the study of partial orders of dimension 2.

Suppose we are given the households’ choice behavior. That is, we
know what the household would choose from each possible subset of
alternatives. We ask when the observed choice can be Pareto rational-
ized : we want to know when we can find two preference relations, one
for each household member, such that for any given subset of alterna-
tives, the choices are exactly the Pareto optimal alternatives within the
set. We are interested in what the choice behavior of such a household
looks like, and how we can test if a given household’s choices can be
rationalized.

Pareto rationalization depends on certain conditions that the collec-
tive choices must satisfy. Some conditions are classical: For example,
if an alternative x is selected from a set A, and we shrink A to B ⊆ A
while maintaining x as still available in B, then x must be chosen from
B; this condition is usually called Chernoff’s Axiom. The classical
conditions allow us to work with two binary relations: revealed Pareto
domination R and Pareto indifference O. Pareto rationalization re-
quires that there be two individual preferences >1 and >2 such that
xRy if and only if x Pareto dominates y, and xOy if and only if x and
y are Pareto incomparable. We present new necessary and sufficient
conditions for Pareto rationalization.

The problem is motivated by revealed preference theory. In revealed
preference theory, one wants to know when the choice behavior of an
individual agent is rational. By observing his choice from pairs of al-
ternatives, we can infer the agent’s preferences and then judge whether
his behavior is rational or not according to some external criterion (e.g.
whether his preferences are acyclic, transitive, etc.)

We consider instead the collective behavior of two agents. Their
choices reveal their collective preferences, but we cannot immediately
reconstruct their individual preferences, and therefore cannot judge
whether they are rational or not. To make it harder, the observed
group preferences, R and O, need not satisfy some classical rationality
conditions.

Our main results are for the case where choices from all possible
budgets are observable. One can use our results in the case when that
is not possible; in Section 6 we comment on how they can be used, and
present a simple example with partial observability.

We present the paper in terms of rationalizing choice, but one can
also phrase the results as a contribution to dimension theory: A partial
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order � on a set X has dimension N if there are n linear orders >i,
i = 1, . . . n such that

x � y ⇔ ∀i(x >i y).

We focus on the case n = 2. The problem was first studied by Dushnik
and Miller (1941), who provide a characterization of the two-agent
rationalizable orders. The problems of dimensions n > 2 are open.1

The Dushnik-Miller result is a deep result about partial orders, but
it does not constitute a useful test for rationalizability because it is
non-constructive. The characterization is in terms of a property of the
partial order that cannot be verified constructively.

In the economic literature, Sprumont (2001) has studied two-agent
Pareto rationalizability when one is interested in preferences with a par-
ticular structure.2 Sprumont works with a continuum of alternatives,
and studies Pareto two-agent rationalizations with “regular” prefer-
ences. We focus instead on the discrete case, where we put no struc-
ture on agents’ preferences (other than rationality). We shall work with
strict preferences in the main discussion of our results, but in the final
section of the paper we show that household choices are rationalizable
in strict preferences if and only if they are rationalizable in nonstrict
preferences.

The following observation is key in our analysis. Consider a pair of
alternatives, (x, y). One of two things can happen: either one alterna-
tive is revealed Pareto preferred to the other, or the two alternatives are
not Pareto ranked. In the first case, if x is chosen out of the set {x, y},
then we write x R y, and in the second case we write x O y. The first
case is simple: there is no ambiguity as any rationalizing preferences
must coincide with the Pareto order; if x R y and >1, >2 are rational-
izing preferences, then x >1 y and x >2 y. The second case presents
us with a choice. If x O y then either x >1 y and y >2 x or y >1 x and
x >2 y. In the first case, the direction of individual preference is deter-
minate. In the second case we have a degree of freedom and we cannot
infer individual preferences from the Pareto ranking. This degree of
freedom makes the problem of Pareto rationalization substantially dif-
ferent from classical individual revealed preference theory.

We represent the problem in graph-theoretic terms. We think of each
alternative as a vertex in a complete graph. For any two alternatives

1Dimension theory was introduced by Dushnik and Miller in their 1941 article.
A large literature on dimension theory has been developed: the book by Trotter
(2001) is a recent exposition.

2See also Sprumont (2000), who works out the relationship between Pareto and
Nash rationalizability.
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Figure 1. (ac, bc): a R b or b R a, a O c and c O b.

x and y, the edge xy is labeled with R or O. The key building block
of our analysis is in Figure 1, where a R b, a O c and c O b. It is easy
to see that if (>1, >2) is a rationalization then either c is the best or
the worst alternative for >1 out of the set {a, b, c}. Furthermore, if c
is the best for >1, then it is the worst for >2, and vice versa. So one
agent’s preference points towards c and the other agent’s away from c.

A graph contains (in principle) many configurations like the one in
Figure 1. If we are trying to build a rationalization (>1, >2) then
the decision we make on one such configuration, in terms of whether
agent 1 or agent 2 prefers c, affects the decision we make on others.
We reduce this problem to one of graph bi-coloring : one color for the
triplet (ac, bc) represents agent 1 preferring c out of {a, b, c}; the other
color represents agent 2 preferring c out of {a, b, c}.

This graph coloring approach allows us to formulate a simple test
(a necessary condition) for Pareto rationalizability. The test is based
on the two-coloring rationality condition being equivalent to the ab-
sence of certain odd cycles; this test is easy to implement. Passing the
test is, unfortunately, not sufficient to guarantee Pareto rationalizabil-
ity. We present another necessary condition for choice behavior to be
Pareto rationalizable. The condition is based on solving a particular
quadratic system of equations where each variable can only take the
values 1 and -1. This condition, together with the test and two clas-
sical revealed preference axioms, is sufficient for choice behavior to be
Pareto rationalizable.

The rest of the paper is organized as follows. Section 2 presents
some preliminary results. In Section 3 we present the graph-theoretic
notions we employ. Section 4 contains our main results. We remark on
the extension of our results to non-strict preferences in Section 5. We
present some conclusions in Section 7.
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2. Preliminaries

2.1. Definitions. Let X be a nonempty, finite set of alternatives. We
call a nonempty subset B ⊆ X a budget. Denote by P(X) the set of
all budgets B ⊆ X. A choice function is a function

g : P(X)→ P(X)

such that g(B) ⊆ B for all B ∈ P(X).
A strict preference relation on X is a total, antisymmetric and tran-

sitive binary relation on X (a linear order).
Given two preference relations, >1 and >2, and a budget B ∈ P(X),

say that a ∈ B is Pareto dominated in B with respect to >1 and >2

if there is some b ∈ B such that b >1 a and b >2 a; in this case we
say that b Pareto dominates a (with respect to the two preferences
>1 and >2). We call a ∈ B Pareto efficient in B if it is not Pareto
dominated in B. Observe that if a and b are Pareto efficient in some
set B ⊇ {a, b}, then either a >1 b and b >2 a, or b >1 a and a >2 b

A choice function g is two-agent Pareto rationalizable if there are two
strict preference relations >1 and >2, such that for all B ∈ P(X), f(B)
is the set of all Pareto efficient alternatives in B with respect to >1 and
>2. In this case, we say that (>1, >2) is a Pareto rationalization of f ,
or a rationalizing pair.

A pair of sets (V, E) is a (directed) graph whenever E ⊆ V × V .
We say that the elements of V are the vertexes of the graph, and that
(v, v′) ∈ E means that there is an edge pointing from v to v′.

2.2. Preliminary results. We present two axioms that are necessary
for Pareto rationalization. They are standard axioms in the literature,
and they are known to be necessary for single-agent rationalization as
well (see e.g. Moulin (1991)). The results in Lemmas (1) and (2) are
also standard.

Axiom 1. For all B1, B2 ∈ P(X), if B1 ⊆ B2 and a ∈ B1 ∩ f(B2),
then a ∈ f(B1).

The interpretation of Axiom 1 is that if f is Pareto rationalizable,
and a is a Pareto efficient choice among the alternatives in a given
budget, it must remain Pareto efficient among the alternatives of any
smaller budget that contains a. Axiom 1 is a standard axiom in choice
theory, usually called Chernoff’s axiom (Moulin (1991)). We obtain
the following version of this standard result

Lemma 1. Axiom 1 is necessary for Pareto rationalizability.
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Proof. Suppose that f is Pareto rationalizable and that (>1, >2) is a
rationalization. By definition, we have that if a ∈ B1 ∩ f(B2) for some
B1 ⊆ B2, then a is not dominated by any b ∈ B2 (with respect to
(>1, >2)). Since B1 ⊆ B2 it follows that a is not dominated by any
b ∈ B1. Thus, a is Pareto efficient in B1 and a ∈ f(B1), as f(B1)
is the set of all Pareto efficient alternatives in B1 with respect to the
rationalization (>1, >2). This proves the lemma. �

Axiom 2. For all B1 ∈ P(X), if a ∈ B1 \ f(B1), then for some
b ∈ f(B1)

f(ab) = b.3

The interpretation of Axiom 2 is that if f is Pareto rationalizable,
and a is not Pareto efficient among the alternatives in a given bud-
get, then there must exist an efficient alternative in this budget which
Pareto dominates it. The following lemma is essentially in Moulin
(1991), page 306:

Lemma 2. Axiom 2 is necessary for Pareto rationalizability.

Proof. Suppose that (>1, >2) is a rationalization and a ∈ B1 \ f(B1)
for some B1 ∈ P(X). Then a is not Pareto efficient in B1 with respect
to (>1, >2). If follows that a is Pareto dominated in B1 by some other
alternative a1 ∈ B1. If a1 /∈ f(B1) then a1 ∈ B1\f(B1) and by the same
argument a1 is Pareto dominated in B1 by some other alternative a2 ∈
B1. And so on, since the set B1 is finite and rationalizing preferences
are transitive, we will eventually find an alternative b ∈ f(B1) that
Pareto dominates a, and hence b is the only Pareto efficient alternative
in the budget ab: f(ab) = b, b ∈ f(B1). �

We next introduce two binary relations. Given is a choice function
f . The strict revealed preference relation associated to f is the binary
relation R defined as a R b if f(ab) = a.4 The indifference relation
associated to f is the binary relation O defined as a O b and b O a if
f(ab) = ab. Note that O is symmetric.

The following well-known (Moulin, 1991) observation illustrates the
importance of R.

Lemma 3. If f satisfies Axioms 1 and 2, R is transitive.

Proof. Assume that f satisfies both axioms and a R b, b R c. Using
Axiom 1 twice we get b /∈ f(ab) ⇒ b /∈ f(abc) and c /∈ f(bc) ⇒ c /∈
f(abc). Since f(abc) is nonempty it follows that f(abc) = a. Now

3We are going to abuse notation and write a1a2...at instead of {a1, a2, . . . , at}.
4The relation R is also called the base relation.
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Axiom 2 implies that f(ac) = a as a is the only alternative in f(abc).
Thus a R c and the relation R is transitive. �

Remark. Note that O may not be transitive, as the following example
with X = {a, b, c} illustrates:

c >1 a >1 b,

b >2 c >2 a;

where a O b and b O c but c R a.

We henceforward assume that the choice function f satisfies Ax-
ioms 1, 2 and so R is transitive. We are interested in when a pair of
linear orders (>1, >2) is a rationalization of the choice function g, given
that it satisfies both axioms. Suppose first that (>1, >2) is a rational-
ization. Note f(ab) is either a singleton or f(ab) = ab. If f(ab) = a is
a singleton then a >1 b and a >2 b as a is the only efficient element in
ab with respect to (>1, >2). If f(ab) = ab, then both a and b must be
efficient, meaning that

(1) ((a >1 b) and (b >2 a)) or ((a >2 b) and (b >1 a)) .

We arrive at the following important observation.

Lemma 4. Suppose the choice function f satisfies Axioms 1 and 2.
Then a pair of binary relations (>1, >2), over the universal set X, is a
rationalization of f if and only if a >1 b and a >2 b whenever aRb, (1)
holds whenever a O b, and both relations are acyclic.

Proof. We already proved the forward direction of the claim. Con-
versely, suppose that (>1, >2) is a pair of acyclic relations such that
a >1 b and a >2 b whenever a R b, and (1) holds whenever a O b.
By these assumptions, >1 and >2 are total and antisymmetric as well.
Since both relations are acyclic, it follows that they must also be tran-
sitive and hence linear orders.

Consider a budget B ∈ P(X) and an alternative b ∈ B \ f(B).
By Axiom 2, f(ab) = a for some a ∈ f(B). That is, a R b. Then,
by assumption, a >1 b and a >2 b, and so b is Pareto dominated in
B with respect to the pair (>1, >2). On the other hand, take any
a ∈ f(B) and suppose that for some c ∈ B, c >1 a and c >2 a. Since
both relations agree over the pair of alternatives (a, c), our assumptions
imply that c R a. That is, a /∈ f(ac). But a ∈ f(B) ∩ {a, c} and by
Axiom 1 a ∈ f(ac), a contradiction. Thus, c >1 a and c >2 a cannot
simultaneously hold for any c ∈ B, which implies that a is not Pareto
dominated in B, i.e., a is Pareto efficient in B with respect to the pair
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of relations (>1, >2). Since a ∈ f(B) and b ∈ B \ f(B) are generic
elements of the corresponding sets, we conclude that f(B) contains
the Pareto efficient alternatives in B and only those. Hence, (>1, >2)
is a Pareto rationalization of the choice function f . �

Axioms 1 and 2 are necessary. We present an example below to the
effect that they are not sufficient. By Lemma 4, then, it should be clear
that property (1) captures the restrictions in Pareto rationalizability,
in addition to the standard properties in Axioms 1 and 2. In the
next section we shall use a graph-theoretic structure to understand
property (1) better.

3. A graph coloring problem

We proceed to illustrate how we translate the problem of character-
izing Pareto rationalizability into a graph-coloring problem. Suppose
that (>1, >2) is a rationalization of the choice function f . By Lemma 4,
we know this is equivalent to (>1, >2) being a pair of acyclic relations
such that a >1 b and a >2 b whenever a R b, and (1) holds whenever
a O b. We can rewrite these two properties of (>1, >2) as

(2) if a >1 b and a R b, then a >2 b; if a >1 b and a O b, then b >2 a.

As a consequence, a rationalizing relation >1 defines a rationalization
(>1, >2). A choice function g defines R and O; so >1 and (2) gives us
>2. This simple observation will allow us to translate characterizing
Pareto rationalizability into a graph-coloring problem.

Let G be the directed graph

G = (X, {ab|a R b or a O b}).

The vertices of G are all the alternatives from the universal set X
and the edges of G represent all the revealed binary comparisons of
alternatives in X: we label the edge (a, b) by R if aRb or bRa, and we
label the edge (a, b) by O if a O b or b O a. For example, imagine three
alternatives a,b and c for which a O c, c O b and a R b. The situation is
represented in Figure 1 in the Introduction.

The configuration in Figure 1 is crucial. This configuration would
not be possible if R described a single agent’s strict preference relation,
and O described her indifference relation. With a Pareto rationalization
(>1, >2), we see that >1 must either point away from c or point towards
c:

Lemma 5. Suppose that (>1, >2) is a rationalization and a, b, c ∈ X
are three alternatives for which a O c, c O b, and a R b or b R a. Then
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the following is true

(3) (a >1 c and b >1 c) or (c >1 a and c >1 b).

Proof. Let a R b. We cannot have b >1 c and c >1 a, as this results in
the cycle a >1 b >1 c >1 a, contradicting the assumption that >1 is
acyclic (we have a >1 b and a >2 b since a R b). Similarly, we cannot
have a >1 c and c >1 b because this implies b >2 c and c >2 a, which
contradicts the acyclicity of >2. Two possibilities remain: either a >1 c
and b >1 c, or c >1 a and c >1 b. That is, (3) holds. We readily see
that, after relabeling a and b, (3) also holds if we have b R a instead of
a R b. �

Remark. Statement (3) in Lemma 5 clearly holds for >2 as well; and if
one of the alternatives in (3) holds for >1, the other holds for >2.

Given that (3) holds for any rationalization (>1, >2) and any three
alternatives a, b, c ∈ X with a O c, c O b, and a R b or b R a, we seek
to understand the structure of the graph G. Any necessary condition
for G that we hope to derive is indirectly a condition for the choice
function f , as G depends on the revealed preference relations R and
O, which, in turn, correspond to choice functions satisfying Axioms 1
and 2.

We can express our observation (3) using a second graph, which is
undirected:

F = ({ab|a 6= b}, {(ac, bc)|a R b, a O c, b O c}).
Note that the vertexes of F are edges of G; there is an edge between
ac and bc if they are in a relation like the one in Figure 1: they are
elements of O which are related by R.

We say that the edge f = (ac, bc) ∈ F is colored 1 if (a >1 c and
b >1 c), and that f is colored −1 if (c >1 a and c >1 b). Consider
Figure 1: the edge (ac, bc) is colored 1 when >1 points away from the
common vertex c; the edge is colored −1 when >1 points toward the
common vertex. Since the assumed rationalization (>1, >2) verifies
equation (3) by Lemma 5, it follows that it induces a coloring of every
edge of the graph F . We now obtain a simple necessary condition for
rationalizability based on this coloring.

Consider two adjacent edges f1, f2 ∈ F ; let f1 = (ac, bc), for alter-
natives a, b, and c such that the vertex bc of F is an endpoint of the
edge f2. We have f2 = (cb, db) or f2 = (bc, dc) for some other alter-
native d. The first possibility is represented on the left in Figure 2
while the second possibility is on the right. When two adjacent edges
f1 = (ac, bc), f2 = (cb, db) are related as in Figure 2 on the left, we
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Figure 2. Left:(ac, bc) and (cb, db) are dichromatic;
right: (ac, bc) and (bc, cd) are monochromatic

say that they are dichromatic as they must have different colors in any
rationalization. When f1 = (ac, bc), f2 = (bc, dc) are related as in Fig-
ure 2 on the right, we say they are monochromatic as they must have
the same color.

Formally, we say that a pair of edges (f1, f2), of the graph F is
monochromatic when f1 = (ac, bc) and f2 = (bc, dc) for distinct alter-
natives a, b, c, d ∈ X. When f1 = (ac, bc) and f2 = (cb, db) for distinct
alternatives a, b, c, d ∈ X, we call the pair of edges (f1, f2) dichromatic.

Lemma 6. Let (>1, >2) be a rationalization and f1, f2 be two adjacent
edges in the graph F . If they are monochromatic (related as on the
left in Figure 2) then the two edges have different colors. If f1, f2 are
dichromatic (related as on the right), then they have the same color.

Proof. Consider first the case f1 = (ac, bc), f2 = (cb, db). If the edge
f1 is colored −1 then c >1 b, and by equation (3) d >1 b so that f2 is
colored 1. Similarly, if f1 is colored 1 then b >1 c, and by (3) b >1 d: f2

is colored −1. Either way, f1 and f2 have different colors. The second
case f1 = (ac, bc), f2 = (bc, dc) is treated the same way. �

These ideas allow us to formulate a simple condition.

Axiom 3. Every cycle in F has an even number of dichromatic pairs.

We have argued that a rationalization implies a coloring of the edges
of F in which monochromatic pairs have the same color, and dichro-
matic pairs have opposite colors. Coloring using two colors (bicoloring)
is equivalent to the absence of a cycle in which there is an odd number of
vertexes forcing a switch in the color of adjacent edges (a simple result
in graph theory). In our particular case, the vertex linking two adjacent
edges of the graph F forces a switch in color if they are dichromatic
and forces them to have the same color if they are monochromatic. We
get for free the following
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Lemma 7. If f is Pareto rationalizable, it must satisfy Axiom 3.

We finish this section with an example of a choice function that
satisfies Axioms 1 and 2, but not 3. Such a function is not two-agent
Pareto rationalizable.

Example. Let X = {a1, a2, a3, a4, a5, a6} be the set of alternatives
and define the choice function g by the following table; the entry cor-
responding to row ai and column aj is g({ai, aj}).

a1 a2 a3 a4 a5 a6

a1 a1 a3a1 a1a4 a1 a1a6

a2 a2a3 a4 a2a5 a2a6

a3 a4 a3a5 a6

a4 a4a5 a4a6

a5 a6

The table defines the relations R and O. It is then easy to extend g
to all of P(X) so that it satisfies Axioms 1 and 2.

Notice next that f1 = (a1a3, a2a3), f2 = (a3a2, a6a2), f3 = (a6a2, a5a2),
f4 = (a2a5, a4a5), f5 = (a4a5, a3a5), and f6 = (a5a3, a1a3) are edges of
the graph F such that f1, f2 are dichromatic, f2, f3 are monochromatic,
f3, f4 are dichromatic, f4, f5 are monochromatic, f5, f6 are dichromatic,
and f6, f1 are monochromatic. Then f1f2f3f4f5f6f1 is a cycle in F
which has an odd number (three) of dichromatic pairs. See Figure 3,
in which the edges of G are drawn with continuous lines and the edges
of F are drawn as dotted lines. In Figure 3, an arrow at the end of an
edge indicates the direction of R. The absence of any edge or arrow
indicates that the edge corresponds to O.

The choice function g then satisfies Axioms 1 and 2, but not Axiom 3.

4. Main results

Our main result is a characterization of Pareto rationalizability. We
express the characterization as a graph coloring problem in Theorem 8.
We present the same characterization in Theorem 10, in terms of a
system of quadratic equations having a solution. The version of the
result in Theorem 10 may be computationally the most convenient.

In Section 3, we reduced the problem of Pareto rationalization to a
problem of bi-coloring the graph F . Our characterization of Pareto ra-
tionalization requires paying special attention to certain configurations
of edges in F .
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a5

a1 a2

a6

a4

a3

Figure 3. A choice function satisfying Axioms 1 and 2
but not 3.

We say that a triple of edges (f1, f2, f3) of the graph F is 3-cyclic
provided

f1 = (ca, ea), f2 = (cb, eb), f3 = (ba, da),

for some distinct alternatives a, b, c, d, e ∈ X with d O e, d O c. Notice
that (f1, (cd, ed), f3), (f3, (bc.dc), f1) and (f3, (be, de), f1) are 3-cyclic
triples as well and that the ordering of the edges in a 3-cyclic triple
matters.

The role of 3-cyclic edges becomes apparent in the following

Theorem 8. A choice function is Pareto rationalizable if and only if
it satisfies Axioms 1-3, and there is a coloring of the edges of the graph
F (in 1 and -1) such that two edges in a monochromatic pair have the
same color, two edges in a dichromatic pair have different colors, and
for every 3-cyclic triple (f1, f2, f3) either f1 and f2 have the same color
or f1 and f3 have the same color.

Proof. Let g be a choice function that satisfies the hypotheses. We
are going to construct a Pareto rationalization (>1, >2) of g. The
construction starts by defining the two binary relations >1 and >2

over only some pairs of alternatives from X at first, and then extending
them to the entire set X. For each pair of alternatives (a, b) with aRb,
define a >1 b and a >2 b. For each pair (a, b) define a >1 b, b >2 a if for
some c ∈ X it is the case that (ab, cb) ∈ F is colored 1 or (ba, ca) ∈ F
is colored -1. The pair (>1, >2) is currently only partially defined.

We present a trivial fact that will be invoked often in the sequel:
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a

b

c

d
R

Figure 4. A cycle for >1, indicated with directed edges.

Lemma 9. Let x, y, z ∈ X be three distinct alternatives. If x >1 y >1 z
and x O y O z, then x O z.

We illustrate the rest of the argument using Figures 4, 5 and 6.
Suppose there is a >1-3-cycle a >1 b >1 c >1 a for some a, b, c ∈ X.
It is easy to see that we must have a O b O c O a: if all three of the
revealed relations belong to R then R is not acyclic, a contradiction; if
exactly two of the relations belong to R then the third must also since
R is transitive, a contradiction; if only one of the relations belongs to
R then we have not colored each edge of the graph F .

We represent the situation in Figure 4; we omit the label on O edges
to simplify the figures. The bold edges with arrows indicate the pref-
erence >1; for example, the preference a >1 b mandates an arrow
on the ab edge pointing in the direction of a.

Now, a O b and a >1 b implies that there is d ∈ X such that either
(ba, da) ∈ F or (ab, db) ∈ F . Suppose, without loss of generality, that
(ba, da) ∈ F is the case. Then a O d and a >1 d as (ba, da) is colored
−1; see Figure 4. Now consider the edge cd. By Lemma 9 we must
have c O d. Hence (bc, dc) must be an edge in F colored in 1. This
means that d >1 c. (We have assumed that (ba, da) ∈ F , but if we
instead assume that (ab, db) ∈ F , we end up with the same picture
after relabeling a, b and c.)

Next, c O a and c >1 a imply the existence of some some e ∈ X
such that either (ca, ea) ∈ F or (ac, ec) ∈ F . Suppose without loss of
generality that f1 = (ca, ea) ∈ F . Then e O a and e >1 a, as (ca, ea) is
colored with 1. See Figure 5.

Note that (ca, ea) ∈ F implies that cRe or eRc. We invoke Lemma 9
with e O a, a O b, e >1 a, and a >1 b to get e O b and b O e. Hence,
f2 = (cb, eb) ∈ F ; in addition, b >1 c implies that f2 is colored −1 and
thus b >1 e. See Figure 5. Now, dOe as an R relation is not possible by
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a

b

c

d

e

R

R

Figure 5. Implied existence of d and e driving the cycle.

a

b

c

d

e

R

f3 f2

f1

R

Figure 6. f1 = (ca, ea),f2 = (cb, eb) and f3 = (ba, da).

Lemma 9. Then, (dR b)∨ (bRd)) implies that (de, be) ∈ F , and b >1 e
implies that (de, be) is colored 1. Hence, d >1 e. The case (ac, ec) ∈ F
leads to the same picture after relabeling a, b and c.

Consider the edges f1 = (ca, ea), f2 = (cb, eb) and f3 = (ba, da)
which all belong to the graph F . Notice that f3 colored −1, f2 colored
−1, and f1 colored 1. In addition, we have d O e, d O c. This means
that the triple of edges (f1, f2, f3) is 3-cyclic with f1 and f2 having
opposite colors, and f1 and f3 having opposite colors. We have reached
a contradiction with the assumptions of the Lemma. Hence, there is
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no 3-cycle belonging to the (not yet total) relation >1. The situation
is represented in Figure 6.

Suppose there is a 3-cycle a >2 b >2 c >2 a which belongs to >2. As
for >1, it must be the case that aObOcOa. But then a >1 c >1 b >1 a,
a contradiction.

Suppose next that >1 is not acyclic: for some a1, a2, . . . , at ∈ X,
t > 4 we have a1 >1 a2 >1 . . . >1 at >1 a1. We may assume that this
is the shortest cycle, meaning that t is minimal. If a1 R a3 then there
is a shorter cycle a1, a3, a4, . . . , at, a1, a contradiction; if a3 R a1, then
there is a 3-cycle belonging to >1, again a contradiction. If a3Ra1 then
there is a 3-cycle that belongs to >1, a contradiction. Hence, a1 O a3.
Now suppose that a1 R a2. If a2 R a3 then a1 R a3 as R is transitive,
a contradiction. Then a2 O a3 and (a1a3, a2a3) must be an edge of the
graph F that is colored in 1. We conclude that a1 >1 a3 and there is a
shorter cycle, a contradiction. So a1 O a2.

This allows us to conclude that a1Oa2O. . .OatOa1. Because a1Oa2

and a1 >1 a2, for some b ∈ X either (a2a1, ba1) ∈ F or (a1a2, ba2) ∈ F .
Suppose that (a2a1, ba1) ∈ F . Then a1 >1 b. Now at >1 a1, a1 >1 a2

and a1 >1 b imply that at Oa2 and at Ob, by Lemma 9. So (a2at, bat) is
an edge in F . If it is colored in -1 we get a 3-cycle a1 >1 a2 >1 at >1 a1,
a contradiction. It should be colored in 1, so at >1 a2, and we once
again have a shorter cycle, a contradiction. The case (a1a2, ba2) ∈ F
leads to a contradiction in a similar fashion.

Therefore, >1 is acyclic and can be extended to a total, antisym-
metric and transitive relation (a preference relation) on X. In light
of observation (2) in Section 3, the (extended) preference relation >1

extends >2 to a total and antisymmetric binary relation on X which
does not possess any 3-cycles. On the other hand, if a total relation
has a cycle, it is easy to see that it has a 3-cycle. It follows that >2 is
also acyclic and Lemma 4 implies that (>1, >2) is a rationalization of
the choice function g.

We finish the proof by proving the converse statement. Let (>1, >2)
be a rationalization of the choice function g. We have already shown
that g must satisfy Axioms 1- 3. We have also seen in Lemma 6 that
the rationalization (>1, >2) induces a coloring of the edges of the graph
F that respects di- and monochromatic pairs. Finally, if (f1, f2, f3) is
a 3-cyclic triple and we suppose that f1 and f2 have opposite colors
and f1 and f3 have opposite colors, we must conclude that either a >1

b >1 c >1 a or a >1 c >1 b >1 a. A contradiction of the transitivity of
>1. Hence, f1 and f2 have the same color or f1 and f3 have the same
color. �
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Remark. The proof of Theorem 8 is constructive. Given a coloring of
the edges of the graph F , we described a simple procedure for con-
structing a rationalization (>1, >2) of the given choice function: the
rationalization must agree with the revealed relation R, as well as the
coloring of the graph F over pairs of alternatives ab which represent an
endpoint of an edge in the graph F . Next, we extend >1 to the entire
set X, which also determines >2 as a linear order on X. We showed
that the pair (>1, >2) constructed in this way is indeed a rationaliza-
tion.

Theorem 8 is a characterization of Pareto rationalizability. From
the results in Section 3, we know that, if a choice function satisfies
Axioms 1-3 there is a coloring of the edges of the induced graph F which
assigns opposite colors to edges from a dichromatic pair and equal
colors to edges from a monochromatic pair. Pareto rationalizability
amounts, over and above Axioms 1-3, to finding a coloring of the edges
of F , which in addition to respecting di- and monochromatic pairs also
has the property that for every 3-cyclic triple (f1, f2, f3) either f1 and
f2 have the same color or f1 and f3 have the same color.

Notice that if there is a coloring of the edges of F that satisfies
the conditions in Theorem 8, we can reverse the color of every edge
and still have a coloring that satisfies those conditions: the reversed
coloring leads to the same rationalizing pair as the original one, with
>2 in place of >1. To avoid dealing with this duality, and to simply
our notation, we introduce a third graph H. The vertexes of H are the
edges of the graph F , and two vertexes f1, f2 in H are joined by an
edge in H if and only if there is a path in F connecting f1 with f2.

In the graph F , the notions of monochromatic or dichromatic pairs
of edges only applied to adjacent edges; that is, edges with a common
vertex. We can easily extend this definition to pairs of edges that are
connected by a path in F , calling a pair of edges monochromatic if
there is a path with an even number of dichromatic pairs joining them,
and dichromatic if there is a path with an odd number of dichromatic
pairs joining them. The more general notion of mono- and di-chromatic
is well-defined under Axiom 3, as Axiom 3 then insures that no pair of
edges from F is both dichromatic and monochromatic.

Under Axiom 3, then, we can extend our definitions of dichromatic
and monochromatic edges in F to give a bi-coloring of H. We say that
the edge f1f2 (in H) is colored 1 if the corresponding path (in F ) has
an even number of dichromatic pairs, and is colored -1 if the path has
an odd number of dichromatic pairs.
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Now, H is the dual graph of F . It is well-known and easy to see that
Axiom 3 is equivalent to

Axiom 3’. Every cycle in H has an even number of edges colored -1.

Observe that a choice function induces a coloring of the edges in H
just like it labels some pairs of edges in F as di- or mono-chromatic.
We cannot choose the coloring of the edges of H, in contrast to the
coloring of F we have discussed above.

We now express the consequences of Theorem 8 for H using a system
of equations. A solution to the system of equations will be a coloring
of the vertexes of H.

For the graph H, Theorem 8 implies the following. A choice function
that satisfies Axioms 1-3 is Pareto rationalizable if and only if there is
a coloring of the vertexes of H in 1 and -1, such that

• two vertexes h1, h2 ∈ H, such that h1h2 is and edge in H, have
equal colors if h1h2 is colored 1 and opposite colors if h1h2 is
colored −1;
• for every 3-cyclic triple of vertexes (h1, h2, h3) either h1 and h2

have the same color or h1 and h3 have the same color. 5

We introduce one variable for each vertex of H; these variables can
take the values 1 or −1.

Let k be the number of 3-cyclic triples:

T1 = (h1,1, h1,2, h1,3), T2 = (h2,1, h2,2, h2,3), . . . , Tk = (hk,1, hk,2, hk,3).

Remark. As we observed before, 3-cyclic triples come in groups of four.
It is sufficient to satisfy the requirement in Theorem 8 only about
one 3-cyclic triple out of those four and we may choose to ignore the
other three. For theoretical purposes, the redundancy plays no role.
For computationally constructing a Pareto rationalization, it would be
important to only include one representative 3-cyclic triple.

We proceed to describe a system of equations, named (*), by enu-
merating all the component equations.

First, include the 3k equations

h2
i,j = 1

in the system (*). These must be included because hi,j must take the
value 1 or -1.

5A triple of vertexes (h1, h2, h3) in H is called 3-cyclic if and only if that same
triple viewed as a triple of edges in F , is 3-cyclic.
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Next, if the same vertex belongs to two different 3-cyclic triples, we
have that

hi1,j1 = hi2,j2

belongs to (*), where hi1,j1 and hi2,j2 are the same vertex in H. If hi1,j1

and hi2,j2 are two vertexes for which hi1,j1hi2,j2 is an edge in H colored
1, then

hi1,j1 = hi2,j2

is an equation in the system; if hi1,j1hi2,j2 is an edge in H colored -1,
then

hi1,j1 = −hi2,j2

must be included in the system of equations (*).
Finally, for every i = 1, 2, . . . , k, the equation

(hi,1hi,2 + hi,1hi,3 − 1)2 = 1

belongs to the system (*). Notice that hi,1 and hi,2 having opposite
colors or hi,1 and hi,3 having opposite colors is equivalent to hi,1hi,2 +
hi,1hi,3 6= −2, which is equivalent to hi,1hi,2 + hi,1hi,3 ∈ {0, 2}. This, in
turn, is equivalent to (hi,1hi,2 + hi,1hi,3 − 1)2 = 1.

Axiom 4. The system of equations (*) has a solution.

Evidently, Axiom 4 is simply a reformulation of the conditions in
Theorem 8. So Axiom 4 is both a necessary and sufficient condition
for the existence of a coloring of the vertexes of H in the hypotheses
of Theorem 8. We thus obtain:

Theorem 10. The choice function f is Pareto rationalizable if and
only if it satisfies Axioms 1,2,3,4.

Unfortunately, the system (*) is not linear, and its solution may
present significant computational problems. That said, the construc-
tion of the system should be computationally feasible (all the graphs
involved can be constructed in polynomial time). One computational
advantage of the system is that it does not involve equations of order
higher than 2, as h2

i,j = 1 implies that

(hi,1hi,2 + hi,1hi,3 − 1)2 = 3 + 2hi,2hi,3 − 2hi,1hi,2 − 2hi,1hi,3.

5. Rationalizability in non-strict preferences

We proceed to discuss rationalization by non-strict preferences. We
observe that our characterization still holds in this case, when we define
Pareto efficiency in the weak sense that an alternative a in B is Pareto
efficient if there is no b ∈ B that both agents strictly prefer.
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A choice function g is two-agent Pareto rationalizable in non-strict
preferences if there are two total, reflexive and transitive binary rela-
tions >1 and >2 on the universal set of alternatives X, such that for
all B ∈ P(X), f(B) is the set of Pareto efficient alternatives in B
with respect to (>1, >2). In this case, we say that (>1, >2) is a Pareto
rationalization of g in non-strict preferences.

Theorem 11. The choice function g is Pareto rationalizable in non-
strict preferences if and only if it satisfies Axioms 1,2,3,4.

Proof. Suppose g satisfies Axioms 1 - 4. Then Theorem 10 implies that
g is rationalizable by some strict preferences (>1, >2), and therefore g
is also rationalizable by non-strict preferences. On the other hand,
suppose g is rationalizable by nonstrict (>1, >2). It is readily seen
that axioms 1-2 must still hold. Also, if a R b, b O c, c O a, then >1

and >2 must be strict on (a, b) and (b, c): if b =1 c then b =2 c and
it must be the case that a R c since a R b. This contradicts a O c.
The remaining axioms 3, 4 only deal with these tractable pairs b O c
and c O a, over which there are can be no indifferences belonging to
rationalizing relations, and it follows that they are also necessary. �

6. Rationalizability with partial observations

We have followed the classical approach in choice theory, and worked
with a choice function that is defined on every budget. The results are,
however, applicable to situations where there is partial observability of
budgets; as is typically the case in empirical applications of revealed
preference theory.

With partial observability, one obtains the relations R and O from
the data, and one needs to check that R is acyclic (this is the coun-
terpart to checking the strong axiom of revealed preference in classical
revealed preference theory). We can then use the construction in the
proof o Theorem 8. Specifically, the construction of graphs G and F
only require R and O as inputs.

For example, if X = {a, b, c, d}. Suppose that a Pareto dominates b
and d Pareto dominates c; but that we observe that a and c, b and c, and
b and d are Pareto unrelated. Notice that we do not observe anything
about how a and d are related: hence we face partial observability.

Now the graph G is (X, E) with E = {ab, ac, bc, bd, dc}. The graph F
is (E,P ), with P = {(ac, bc), (bc, bd)}. Note that the pair (ac, bc) and
(bc, bd) is dichromatic. If we set (ac, bc) to have color 1, so a >1 c and
b >1 c, we must set (bc, bd) to have color −1, so that b >1 c and b >1 d.
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This information, together with the information about R, implies that

a >1 b >1 d >1 c.

For agent 2 we have the opposite direction of preferences for O edges
of G. So we have that c >2 a, c >2 b, and d >1 b; while it is still the
case that a >2 b and d >2 c. So we obtain

d >2 c >2 a >2 b.

7. Conclusion

We characterize two-agent Pareto rationalizability of choice func-
tions. We present several simple tests for Pareto rationalizability, most
notably the verification of Axiom 3. This axiom is a new consequence
of Pareto rationalizability, and its verification seems to be computa-
tionally simple.

Our characterization, on the other hand, essentially involves solving
a system of quadratic equations. Thus, applying our characterization
may be computationally hard; it may not present a substantial advan-
tage over exhaustively searching over all possible rationalizing linear
orderings. For problems of a given size, though, it seems intuitive
that the constructions we have discovered (the graph H) simplifies the
problem.

Finally, we have worked on the two-agent case. We do not know if
our graph-theoretic approach extends to the case when we have more
than two agents. The difficulty is that there is no two-coloring which
allows us to formulate meaningful, simple graph tests, which seem to
lead in the direction of a characterization. The general problem with
n agents remains open.
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