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Abstract

We extend the Luce model of discrete choice theory to satisfactorily handle zero-

probability choices. The Luce mode struggles to explain choices that are not made. The

model requires that if an alternative y is never chosen when x is available, then there is

no set of alternatives from which y is chosen with positive probability. In our model, if

an alternative y is never chosen when x is available, then we infer that y is dominated by

x. While dominated by x, y may still be chosen with positive probability, when grouped

with a comparable set of alternatives.
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1 Introduction

Alice likes wine better than beer, and beer better than soda. When offered a choice

between wine or beer, she chooses wine most of the time, but on occasion she may
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choose beer. In contrast, when Alice is offered wine or soda, she will always drink wine

and never soda. Finally, when Alice is offered a choice of beer or soda, she may on

occasion decide to drink soda despite liking beer more than soda. Standard discrete

choice theory in the form of Luce’s model (Luce, 1959), also known as the Logit model,

cannot explain Alice’s behavior because never choosing soda when offered {wine, soda}

means that soda has the lowest possible utility: zero. This means that soda can never be

chosen from any menu; in particular, Alice must never choose soda from {beer, soda}.

Many choice situations are similar to Alice’s. They pose a problem for mainstream

discrete choice theory, because Luce’s model does not handle zero-probability choices

well.1 Suppose that x and y are two alternatives. Luce’s model postulates that the

probability of choosing x over y depends on the relative utility of x compared to that

of y. When x is chosen more frequently than y, one infers that the utility of x is higher

than that of y. Now consider alternative z, which is worse than y. Suppose that x is so

much better than z that z would never be chosen when x is present. Luce’s model now

says that the utility of z is the lowest possible: zero. This means that z would never be

chosen, even when x is not offered. In other words, discrete choice theory in the form of

the Luce model cannot account for a situation in which x is always chosen over z, but

z is sometimes chosen from {y, z} for some y.

We propose to capture the phenomenon of probability-zero choices through the idea

of dominance. When the presence of x causes z not to be chosen, we say that x dominates

z. If x is not present, then z may be chosen with positive probability, even when z

is paired with alternatives that have a higher utility than z. More precisely, we say

that x dominates z if z is never chosen when x is available; and we say that x and z

are comparable if neither of them dominates the other. In our theory, an agent uses

Luce’s model to determine the probability of choosing each alternative among sets of

comparable alternatives. The agent chooses with probability zero those alternatives that

are dominated in the choice set. Importantly, alternatives that are not chosen from one

set may be chosen with positive probability from a set of comparable alternatives.

1A recent growing literature extends the Luce model to capture various behavioral phenomena, but typically
requires strictly positive choice probabilities.
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An important aspect of our model is that the comparability relation (the binary re-

lation “is comparable to”) may not be transitive. Recall Alice’s situation. It is possible

that wine is better, but does not dominate, beer; beer is better than, but does not dom-

inate soda; while wine dominates soda. Hence, the pairs of wine and beer, and beer and

soda, are comparable, but wine and soda are not comparable. Such lack of transitivity

is related to the phenomenon of semiorders. In the theory of semiorders (originally pro-

posed by Luce (1956)), indifference may fail to be transitive.2 Introducing the theory

of semiorders into the framework of stochastic choice affords considerable simplification

because one can use the cardinal magnitudes of stochastic choice to measure cardinal

utility differences.

One way to think of the purpose of our paper is as a study of stochastic choice

that can sometimes be deterministic. One of Luce’s crucial assumptions is that choice

probabilities are always strictly positive (see, for example, Theorem 3 in Luce (1959)).

But it is very common to see the model being applied to environments in which some

choice probabilities are zero. Ours seems to be the first axiomatic extension of Luce’s

model to accommodate deterministic choices.3

We present three versions of our model. The first version generalizes Luce’s model

by allowing for an agent to never choose some elements in a choice set. In this first

model, the support of the stochastic choice function does not have any structure. The

support can be any subset of a choice set. The first model is called the general Luce

model.

The second version of our model, the two-stage Luce model, is a special case of the

general Luce model in which the support of the stochastic choice function consists of all

the alternatives in a choice set that are not dominated by any other alternative. The

two-stage Luce model is endowed with a dominance binary relation, and zero probability

choices are accounted for using dominance, as suggested above.

The third version of our model, the threshold Luce model, is a special case of the

2A common example in the literature on semiorders is the comparison of coffee with different amounts of
sugar. One additional grain of sugar produces an indifferent cup of coffee. But after adding enough grains,
one obtains a noticeably sweeter cup.

3The paper by Fudenberg et al. (2015) allows for deterministic choices, but does not focus on Luce.
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two-stage Luce model in which the dominance relation is directly tied to utility. One

alternative is dominated by another alternative if the utility of the former is sufficiently

smaller than the utility of the latter.

The main results in the paper are axiomatic characterizations of these models; that

is, a complete description of the observable stochastic choices that are consistent with

the models.

The axioms are simple. Our first axiom is a weakening of Luce’s Independence of

Irrelevant Alternatives (IIA) axiom. We call the axiom Cyclical Independence. The

axiom is weaker than Luce’s IIA in that it allows zero probability choice. Cyclical

independence is the key to generalizing Luce’s model to allow for zero probability choices.

To characterize the two-stage Luce model, we need three more axioms. Weak Regu-

larity requires that the probability of choosing an alternative cannot drop from positive

to zero when one removes alternatives from a choice set. Weak regularity is a weakening

of Luce’s regularity axiom, which says that choice probabilities cannot go down when

alternatives are removed. Our second axiom, Independence of Dominated Alternatives,

says that removing a dominated alternative from a choice set does not affect the stochas-

tic choice behavior of the agent. As noted, we will say that x dominates y if y is never

chosen when x is available. Our last axiom is a simple stochastic version of Sen’s γ

axiom, which we call Probabilistic γ.

To characterize the threshold Luce model, we need one more axiom, Path Mono-

tonicity, which requires that comparisons of sequences of alternatives be consistent.

One possible interpretation of our models is that it describes an agent’s behavior

when her preferences are incomplete. The agent follows Luce’s rule when he needs to

choose from a choice set over which the agent’s preferences are incomplete. Based on

a similar interpretation, a recent paper by Cerreia-Vioglio et al. (2016) characterize

consistent random choice rules and then study stochastic choice in a consumer theory

setting.

To conclude this introduction, we discuss the related literature. There are many

papers on semiorders, starting from Luce (1956). In particular, Fishburn (1973) studies
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a stochastic preference relation as a semiorder.

Several recent papers provide generalizations of the Luce model. Gul et al. (2014)

axiomatize a generalization of the Luce model to address difficulties of the Luce model

that arise when alternatives have common attributes. Fudenberg and Strzalecki (2014)

axiomatize a generalization of a discounted logistic model that incorporates a parameter

to capture different views that the agent might have about the costs and benefits of

larger choice sets. Neither model allows zero probability choices. Echenique et al.

(2013) axiomatize a generalization of the Luce model that incorporates the effects of

attention. None of these three papers study the issues that we focus on in the present

paper.

Our model is related to the recent literature on attention and inattention. In our

model, an agent chooses with positive probability only a subset of the available alterna-

tives. So one can think of the alternatives that are outside the support of the stochastic

choice as being alternatives that the agent pays no attention to. Masatlioglu et al.

(2012) provide an elegant model of attention. In their model, the agent’s choice is de-

terministic. Some recent studies try to incorporate the effect of attention into stochastic

choice. Manzini and Mariotti (2012) axiomatize a model in which an agent considers

each feasible alternative with a probability and then chooses the alternative that max-

imizes a preference relation within the set of alternatives considered. A more recent

paper by Brady and Rehbeck (2014) axiomatizes a model that encompasses the model

of Manzini and Mariotti (2012), and Cerreia-Vioglio et al. (2017) present an analysis

of the multinomial Logit model that allows for zero probability choices. Horan (2014)

has proposed a new model of limited consideration based on the random utility model

proposed by Block and Marschak (1960). Ahumada and Ulku (2017) independently

developed the most general version of our model.

Finally, it is worth mentioning a very recent paper, Flores et al. (2017), that uses

our generalized Luce model to study assortment optimization problems. Assortment

optimization is an important pricing problem studied in operations research.

The rest of the paper is organized as follows. In Section 2, we propose the models.
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Then in Section 3, we propose the axioms, the main representation theorems, and a

uniqueness property of the representations. In Section 4, we present the proofs of the

main results.

2 Models

The set of all possible objects of choice, or alternatives, is a finite set X. A stochastic

choice function is a function p that, for any nonempty subset A of X, returns a prob-

ability distribution p(A) over A. We denote the probability of choosing an alternative

a from A by p(a,A). A stochastic choice function is the primitive observable object of

our study.

The most general version of our model is as follows.4

Definition 1 A stochastic choice function p is called a general Luce function if there

exists a pair (u, c) of functions u : X → R++ and c : 2X \∅ → 2X \∅ such that c(A) ⊆ A

for any subset A of X, and moreover,

p(x,A) =


u(x)∑

y∈c(A) u(y)
if x ∈ c(A),

0 if x 6∈ c(A),

for all A ⊆ X.

The function c in the general Luce model captures the support of the stochastic

choice. The function c is arbitrary. For example, deterministic choice can be captured

using a function c for which c(A) is always a singleton. Of course, if c(A) = A for all

subsets A of X, then p coincides with Luce’s (1959) model.

In the following, we provide two special cases of the general Luce model. The first

special case is the two-stage Luce model. The model restricts c so that c(A) is the set

4A first draft of our paper focused on the threshold Luce mode, which we define below. We thank an
anonymous referee and David Ahn for suggesting that we extend the discussion to cover the general Luce model
and the two-stage general Luce model. After we wrote the first version of our paper, which did not include
our most general model, Ahumada and Ulku (2017) independently developed the present generalization.

6



of undominated elements in the subset A.

Definition 2 A general Luce function (u, c) is called a two-stage function if there exists

a strict partial order (i.e., transitive and irreflexive binary relation5) � on X such that

for any A ⊆ X

c(A) = {x ∈ A : @y ∈ A s.t. y � x}.

We call � the dominance relation.

Notice that the difference between the general Luce model and two-stage Luce model

is obtained by adding restrictions to the function c so that it is induced by a strict partial

order. Such characterizations of strict partial orders has been obtained by Jamison and

Lau (1973).

Given a dominance relation�, we define the comparability relation ' as follows: for

all x, y ∈ X, x ' y if x 6� y and y 6� x.

Given the two-stage Luce model, the dominance relation and the compatibility rela-

tion can be identified from p as follows:

Remark 1 For all x, y ∈ X such that x 6= y, (i) x � y if p(x, xy) = 1; (ii) x ' y if

0 < p(x, xy) < 1.

The two-stage Luce model is, in a sense, about intransitive indifference. Recall our

example in the introduction. In the two-stage Luce model, x may be comparable to

y, and y may be comparable to z, but it is possible that x dominates z: we may have

x ' y, y ' z, but x� z. Such lack of transitivity of the comparability binary relation

is analogous to the lack of transitivity of indifference.

In the two-stage Luce model, c satisfies the following property:

Remark 2 For any x ∈ X and A ⊂ X, x /∈ c(A) =⇒ c(A) = c(A \ {x}).

This property means that removing a dominated element x in a choice set A does not

affect the agent’s choice. This property is satisfied by the attention filters of Masatlioglu

5Transitivity and irreflexivity imply asymmetry.
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et al. (2012). Overall, their model and ours are quite different, but the object c shares

a similar interpretation. That said, unlike Masatlioglu et al. (2012), in our model the

function c is uniquely identified. This difference comes partly from the fact that we

study stochastic choices while Masatlioglu et al. (2012) study deterministic choices.6

The function c in the two-stage Luce model is independent of u. It is reasonable to

think that dominance may sometimes be tied to utility. We introduce the idea that an

alternative z is dominated by x if u(x) is sufficiently larger than u(z). The resulting

model is called the threshold Luce model.

Definition 3 A general Luce function (u, c) is called a threshold Luce function if there

exists a nonnegative number α such that, for any subset A of X,

c(A) = {y ∈ A|(1 + α)u(y) ≥ u(z) for all z ∈ A}.

In the threshold Luce model, the function c is defined by u and a new parameter α.

So the agent considers that an alternative x dominates another alternative y (x� y) if

u(x) > (1+α)u(y). The number α ≥ 0 captures the threshold beyond which alternatives

become dominated. A utility ratio of more than 1 + α means that the less preferred

alternative is dominated by the more preferred alternative.

Notice that the function c in the two-stage Luce model is induced by a strict partial

order, and thus more general than the one induced by a semiorder. Notice also that the

function c in the threshold Luce model is induced by a semiorder. (By linearization, the

formula can be written in a more conventional form as the choice correspondence based

on a semiorder.)

6The function c also satisfies the following property. If B ⊂ A and c(A) ⊂ B, then c(B) = c(A). This
property appears in several studies, such as Aizerman and Malishevski (1981).
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3 Axioms and results

3.1 General Luce model

The general Luce model is the most general model in this paper. The model is charac-

terized by the following axiom.

Axiom 1 (Cyclical Independence): For any sequence x1, x2, . . . , xn ∈ X, if there ex-

ists a sequence A1, . . . , An of nonempty subsets of X such that p(xi, Ai) > 0 and

p(xi+1, Ai) > 0, for i = 1, . . . , n (using summation mod n)7, then

p(x1, An)

p(xn, An)
=
p(x1, A1)

p(x2, A1)

p(x2, A2)

p(x3, A2)
. . .

p(xn−1, An−1)

p(xn, An−1)
. (1)

Cyclical Independence is weaker than Luce IIA. To see this notice that Luce IIA

implies that equation (1) should hold for any any sequences x1, x2, . . . , xn ∈ X and

A1, . . . , An such that xi, xi+1 ∈ Ai for all i.8 Cyclical Independence requires that (1)

should hold when p(xi, Ai) > 0 and p(xi+1, Ai) > 0 for all i. Under the assumption that

p(xi+1, Ai) > 0 for all i, the fractions in (1) are well defined. Our interpretation of the

condition p(xi, Ai) > 0 and p(xi+1, Ai) > 0 is that xi and xi+1 are not dominated in

choice set Ai.

Theorem 1 A stochastic choice function satisfies cyclical independence if and only if

it is a general Luce function.

Remark 3 The function c is the support of p for each A, and therefore uniquely iden-

tified.

To state the uniqueness property of u, we need a preliminary definition. For any

x, y ∈ X, define xIy if there exists A ⊂ X such that p(x,A)p(y,A) > 0.

7n = 2 is allowed.
8Luce IIA implies that for any i, p(xi, Ai)/p(xi+1, Ai) = p(xi,∪n−1j=1Aj)/p(xi+1,∪n−1j=1Aj). So the right hand

side becomes p(x1,∪n−1j=1Aj)/p(xn,∪n−1j=1Aj), which is p(x1, An)/p(xn, An) by Luce IIA again.
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Remark 4 Two general Luce functions (u, c) and (u′, c′) represent the same stochastic

choice function if and only if c = c′ and for every x, y ∈ X such that there exists A ⊂ X

with {x, y} ⊂ c(A), we have u(x)/u(y) = u′(x)/u′(y).

3.2 Two-Stage Luce model

We need additional axioms to characterize the two-stage Luce model. Our first axiom

is a weaker version of Luce’s axiom of regularity. Luce’s axiom says that the probability

of choosing x cannot decrease when the choice set shrinks.

Axiom 2 (Weak Regularity): If p(x, xy) = 0 and y ∈ A, then p(x,A) = 0.

Weak Regularity can be replaced with the stronger axiom: if A ⊆ B and p(x,A) = 0,

then p(x,B) = 0. The stronger axiom may be more natural, and our characterization

continues to hold. It is worth emphasizing that the two-stage Luce model can violate

the standard regularity axiom (meaning Luce’s original version of the axiom), which

demands that the probability of choosing x is monotone decreasing in the set of alter-

natives from which it is chosen. Notice that the contraposition of the axiom can be seen

as a version of Sen’s α axiom. (See Sen (1971).)

Our next axiom says that removing a dominated alternative does not affect choices.

This means that when x is dominated, it does not affect whatever considerations govern

choices among the remaining alternatives.

Axiom 3 (Independence of Dominated Alternatives (IDA)):

If p(x,A) = 0, then p(y,A) = p(y,A \ {x}) for all y ∈ A \ {x}.

The last axiom says that if an alternative x is not pairwise-dominated by any other

alternative y in A (i.e., p(x, xy) > 0), then the alternative must be chosen with positive

probability.

Axiom 4 (Probabilistic γ) If p(x, xy) > 0 for any y ∈ A, then p(x,A) > 0.

If x is dominated in A it must be dominated by some y ∈ A, therefore we must have

p(x, xy) = 0. Probabilistic γ is in spirit similar to Sen’s γ axiom (Sen (1971)).
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Theorem 2 A stochastic choice function satisfies Cyclical Independence, Weak Regu-

larity, Independence of Dominated Alternatives, and Probabilistic γ if and only if it is

a two-stage Luce function.

3.3 Threshold Luce Model

In the two-stage Luce model, the dominance relation may be unrelated to the utility u.

In contrast, the threshold Luce model imposes a relation between c(A) and the utility of

the elements of A. In order to calibrate the magnitude of the parameter α, we need an

additional axiom. Recall that in the two-stage model for all x, y ∈ X such that x 6= y,

(i) x� y if p(x, xy) = 1; (ii) x 6� y if p(x, xy) < 1; (iii) x ' y if x 6� y and y 6� x.

Our last axiom requires definitions and some notational conventions. First, we in-

troduce the stochastic revealed preference relation, denoted by ≥, and defined by:

Definition 4 For all x, y ∈ X, (i) x > y if p(x, xy) > p(y, xy); (ii) x = y if p(x, xy) =

p(y, xy); (iii) x ≥ y if x > y or x = y.

We interpret x > y as x being strictly revealed preferred to y, because it is chosen more

frequently in the simple pairwise comparison of x and y.

Definition 5 For any x, y ∈ X, a sequence (zi)
s
i=1 of X is a path from x to y if (i)

x = z1 and y = zs and (ii) zi+1 6� zi for all i and (iii) if zi � zi+1 for some i then

zi ≥ zi+1 for all i.

We use the number +∞, and assume that it has the following properties: +∞ > x

for all x ∈ R; 1/0 is equal to +∞; and +∞x = +∞ for any x > 0. With this notational

convention, the following notion of intensity is well defined.

Definition 6 (Intensity): For any path (zi)
s
i=1 from x to y, define

d((zi)
s
i=1) =

p(z1, z1z2)

p(z2, z1z2)

p(z2, z2z3)

p(z3, z2z3)
· · · p(zs−1, zs−1zs)

p(zs, zs−1zs)
.
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The intensity captures the difference in utilities of x and y. By the definition

(ii) of path, for all i, we can have zi � zi+1 but not zi+1 � zi. Consequently,

p(zi, zizi+1)/p(zi+1, zizi+1) can be +∞ but not zero. Therefore, d((zi)
s
i=1) is well de-

fined.9

Under Luce’s IIA, the intensity between two alternatives x and y must be the same

along any two paths. Moreover, it must equal p(x, xy)/p(y, xy). We do not assume

Luce’s IIA, so in our setup the intensity can be path-dependent. Our final axiom, Path

Monotonicity, says that the intensity between any noncomparable pair of alternatives

must be larger than the intensity between any comparable pair of alternatives.

Axiom 5 (Path Monotonicity): For any pair of paths (zi)
s
i=1 from x to y and (z′i)

t
i=1

from x′ to y′, if x� y and x′ ' y′, then

d((zi)
s
i=1) > d((z′i)

t
i=1). (2)

Theorem 3 A stochastic choice function satisfies Cyclical Independence, Weak Regu-

larity, Independence of Dominated Alternatives, Probabilistic γ, and Path Monotonicity

if and only if it is a threshold Luce function.

There is a connection between Theorem 2 and the results on deterministic choice of

Sen (1971). If one interprets c as a deterministic choice function, then Sen’s axiomati-

zation of normal choice functions (choice functions that satisfy Sen’s α and γ axioms)

by means of his δ axiom is similar to our characterization of c. 10 Sen’s results have no

connection to the stochastic choice aspects of our model.

9Suppose that zi � zi+1 for some i. Then d((zi)
s
i=1) becomes +∞, even though zj+1 ≥ zj for some j 6= i.

This is not useful to compare the values of intensity. So, by (iii), we restrict when zi � zi+1 is allowed: it is
allowed only when zi ≥ zi+1 for all i.

10We appreciate a referee who pointed out the relationship.
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4 Proofs

4.1 Proof of Theorem 1

Necessity of the axiom is obvious. So we will show the sufficiency.

Suppose that p satisfies Cyclical Independence. Let I ⊆ X ×X be a binary relation

on X defined by x I y iff there exists A ⊆ X such that p(x,A)p(y,A) > 0.

Consider a partition of X according to the connected components of (X, I). In fact

we can wlog assume that X is a single connected component. The following argument

can be done for each connected component otherwise.

Choose x0 ∈ X arbitrarily. Define u as follows. Let u(x0) = 1. For each x ∈ X,

there exists at least one sequence x = x1, x2, . . . , xn = x0, with corresponding sequence

A1, . . . , An−1 of nonempty subsets of X such that p(xi, Ai) > 0 and p(xi+1, Ai) > 0, for

i = 1, . . . , n− 1. Define u(x) by

u(x) =
p(x1, A1)

p(x2, A1)

p(x2, A2)

p(x3, A2)
. . .

p(xn−1, An−1)

p(xn, An−1)
.

For any two such sequences x = x1, x2, . . . , xn = x0, and x = x′1, x
′
2, . . . , x

′
m =

x0, with corresponding A1, . . . , An−1 and A′1, . . . , A
′
m−1, we can define the sequence

{x′′i } by x′′i = xi for i = 1, . . . , n and x′′n+i = x′m−i for i = 1, . . . ,m − 1, and set

A′′i = Ai for i = 1, . . . , n − 1 and A′′n+i = A′m−1−i for i = 0, . . . ,m − 2. Then we

have that p(x′′i , A
′′
i ) > 0 and p(x′′i+1, A

′′
i ) > 0, for i = 1, . . . , n − 1, while p(x′′n, A

′′
n) =

p(x0, A
′
m−1) = p(x′m, A

′
m−1) > 0 and p(x′′n+1, A

′′
n) = p(x′m−1, A

′
m−1) > 0, and, finally,

that p(x′′n+i+1, A
′′
n+i) = p(x′m−i−1, A

′
m−1−i) > 0 and p(x′′n+i, A

′′
n+i) = p(x′m−i, A

′
m−1−i) >

0. We have

1 =
p(x′′1, {x′′1, x′′n+m−1})

p(x′′n+m−1, {x′′1, x′′n+m−1})

=
p(x′′1, A

′′
1)

p(x′′2, A
′′
1)
· · ·

p(x′′n−1, A
′′
n−1)

p(x′′n, A
′′
n−1)

p(x′′n, A
′′
n)

p(x′′n+1, A
′′
n)
· · ·

p(x′′n+m−2, A
′′
n+m−2)

p(x′′n+m−1, A
′′
n+m−2)

,

where the first equality holds because x′′1 = x′1 = x′′n+m−1 and the last equality holds by
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Cyclical Independence. This equation implies

p(x′′1, A
′′
1)

p(x′′2, A
′′
1)
· · ·

p(x′′n−1, A
′′
n−1)

p(x′′n, A
′′
n−1)

=
p(x′′n+1, A

′′
n)

p(x′′n, A
′′
n)
· · ·

p(x′′n+m−1, A
′′
n+m−2)

p(x′′n+m−2, A
′′
n+m−2)

.

So by the definition of A′′i and x′′i , p(x1,A1)
p(x2,A1)

· · · p(xn−1,An−1)
p(xn,An−1)

=
p(x′m−1,A

′
m−1)

p(x′m,A′m−1)
· · · p(x

′
1,A
′
1)

p(x′2,A1)
.

Thus, the definition of u is independent of the sequence used in the definition.

For any A, define c(A) = supp p(A). By definition of u, then, if x, y ∈ c(A), then

p(x,A)p(y,A) > 0, so that u(y) = p(y,A)
p(x,A)u(x). Therefore, for any x ∈ c(A),

∑
y∈c(A)

u(y) =
u(x)

p(x,A)

∑
y∈c(A)

p(y,A) =
u(x)

p(x,A)
,

so p(x,A) = u(x)∑
y∈c(A) u(y)

. For any x 6∈ c(A), p(x,A) = 0.

4.2 Proof of Theorem 2

4.2.1 Necessity of the axioms

A two-stage Luce function satisfies Cyclical Independence because it is a general Luce

function.

We show that the two-stage Luce function satisfies Weak Regularity. Suppose that

p(x, xy) = 0 and y ∈ A. Then, by definition, y � x and x 6∈ c(A). Therefore,

p(x,A) = 0.

We show that the two-stage Luce function satisfies IDA. Suppose that p(x,A) = 0.

Then, x 6∈ c(A). So by Remark 2, c(A) = c(A \ {x}). Therefore, if y 6∈ c(A), so

y 6∈ c(A \ {x}) then p(y,A) = 0 = p(y,A \ {x}); if y ∈ c(A), then

p(y,A) =
u(y)∑

z∈c(A) u(z)
=

u(y)∑
z∈c(A\{x}) u(z)

= p(y,A \ {x}).

Therefore, p(A) = p(A \ {x}), so that IDA holds.

To show that the two-stage Luce function satisfies Probabilistic γ, supoose p(x, xy) >

0 for all y ∈ A, then x ∈ c(A), so p(x,A) > 0.
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4.2.2 Sufficiency of the axioms

To show the sufficiency, by Theorem 1, it suffices to show that (i) � is transitive and

asymmetric; (ii) c(A) = {x ∈ A| 6 ∃y ∈ A such that y � x} for any A ⊂ X. By the

definition of �, � is asymmetric, so we will show that � is transitive in Lemma 1

below. Then (ii) follows from Lemma 2 below.

Axiom 6 (Dominance Transitivity) For all x, y, z ∈ X, if x � y and y � z, then

x� z.

Lemma 1 Weak Regularity and IDA imply Dominance Transitivity.

Proof: Since x� y we have p(y, xy) = 0. By Weak Regularity, p(y, xyz) = 0.

By IDA, p(z, xyz) = p(z, xz). Since y � z, p(z, yz) = 0. By Weak Regularity,

p(z, xyz) = 0. So p(z, xz) = 0. �

For all A ⊂ X, define ĉ(A) = {x ∈ A| 6 ∃y ∈ A such that y � x}. Note that Lemma 1

implies ĉ(A) 6= ∅. In the following, we will show that c(A) = ĉ(A) for all A ⊂ X. Since

c(A) = supp p(A), it suffices to show the following lemma:

Lemma 2 Suppose that Weak Regularity and IDA hold. Then for any subset A of X,

p(x, ĉ(A)) = p(x,A) > 0 for any x ∈ ĉ(A), and p(x,A) = 0 for all x ∈ A \ ĉ(A).

Proof: First, let x ∈ A \ ĉ(A). Then there is y ∈ A with y � x; meaning that

p(x, xy) = 0. By Weak Regularity, p(x,A) = 0.

In second place, let x ∈ ĉ(A). Let A \ ĉ(A) = {x1, . . . , xn}. By our previous

argument, p(xi, A) = 0 for all i ∈ {1, . . . , n}. So by IDA, p(A) = p(A \ {x1}). Hence,

p(xi, A\{x1}) = 0 for all i ∈ {2, . . . , n}. So by IDA, p(A) = p(A\{x1}) = p(A\{x1, x2}).

By recursion, we have p(A) = p(ĉ(A)).

Finally, to show p(x, ĉ(A)) = p(x,A) > 0 for any x ∈ ĉ(A), it suffices to show that

p(x,A) > 0 for any x ∈ ĉ(A). If x ∈ ĉ(A), then y 6� x for any y ∈ A. So by Probabilistic

γ, p(x,A) > 0. �
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4.3 Proof of Theorem 3

4.3.1 Necessity of the axioms

Since a threshold Luce function is a special case of a two-stage Luce function, it suffices

to show that the threshold Luce function satisfies Path Monotonicity. First note that

for all x, y ∈ X, x � y if and only if u(x) > (1 + α)u(y). To show Path Monotonicity,

choose any pair of paths (zi)
s
i=1 from x to y and (z′i)

t
i=1 from x′ to y′. Suppose that

x� y and x′ ' y′. Then
u(x)

u(y)
> 1 + α ≥ u(x′)

u(y′)
.

First, we will show that z′i ' z′i+1 for all i. Suppose by way of contradiction that

z′i � z′i+1 for some i. Then by the definition of path, we have z′i ≥ z′i+1 for all i. Hence

u(x′)

u(y′)
=
u(z′1)

u(z′t)
=
u(z′1)

u(z′2)
. . .

u(z′t−1)

u(z′t)
> 1 + α,

which is a contradiction. Since z′i ' z′i+1 for all i, we must have So p(z′i, z
′
iz
′
i+1)/p(z

′
i+1, z

′
iz
′
i+1) =

u(z′i)/u(z′i+1) for all i. Therefore,

d((z′i)
t
i=1) =

u(x′)

u(y′)
≤ 1 + α,

where the last inequality holds because x′ ' y′. So it suffices to show d((zi)
s
i=1) > 1+α.

There are two cases. If zi � zi+1 for some i, then p(zi, zizi+1)/p(zi+1, zizi+1) = ∞, so

that d((zi)
s
i=1) =∞. If zi ' zi+1 for all i, then, we have

d((zi)
s
i=1) =

u(x)

u(y)
> 1 + α.

4.3.2 Sufficiency of the axioms

Axiom 7 (Strong Dominance Transitivity): For all x, y, z ∈ X, (i) if x� y and y ≥ z,

then x� z; (ii) if x ≥ y and y � z, then x� z.

Lemma 3 Dominance Transitivity and Path Monotonicity imply Strong Dominance

16



Transitivity.

Proof: First, we show (i). Assume x� y and y ≥ z to show x� z. If y � z, then by

Dominance Transitivity, we have x� z. So consider the case in which y ' z.

Suppose towards a contradiction that not x� z. Then, z � x or x ' z.

Case 1: z � x. Then by Dominance Transitivity and x � y, we have z � y. This

contradicts with y ≥ z.

Case 2: x ' z. Then (x, y, z) is a path from x to z because x� y and y ≥ z. The value

of the intensity along the path is +∞. On the other hand, (x, z, y) is a path from x to

y because x ' z and z ' y. The value of the intensity along the path is finite because

x ' z and z ' y. This violates Path Monotonicity.

Second, we show (ii). Assume x ≥ y and y � z to show x � z. If x � y, then by

Dominance Transitivity, we have x� z. So consider the case in which x ' y.

Suppose towards a contradiction that not x� z. Then, z � x or x ' z.

Case 1: z � x. Then by Dominance Transitivity and y � z, we have y � x. This

contradicts with x ≥ y.

Case 2: x ' z. Then (x, y, z) is a path from x to z because x ≥ y and y � z. The value

of the intensity along the path is +∞. On the other hand, (y, x, z) is a path from y to

z because x ' y and x ' z. The value of the intensity along the path is finite because

x ' y and x ' z. This violates Path Monotonicity. �

Axiom 8 (Stochastic Transitivity) For all x, y, z ∈ X, (i) if x ≥ y and y ≥ z, then

x ≥ z; (ii) if x > y and y ≥ z, then x > z; (iii) if x ≥ y and y > z, then x > z.

Lemma 4 Cyclical Independence and Strong Dominance Transitivity imply Stochastic

Transitivity.

Proof: Choose x ≥ y and y ≥ z.

Case 1: x� y or y � z. Then by Strong Dominance Transitivity, we have x� z and

therefore x > z.

Case 2: x ' y and y ' z. We can rule out that z � x as that would mean that z � y

by Strong Dominance Transitivity. So we have either x� z or x ' z. Firstly, if x� z,
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then x > z, as desired. Secondly, let x ' z. Since x ' z, by Cyclical Independence,

p(x, xz)

p(z, xz)
=
p(x, xy)

p(y, xy)

p(y, zy)

p(z, zy)
≥ 1. (3)

Hence, x ≥ z. Moreover, if x > y or y > z hold, then (3) holds strictly. �

Definition 7 For any X ′ ⊆ X and u : X ′ → R+, we say that a pair (X ′, u) satisfies

the L-property if for any x, y ∈ X ′ such that x ' y, we have

u(x)

u(y)
=
p(x, xy)

p(y, xy)
.

Lemma 5 Let p satisfy Weak Regularity, Cyclical Independence, and let (X,u) have

the L-property. If x ∈ c(A), then p(x, c(A)) = u(x)∑
y∈c(A) u(y)

.

Proof: Let c(A) = {x1, . . . , xm}. By the definition of c, for all i, j, xi ' xj . Then,

p(xj , c(A))

p(x1, c(A))
=
p(xj , A)

p(x1, A)
=
p(xj , x1xj)

p(x1, x1xj)
=
u(xj)

u(x1)
,

where the first equality holds by virtue of Lemma 2; the second by Cyclical Indepen-

dence, and the third holds by the L-property. For all j ∈ {2, . . . ,m},

p(xj , c(A)) =
u(xj)

u(x1)
p(x1, c(A)). (4)

Since
∑m

j=1 p(xj , c(A)) = 1, we have 1 =
∑m

j=1 u(xj)

u(x1)
p(x1, c(A)), so that

p(x1, c(A)) =
u(x1)∑m
j=1 u(xj)

. (5)

Therefore, by (4) and (5), p(xj , c(A)) =
u(xj)∑m
j=1 u(xj)

for all j ∈ {1, . . . ,m}. �

Now we will finish the proof of the sufficiency. By Lemma 4 and the finiteness of X,

we can order all alternatives in X as follows: x1 ≥ x2 ≥ · · · ≥ xN . In the following, we

will keep this notation.
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First, consider the case where xi � xi+1 for all i. In this case, for all A ⊂ X,

p(x,A) = 1 if x ≥ y for all y ∈ A and p(x,A) = 0 otherwise. To construct the function

u, set u(xi) = 2(N + 1− i) for all i and set α = 1/2. Then, for all i, j such that i < j,

u(xi) > (1 + α)u(xj). Then, for all A ⊂ X, c(A) = {x}, where x ≥ y for all y ∈ A.

Hence, this (u, α) represents p and the proof is completed in this case.

In the following, consider the case in which xk ' xk+1 for some k. First we define α.

Notice that minj,l:xj�xj+l
d((xi)

j+l
i=j) and maxj′,l′:xj′'xj′+l′

d((xi)
j′+l′

i=j′ ) exist because X is

finite.

Since xi ≥ xi+1 for any i, (xi)
j+l
i=j and (xi)

j′+l′

i=j′ satisfy the conditions for a path.

Moreover, if xj′ ' xj′+l′ , then xi ' xi+1 for any i ∈ {j′, . . . , j′+ l′−1}. (To see this that

xi � xi+1 for some i ∈ {j′, . . . , j′ + l′ − 1}. Then by Strong Dominance Transitivity,

we must have xj′ � xj′+l′ , which is a contradiction. Therefore, xi ' xi+1 for any

i ∈ {j′, . . . , j′ + l′ − 1}.)

Therefore, by Path Monotonicity, we have minj,l:xj�xj+l
d((xi)

j+l
i=j) > maxj′,l′:xj′'xj′+l′

d((xi)
j′+l′

i=j′ ).

Choose a number α such that

min
j,l:xj�xj+l

d((xi)
j+l
i=j)− 1 > α > max

j′,l′:xj′'xj′+l′
d((xi)

j′+l′

i=j′ )− 1.

To see that α is nonnegative, remember xk ' xk+1 for some k. Hence,

max
j′,l′:xj′'xj′+l′

d((xi)
j′+l′

i=j′ ) ≥ d(xk, xk+1) =
p(xk, xkxk+1)

p(xk+1, xkxk+1)
≥ 1,

where the second inequality holds because xk ≥ xk+1.

Now, we define the function u. Define u(x1) = 1. We define u(xi) for all i > 1

sequentially as follows. If xi−1 ' xi, define

u(xi) =
p(xi, xixi−1)

p(xi−1, xixi−1)
u(xi−1). (6)

Since xi−1 ≥ xi, we have p(xi−1, xixi−1) ≥ p(xi, xixi−1). Hence, u(xi−1) ≥ u(xi).
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If xi−1 � xi, choose a positive number u(xi) such that

u(xi−1) > u(xi)(1 + α). (7)

This definition implies u(xi−1) > u(xi). By this way, we have defined a nonnegative

number α and positive numbers (u(xi))
n
i=1 such that u(xi) ≥ u(xi+1) for all i.

To finish the proof, by Lemma 5, it suffices to show the following three steps.

Step 1: (X,u) has the L-property.

Proof of Step 1: Assume that y ' z and y ≥ z to show
u(y)

u(z)
=
p(y, yz)

p(z, yz)
. Remember

X = {x1, . . . , xN} such that xi ≥ xi+1 for all i. So there exist xs and xs+t such that

xs = y and xs+t = z. By Strong Dominance Transitivity, {xs, . . . , xs+t} is pairwise

comparable. For n ∈ {s, . . . , s+ t− 1}, the definition shows

p(xn, xnxn+1)

p(xn+1, xnxn+1)
=

u(xn)

u(xn+1)
. (8)

Since {xs, . . . , xs+t} is pairwise comparable, by applying Cyclical Independence and

Probabilistic γ repeatedly, we obtain for all n such that s ≤ n ≤ s+ t− 1,

p(xn, {xs, . . . , xs+t})
p(xn+1, {xs, . . . , xs+t})

=
p(xn, xnxn+1)

p(xn+1, xnxn+1)
. (9)

Hence by (8) and (9), it follows that

u(y)

u(z)
=

u(xs)

u(xs+1)
. . .

u(xs+t−1)

u(xs+t)
(∵ y = xs, z = xs+t)

=
p(xs, {xs, . . . , xs+t})
p(xs+1, {xs, . . . , xs+t})

. . .
p(xs+t−1, {xs, . . . , xs+t})
p(xs+t, {xs, . . . , xs+t})

(∵ (8), (9))

=
p(y, yz)

p(z, yz)
. (∵ (9), y = xs, z = xs+t)

Step 2: u(z) > (1 + α)u(y)⇒ z � y.

Proof of Step 2: Suppose by way of contradiction that u(z) > (1 +α)u(y) and z ' y.

Then, by L-property, d(z, y) =
p(z, zy)

p(y, zy)
=
u(z)

u(y)
> 1 +α. This contradicts the definition

of α.
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Step 3: z � y ⇒ u(z) > (1 + α)u(y).

Proof of Step 3: Suppose that z � y. If z = xj then y 6= xj+1 by the definition of

u.11 So there exists an integer l strictly larger than 1 such that y = xj+l.

Case 1: There exists some i such that xi � xi+1. Then

u(z)

u(y)
≡ u(xj)

u(xj+l)
=

u(xj)

u(xj+1)
. . .

u(xj+l−1)

u(xj+l)
≥ u(xi)

u(xi+1)
> 1 + α

because u(xi)/u(xi+1) ≥ 1 for any i.

Case 2: xi ' xi+1 for all i. Hence, by L-property, u(xi)/u(xi+1) = p(xi, xixi+1)/p(xi+1, xixi+1).

Therefore, by the definition of α, since z � y,

u(z)

u(y)
≡ u(xj)

u(xj+l)
=

u(xj)

u(xj+1)
. . .

u(xj+l−1)

u(xj+l)
= d({xi}j+l

i=j) > 1 + α.
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Jamison, D. T. and L. J. Lau (1973): “Semiorders and the theory of choice,” Econo-

metrica: Journal of the Econometric Society, 901–912.

Luce, R. D. (1956): “Semiorders and a theory of utility discrimination,” Econometrica,

Journal of the Econometric Society, 178–191.

——— (1959): Individual Choice Behavior a Theoretical Analysis, John Wiley and sons.

Manzini, P. and M. Mariotti (2012): “Stochastic choice and consideration sets,”

Forthcoming, Econometrica.

22



Masatlioglu, Y., D. Nakajima, and E. Y. Ozbay (2012): “Revealed attention,”

The American Economic Review, 102, 2183–2205.

Sen, A. K. (1971): “Choice functions and revealed preference,” The Review of Eco-

nomic Studies, 38, 307–317.

23


