Ay 20 Basic Astronomy and the Galaxy

Problem Set 5

Due in class Monday 17 November, 2008

Readings: Carroll & Ostlie Chapter 9 (complete) and Chapter 10.

Homework Problems:

1. Photons in a blackbody spectrum

- a) Find an expression for $n_{\lambda}d\lambda$, the number density (number per unit volume) of blackbody photons with a wavelength between λ and $\lambda + d\lambda$, and integrate this (numerically or otherwise) over all wavelengths to find an expression for the total number density of photons as a function of temperature. Your answer should be of the form $n = KT^3$, and you should give K numerically for n in cm⁻³ and T in Kelvin.
- b) The cosmic microwave background radiation left over from the Big Bang today fills the universe with blackbody radiation at $T=2.726\mathrm{K}$. What is the number density n of its photons?
- c) Show that the average energy u/n of photons in a blackbody spectrum of temperature T is 2.70kT.
- d) Evaluate that average energy (in eV units) for blackbody photons at the center of the sun $(T = 1.57 \times 10^7 \text{K})$ and in the solar photosphere (T = 5777 K).
- 2. Carroll & Ostlie problem 9.16
- 3. Carroll & Ostlie problem 9.20
- 4. Carroll & Ostlie problem 9.26
- 5. Carroll & Ostlie Problem 9.28

6. Isothermal atmospheres

- a) If the outer part of a star's atmosphere were isothermal with a temperature T_0 , what would be the pressure as a function of optical depth $p(\tau)$ within the atmosphere? Assume that that gas pressure $\rho kT/\mu$ is much larger than the radiation pressure. Assume opacity $\kappa = \rho f(T)$. You will need the equation of hydrostatic equilibrium as well as radiative transfer for this.
- b) What would be the limb darkening law $I_{\nu}(\mu, \tau = 0)/I_{\nu}(\mu = 1, \tau = 0)$ for an isothermal atmosphere with very high optical depth?