Problem Set 4

Due in class, Thursday 8 February 2018

Reading: See the on-line syllabus for lecture-by-lecture readings. Note that this set is shorter since outlines for the writing project are also due this week.

Collaboration policy: See the on-line collaboration policy.

Homework Problems:

1. Growth of Fluctuations

Consider linear growth of perturbations in a Universe with cold dark matter with density $\Omega_{\rm dm,0}=0.25$ and baryon density $\Omega_{\rm b,0}=0.05$. Consider only redshifts $z\gg 1$ so that the dynamical effect of Λ can be neglected. Write down the differential equations for linear evolution of $\delta_{\rm dm}(x,t)=\delta\rho_{\rm dm}(x,t)/\langle\rho_{\rm dm}\rangle$, the fractional perturbation to the CDM density, and for $\delta_{\rm b}(x,t)=\delta\rho_{\rm b}(x,t)/\langle\rho_{\rm b}\rangle$, the fractional perturbation to the baryon density. Now consider the evolution of a single Fourier mode of wavelength λ wavenumber $k=2\pi/\lambda$, of the density field. Show that baryon perturbations are stabilized by pressure at small scales, and find an expression for the Jeans wavelength $\Lambda_{\rm J}$, the wavelength that separates stable and unstable modes. Evaluate $\Lambda_{\rm J}$ just before and just after recombination, and determine the corresponding Jeans mass.

2. The CMB and the Baryon Acoustic Oscillation Scale

The physical size of the sound horizon at the epoch of recombination $d_h(z_{rec})$ is responsible for imprinting some of the most prominent features in the power spectrum of temperature fluctuations in the CMB, including the so-called "acoustic peaks". The angular scale of the first acoustic peak in the CMB power spectrum provides a powerful constraint on cosmological parameters because d_h can be treated as a "standard rod" whose length can be calculated, and the angular scale subtended by this length as seen by an observer at z = 0 is related to the angular diameter distance to z_{rec} .

- (a) Write down an equation, preserving the dependence on h, and $\Omega_{\rm m,0}$, that describes the physical scale of the sound horizon assuming $z_{\rm rec} \sim 1100$. Write down another equation that relates the physical scale $d_{\rm h,rec}$ to the angle it should subtend on the sky as seen by an observer at z=0. You may assume a Λ -CDM cosmology, and that we know the value of $\Omega_{\rm b,0}h^2$. Derive the joint constraints on $\Omega_{\rm m,0}$ (and therefore Ω_{Λ}) and h that would result from a measurement of the angular scale of the first acoustic peak.
- (b) What is the co-moving size of $d_h(z_{rec})$, in Mpc? Write down an equation that describes the expected angle subtended by this co-moving scale, as a function of $\Omega_{m,0}$, h, and z.
- (c) It turns out that remnants of the co-moving baryon acoustic oscillation (BAO) scale can be detected as a small a $\sim 10\%$ "bump" of excess power in the large-scale correlation function/power spectrum of galaxies. Describe, using plots, words, or equations, how one might use galaxy surveys, with redshift "slices" judiciously chosen to sample several redshifts between z=0.1 and $z\sim 3$, to measure the angular scale of the BAO "standard rod" and thereby constrain cosmological parameters.
- (d) Given the angular scale subtended by the BAO feature at $z \sim 1$, what is the minimum solid angle on the sky necessary for a redshift survey to be sensitive to the BAO scale?