
EE/CS 145a

Lecture: Introduction to Network Programming

David Noblet
dnoblet@cs.caltech.edu

1

mailto:dnoblet@cs.caltech.edu
mailto:dnoblet@cs.caltech.edu

Overview

• There will be four lab assignments

• All the labs will involve programming; all the programming will be in the C
programming language; each lab will make use of the Sockets API

• Although you may develop your code on any machine you choose, it must
compile and run on the (Linux-based) CS machines

• This lecture is designed to provide you with an introduction to network
programming and the environment (namely, Linux) in which you will be
working for your labs

• The labs are intended to be more-or-less self-contained; so, be sure to ask
questions if something is not clear

2

Motivation: Why Write Network Applications?

• To share information between remote locations

• To accumulate and share resources

• i.e. Distributed storage/processing

• To provide redundancy and increase reliability

• Isolation (it is easier for a server to fail than a CPU)

• To facilitate interoperability

• Abstraction boundary between components

3

The Client-Server Model

• The restaurant analogy

• Servers advertise and provide service

• Clients request and consume service

• Most network applications in wide use adhere to this model

• Examples include: web browsing (HTTP), email (POP3/IMAP), file transfer
(FTP), file sharing (CIFS)

• Design advantages

• Simple, efficient (decisions can be made locally)

4

Alternative Models

• Decentralize and distribute

• Address the reliability,
scalability, and performance
problems w/ client-server model

• Peer-to-peer (P2P)

• Refers to a range of many, more
specific, host role orientations

• Hierarchical, DHT, Gossip

• Hybrid models

5

Network Protocol Stack

• Network software is often organized into “layers”

• Collectively, a particular combination of layers is known as a “stack”

• In the layered design pattern, each layer...

• Advertises dependencies for the layer below

• Exports an interface to the layer above

• Provides a set of guarantees

• A layer may rely on the guarantees provided by the layer below to enforce its
own guarantees

6

Example: A TCP/IP Stack (over Ethernet)

Application

TCP

IP

Ethernet

ARP

7

Transport Protocols

• The layer of the stack just above the network layer is often referred to as the
transport layer

• Two of the most commonly used transport-layer protocols are:

• TCP (Transmission Control Protocol)

• UDP (User Datagram Protocol)

• Protocols at this layer provide guarantees that govern:

• Connection orientation, multiplexing, message ordering, reliable delivery,
and flow/congestion control

8

TCP & UDP: Protocol Guarantees

UDP TCP

Connection-orientation Connectionless Connection-oriented

Data Presentation Datagram Byte stream

Message Ordering None In-order

Reliable Delivery No Yes

Flow/Congestion Control No Yes

9

Probing the Network Environment

• Most modern operating systems have a network stack

• Generally, this includes a TCP/IP implementation (although others may
exist)

• Under Unix, we can easily probe aspects of our role in the network:

• ifconfig -- Determine machine addresses (IP, ethernet, broadcast), net
mask, MTU, link speed, among others

• ping -- Diagnose network connectivity between hosts

• traceroute -- Observe packet routing between hosts

10

Probing the Network Environment (ctd.)

• netstat -- Show connection states, routing tables, and routing statistics

• arp -- Display/modify IP-to-ethernet address translation table

11

Capturing Network Traffic

• Since Ethernet is a broadcast protocol, it is possible to “eavesdrop” on
communication between other machines (provided you have sufficient access
privileges on your machine)

• The following tools provide easy access to this functionality:

• tcpdump -- Command-line dumping/filtering

• Wireshark (formerly Ethereal) -- Graphical interface

• ... and justify the use of ssh for remote logins :-)

12

Demonstration: Command Use Examples

13

Sockets API (in C)

• Unix variants provide an interface to the transport layer of their protocol stack
through the sockets API:

• socket -- Allocate a new socket of a particular protocol type

• bind -- Attach a socket to a particular address (i.e. an IP-port pair)

• listen/accept -- Wait for incoming connections (if the protocol supports
this)

• connect -- Initiate a connection (if the protocol supports this)

• getsockopt/setsockopt -- Get/set options available for the socket

14

Sockets API (in C) ctd.

• send/sendto/sendmsg/write -- Send data out on a socket

• recv/recvfrom/recvmsg/read -- Receive incoming data from a socket

• shutdown/close -- Release resources associated with the socket

• NOTE: Some of these functions (read, write, and close) are not specific to
sockets and may be used with other file descriptors

15

Connection Example: Server

/* int main(int argc, char** argv) */
struct sockaddr_in sockaddr;
int err, opt, sock_listen, sock_conn;

// Check the user-supplied arguments
if (check_args(argc, argv))
{
 print_usage(stderr, APP_NAME);
 exit(1);
}

// Get the address & port from the user
fprintf(stderr,"Getting listen address...\n");
if((err = get_listen_address(argv, &sockaddr)) < 0)
{
 print_error(stderr, APP_NAME,
 strerror(-err));
 exit(1);
}

// Create a new TCP socket
fprintf(stderr,"Creating TCP socket...\n");
if((sock_listen = socket(AF_INET, SOCK_STREAM,
 PROTO_DEFAULT)) < 0)
{
 print_error(stderr, APP_NAME,
 strerror(errno));
 exit(1);
}

/* int get_listen_address(char** argv,
 struct sockaddr_in* sockaddr) */
int err = 0;
memset(sockaddr,0,sizeof(struct sockaddr_in));
sockaddr->sin_family = AF_INET;
sockaddr->sin_port =
 htons(strtoul(argv[ARG_PORT], NULL, 10));
if(errno)
{
 return -errno;
}
if((err = inet_pton(AF_INET, argv[ARG_HOST],
 &sockaddr->sin_addr)) < 0)
{
 return -err;
}

return err;

16

Connection Example: Server (ctd.)

/* int main(int argc, char** argv) continued...*/
// Try to allow immediate reuse of the address
opt = 1;
setsockopt(sock_listen, SOL_SOCKET, SO_REUSEADDR,
 &opt, sizeof(opt));

// Bind the socket to the supplied address and
// port
fprintf(stderr,"Binding to address...\n");
if(bind(sock_listen, (struct sockaddr*)
 &sockaddr, sizeof(sockaddr)) < 0)
{
 print_error(stderr, APP_NAME,
 strerror(errno));
 exit(1);
}

// Listen for incoming connections
fprintf(stderr, "Set the socket to listen for "
 "incoming connections...\n");
if(listen(sock_listen,LISTEN_QUEUE_SIZE) < 0)
{
 print_error(stderr, APP_NAME,
 strerror(errno));
 exit(1);
}

// Accept a pending connection request
fprintf(stderr,"Waiting to accept pending "

/* int main(int argc, char** argv) continued...*/
 "request...\n");
if((sock_conn = accept(sock_listen, NULL, NULL))
 < 0)
{
 print_error(stderr, APP_NAME,
 strerror(errno));
 exit(1);
}

// Read some data
fprintf(stderr,"Waiting for data to read...\n");
if((err = read_question(sock_conn, NULL, 0)) < 0)
{
 print_error(stderr, APP_NAME,
 strerror(-err));
 exit(1);
}

// Send a response
fprintf(stderr,"Sending response...\n");
if((err = write_answer(sock_conn, ANSWER_STRING))
 < 0)
{
 print_error(stderr, APP_NAME,
 strerror(-err));
 exit(1);
}

17

Connection Example: Server (ctd.)

/* int read_question(int fd, char* qbuf,
 int qlen) */
int err = 0, idx = 0;
char cbuf;

while((err = read(fd,&cbuf,1)) == 1)
{
 if(qbuf)
 {
 qbuf[idx++] = cbuf;
 idx %= qlen;
 }

 if(cbuf == '?')
 {
 if (qbuf)
 qbuf[idx] = 0;
 return 0;
 }
}

return (errno == 0) ? -EINVAL : -errno;

/* int write_answer(int fd, const char*
 answer) */
int err = 0;
int len;

len = strlen(answer);

if((err = write(fd, answer, len)) != len)
 return -errno;

return 0;

18

Connection Example: Client

/* int main(int argc, char** argv)*/
struct sockaddr_in sockaddr;
int err, opt, sock_conn;
char responsebuf[LARGE_BUFFER_SIZE];

// Check the user-supplied arguments
...

// Get the server address & port from the user
...

// Create a new TCP socket
fprintf(stderr,"Creating TCP socket...\n");
if((sock_conn = socket(AF_INET, SOCK_STREAM,
 PROTO_DEFAULT)) < 0)
{
 print_error(stderr, APP_NAME,
 strerror(errno));
 exit(1);
}

// Try to allow immediate reuse of the address
opt = 1;
setsockopt(sock_conn, SOL_SOCKET, SO_REUSEADDR,
 &opt, sizeof(opt));

// Connect to the server
fprintf(stderr,"Connecting to the server...\n");
if(connect(sock_conn, (struct sockaddr*)

/* int main(int argc, char** argv) continued...*/
 &sockaddr, sizeof(sockaddr)) < 0)
{
 print_error(stderr, APP_NAME,
 strerror(errno));
 exit(1);
}

// Send a response
fprintf(stderr,"Writing some data...\n");
if((err = write_question(sock_conn,
 QUESTION_STRING)) < 0)
{
 print_error(stderr, APP_NAME,
 strerror(-err));
 exit(1);
}

// Read some data
fprintf(stderr,"Reading the response...\n");
if((err = read_answer(sock_conn, responsebuf,
 sizeof(responsebuf))) < 0)
{
 print_error(stderr, APP_NAME,
 strerror(-err));
 exit(1);
}

19

Demonstration: Connection Example

20

Anatomy of Making/Breaking a TCP Connection

SYN

SYN
,AC

K

ACK

Host A Host B

tim
e

FIN

AC
K

ACK

Host A Host B

tim
e

FIN

Connect Tear-down

21

Summary of Other Useful Functions (in C)

• gethostbyname -- Resolve a host name to an IP address

• gettimeofday -- Get the current system time

• select -- Wait on a set of file descriptors for an event (or timeout)

• sigaction/sigprocmask -- Set a signal handler or manipulate the signal mask
(esp. useful for handling SIGPIPE signals)

• assert -- Assert that an expression evaluates to TRUE (in the C sense)

22

Network Programming Tips

• Use ‘assert’ when you make an assumption -- this avoids many errors in the
first place

• Add plenty of logging (I suggest sending output to stderr); write macros that
allow you to enable/disable it using “#define” compiler directives

• For hard-to-diagnose problems, use network monitoring software (tcpdump,
Wireshark, etc.), if possible, to get a better idea of what packets are actually
being sent

• Do not rely on a specific ordering or timing of events between hosts just
because it is probable; be prepared to handle the worst case scenario

• Causality is your friend (i.e. a message will never be received before it is sent)

23

Common Pitfalls

• The firewall/NAT is getting in the way

• Listening on the wrong network interface

• Using wrong port ranges (0-1023 typically require administrative privileges)

• Forgetting to switch to and from network byte ordering (i.e. when specifying
addresses, ports, etc)

• Reading/writing too little or too much (esp. w/ TCP)

• Signals interrupting system calls

24

Common Pitfalls (ctd.)

• Forgetting/neglecting to check for errors on function return

• Comparing local and remote time-stamp values

25

The Two Generals Problem

• There are two armies, each with a general, preparing to attack a city

• For the attack to succeed, they must coordinate on a plan

• Due to their respective positions, they may only communicate via messenger

• However, a messenger from one army must travel some distance through
enemy territory to reach the other army (so he might be captured or killed)

• And there is no way to communicate with a messenger en-route

• Is there a protocol that will guarantee that both generals will attack?

26

Administrative Details

• To submit labs, you will need a CS account; if you do not have one, you may
request one by filling out the form here:

• http://www.cs.caltech.edu/cgi-bin/sysadmin/account_request.cgi

• There are no designated “lab hours” -- you must complete the labs on your
own time (though you will have access to the CS Instructional Lab, Jorgensen
154)

• The times for my office hours have not been fixed yet; I’m open to
suggestions as to when might be best for everyone

27

http://www.cs.caltech.edu/cgi-bin/sysadmin/account_request.cgi
http://www.cs.caltech.edu/cgi-bin/sysadmin/account_request.cgi

Style Notes for Lab Assignments

• Comment all major functions, data structures, and complex conditionals

• Provide robust error-handling code; error cases must be handled for all
functions that can have an error result

• Compile with all warnings enabled (“-Wall” if you are using gcc) and eliminate
them before submission

• I suggest using a tool like “make” (or, better yet, OMake -- http://
omake.metaprl.org) to help automate the compilation and testing of your lab
projects

• ALWAYS provide a “readme” file, explaining how to compile and run your
code

28

http://omake.metaprl.org
http://omake.metaprl.org
http://omake.metaprl.org
http://omake.metaprl.org

