Generalized Processor Sharing

- let $Z_j(t) = \begin{cases} 1 & \text{if queue } j \text{ nonempty at time } t \\ 0 & \text{else} \end{cases}

- let $Z(t) = \begin{cases} 1 & \text{if at least 1 queue is nonempty} \\ 0 & \text{else} \end{cases}

- let C be the link service rate, eg in \text{bits/sec}

- let Φ_j be the weight of class j, $1 \leq j \leq N$

- service rate applied to queue j at time t
 (rate at which fluid is drained from queue j) is
 $$\frac{\Phi_j Z_j(t) C}{\sum_{i=1}^{N} \Phi_i Z_i(t)} (0 \text{ if } Z(t) = 0)$$

 eg. if at time t queues 3 & 7 are nonempty, queue 3 is being served at rate $\frac{\Phi_3}{\Phi_3 + \Phi_7} C$ & queue 7 is being served at rate $\frac{\Phi_7}{\Phi_3 + \Phi_7} C$

- average service rate applied to queue j over interval $[0,t]$ is
 \[\text{cumulative service over } [0,t] \text{ \over total time in } [0,t] \text{ during which queue is nonempty}\]
 $$\frac{\int_0^t \sum_{i=1}^{N} \Phi_i Z_i(t) C \, dt}{\int_0^t Z_j(t) \, dt}$$
- Each queue has a constant service per virtual time unit.

- The weight of a nonempty queue is inversely proportional to total queueing time for every "round" of virtual time.

- $V(t)$ is a piecewise linear nondecreasing function of virtual time.

- Think of virtual time as clocking with bits from each nonempty queue.

- For class 1 fluid, arrive the GFS server offers a lower service curve.

- $V(0) = 0$

- $q = \frac{1}{\phi_i / C + t}$

- $\sum_{i=1}^{\infty} \phi_i = \frac{M^2}{c}$

- $\int \frac{c}{\phi_i / C + t} \, dt = \frac{c}{\phi_i / C} \ln(1 + C \phi_i / t)$

- Since $2 \phi(t) \leq 1$
→ easier to compute virtual compared to actual packet departure times

- let $a_{k}^{(j)} = \text{arrival time}$

 $L_{k}^{(j)} = \text{length}$

 $s_{k}^{(j)} = \text{service initiation time}$

 $d_{k}^{(j)} = \text{departure time}$

- $V(d_{k+1}^{(j)}) = V(s_{k+1}^{(j)}) + \frac{L_{k}^{(j)}}{\Phi_{j}}$

 $= \max (V(d_{k}^{(j)}), V(a_{k+1}^{(j)})) + \frac{L_{k}^{(j)}}{\Phi_{j}}$

 ▲ because service virtual time taken

 is FCFS within to serve packet

 classes

- scaling the weights Φ_{j} by the same factor scales $V(t)$, does not change the ordering of packet finish times

- GPS can be used to define practical packet-scheduling policies (where entire packets are served sequentially) which have bounded performance relative to GPS
Weighted Fair Queuing

1. The virtual time process $V(t)$ is simulated as if there were a GPS scheduler.

2. Each arriving packet is marked with its virtual finish time in the GPS scheduler.

3. A packet that is selected for transmission is transmitted completely.

4. Upon completion of a packet transmission, the next packet chosen for transmission is the one with the smallest virtual finish time among all queued packets.

Example:

- Diagram showing the processes with weights (WT) and capacities at different times.
- GPS (fluid) process with no other arrivals.
- WFQ process with packets at different capacities.
- WFWFQ process with packets at different capacities.
Worst case fair weighted fair queuing (WFWFQ)

- similar to WFQ except that the packet chosen for transmission is the one with the earliest finish time among all packets that would already have started service in GPS
- busy period: time period during which buffer is nonempty
- idle period: time period during which buffer is empty

- for a work-conserving scheduler, the evolution of $X(t)$ depends only on the arrival times & packet lengths, does not depend on the order in which packets are scheduled for transmission

\Rightarrow busy & idle periods are invariant with the scheduling policy, & the same packets depart in each busy period under any scheduling policy
Lemma 1: If 2 packets i_1 & i_2 are present in the multiplexer at a scheduling instant, then packet i_1 is selected to be served in WFA ahead of i_2 iff the same order of departure occurs in GPS (or i_1 & i_2 have the same departure time in GPS & i_1 satisfies the tie-breaking criterion).

Proof: Let d_1 & d_2 be the departure times under GPS.

- By the WFA rule, packet i_1 is selected iff

 $V(d_1) < V(d_2)$, or $V(d_1) = V(d_2)$ & i_1 wins the tie-breaker.

- $V(d_1) < V(d_2) \iff d_1 < d_2$

- $V(d_1) = V(d_2) \iff d_1 = d_2$

 since during a busy period $V(t)$ is strictly increasing.

- Note: for packets that are not present at the same time, the GPS & WFA service orders can be different.

□
- let l_{max} be an upper bound on the packet lengths

- let d_k be the departure time of a packet k under GFS, & \hat{d}_k the WFQ departure time of the same packet

Theorem 1: $d_k \leq \hat{d}_k + \frac{l_{\text{max}}}{c}$ for any packet k where c is the full link rate

Proof: Since WFQ & GFS are work-conserving, it suffices to consider a single busy period (same duration, same packets are served by both disciplines)

- index packets according to their order of departure under WFQ
- assume wlog that the busy period starts at time 0
- note that $\hat{d}_1 = \frac{L_1}{c}$, $\hat{d}_2 = \frac{L_1 + L_2}{c}$, ..., $\hat{d}_k = \frac{\sum_{i=1}^{k} L_i}{c}$

Case 1: Under GFS, packets P_1, \ldots, P_{k-1} all depart earlier or at the same time as P_k

$\Rightarrow d_k \geq \frac{\sum_{i=1}^{k} L_i}{c} = \hat{d}_k$

Case 2: There is some $m \in \{1, k-1\}$ such that $d_m > d_k$, $d_n \leq d_k \forall m+1 \leq n \leq k-1$
- let \hat{s}_m be the time at which packet p_m began service under WFQ
- since in GPS p_m departs after p_{m+1}, \ldots, p_k, packets p_{m+1}, \ldots, p_k cannot be present at time \hat{s}_m, or they would have been chosen for service by WFQ ahead of p_m
- p_{m+1}, \ldots, p_k arrived after \hat{s}_m & in GPS departed by d_k
-
- $d_k \geq \hat{s}_m + \sum_{i=m+1}^{k} \frac{L_i}{c}$
-
- $\leq \hat{d}_{m-1} + \sum_{i=m+1}^{k} \frac{L_i}{c}$
-
- $\geq \hat{d}_k - \frac{L_m}{c}$
-
- $\geq \hat{d}_k - \frac{L_{\text{max}}}{c}$