Convergence to optimal solution of (P) can be shown by using Lyapunov function approach (Wu & Arak 04)

Relationship to TCP-reno

Window evolution for congestion avoidance in TCP-reno can be approximated as

\[
W(t+\delta) \approx \frac{A(t,t+\delta)}{W(t)} + \left(\frac{1}{e}\right)^{\frac{N(t,t+\delta)}{W(t)}} = e^{-\ln 2 N(t,t+\delta)} \\
\approx 1 - \ln 2 N(t,t+\delta)
\]

Where \(A(t,t+\delta) = \# \text{ACKs in } (t,t+\delta) \)
\(N(t,t+\delta) = \# \text{losses in } (t,t+\delta) \)

→ Continuous time approximation for loss probability \(p(t) \), small \(d \)
\[
\frac{dW}{dt} = \frac{r(t)(1-q(t))}{W(t)} - \beta r(t) q(t) W(t)
\]
where \(\beta \approx \ln 2 \)

⇒ \[
\frac{dr}{dt} = \frac{r(t)(1-q(t))}{d^2 r(t)} - \beta r(t)^2 q(t)
\]

- for small \(q(t) \),
\[
\frac{dr}{dt} \approx \frac{1}{d^2} - \beta r^2 q(t)
\]
\[
= \beta r^2 \left(\frac{1}{\beta d^2 r^2} - q(t) \right)
\]

- from (1),
\[
\frac{\partial U}{\partial r} = \frac{1}{\beta d^2 r^2}
\]
\[
U(r) = -\frac{1}{\beta d^2 r} + \text{const}
\]

\(q_\sigma \rightarrow \text{path loss probability for } \sigma \rightarrow \)
\[q_\sigma = 1 - \prod_{k \in L_\sigma} (1 - p_k) \]
\[= \sum_{k \in L_\sigma} p_k \text{ for small } p_k, \quad q_\sigma \]
Queueing disciplines

- **Queueing discipline**: governs how packets are buffered & selected for transmission at a router/switch

 a) **Drop policy**: determines which packets are dropped

 - **Tail drop**: any packet that arrives when the buffer is full is dropped.
 - Simplest & most common drop policy

 - **Random early detection (RED)**: packets are dropped (or marked) with a probability that is a function of the average queue length

 RED probability profile

 ![RED probability profile graph]

 - Breaks synchronization among TCP flows, maintains small queues
b) **scheduling policy**: determines the order in which queued packets are selected for transmission

- *first-in-first-out (FIFO)* or *first-come-first-served (FCFS)*
 - packets are transmitted in the same order as they arrived

- **priority queueing**
 - packets arriving at the output link are classified into priority classes, each typically with its own FIFO queue
 - packets are transmitted from the highest priority class with a nonempty queue
 - used in the Internet to prioritize routing updates

- **fair queueing / round robin**
 - maintain a separate queue for each flow / class
 - scheduler rotates service among the flows in a fixed sequence, equally
- when a queue reaches a particular length, additional packets from the corresponding flow are discarded
- segregates traffic so that an ill-behaved flow not following the congestion control algorithm cannot arbitrarily increase its bandwidth at the expense of other flows

- **Weighted Fair queuing (WFQ)**
 - similar to fair queuing in that classes/flows are served in a circular sequence, but they receive different amounts of service according to their weight
 - useful for QoS

- Detailed description of FQ & WFQ in terms of fluid version called **Generalized Processor Sharing (GPS)**

- FQ, WFQ & GPS are work-conserving, i.e. link is not left idle as long as there is at least 1 nonempty queue