SOLUTION ADAPTATION IN EMBEDDED BOUNDARY METHODS: ADAPTIVE MESH REFINEMENT VS. ADAPTIVE REMESHING

D. Huang3, R. Borker1, P. Avery1 and C. Farhat1,2,3

1Aeronautics and Astronautics
2Mechanical Engineering
3Institute for Computational and Mathematical Engineering
Stanford University

E. Hachem and A. Larcher
CFL Computing and Fluids Research group
CEMEF - Mines ParisTech
PROBLEMS OF INTEREST

- Viscous Fluid-Structure Interaction (FSI) problems

- Large motions and/or deformations, topological changes
Computational Frameworks for FSI

Arbitrary Lagrangian Eulerian (ALE)
- Stable, accurate for small motions and/or deformations
- Lacks robustness for large motions and/or deformations, and topological changes: mesh entanglement, re-meshing

Embedded/Immersed Boundary Method (EBM)
- Robust for large motions or deformations; simpler mesh generation procedure
- Viscous flows: does not track boundary layers, complicates interface treatment
Adaptive Mesh Refinement (AMR) vs Adaptive Remeshing (AR)

AMR for structured meshes
- Local grid/patch-based adaptation
- Non-conforming meshes (hanging nodes)

Iaccarino (2004), Vanella (2014)

AR for unstructured meshes
- Conforming meshes
- Adaptation via re-meshing

Hachem (2013), Abgrall (2014)
OBJECTIVE

- Comparison between AMR and AR for
 - tracking and resolving boundary layers
 - resolving all flow features of interest

in the context of an EBM for highly nonlinear FSI problems
AMR VS. AR

- **AMR (isotropic, because the context is that of an EBM)**
 - tetrahedral meshes
 - newest vertex bisection algorithm for edge refinement/coarsening \(\rightarrow\) mesh conformity is preserved

- **AR (anisotropic)**
 - defines anisotropic directions
 - generates stretched elements (large aspect ratios)
AMR – CRITERIA

- Tracking boundary layers and keeping them well resolved
 - edge selection criterion: wall distance

\[
|W^m - W_h^m|_{\infty,k} \leq c |W^m - \Pi_h W^m|_{\infty,k} \leq c_d \max_e |e^T H e|, \quad m = 1, \ldots, n
\]

- Tracking flow features and resolving them
 - edge selection criterion: Hessian-based error indicator

Cea’s lemma (elliptic)

Taylor series scheme-independent (curvature)
Adaptive mesh refinement
- local coarsening and refinement (newest vertex bisection)

initial edges

initial nodes
Adaptive mesh refinement
- local coarsening and refinement (newest vertex bisection)
Adaptive mesh refinement
- local coarsening and refinement (newest vertex bisection)
Adaptive mesh refinement
- local coarsening and refinement (newest vertex bisection)

step 2: mark reference edges of the elements associated with marked edges

- initial edges
- initial nodes
- element ‘reference edge’
- edges marked for refinement
- reference edges marked for refinement
Adaptive mesh refinement
- local coarsening and refinement (newest vertex bisection)

step 3: refine marked reference edges
Adaptive mesh refinement
- local coarsening and refinement (newest vertex bisection)

step 4: bisect marked edges
Adaptive mesh refinement
- local coarsening and refinement (newest vertex bisection)
Adaptive mesh refinement
- local coarsening and refinement (newest vertex bisection)

step 1: mark edges for coarsening

- initial edges
- initial nodes
- element ‘reference edge’
- edges marked for coarsening
- new nodes (level 1)
- new nodes (level 2)
Adaptive mesh refinement
- local coarsening and refinement (newest vertex bisection)

step 2: delete only newest nodes (highest level) and repeat
AMR – PROCEDURE

- Adaptive mesh refinement
 - local coarsening and refinement (newest vertex bisection)

repeat step2 till all coarsening is completed
Adaptive remeshing

- Hessian-based error indicator along the edges

\[|(\nabla \Pi_h u - \nabla u(X^i)) \cdot X^{ij}| \leq \max_{Y \in \{X^i, X^j\}} |X^{ijT} H(Y) X^{ij}| \]
\[= e_{ij} \]
- adapted mesh metric associated with each node

\[M^i = \left(\frac{d}{\Gamma(i)} \sum_{j \in \Gamma(i)} s_{ij}^2 X^{ij} \otimes X^{ij} \right)^{-1} \]

\[s_{ij} = 1: \text{no stretching}; \quad s_{ij} = C e_{ij}^{-1/2}: \text{error-based stretching} \]
Adaptive remeshing

- generate an optimal mesh based on the nodal-based metric M^i using the local remeshing library MTC*

*Coupez et al. "Parallel meshing and remeshing."
Laminar flow over a collapsing cylinder

- $D = 1$; $\frac{L}{D} = 2$; $f = 1/2\pi$
- $M_\infty = 0.2$; $Re = 100$
Prescribed structural motion (displacement)

\[
[d_x, d_y] = \left(\frac{|x|+|y|}{\sqrt{2}} - \sqrt{x^2+y^2} \right) \left[\frac{-\text{sign}(x)}{\sqrt{2}}, \frac{-\text{sign}(y)}{\sqrt{2}} \right] \left(1 - \cos(2\pi ft) \right)
\]
AMR VS. AR

$C_d = 1.05$

$C_d = 1.1$
AMR VS. AR

AMR

AR
- both methods deliver similar peak drag coefficients
- both method captures multiple modes
- phase discrepancies exist
- AR exhibits smoothness issues
AMR VS. AR

- both methods deliver similar peak drag coefficients
- both method captures multiple modes
- phase discrepancies exist
- AR smoothness issues are attenuated
AMR VS. AR

Efficiency comparison

- **AMR**
 - 48 cores
 - adaptation frequency = 1
 - total time = 14.1h
 - o AMR = 2.8h
 - o balancing = 0.4h

- **AR**
 - 64 cores
 - Adaptation frequency = 5
 - total time = 19.15h
 - o AR time = 9.58h
 - o balancing = 0.65h
AMR VS. AR

Simulations without AMR/AR on uniform meshes of similar sizes

AMR/AR improve prediction of drag coefficient
AMR for EBM (FIVER)

+ more computationally efficient
+ population of new nodal values is Total Variation Diminishing (TVD)
+ preserves the element quality of the initial mesh

- more elements than AR due to isotropy, but still faster than anisotropic AR
- wall model is needed for high Reynolds number simulations
CONCLUSIONS

AR for EBM

- fewer elements but still slower than AMR
- large aspect ratios, which is favorable for RANS computations, but still slower than AMR (at least current implementation)
 - massive interpolations incurred by remeshing lead to spurious oscillations